/* stepper.c - stepper motor driver: executes motion plans using stepper motors Part of Grbl Copyright (c) 2009-2011 Simen Svale Skogsrud Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith and Philipp Tiefenbacher. */ #include "Marlin.h" #include "stepper.h" #include "planner.h" #include "temperature.h" #include "ultralcd.h" #include "language.h" #include "cardreader.h" #include "speed_lookuptable.h" #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #include #endif #ifdef TMC2130 #include "tmc2130.h" #endif //TMC2130 #ifdef FILAMENT_SENSOR #include "fsensor.h" int fsensor_counter = 0; //counter for e-steps #endif //FILAMENT_SENSOR #ifdef DEBUG_STACK_MONITOR uint16_t SP_min = 0x21FF; #endif //DEBUG_STACK_MONITOR //=========================================================================== //=============================public variables ============================ //=========================================================================== block_t *current_block; // A pointer to the block currently being traced bool x_min_endstop = false; bool x_max_endstop = false; bool y_min_endstop = false; bool y_max_endstop = false; bool z_min_endstop = false; bool z_max_endstop = false; //=========================================================================== //=============================private variables ============================ //=========================================================================== //static makes it inpossible to be called from outside of this file by extern.! // Variables used by The Stepper Driver Interrupt static unsigned char out_bits; // The next stepping-bits to be output static dda_isteps_t counter_x, // Counter variables for the bresenham line tracer counter_y, counter_z, counter_e; volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block static int32_t acceleration_time, deceleration_time; //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; static uint16_t acc_step_rate; // needed for deccelaration start point static uint8_t step_loops; static uint16_t OCR1A_nominal; static uint8_t step_loops_nominal; volatile long endstops_trigsteps[3]={0,0,0}; volatile long endstops_stepsTotal,endstops_stepsDone; static volatile bool endstop_x_hit=false; static volatile bool endstop_y_hit=false; static volatile bool endstop_z_hit=false; #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED bool abort_on_endstop_hit = false; #endif #ifdef MOTOR_CURRENT_PWM_XY_PIN int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT; int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT; int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; #endif static bool old_x_min_endstop=false; static bool old_x_max_endstop=false; static bool old_y_min_endstop=false; static bool old_y_max_endstop=false; static bool old_z_min_endstop=false; static bool old_z_max_endstop=false; static bool check_endstops = true; static bool check_z_endstop = false; static bool z_endstop_invert = false; volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0}; volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1}; #ifdef LIN_ADVANCE static uint16_t nextMainISR = 0; static uint16_t eISR_Rate; // Extrusion steps to be executed by the stepper. // If set to non zero, the timer ISR routine will tick the Linear Advance extruder ticks first. // If e_steps is zero, then the timer ISR routine will perform the usual DDA step. static volatile int16_t e_steps = 0; // How many extruder steps shall be ticked at a single ISR invocation? static uint8_t estep_loops; // The current speed of the extruder, scaled by the linear advance constant, so it has the same measure // as current_adv_steps. static int current_estep_rate; // The current pretension of filament expressed in extruder micro steps. static int current_adv_steps; #define _NEXT_ISR(T) nextMainISR = T #else #define _NEXT_ISR(T) OCR1A = T #endif #ifdef DEBUG_STEPPER_TIMER_MISSED extern bool stepper_timer_overflow_state; extern uint16_t stepper_timer_overflow_last; #endif /* DEBUG_STEPPER_TIMER_MISSED */ //=========================================================================== //=============================functions ============================ //=========================================================================== #ifndef _NO_ASM // intRes = intIn1 * intIn2 >> 16 // uses: // r26 to store 0 // r27 to store the byte 1 of the 24 bit result #define MultiU16X8toH16(intRes, charIn1, intIn2) \ asm volatile ( \ "clr r26 \n\t" \ "mul %A1, %B2 \n\t" \ "movw %A0, r0 \n\t" \ "mul %A1, %A2 \n\t" \ "add %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "lsr r0 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "clr r1 \n\t" \ : \ "=&r" (intRes) \ : \ "d" (charIn1), \ "d" (intIn2) \ : \ "r26" \ ) // intRes = longIn1 * longIn2 >> 24 // uses: // r26 to store 0 // r27 to store the