The variable is just set to 1.0 and is never modified, I also
removed the function lcd_move_menu_1mm()
Changes save 96 bytes of flash memory and 4 bytes of SRAM
Remove most of the duplicated code inside temp_runaway_stop(),
making it identical to the other temperature handlers.
Move the lower-level functions required to stop the entirety of the
machine into UnconditionalStop(). Reuse this function inside
lcd_print_stop().
Set the LCD alert message before calling Stop(), as done in other safety
handlers, so that the error is visible while the printer is stopping.
This also avoids other temporary status messages to appear before
the real issue is shown and/or STEALING the first CRITICAL alert
level before we do.
Use the internal lcd_status_message_level for multiple severity levels
of alert messages.
This is needed to distinguish between non-critical alerts (such as FAN
ERROR) from critical ones (any heater issue). During a failure
scenario, a critical error MUST NOT be overridden by a lower-level one.
As such LCD_STATUS_CRITICAL is currently used for all heater-related
errors that result in a safety full-stop.
Make sure to call lcd_timeoutToStatus.start() when the SD card is inserted
into the printer after it was removed beforehand.
(cherry picked from commit 6795843f153aa064f087f80990419a946cdfe857)
This PROGMEM is currently ignored by gcc, but even if it wasn't it
wouldn't be correct since the following code is expecting to read "item"
without fetching the array itself from PROGMEM.
Instead of having to guess the PC where the SP was sampled, always take
both. This allows "seamless" stack decoding for both serial and xflash
dumps, since we don't have to guess which function generated the dump.
Make the core functions (doing the sampling) be ``noinline`` as well,
so that they always have valid frame.
Save SP which is closest to the crash location, which simplifies
debugging. For serial_dump, write SP just before the dump.
For xfdump, save SP in the dump header.
This makes xfdump_dump and xfdump_full_dump_and_reset() equivalent for
stack debugging.
Now that the stack_error function is truly minimal,
we can check for stack errors much more frequently.
Also move away stack_error from ultralcd to Marlin_main.
Rename EEPROM_CRASH_ACKNOWLEDGED to EEPROM_FW_CRASH_FLAG.
Use EEPROM_FW_CRASH_FLAG to always set the last crash reason, which
simplifies handling between the online/offline variants.
Make stack_error safe, by setting the flag and restarting immediately,
so that the error can be shown after restart.
When XFLASH is not available, allow users to request _online_ crash
dumps by using D23 (since these require active user cooperation).
Once enabled, instead of just rebooting, dump memory directly to
the serial.
As similarly done with EMERGENCY_DUMP, we have two features that can be
enabled:
EMERGENCY_SERIAL_DUMP: enables dumping on crash after being requested
MENU_SERIAL_DUMP: allow triggering the same manually through the support
menu.
If MENU_DUMP is enabled, a new entry at the end of the "Support" menu is
added that allows to dump memory for offline use.
This allows to trigger a memory dump at any moment during regular usage
(either idling or printing) and to recover the dump later even after a
hardware reset.
If EMERGENCY_DUMP is defined, crash and dump using the new xflash dump
functionality instead of just continuing with an error message.
When an emergency crash is stored, the first restart after a crash
displays a message that debug data is available and to contact support
to submit the crash for analysis.
Check for lcd_draw_update to see if the lcd has been altered outside the
function and redraw the screen if full.
This fixes scenarios such as #3129 where the "Card removed" message or
the SD menu is entered from outside the function's control.
This requires checking/resetting bFilamentWaitingFlag carefully to avoid
re-entering this function _twice_ (raise_z_above will run the main
loop until complete).
Scale extruder motor current linearly with speed.
49% less heating when running at low speed and standstill, 4% more torque at maximum extrusion rate (15mm^3/s), 15% more torque in high speed movements (un/retractions).
StealthChop mode is used for low speeds (below 900mm/min)
spreadCycle is used above. Transition speed is well above maximum extrusion rate of 15mm^3/s (275mm/min) so mode transition is not expected to be visible on printed surface.
StealthChop is expected to improve printed surface quality (less artifacts).
Warning you can burn extruder motor if it is not the same impedance as original Prusa i3 Extruder stepper motor. There is no current feedback in low speed so lower impedance motor can be burned by over current.
Even there is no direct current feedback, there is no risk for original motor thermal runaway, as motor resistance increases with temperature, current decreases.
Standstill peak phase current is expected to be 500 mA and linearly increase with speed to 970 mA at 900mm/min where spreadCycle constant current regulation takes over and keeps peak current at 805 mA to maximum speed possible.
As motor heating increases with current squared, lowering low speed current from 700mA to 500mA decreases heating 49% in thate mode, where motor spends most of the time.
Enable E-motor cool mode in farm mode only (and experimental menu) - the experimental menu is visible AND the EEPROM_ECOOL variable has a value of the universal answer to all problems of the universe - i.e. two conditions must be met at the start of the FW to enable the E-cool mode. If the user enables the experimental menu, sets the E-cool mode and disables the menu afterwards, on the next start of the FW the E-cool mode will be DISABLED. This is still subject to discussion how much obscure (security through obscurity) we'd like this option to have .
Additional stuff:
* Add serial debug msg to verify if E-cool mode is on
* Avoid access to E-cool mode switch on machines without TMC2130
* Do not allow only M907 E in case of E-cool mode+warn the user on the serial line that the command was skipped
Co-authored-by: D.R.racer <drracer@drracer.eu>
This change restores the minimum extruder height for filament purge
during M600 from the current 50mm back to 27mm from FW 3.9.
We do this by introducing a new option for unload_filament() to indicate
that the unload is part of an automatic swap, and in such cases avoid
raising more than absolutely necessary (this will _also_ come in handy
to avoid the extra purge in PR #2318 during M600).
A new define MIN_Z_FOR_SWAP is introduced for this purpose.
MIN_Z_FOR_UNLOAD is still used for manual lcd unload and for M702 and
hasn't been changed.
If the printer was already being pre-heated but didn't reach the target
temperature yet and a new filament is being inserted, the LCD used to
display a "Preheating to load" message to block the loading until the
extruder is hot.
This message is currently missing, and the ">Cancel" option doesn't
display immediately either, depending on the extruder height.
This PR fixes this behavior, which was broken during an earlier update.
We now force-update LCD updates during the first (and _only_) time the
screen is setup, and push all messages _before_ the carriage is
eventually raised, so that ">Cancel" is shown immediately as well.
Attempt to workaround the M73 C0|D0 visual issue
This is an attempt to enable alternation of time to print finish and time
to color change even in the last minute of time to color change, i.e. be
able to print "0:00C".
The proposed solution leverages the capability of the current FW to read
float values from the C|D parameter. This could have the raw benefit of
being able still to alternate this time on the LCD as "0:00C" (or
"<1min") if the slicer sends a non-zero but <1 time right before the
color change.
Co-authored-by: D.R.racer <drracer@drracer.eu>
Co-authored-by: 3d-gussner <3d.gussner@gmail.com>