#include "Marlin.h" #ifdef TMC2130 #include "tmc2130.h" #include #include "LiquidCrystal.h" #include "ultralcd.h" extern LiquidCrystal lcd; #define TMC2130_GCONF_NORMAL 0x00000000 // spreadCycle #define TMC2130_GCONF_SGSENS 0x00003180 // spreadCycle with stallguard (stall activates DIAG0 and DIAG1 [pushpull]) #define TMC2130_GCONF_SILENT 0x00000004 // stealthChop //externals for debuging extern float current_position[4]; extern void st_get_position_xy(long &x, long &y); extern long st_get_position(uint8_t axis); extern void crashdet_stop_and_save_print(); extern void crashdet_stop_and_save_print2(); //chipselect pins uint8_t tmc2130_cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS }; //mode uint8_t tmc2130_mode = TMC2130_MODE_NORMAL; //holding currents uint8_t tmc2130_current_h[4] = TMC2130_CURRENTS_H; //running currents uint8_t tmc2130_current_r[4] = TMC2130_CURRENTS_R; //running currents for homing uint8_t tmc2130_current_r_home[4] = {10, 10, 20, 10}; //pwm_ampl uint8_t tmc2130_pwm_ampl[2] = {TMC2130_PWM_AMPL_X, TMC2130_PWM_AMPL_Y}; //pwm_grad uint8_t tmc2130_pwm_grad[2] = {TMC2130_PWM_GRAD_X, TMC2130_PWM_GRAD_Y}; //pwm_auto uint8_t tmc2130_pwm_auto[2] = {TMC2130_PWM_AUTO_X, TMC2130_PWM_AUTO_Y}; //pwm_freq uint8_t tmc2130_pwm_freq[2] = {TMC2130_PWM_FREQ_X, TMC2130_PWM_FREQ_Y}; uint8_t tmc2130_mres[4] = {0, 0, 0, 0}; //will be filed at begin of init uint8_t tmc2130_sg_thr[4] = {TMC2130_SG_THRS_X, TMC2130_SG_THRS_Y, TMC2130_SG_THRS_Z, TMC2130_SG_THRS_E}; uint8_t tmc2130_sg_thr_home[4] = {3, 3, TMC2130_SG_THRS_Z, TMC2130_SG_THRS_E}; uint8_t sg_homing_axes_mask = 0x00; uint8_t tmc2130_sg_meassure = 0xff; uint16_t tmc2130_sg_meassure_cnt = 0; uint32_t tmc2130_sg_meassure_val = 0; bool tmc2130_sg_stop_on_crash = true; uint8_t tmc2130_sg_diag_mask = 0x00; bool tmc2130_sg_crash = false; uint16_t tmc2130_sg_err[4] = {0, 0, 0, 0}; uint16_t tmc2130_sg_cnt[4] = {0, 0, 0, 0}; bool tmc2130_sg_change = false; bool skip_debug_msg = false; #define DBG(args...) printf_P(args) #define _n PSTR #define _i PSTR //TMC2130 registers #define TMC2130_REG_GCONF 0x00 // 17 bits #define TMC2130_REG_GSTAT 0x01 // 3 bits #define TMC2130_REG_IOIN 0x04 // 8+8 bits #define TMC2130_REG_IHOLD_IRUN 0x10 // 5+5+4 bits #define TMC2130_REG_TPOWERDOWN 0x11 // 8 bits #define TMC2130_REG_TSTEP 0x12 // 20 bits #define TMC2130_REG_TPWMTHRS 0x13 // 20 bits #define TMC2130_REG_TCOOLTHRS 0x14 // 20 bits #define TMC2130_REG_THIGH 0x15 // 20 bits #define TMC2130_REG_XDIRECT 0x2d // 32 bits #define TMC2130_REG_VDCMIN 0x33 // 23 bits #define TMC2130_REG_MSLUT0 0x60 // 32 bits #define TMC2130_REG_MSLUT1 0x61 // 32 bits #define TMC2130_REG_MSLUT2 0x62 // 32 bits #define TMC2130_REG_MSLUT3 0x63 // 32 bits #define TMC2130_REG_MSLUT4 0x64 // 32 bits #define TMC2130_REG_MSLUT5 0x65 // 32 bits #define TMC2130_REG_MSLUT6 0x66 // 32 bits #define TMC2130_REG_MSLUT7 0x67 // 32 bits #define TMC2130_REG_MSLUTSEL 0x68 // 32 bits #define TMC2130_REG_MSLUTSTART 0x69 // 8+8 bits #define TMC2130_REG_MSCNT 0x6a // 10 bits #define TMC2130_REG_MSCURACT 0x6b // 9+9 bits #define TMC2130_REG_CHOPCONF 0x6c // 32 bits #define TMC2130_REG_COOLCONF 0x6d // 25 bits #define TMC2130_REG_DCCTRL 0x6e // 24 bits #define TMC2130_REG_DRV_STATUS 0x6f // 32 bits #define TMC2130_REG_PWMCONF 0x70 // 22 bits #define