byte 1 of the 48bit result #define MultiU24X24toH16(intRes, longIn1, longIn2) \ asm volatile ( \ "clr r26 \n\t" \ "mul %A1, %B2 \n\t" \ "mov r27, r1 \n\t" \ "mul %B1, %C2 \n\t" \ "movw %A0, r0 \n\t" \ "mul %C1, %C2 \n\t" \ "add %B0, r0 \n\t" \ "mul %C1, %B2 \n\t" \ "add %A0, r0 \n\t" \ "adc %B0, r1 \n\t" \ "mul %A1, %C2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %B1, %B2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %C1, %A2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %B1, %A2 \n\t" \ "add r27, r1 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "lsr r27 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "clr r1 \n\t" \ : \ "=&r" (intRes) \ : \ "d" (longIn1), \ "d" (longIn2) \ : \ "r26" , "r27" \ ) #else //_NO_ASM void MultiU16X8toH16(unsigned short& intRes, unsigned char& charIn1, unsigned short& intIn2) { } void MultiU24X24toH16(uint16_t& intRes, int32_t& longIn1, long& longIn2) { } #endif //_NO_ASM // Some useful constants void checkHitEndstops() { if( endstop_x_hit || endstop_y_hit || endstop_z_hit) { SERIAL_ECHO_START; SERIAL_ECHORPGM(_T(MSG_ENDSTOPS_HIT)); if(endstop_x_hit) { SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]); // LCD_MESSAGERPGM(CAT2(_T(MSG_ENDSTOPS_HIT), PSTR("X"))); } if(endstop_y_hit) { SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]); // LCD_MESSAGERPGM(CAT2(_T(MSG_ENDSTOPS_HIT), PSTR("Y"))); } if(endstop_z_hit) { SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]); // LCD_MESSAGERPGM(CAT2(_T(MSG_ENDSTOPS_HIT),PSTR("Z"))); } SERIAL_ECHOLN(""); endstop_x_hit=false; endstop_y_hit=false; endstop_z_hit=false; #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT) if (abort_on_endstop_hit) { card.sdprinting = false; card.closefile(); quickStop(); setTargetHotend0(0); setTargetHotend1(0); setTargetHotend2(0); } #endif } } bool endstops_hit_on_purpose() { bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit; endstop_x_hit=false; endstop_y_hit=false; endstop_z_hit=false; return hit; } bool endstop_z_hit_on_purpose() { bool hit = endstop_z_hit; endstop_z_hit=false; return hit; } bool enable_endstops(bool check) { bool old = check_endstops; check_endstops = check; return old; } bool enable_z_endstop(bool check) { bool old = check_z_endstop; check_z_endstop = check; endstop_z_hit = false; return old; } void invert_z_endstop(bool endstop_invert) { z_endstop_invert = endstop_invert; } // __________________________ // /| |\ _________________ ^ // / | | \ /| |\ | // / | | \ / | | \ s // / | | | | | \ p // / | | | | | \ e // +-----+------------------------+---+--+---------------+----+ e // | BLOCK 1 | BLOCK 2 | d // // time -----> // // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates // first block->accelerate_until step_events_completed, then keeps going at constant speed until // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. // The slope of acceleration is calculated with the leib ramp alghorithm. FORCE_INLINE unsigned short calc_timer(uint16_t step_rate) { unsigned short timer; if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times step_rate = (step_rate >> 2)&0x3fff; step_loops = 4; } else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times step_rate = (step_rate >> 1)&0x7fff; step_loops = 2; } else { step_loops = 1; } // step_loops = 1; if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000); step_rate -= (F_CPU/500000); // Correct for minimal speed if(step_rate >= (8*256)){ // higher step rate unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0]; unsigned char tmp_step_rate = (step_rate & 0x00ff); unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2); MultiU16X8toH16(timer, tmp_step_rate, gain); timer = (unsigned short)pgm_read_word_near(table_address) - timer; } else { // lower step rates unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0]; table_address += ((step_rate)>>1) & 0xfffc; timer = (unsigned short)pgm_read_word_near(table_address); timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3); } if(timer < 100) { timer = 100; MYSERIAL.print(_i("Steprate too high: ")); MYSERIAL.println(step_rate); }//(20kHz this should never happen)////MSG_STEPPER_TOO_HIGH c=0 r=0 return timer; } // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. ISR(TIMER1_COMPA_vect) { #ifdef DEBUG_STACK_MONITOR uint16_t sp = SPL + 256 * SPH; if (sp < SP_min) SP_min = sp; #endif //DEBUG_STACK_MONITOR #ifdef LIN_ADVANCE // If there are any e_steps planned, tick them. bool run_main_isr = false; if (e_steps) { //WRITE_NC(LOGIC_ANALYZER_CH7, true); for (uint8_t i = estep_loops; e_steps && i --;) { WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN); -- e_steps; WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN); } if (e_steps) { // Plan another Linear Advance tick. OCR1A = eISR_Rate; nextMainISR -= eISR_Rate; } else if (! (nextMainISR & 0x8000) || nextMainISR < 16) { // The timer did not overflow and it is big enough, so it makes sense to plan it. OCR1A = nextMainISR; } else { // The timer has overflown, or it is too small. Run the main ISR just after the Linear Advance routine // in the current interrupt tick. run_main_isr = true; //FIXME pick the serial line. } //WRITE_NC(LOGIC_ANALYZER_CH7, false); } else run_main_isr = true; if (run_main_isr) #endif isr(); // Don't run the ISR faster than possible // Is there a 8us time left before the next interrupt triggers? if (OCR1A < TCNT1 + 16) { #ifdef DEBUG_STEPPER_TIMER_MISSED // Verify whether the next planned timer interrupt has not been missed already. // This debugging test takes < 1.125us // This skews the profiling slightly as the fastest stepper timer // interrupt repeats at a 100us rate (10kHz). if (OCR1A + 40 < TCNT1) { // The interrupt was delayed by more than 20us (which is 1/5th of the 10kHz ISR repeat rate). // Give a warning. stepper_timer_overflow_state = true; stepper_timer_overflow_last = TCNT1 - OCR1A; // Beep, the beeper will be cleared at the stepper_timer_overflow() called from the main thread. WRITE(BEEPER, HIGH); } #endif // Fix the next interrupt to be executed after 8us from now. OCR1A = TCNT1 + 16; } } uint8_t last_dir_bits = 0; #ifdef BACKLASH_X uint8_t st_backlash_x = 0; #endif //BACKLASH_X #ifdef BACKLASH_Y uint8_t st_backlash_y = 0; #endif //BACKLASH_Y FORCE_INLINE void stepper_next_block() { // Anything in the buffer? //WRITE_NC(LOGIC_ANALYZER_CH2, true); current_block = plan_get_current_block(); if (current_block != NULL) { #ifdef BACKLASH_X if (current_block->steps_x.wide) { //X-axis movement if ((current_block->direction_bits ^ last_dir_bits) & 1) { printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 1)?st_backlash_x:-st_backlash_x); if (current_block->direction_bits & 1) WRITE_NC(X_DIR_PIN, INVERT_X_DIR); else WRITE_NC(X_DIR_PIN, !INVERT_X_DIR); _delay_us(100); for (uint8_t i = 0; i < st_backlash_x; i++) { WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN); _delay_us(100); WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN); _delay_us(900); } } last_dir_bits &= ~1; last_dir_bits |= current_block->direction_bits & 1; } #endif #ifdef BACKLASH_Y if (current_block->steps_y.wide) { //Y-axis movement if ((current_block->direction_bits ^ last_dir_bits) & 2) { printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 2)?st_backlash_y:-st_backlash_y); if (current_block->direction_bits & 2) WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR); else WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR); _delay_us(100); for (uint8_t i = 0; i < st_backlash_y; i++) { WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN); _delay_us(100); WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN); _delay_us(900); } } last_dir_bits &= ~2; last_dir_bits |= current_block->direction_bits & 2; } #endif #ifdef FILAMENT_SENSOR fsensor_counter = 0; fsensor_st_block_begin(current_block); #endif //FILAMENT_SENSOR // The busy flag is set by the plan_get_current_block() call. // current_block->busy = true; // Initializes the trapezoid generator from the current block. Called whenever a new // block begins. deceleration_time = 0; // Set the nominal step loops to zero to indicate, that the timer value is not known yet. // That means, delay the initialization of nominal step rate and step loops until the steady // state is reached. step_loops_nominal = 0; acc_step_rate = uint16_t(current_block->initial_rate); acceleration_time = calc_timer(acc_step_rate); #ifdef LIN_ADVANCE current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17; #endif /* LIN_ADVANCE */ if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) { counter_x.lo = -(current_block->step_event_count.lo >> 1); counter_y.lo = counter_x.lo; counter_z.lo = counter_x.lo; counter_e.lo = counter_x.lo; } else { counter_x.wide = -(current_block->step_event_count.wide >> 1); counter_y.wide = counter_x.wide; counter_z.wide = counter_x.wide; counter_e.wide = counter_x.wide; } step_events_completed.wide = 0; // Set directions. out_bits = current_block->direction_bits; // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY) if((out_bits & (1< -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT) #ifdef TMC2130_SG_HOMING // Stall guard homing turned on x_min_endstop = (READ(X_TMC2130_DIAG) != 0); #else // Normal homing x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING); #endif if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) { endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; endstop_x_hit=true; step_events_completed.wide = current_block->step_event_count.wide; } old_x_min_endstop = x_min_endstop; #endif } else { // +direction #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT) #ifdef TMC2130_SG_HOMING // Stall guard homing turned on x_max_endstop = (READ(X_TMC2130_DIAG) != 0); #else // Normal homing x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING); #endif if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){ endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; endstop_x_hit=true; step_events_completed.wide = current_block->step_event_count.wide; } old_x_max_endstop = x_max_endstop; #endif } #ifndef COREXY if ((out_bits & (1< -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT) #ifdef TMC2130_SG_HOMING // Stall guard homing turned on y_min_endstop = (READ(Y_TMC2130_DIAG) != 0); #else // Normal homing y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING); #endif if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) { endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstop_y_hit=true; step_events_completed.wide = current_block->step_event_count.wide; } old_y_min_endstop = y_min_endstop; #endif } else { // +direction #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT) #ifdef TMC2130_SG_HOMING // Stall guard homing turned on y_max_endstop = (READ(Y_TMC2130_DIAG) != 0); #else // Normal homing y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING); #endif if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){ endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstop_y_hit=true; step_events_completed.wide = current_block->step_event_count.wide; } old_y_max_endstop = y_max_endstop; #endif } if ((out_bits & (1< -1) && !defined(DEBUG_DISABLE_ZMINLIMIT) if (! check_z_endstop) { #ifdef TMC2130_SG_HOMING // Stall guard homing turned on #ifdef TMC2130_STEALTH_Z if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04)) z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); else #endif //TMC2130_STEALTH_Z z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0); #else z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); #endif //TMC2130_SG_HOMING if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_z_hit=true; step_events_completed.wide = current_block->step_event_count.wide; } old_z_min_endstop = z_min_endstop; } #endif } else { // +direction #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT) #ifdef TMC2130_SG_HOMING // Stall guard homing turned on #ifdef TMC2130_STEALTH_Z if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04)) z_max_endstop = false; else #endif //TMC2130_STEALTH_Z z_max_endstop = (READ(Z_TMC2130_DIAG) != 0); #else z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING); #endif //TMC2130_SG_HOMING if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_z_hit=true; step_events_completed.wide = current_block->step_event_count.wide; } old_z_max_endstop = z_max_endstop; #endif } } // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT) if (check_z_endstop) { // Check the Z min end-stop no matter what. // Good for searching for the center of an induction target. #ifdef TMC2130_SG_HOMING // Stall guard homing turned on #ifdef TMC2130_STEALTH_Z if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04)) z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); else #endif //TMC2130_STEALTH_Z z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0); #else z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); #endif //TMC2130_SG_HOMING if(z_min_endstop && old_z_min_endstop) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_z_hit=true; step_events_completed.wide = current_block->step_event_count.wide; } old_z_min_endstop = z_min_endstop; } #endif } FORCE_INLINE void stepper_tick_lowres() { for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves) MSerial.checkRx(); // Check for serial chars. // Step in X axis counter_x.lo += current_block->steps_x.lo; if (counter_x.lo > 0) { WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN); #ifdef DEBUG_XSTEP_DUP_PIN WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN); #endif //DEBUG_XSTEP_DUP_PIN counter_x.lo -= current_block->step_event_count.lo; count_position[X_AXIS]+=count_direction[X_AXIS]; WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN); #ifdef DEBUG_XSTEP_DUP_PIN WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN); #endif //DEBUG_XSTEP_DUP_PIN } // Step in Y axis counter_y.lo += current_block->steps_y.lo; if (counter_y.lo > 0) { WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN); #ifdef DEBUG_YSTEP_DUP_PIN WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN); #endif //DEBUG_YSTEP_DUP_PIN counter_y.lo -= current_block->step_event_count.lo; count_position[Y_AXIS]+=count_direction[Y_AXIS]; WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN); #ifdef DEBUG_YSTEP_DUP_PIN WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN); #endif //DEBUG_YSTEP_DUP_PIN } // Step in Z axis counter_z.lo += current_block->steps_z.lo; if (counter_z.lo > 0) { WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN); counter_z.lo -= current_block->step_event_count.lo; count_position[Z_AXIS]+=count_direction[Z_AXIS]; WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN); } // Step in E axis counter_e.lo += current_block->steps_e.lo; if (counter_e.lo > 0) { #ifndef LIN_ADVANCE WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); #endif /* LIN_ADVANCE */ counter_e.lo -= current_block->step_event_count.lo; count_position[E_AXIS] += count_direction[E_AXIS]; #ifdef LIN_ADVANCE ++ e_steps; #else #ifdef FILAMENT_SENSOR ++ fsensor_counter; #endif //FILAMENT_SENSOR WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN); #endif } if(++ step_events_completed.lo >= current_block->step_event_count.lo) break; } } FORCE_INLINE void stepper_tick_highres() { for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves) MSerial.checkRx(); // Check for serial chars. // Step in X axis counter_x.wide += current_block->steps_x.wide; if (counter_x.wide > 0) { WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN); #ifdef DEBUG_XSTEP_DUP_PIN WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN); #endif //DEBUG_XSTEP_DUP_PIN counter_x.wide -= current_block->step_event_count.wide; count_position[X_AXIS]+=count_direction[X_AXIS]; WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN); #ifdef DEBUG_XSTEP_DUP_PIN WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN); #endif //DEBUG_XSTEP_DUP_PIN } // Step in Y axis counter_y.wide += current_block->steps_y.wide; if (counter_y.wide > 0) { WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN); #ifdef DEBUG_YSTEP_DUP_PIN WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN); #endif //DEBUG_YSTEP_DUP_PIN counter_y.wide -= current_block->step_event_count.wide; count_position[Y_AXIS]+=count_direction[Y_AXIS]; WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN); #ifdef DEBUG_YSTEP_DUP_PIN WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN); #endif //DEBUG_YSTEP_DUP_PIN } // Step in Z axis counter_z.wide += current_block->steps_z.wide; if (counter_z.wide > 0) { WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN); counter_z.wide -= current_block->step_event_count.wide; count_position[Z_AXIS]+=count_direction[Z_AXIS]; WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN); } // Step in E axis counter_e.wide += current_block->steps_e.wide; if (counter_e.wide > 0) { #ifndef LIN_ADVANCE WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); #endif /* LIN_ADVANCE */ counter_e.wide -= current_block->step_event_count.wide; count_position[E_AXIS]+=count_direction[E_AXIS]; #ifdef LIN_ADVANCE ++ e_steps; #else #ifdef FILAMENT_SENSOR ++ fsensor_counter; #endif //FILAMENT_SENSOR WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN); #endif } if(++ step_events_completed.wide >= current_block->step_event_count.wide) break; } } // 50us delay #define LIN_ADV_FIRST_TICK_DELAY 100 FORCE_INLINE void isr() { //WRITE_NC(LOGIC_ANALYZER_CH0, true); //if (UVLO) uvlo(); // If there is no current block, attempt to pop one from the buffer if (current_block == NULL) stepper_next_block(); if (current_block != NULL) { stepper_check_endstops(); #ifdef LIN_ADVANCE e_steps = 0; #endif /* LIN_ADVANCE */ if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) stepper_tick_lowres(); else stepper_tick_highres(); #ifdef LIN_ADVANCE if (out_bits&(1<use_advance_lead) { //int esteps_inc = 0; //esteps_inc = current_estep_rate - current_adv_steps; //e_steps += esteps_inc; e_steps += current_estep_rate - current_adv_steps; #if 0 if (abs(esteps_inc) > 4) { LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc); if (esteps_inc < -511 || esteps_inc > 511) LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc >> 9); } #endif current_adv_steps = current_estep_rate; } // If we have esteps to execute, step some of them now. if (e_steps) { //WRITE_NC(LOGIC_ANALYZER_CH7, true); // Set the step direction. { bool neg = e_steps < 0; bool dir = #ifdef SNMM (neg == (mmu_extruder & 1)) #else neg #endif ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder. WRITE_NC(E0_DIR_PIN, dir); if (neg) // Flip the e_steps counter to be always positive. e_steps = - e_steps; } // Tick min(step_loops, abs(e_steps)). estep_loops = (e_steps & 0x0ff00) ? 