TMC2130_REG_PWM_SCALE 0x71 // 8 bits #define TMC2130_REG_ENCM_CTRL 0x72 // 2 bits #define TMC2130_REG_LOST_STEPS 0x73 // 20 bits uint16_t tmc2130_rd_TSTEP(uint8_t cs); uint16_t tmc2130_rd_MSCNT(uint8_t cs); uint16_t tmc2130_rd_DRV_STATUS(uint8_t cs); void tmc2130_wr_CHOPCONF(uint8_t cs, uint8_t toff = 3, uint8_t hstrt = 4, uint8_t hend = 1, uint8_t fd3 = 0, uint8_t disfdcc = 0, uint8_t rndtf = 0, uint8_t chm = 0, uint8_t tbl = 2, uint8_t vsense = 0, uint8_t vhighfs = 0, uint8_t vhighchm = 0, uint8_t sync = 0, uint8_t mres = 0b0100, uint8_t intpol = 1, uint8_t dedge = 0, uint8_t diss2g = 0); void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel); void tmc2130_wr_TPWMTHRS(uint8_t cs, uint32_t val32); void tmc2130_wr_THIGH(uint8_t cs, uint32_t val32); uint8_t tmc2130_axis_by_cs(uint8_t cs); uint8_t tmc2130_calc_mres(uint16_t microstep_resolution); uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval); uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval); uint8_t tmc2130_txrx(uint8_t cs, uint8_t addr, uint32_t wval, uint32_t* rval); void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r); void tmc2130_init() { DBG(_n("tmc2130_init(), mode=%S\n"), tmc2130_mode?_n("NORMAL"):_n("STEALTH")); tmc2130_mres[0] = tmc2130_calc_mres(TMC2130_USTEPS_XY); tmc2130_mres[1] = tmc2130_calc_mres(TMC2130_USTEPS_XY); tmc2130_mres[2] = tmc2130_calc_mres(TMC2130_USTEPS_Z); tmc2130_mres[3] = tmc2130_calc_mres(TMC2130_USTEPS_E); WRITE(X_TMC2130_CS, HIGH); WRITE(Y_TMC2130_CS, HIGH); WRITE(Z_TMC2130_CS, HIGH); WRITE(E0_TMC2130_CS, HIGH); SET_OUTPUT(X_TMC2130_CS); SET_OUTPUT(Y_TMC2130_CS); SET_OUTPUT(Z_TMC2130_CS); SET_OUTPUT(E0_TMC2130_CS); SET_INPUT(X_TMC2130_DIAG); SET_INPUT(Y_TMC2130_DIAG); SET_INPUT(Z_TMC2130_DIAG); SET_INPUT(E0_TMC2130_DIAG); SPI.begin(); for (int axis = 0; axis < 2; axis++) // X Y axes { /* if (tmc2130_current_r[axis] <= 31) { tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0); tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f)); } else { tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0); tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((tmc2130_current_r[axis] >> 1) & 0x1f) << 8) | ((tmc2130_current_h[axis] >> 1) & 0x1f)); }*/ tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); // tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0); // tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f)); tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TPOWERDOWN, 0x00000000); // tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24)); tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16)); tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:((axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y)); tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS); tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0); tmc2130_wr_TPWMTHRS(tmc2130_cs[axis], TMC2130_TPWMTHRS); //tmc2130_wr_THIGH(tmc2130_cs[axis], TMC2130_THIGH); } for (int axis = 2; axis < 3; axis++) // Z axis { // uint8_t mres = tmc2130_mres(TMC2130_USTEPS_Z); /* if (tmc2130_current_r[axis] <= 31) { tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_Z, 0, 0); tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f)); } else { tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, mres, TMC2130_INTPOL_Z, 0, 0); tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((tmc2130_current_r[axis] >> 1) & 0x1f) << 8) | ((tmc2130_current_h[axis] >> 1) & 0x1f)); }*/ tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TPOWERDOWN, 0x00000000); tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); } for (int axis = 3; axis < 4; axis++) // E axis { // uint8_t mres = tmc2130_mres(TMC2130_USTEPS_E); tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); // tmc2130_wr_CHOPCONF(tmc2130_cs[axis], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_E, 0, 0); // tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f)); tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TPOWERDOWN, 0x00000000); tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); } tmc2130_sg_err[0] = 0; tmc2130_sg_err[1] = 0; tmc2130_sg_err[2] = 0; tmc2130_sg_err[3] = 0; tmc2130_sg_cnt[0] = 0; tmc2130_sg_cnt[1] = 0; tmc2130_sg_cnt[2] = 0; tmc2130_sg_cnt[3] = 0; } uint8_t tmc2130_sample_diag() { uint8_t mask = 0; if (READ(X_TMC2130_DIAG)) mask |= X_AXIS_MASK; if (READ(Y_TMC2130_DIAG)) mask |= Y_AXIS_MASK; // if (READ(Z_TMC2130_DIAG)) mask |= Z_AXIS_MASK; // if (READ(E0_TMC2130_DIAG)) mask |= E_AXIS_MASK; return mask; } extern bool is_usb_printing; void tmc2130_st_isr(uint8_t last_step_mask) { if (tmc2130_mode == TMC2130_MODE_SILENT || tmc2130_sg_stop_on_crash == false) return; bool crash = false; uint8_t diag_mask = tmc2130_sample_diag(); // for (uint8_t axis = X_AXIS; axis <= E_AXIS; axis++) for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) { uint8_t mask = (X_AXIS_MASK << axis); if (diag_mask & mask) tmc2130_sg_err[axis]++; else if (tmc2130_sg_err[axis] > 0) tmc2130_sg_err[axis]--; if (tmc2130_sg_cnt[axis] < tmc2130_sg_err[axis]) { tmc2130_sg_cnt[axis] = tmc2130_sg_err[axis]; tmc2130_sg_change = true; if (tmc2130_sg_err[axis] >= 64) { tmc2130_sg_err[axis] = 0; crash = true; } } } if (sg_homing_axes_mask == 0) { /* if (crash) { if (diag_mask & 0x01) tmc2130_sg_cnt[0]++; if (diag_mask & 0x02) tmc2130_sg_cnt[1]++; if (diag_mask & 0x04) tmc2130_sg_cnt[2]++; if (diag_mask & 0x08) tmc2130_sg_cnt[3]++; }*/ if (!is_usb_printing && tmc2130_sg_stop_on_crash && crash) { tmc2130_sg_crash = true; tmc2130_sg_stop_on_crash = false; crashdet_stop_and_save_print(); } } } bool tmc2130_update_sg() { if (tmc2130_sg_meassure <= E_AXIS) { uint8_t cs = tmc2130_cs[tmc2130_sg_meassure]; uint16_t sg = tmc2130_rd_DRV_STATUS(cs) & 0x3ff; tmc2130_sg_meassure_val += sg; tmc2130_sg_meassure_cnt++; // printf_P(PSTR("tmc2130_update_sg - meassure - sg=%d\n"), sg); return true; } return false; } void tmc2130_home_enter(uint8_t axes_mask) { // printf_P(PSTR("tmc2130_home_enter(axes_mask=0x%02x)\n"), axes_mask); #ifdef TMC2130_SG_HOMING for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes { uint8_t mask = (X_AXIS_MASK << axis); uint8_t cs = tmc2130_cs[axis]; if (axes_mask & mask) { sg_homing_axes_mask |= mask; //Configuration to spreadCycle tmc2130_wr(cs, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL); tmc2130_wr(cs, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr_home[axis]) << 16)); // tmc2130_wr(cs, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24)); tmc2130_wr(cs, TMC2130_REG_TCOOLTHRS, (axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y); tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r_home[axis]); if (mask & (X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK)) tmc2130_wr(cs, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); //stallguard output DIAG1, DIAG1 = pushpull } } #endif //TMC2130_SG_HOMING } void tmc2130_home_exit() { // printf_P(PSTR("tmc2130_home_exit sg_homing_axes_mask=0x%02x\n"), sg_homing_axes_mask); #ifdef TMC2130_SG_HOMING if (sg_homing_axes_mask) { for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes { uint8_t mask = (X_AXIS_MASK << axis); if (sg_homing_axes_mask & mask & (X_AXIS_MASK | Y_AXIS_MASK)) { if (tmc2130_mode == TMC2130_MODE_SILENT) { tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); // Configuration back to stealthChop tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TCOOLTHRS, 0); // tmc2130_wr_PWMCONF(tmc2130_cs[i], tmc2130_pwm_ampl[i], tmc2130_pwm_grad[i], tmc2130_pwm_freq[i], tmc2130_pwm_auto[i], 0, 0); } else { // tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL); tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); // tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24)); tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16)); tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:((axis==X_AXIS)?TMC2130_TCOOLTHRS_X:TMC2130_TCOOLTHRS_Y)); tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); } } } sg_homing_axes_mask = 0x00; } tmc2130_sg_crash = false; #endif } void tmc2130_sg_meassure_start(uint8_t axis) { tmc2130_sg_meassure = axis; tmc2130_sg_meassure_cnt = 0; tmc2130_sg_meassure_val = 0; } uint16_t tmc2130_sg_meassure_stop() { tmc2130_sg_meassure = 0xff; return tmc2130_sg_meassure_val / tmc2130_sg_meassure_cnt; } bool tmc2130_wait_standstill_xy(int timeout) { DBG(_n("tmc2130_wait_standstill_xy(timeout=%d)\n"), timeout); bool standstill = false; while (!standstill && (timeout > 0)) { uint32_t drv_status_x = 0; uint32_t drv_status_y = 0; tmc2130_rd(tmc2130_cs[X_AXIS], TMC2130_REG_DRV_STATUS, &drv_status_x); tmc2130_rd(tmc2130_cs[Y_AXIS], TMC2130_REG_DRV_STATUS, &drv_status_y); DBG(_n("\tdrv_status_x=0x%08x drv_status_x=0x%08x\n"), drv_status_x, drv_status_y); standstill = (drv_status_x & 0x80000000) && (drv_status_y & 0x80000000); tmc2130_check_overtemp(); timeout--; } return standstill; } void tmc2130_check_overtemp() { const static char TMC_OVERTEMP_MSG[] PROGMEM = "TMC DRIVER OVERTEMP "; static uint32_t checktime = 0; if (millis() - checktime > 1000 ) { for (int i = 0; i < 4; i++) { uint32_t drv_status = 0; skip_debug_msg = true; tmc2130_rd(tmc2130_cs[i], TMC2130_REG_DRV_STATUS, &drv_status); if (drv_status & ((uint32_t)1 << 26)) { // BIT 26 - over temp prewarning ~120C (+-20C) SERIAL_ERRORRPGM(TMC_OVERTEMP_MSG); SERIAL_ECHOLN(i); for (int j = 0; j < 4; j++) tmc2130_wr(tmc2130_cs[j], TMC2130_REG_CHOPCONF, 0x00010000); kill(TMC_OVERTEMP_MSG); } } checktime = millis(); tmc2130_sg_change = true; } #ifdef DEBUG_CRASHDET_COUNTERS if (tmc2130_sg_change) { for (int i = 0; i < 4; i++) { tmc2130_sg_change = false; lcd.setCursor(0 + i*4, 3); lcd.print(itostr3(tmc2130_sg_cnt[i])); lcd.print(' '); } } #endif DEBUG_CRASHDET_COUNTERS } void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r) { uint8_t cs = tmc2130_cs[axis]; uint8_t intpol = 1; if (current_r <= 31) { tmc2130_wr_CHOPCONF(cs, 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, intpol, 