4 : e_steps; if (step_loops < estep_loops) estep_loops = step_loops; #ifdef FILAMENT_SENSOR fsensor_counter += estep_loops; #endif //FILAMENT_SENSOR do { WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN); -- e_steps; WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN); } while (-- estep_loops != 0); //WRITE_NC(LOGIC_ANALYZER_CH7, false); MSerial.checkRx(); // Check for serial chars. } #endif // Calculare new timer value // 13.38-14.63us for steady state, // 25.12us for acceleration / deceleration. { //WRITE_NC(LOGIC_ANALYZER_CH1, true); if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) { // v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); acc_step_rate += uint16_t(current_block->initial_rate); // upper limit if(acc_step_rate > uint16_t(current_block->nominal_rate)) acc_step_rate = current_block->nominal_rate; // step_rate to timer interval uint16_t timer = calc_timer(acc_step_rate); _NEXT_ISR(timer); acceleration_time += timer; #ifdef LIN_ADVANCE if (current_block->use_advance_lead) // int32_t = (uint16_t * uint32_t) >> 17 current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17; #endif } else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) { uint16_t step_rate; MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate); step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point. if ((step_rate & 0x8000) || step_rate < uint16_t(current_block->final_rate)) { // Result is negative or too small. step_rate = uint16_t(current_block->final_rate); } // Step_rate to timer interval. uint16_t timer = calc_timer(step_rate); _NEXT_ISR(timer); deceleration_time += timer; #ifdef LIN_ADVANCE if (current_block->use_advance_lead) current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17; #endif } else { if (! step_loops_nominal) { // Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower // the initial interrupt blocking. OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate)); step_loops_nominal = step_loops; #ifdef LIN_ADVANCE if (current_block->use_advance_lead) current_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17; #endif } _NEXT_ISR(OCR1A_nominal); } //WRITE_NC(LOGIC_ANALYZER_CH1, false); } #ifdef LIN_ADVANCE if (e_steps && current_block->use_advance_lead) { //WRITE_NC(LOGIC_ANALYZER_CH7, true); MSerial.checkRx(); // Check for serial chars. // Some of the E steps were not ticked yet. Plan additional interrupts. uint16_t now = TCNT1; // Plan the first linear advance interrupt after 50us from now. uint16_t to_go = nextMainISR - now - LIN_ADV_FIRST_TICK_DELAY; eISR_Rate = 0; if ((to_go & 0x8000) == 0) { // The to_go number is not negative. // Count the number of 7812,5 ticks, that fit into to_go 2MHz ticks. uint8_t ticks = to_go >> 8; if (ticks == 1) { // Avoid running the following loop for a very short interval. estep_loops = 255; eISR_Rate = 1; } else if ((e_steps & 0x0ff00) == 0) { // e_steps <= 0x0ff if (uint8_t(e_steps) <= ticks) { // Spread the e_steps along the whole go_to interval. eISR_Rate = to_go / uint8_t(e_steps); estep_loops = 1; } else if (ticks != 0) { // At least one tick fits into the to_go interval. Calculate the e-step grouping. uint8_t e = uint8_t(e_steps) >> 1; estep_loops = 2; while (e > ticks) { e >>= 1; estep_loops <<= 1; } // Now the estep_loops contains the number of loops of power of 2, that will be sufficient // to squeeze enough of Linear Advance ticks until nextMainISR. // Calculate the tick rate. eISR_Rate = to_go / ticks; } } else { // This is an exterme case with too many e_steps inserted by the linear advance. // At least one tick fits into the to_go interval. Calculate the e-step grouping. estep_loops = 2; uint16_t e = e_steps >> 1; while (e & 0x0ff00) { e >>= 1; estep_loops <<= 1; } while (uint8_t(e) > ticks) { e >>= 1; estep_loops <<= 1; } // Now the estep_loops contains the number of loops of power of 2, that will be sufficient // to squeeze enough of Linear Advance ticks until nextMainISR. // Calculate the tick rate. eISR_Rate = to_go / ticks; } } if (eISR_Rate == 0) { // There is not enough time to fit even a single additional tick. // Tick all the extruder ticks now. #ifdef FILAMENT_SENSOR fsensor_counter += e_steps; #endif //FILAMENT_SENSOR MSerial.checkRx(); // Check for serial chars. do { WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN); -- e_steps; WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN); } while (e_steps); OCR1A = nextMainISR; } else { // Tick the 1st Linear Advance interrupt after 50us from now. nextMainISR -= LIN_ADV_FIRST_TICK_DELAY; OCR1A = now + LIN_ADV_FIRST_TICK_DELAY; } //WRITE_NC(LOGIC_ANALYZER_CH7, false); } else OCR1A = nextMainISR; #endif // If current block is finished, reset pointer if (step_events_completed.wide >= current_block->step_event_count.wide) { #ifdef FILAMENT_SENSOR fsensor_st_block_chunk(current_block, fsensor_counter); fsensor_counter = 0; #endif //FILAMENT_SENSOR current_block = NULL; plan_discard_current_block(); } #ifdef FILAMENT_SENSOR else if (fsensor_counter >= fsensor_chunk_len) { fsensor_st_block_chunk(current_block, fsensor_counter); fsensor_counter = 0; } #endif //FILAMENT_SENSOR } #ifdef TMC2130 tmc2130_st_isr(); #endif //TMC2130 //WRITE_NC(LOGIC_ANALYZER_CH0, false); } #ifdef LIN_ADVANCE void clear_current_adv_vars() { e_steps = 0; //Should be already 0 at an filament change event, but just to be sure.. current_adv_steps = 