0, 0); tmc2130_wr(cs, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((current_r & 0x1f) << 8) | (current_h & 0x1f)); } else { tmc2130_wr_CHOPCONF(cs, 3, 5, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, mres, intpol, 0, 0); tmc2130_wr(cs, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((current_r >> 1) & 0x1f) << 8) | ((current_h >> 1) & 0x1f)); } } void tmc2130_set_current_h(uint8_t axis, uint8_t current) { DBG(_n("tmc2130_set_current_h(axis=%d, current=%d\n"), axis, current); tmc2130_current_h[axis] = current; tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); } void tmc2130_set_current_r(uint8_t axis, uint8_t current) { DBG(_n("tmc2130_set_current_r(axis=%d, current=%d\n"), axis, current); tmc2130_current_r[axis] = current; tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); } void tmc2130_print_currents() { DBG(_n("tmc2130_print_currents()\n\tH\tR\nX\t%d\t%d\nY\t%d\t%d\nZ\t%d\t%d\nE\t%d\t%d\n"), tmc2130_current_h[0], tmc2130_current_r[0], tmc2130_current_h[1], tmc2130_current_r[1], tmc2130_current_h[2], tmc2130_current_r[2], tmc2130_current_h[3], tmc2130_current_r[3] ); } void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl) { MYSERIAL.print("tmc2130_set_pwm_ampl "); MYSERIAL.print((int)axis); MYSERIAL.print(" "); MYSERIAL.println((int)pwm_ampl); tmc2130_pwm_ampl[axis] = pwm_ampl; if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT)) tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0); } void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad) { MYSERIAL.print("tmc2130_set_pwm_grad "); MYSERIAL.print((int)axis); MYSERIAL.print(" "); MYSERIAL.println((int)pwm_grad); tmc2130_pwm_grad[axis] = pwm_grad; if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT)) tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0); } uint16_t tmc2130_rd_TSTEP(uint8_t cs) { uint32_t val32 = 0; tmc2130_rd(cs, TMC2130_REG_TSTEP, &val32); if (val32 & 0x000f0000) return 0xffff; return val32 & 0xffff; } uint16_t tmc2130_rd_MSCNT(uint8_t cs) { uint32_t val32 = 0; tmc2130_rd(cs, TMC2130_REG_MSCNT, &val32); return val32 & 0x3ff; } uint16_t tmc2130_rd_DRV_STATUS(uint8_t cs) { uint32_t val32 = 0; tmc2130_rd(cs, TMC2130_REG_DRV_STATUS, &val32); return val32; } void tmc2130_wr_CHOPCONF(uint8_t cs, uint8_t toff, uint8_t hstrt, uint8_t hend, uint8_t fd3, uint8_t disfdcc, uint8_t rndtf, uint8_t chm, uint8_t tbl, uint8_t vsense, uint8_t vhighfs, uint8_t vhighchm, uint8_t sync, uint8_t mres, uint8_t intpol, uint8_t dedge, uint8_t diss2g) { uint32_t val = 0; val |= (uint32_t)(toff & 15); val |= (uint32_t)(hstrt & 7) << 4; val |= (uint32_t)(hend & 15) << 7; val |= (uint32_t)(fd3 & 1) << 11; val |= (uint32_t)(disfdcc & 1) << 12; val |= (uint32_t)(rndtf & 1) << 13; val |= (uint32_t)(chm & 1) << 14; val |= (uint32_t)(tbl & 3) << 15; val |= (uint32_t)(vsense & 1) << 17; val |= (uint32_t)(vhighfs & 1) << 18; val |= (uint32_t)(vhighchm & 1) << 19; val |= (uint32_t)(sync & 15) << 20; val |= (uint32_t)(mres & 15) << 24; val |= (uint32_t)(intpol & 1) << 28; val |= (uint32_t)(dedge & 1) << 29; val |= (uint32_t)(diss2g & 1) << 30; tmc2130_wr(cs, TMC2130_REG_CHOPCONF, val); } //void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl) void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel) { uint32_t val = 0; val |= (uint32_t)(pwm_ampl & 255); val |= (uint32_t)(pwm_grad & 255) << 8; val |= (uint32_t)(pwm_freq & 3) << 16; val |= (uint32_t)(pwm_auto & 1) << 18; val |= (uint32_t)(pwm_symm & 1) << 19; val |= (uint32_t)(freewheel & 3) << 20; tmc2130_wr(cs, TMC2130_REG_PWMCONF, val); // tmc2130_wr(cs, TMC2130_REG_PWMCONF, ((uint32_t)(PWMautoScale+PWMfreq) << 16) | ((uint32_t)PWMgrad << 8) | PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq } void tmc2130_wr_TPWMTHRS(uint8_t cs, uint32_t val32) { tmc2130_wr(cs, TMC2130_REG_TPWMTHRS, val32); } void tmc2130_wr_THIGH(uint8_t cs, uint32_t val32) { tmc2130_wr(cs, TMC2130_REG_THIGH, val32); } #if defined(TMC2130_DEBUG_RD) || defined(TMC2130_DEBUG_WR) uint8_t tmc2130_axis_by_cs(uint8_t cs) { switch (cs) { case X_TMC2130_CS: return 0; case Y_TMC2130_CS: return 1; case Z_TMC2130_CS: return 2; case E0_TMC2130_CS: return 3; } return -1; } #endif //TMC2130_DEBUG uint8_t tmc2130_calc_mres(uint16_t microstep_resolution) { if (microstep_resolution == 256) return 0b0000; if (microstep_resolution == 128) return 0b0001; if (microstep_resolution == 64) return 0b0010; if (microstep_resolution == 32) return 0b0011; if (microstep_resolution == 16) return 0b0100; if (microstep_resolution == 8) return 0b0101; if (microstep_resolution == 4) return 0b0110; if (microstep_resolution == 2) return 0b0111; if (microstep_resolution == 1) return 0b1000; return 0; } uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval) { uint8_t stat = tmc2130_txrx(cs, addr | 0x80, wval, 0); #ifdef TMC2130_DEBUG_WR MYSERIAL.print("tmc2130_wr("); MYSERIAL.print((unsigned char)tmc2130_axis_by_cs(cs), DEC); MYSERIAL.print(", 0x"); MYSERIAL.print((unsigned char)addr, HEX); MYSERIAL.print(", 0x"); MYSERIAL.print((unsigned long)wval, HEX); MYSERIAL.print(")=0x"); MYSERIAL.println((unsigned char)stat, HEX); #endif //TMC2130_DEBUG_WR return stat; } uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval) { uint32_t val32 = 0; uint8_t stat = tmc2130_txrx(cs, addr, 0x00000000, &val32); if (rval != 0) *rval = val32; #ifdef TMC2130_DEBUG_RD if (!skip_debug_msg) { MYSERIAL.print("tmc2130_rd("); MYSERIAL.print((unsigned char)tmc2130_axis_by_cs(cs), DEC); MYSERIAL.print(", 0x"); MYSERIAL.print((unsigned char)addr, HEX); MYSERIAL.print(", 0x"); MYSERIAL.print((unsigned long)val32, HEX); MYSERIAL.print(")=0x"); MYSERIAL.println((unsigned char)stat, HEX); } skip_debug_msg = false; #endif //TMC2130_DEBUG_RD return stat; } uint8_t tmc2130_txrx(uint8_t cs, uint8_t addr, uint32_t wval, uint32_t* rval) { //datagram1 - request SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(cs, LOW); SPI.transfer(addr); // address SPI.transfer((wval >> 24) & 0xff); // MSB SPI.transfer((wval >> 16) & 0xff); SPI.transfer((wval >> 8) & 0xff); SPI.transfer(wval & 0xff); // LSB digitalWrite(cs, HIGH); SPI.endTransaction(); //datagram2 - response SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(cs, LOW); uint8_t stat = SPI.transfer(0); // status uint32_t val32 = 0; val32 = SPI.transfer(0); // MSB val32 = (val32 << 8) | SPI.transfer(0); val32 = (val32 << 8) | SPI.transfer(0); val32 = (val32 << 8) | SPI.transfer(0); // LSB digitalWrite(cs, HIGH); SPI.endTransaction(); if (rval != 0) *rval = val32; return stat; } void tmc2130_eeprom_load_config() { } void tmc2130_eeprom_save_config() { } #endif //TMC2130