0; } #endif // LIN_ADVANCE void st_init() { #ifdef TMC2130 tmc2130_init(); #endif //TMC2130 st_current_init(); //Initialize Digipot Motor Current microstep_init(); //Initialize Microstepping Pins //Initialize Dir Pins #if defined(X_DIR_PIN) && X_DIR_PIN > -1 SET_OUTPUT(X_DIR_PIN); #endif #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1 SET_OUTPUT(X2_DIR_PIN); #endif #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1 SET_OUTPUT(Y_DIR_PIN); #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1) SET_OUTPUT(Y2_DIR_PIN); #endif #endif #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1 SET_OUTPUT(Z_DIR_PIN); #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1) SET_OUTPUT(Z2_DIR_PIN); #endif #endif #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1 SET_OUTPUT(E0_DIR_PIN); #endif #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1) SET_OUTPUT(E1_DIR_PIN); #endif #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1) SET_OUTPUT(E2_DIR_PIN); #endif //Initialize Enable Pins - steppers default to disabled. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 SET_OUTPUT(X_ENABLE_PIN); if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH); #endif #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 SET_OUTPUT(X2_ENABLE_PIN); if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH); #endif #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1 SET_OUTPUT(Y_ENABLE_PIN); if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH); #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1) SET_OUTPUT(Y2_ENABLE_PIN); if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH); #endif #endif #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1 SET_OUTPUT(Z_ENABLE_PIN); if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH); #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1) SET_OUTPUT(Z2_ENABLE_PIN); if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH); #endif #endif #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1) SET_OUTPUT(E0_ENABLE_PIN); if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH); #endif #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1) SET_OUTPUT(E1_ENABLE_PIN); if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH); #endif #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1) SET_OUTPUT(E2_ENABLE_PIN); if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH); #endif //endstops and pullups #ifdef TMC2130_SG_HOMING SET_INPUT(X_TMC2130_DIAG); WRITE(X_TMC2130_DIAG,HIGH); SET_INPUT(Y_TMC2130_DIAG); WRITE(Y_TMC2130_DIAG,HIGH); SET_INPUT(Z_TMC2130_DIAG); WRITE(Z_TMC2130_DIAG,HIGH); SET_INPUT(E0_TMC2130_DIAG); WRITE(E0_TMC2130_DIAG,HIGH); #endif #if defined(X_MIN_PIN) && X_MIN_PIN > -1 SET_INPUT(X_MIN_PIN); #ifdef ENDSTOPPULLUP_XMIN WRITE(X_MIN_PIN,HIGH); #endif #endif #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 SET_INPUT(Y_MIN_PIN); #ifdef ENDSTOPPULLUP_YMIN WRITE(Y_MIN_PIN,HIGH); #endif #endif #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 SET_INPUT(Z_MIN_PIN); #ifdef ENDSTOPPULLUP_ZMIN WRITE(Z_MIN_PIN,HIGH); #endif #endif #if defined(X_MAX_PIN) && X_MAX_PIN > -1 SET_INPUT(X_MAX_PIN); #ifdef ENDSTOPPULLUP_XMAX WRITE(X_MAX_PIN,HIGH); #endif #endif #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 SET_INPUT(Y_MAX_PIN); #ifdef ENDSTOPPULLUP_YMAX WRITE(Y_MAX_PIN,HIGH); #endif #endif #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 SET_INPUT(Z_MAX_PIN); #ifdef ENDSTOPPULLUP_ZMAX WRITE(Z_MAX_PIN,HIGH); #endif #endif #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1)) SET_INPUT(TACH_0); #ifdef TACH0PULLUP WRITE(TACH_0, HIGH); #endif #endif //Initialize Step Pins #if defined(X_STEP_PIN) && (X_STEP_PIN > -1) SET_OUTPUT(X_STEP_PIN); WRITE(X_STEP_PIN,INVERT_X_STEP_PIN); #ifdef DEBUG_XSTEP_DUP_PIN SET_OUTPUT(DEBUG_XSTEP_DUP_PIN); WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN); #endif //DEBUG_XSTEP_DUP_PIN disable_x(); #endif #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1) SET_OUTPUT(X2_STEP_PIN); WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN); disable_x(); #endif #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1) SET_OUTPUT(Y_STEP_PIN); WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN); #ifdef DEBUG_YSTEP_DUP_PIN SET_OUTPUT(DEBUG_YSTEP_DUP_PIN); WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN); #endif //DEBUG_YSTEP_DUP_PIN #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1) SET_OUTPUT(Y2_STEP_PIN); WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN); #endif disable_y(); #endif #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1) SET_OUTPUT(Z_STEP_PIN); WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN); #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1) SET_OUTPUT(Z2_STEP_PIN); WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN); #endif disable_z(); #endif #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1) SET_OUTPUT(E0_STEP_PIN); WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN); disable_e0(); #endif #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) SET_OUTPUT(E1_STEP_PIN); WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN); disable_e1(); #endif #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) SET_OUTPUT(E2_STEP_PIN); WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN); disable_e2(); #endif // waveform generation = 0100 = CTC TCCR1B &= ~(1< -1 void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example { digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip SPI.transfer(address); // send in the address and value via SPI: SPI.transfer(value); digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip: //delay(10); } #endif void EEPROM_read_st(int pos, uint8_t* value, uint8_t size) { do { *value = eeprom_read_byte((unsigned char*)pos); pos++; value++; }while(--size); } void st_current_init() //Initialize Digipot Motor Current { uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); SilentModeMenu = SilentMode; #ifdef MOTOR_CURRENT_PWM_XY_PIN pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT); pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT); pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT); if((SilentMode == SILENT_MODE_OFF) || (farm_mode) ){ motor_current_setting[0] = motor_current_setting_loud[0]; motor_current_setting[1] = motor_current_setting_loud[1]; motor_current_setting[2] = motor_current_setting_loud[2]; }else{ motor_current_setting[0] = motor_current_setting_silent[0]; motor_current_setting[1] = motor_current_setting_silent[1]; motor_current_setting[2] = motor_current_setting_silent[2]; } st_current_set(0, motor_current_setting[0]); st_current_set(1, motor_current_setting[1]); st_current_set(2, motor_current_setting[2]); //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise) TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50); #endif } #ifdef MOTOR_CURRENT_PWM_XY_PIN void st_current_set(uint8_t driver, int current) { if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE); if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE); if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE); } #else //MOTOR_CURRENT_PWM_XY_PIN void st_current_set(uint8_t, int ){} #endif //MOTOR_CURRENT_PWM_XY_PIN void microstep_init() { #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1 pinMode(E1_MS1_PIN,OUTPUT); pinMode(E1_MS2_PIN,OUTPUT); #endif #if defined(X_MS1_PIN) && X_MS1_PIN > -1 const uint8_t microstep_modes[] = MICROSTEP_MODES; pinMode(X_MS1_PIN,OUTPUT); pinMode(X_MS2_PIN,OUTPUT); pinMode(Y_MS1_PIN,OUTPUT); pinMode(Y_MS2_PIN,OUTPUT); pinMode(Z_MS1_PIN,OUTPUT); pinMode(Z_MS2_PIN,OUTPUT); pinMode(E0_MS1_PIN,OUTPUT); pinMode(E0_MS2_PIN,OUTPUT); for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]); #endif } #ifndef TMC2130 void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) { if(ms1 > -1) switch(driver) { case 0: digitalWrite( X_MS1_PIN,ms1); break; case 1: digitalWrite( Y_MS1_PIN,ms1); break; case 2: digitalWrite( Z_MS1_PIN,ms1); break; case 3: digitalWrite(E0_MS1_PIN,ms1); break; #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1 case 4: digitalWrite(E1_MS1_PIN,ms1); break; #endif } if(ms2 > -1) switch(driver) { case 0: digitalWrite( X_MS2_PIN,ms2); break; case 1: digitalWrite( Y_MS2_PIN,ms2); break; case 2: digitalWrite( Z_MS2_PIN,ms2); break; case 3: digitalWrite(E0_MS2_PIN,ms2); break; #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1 case 4: digitalWrite(E1_MS2_PIN,ms2); break; #endif } } void microstep_mode(uint8_t driver, uint8_t stepping_mode) { switch(stepping_mode) { case 1: microstep_ms(driver,MICROSTEP1); break; case 2: microstep_ms(driver,MICROSTEP2); break; case 4: microstep_ms(driver,MICROSTEP4); break; case 8: microstep_ms(driver,MICROSTEP8); break; case 16: microstep_ms(driver,MICROSTEP16); break; } } void microstep_readings() { SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n"); SERIAL_PROTOCOLPGM("X: "); SERIAL_PROTOCOL( digitalRead(X_MS1_PIN)); SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN)); SERIAL_PROTOCOLPGM("Y: "); SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN)); SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN)); SERIAL_PROTOCOLPGM("Z: "); SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN)); SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN)); SERIAL_PROTOCOLPGM("E0: "); SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN)); SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN)); #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1 SERIAL_PROTOCOLPGM("E1: "); SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN)); SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN)); #endif } #endif //TMC2130