//! @file #include "temperature.h" #include "ultralcd.h" #include "fsensor.h" #include "Marlin.h" #include "language.h" #include "cardreader.h" #include "temperature.h" #include "stepper.h" #include "ConfigurationStore.h" #include "printers.h" #include #include "lcd.h" #include "menu.h" #include "util.h" #include "mesh_bed_leveling.h" #include "mesh_bed_calibration.h" //#include "Configuration.h" #include "cmdqueue.h" #include "SdFatUtil.h" #ifdef FILAMENT_SENSOR #include "pat9125.h" #include "fsensor.h" #endif //FILAMENT_SENSOR #ifdef TMC2130 #include "tmc2130.h" #endif //TMC2130 #include "sound.h" #include "mmu.h" #include "static_assert.h" #include "io_atmega2560.h" extern bool fans_check_enabled; int scrollstuff = 0; char longFilenameOLD[LONG_FILENAME_LENGTH]; static void lcd_sd_updir(); int8_t ReInitLCD = 0; int8_t SilentModeMenu = SILENT_MODE_OFF; int8_t FSensorStateMenu = 1; int8_t CrashDetectMenu = 1; extern bool fsensor_enable(); extern void fsensor_disable(); #ifdef TMC2130 extern void crashdet_enable(); extern void crashdet_disable(); #endif //TMC2130 #ifdef SDCARD_SORT_ALPHA bool presort_flag = false; #endif int lcd_commands_type = LCD_COMMAND_IDLE; int lcd_commands_step = 0; unsigned int custom_message_type = CUSTOM_MSG_TYPE_STATUS; unsigned int custom_message_state = 0; bool isPrintPaused = false; uint8_t farm_mode = 0; int farm_no = 0; int farm_timer = 8; int farm_status = 0; bool printer_connected = true; unsigned long display_time; //just timer for showing pid finished message on lcd; float pid_temp = DEFAULT_PID_TEMP; static bool forceMenuExpire = false; static bool lcd_autoDeplete; static float manual_feedrate[] = MANUAL_FEEDRATE; /* !Configuration settings */ uint8_t lcd_status_message_level; char lcd_status_message[LCD_WIDTH + 1] = ""; //////WELCOME! unsigned char firstrun = 1; static const char separator[] PROGMEM = "--------------------"; /** forward declarations **/ static const char* lcd_display_message_fullscreen_nonBlocking_P(const char *msg, uint8_t &nlines); // void copy_and_scalePID_i(); // void copy_and_scalePID_d(); /* Different menus */ static void lcd_status_screen(); static void lcd_language_menu(); static void lcd_main_menu(); static void lcd_tune_menu(); //static void lcd_move_menu(); static void lcd_settings_menu(); static void lcd_calibration_menu(); #ifdef LINEARITY_CORRECTION static void lcd_settings_menu_back(); #endif //LINEARITY_CORRECTION static void lcd_control_temperature_menu(); static void lcd_control_temperature_preheat_pla_settings_menu(); static void lcd_control_temperature_preheat_abs_settings_menu(); static void lcd_control_motion_menu(); static void lcd_control_volumetric_menu(); static void lcd_settings_linearity_correction_menu_save(); static void prusa_stat_printerstatus(int _status); static void prusa_stat_farm_number(); static void prusa_stat_temperatures(); static void prusa_stat_printinfo(); static void lcd_farm_no(); static void lcd_menu_extruder_info(); static void lcd_menu_xyz_y_min(); static void lcd_menu_xyz_skew(); static void lcd_menu_xyz_offset(); static void lcd_menu_fails_stats_mmu(); static void lcd_menu_fails_stats_mmu_print(); static void lcd_menu_fails_stats_mmu_total(); static void lcd_menu_show_sensors_state(); static void mmu_fil_eject_menu(); static void mmu_load_to_nozzle_menu(); #if defined(TMC2130) || defined(FILAMENT_SENSOR) static void lcd_menu_fails_stats(); #endif //TMC2130 or FILAMENT_SENSOR static void lcd_selftest_v(); #ifdef TMC2130 static void reset_crash_det(unsigned char axis); static bool lcd_selfcheck_axis_sg(unsigned char axis); static bool lcd_selfcheck_axis(int _axis, int _travel); #else static bool lcd_selfcheck_endstops(); static bool lcd_selfcheck_axis(int _axis, int _travel); static bool lcd_selfcheck_pulleys(int axis); #endif //TMC2130 static bool lcd_selfcheck_check_heater(bool _isbed); enum class testScreen { extruderFan, printFan, fansOk, endStops, axisX, axisY, axisZ, bed, hotend, hotendOk, fsensor, fsensorOk, allCorrect, failed, home, }; static int lcd_selftest_screen(testScreen screen, int _progress, int _progress_scale, bool _clear, int _delay); static void lcd_selftest_screen_step(int _row, int _col, int _state, const char *_name, const char *_indicator); static bool lcd_selftest_manual_fan_check(int _fan, bool check_opposite); #ifdef FANCHECK static bool lcd_selftest_fan_dialog(int _fan); #endif //FANCHECK static bool lcd_selftest_fsensor(); static bool selftest_irsensor(); static void lcd_selftest_error(int _error_no, const char *_error_1, const char *_error_2); static void lcd_colorprint_change(); #ifdef SNMM static int get_ext_nr(); #endif //SNMM #if defined (SNMM) || defined(SNMM_V2) static void fil_load_menu(); static void fil_unload_menu(); #endif // SNMM || SNMM_V2 static void lcd_disable_farm_mode(); static void lcd_set_fan_check(); static char snmm_stop_print_menu(); #ifdef SDCARD_SORT_ALPHA static void lcd_sort_type_set(); #endif static float count_e(float layer_heigth, float extrusion_width, float extrusion_length); static void lcd_babystep_z(); static void lcd_send_status(); #ifdef FARM_CONNECT_MESSAGE static void lcd_connect_printer(); #endif //FARM_CONNECT_MESSAGE void lcd_finishstatus(); static void lcd_sdcard_menu(); #ifdef DELTA_CALIBRATION_MENU static void lcd_delta_calibrate_menu(); #endif // DELTA_CALIBRATION_MENU /* Different types of actions that can be used in menu items. */ static void menu_action_sdfile(const char* filename); static void menu_action_sddirectory(const char* filename); #define ENCODER_FEEDRATE_DEADZONE 10 #define STATE_NA 255 #define STATE_OFF 0 #define STATE_ON 1 /* #define MENU_ITEM(type, label, args...) do { \ if (menu_item == menu_line) { \ if (lcd_draw_update) { \ const char* _label_pstr = (label); \ if (lcd_encoder == menu_item) { \ lcd_implementation_drawmenu_ ## type ## _selected (menu_row, _label_pstr , ## args ); \ }else{\ lcd_implementation_drawmenu_ ## type (menu_row, _label_pstr , ## args ); \ }\ }\ if (menu_clicked && (lcd_encoder == menu_item)) {\ lcd_quick_feedback(); \ menu_action_ ## type ( args ); \ return;\ }\ }\ menu_item++;\ } while(0) */ #if (SDCARDDETECT > 0) bool lcd_oldcardstatus; #endif bool ignore_click = false; bool wait_for_unclick; // place-holders for Ki and Kd edits #ifdef PIDTEMP // float raw_Ki, raw_Kd; #endif bool bMain; // flag (i.e. 'fake parameter') for 'lcd_sdcard_menu()' function const char STR_SEPARATOR[] PROGMEM = "------------"; static void lcd_implementation_drawmenu_sdfile_selected(uint8_t row, char* longFilename) { char c; int enc_dif = lcd_encoder_diff; uint8_t n = LCD_WIDTH - 1; for(int g = 0; g<4;g++){ lcd_set_cursor(0, g); lcd_print(' '); } lcd_set_cursor(0, row); lcd_print('>'); int i = 1; int j = 0; char* longFilenameTMP = longFilename; while((c = *longFilenameTMP) != '\0') { lcd_set_cursor(i, row); lcd_print(c); i++; longFilenameTMP++; if(i==LCD_WIDTH){ i=1; j++; longFilenameTMP = longFilename + j; n = LCD_WIDTH - 1; for(int g = 0; g<300 ;g++){ manage_heater(); if(LCD_CLICKED || ( enc_dif != lcd_encoder_diff )){ longFilenameTMP = longFilename; *(longFilenameTMP + LCD_WIDTH - 2) = '\0'; i = 1; j = 0; break; }else{ if (j == 1) _delay_ms(3); //wait around 1.2 s to start scrolling text _delay_ms(1); //then scroll with redrawing every 300 ms } } } } if(c!='\0'){ lcd_set_cursor(i, row); lcd_print(c); i++; } n=n-i+1; while(n--) lcd_print(' '); } static void lcd_implementation_drawmenu_sdfile(uint8_t row, const char* filename, char* longFilename) { char c; uint8_t n = LCD_WIDTH - 1; lcd_set_cursor(0, row); lcd_print(' '); if (longFilename[0] != '\0') { filename = longFilename; longFilename[LCD_WIDTH-1] = '\0'; } while( ((c = *filename) != '\0') && (n>0) ) { lcd_print(c); filename++; n--; } while(n--) lcd_print(' '); } static void lcd_implementation_drawmenu_sddirectory_selected(uint8_t row, const char* filename, char* longFilename) { char c; uint8_t n = LCD_WIDTH - 2; lcd_set_cursor(0, row); lcd_print('>'); lcd_print(LCD_STR_FOLDER[0]); if (longFilename[0] != '\0') { filename = longFilename; longFilename[LCD_WIDTH-2] = '\0'; } while( ((c = *filename) != '\0') && (n>0) ) { lcd_print(c); filename++; n--; } while(n--) lcd_print(' '); } static void lcd_implementation_drawmenu_sddirectory(uint8_t row, const char* filename, char* longFilename) { char c; uint8_t n = LCD_WIDTH - 2; lcd_set_cursor(0, row); lcd_print(' '); lcd_print(LCD_STR_FOLDER[0]); if (longFilename[0] != '\0') { filename = longFilename; longFilename[LCD_WIDTH-2] = '\0'; } while( ((c = *filename) != '\0') && (n>0) ) { lcd_print(c); filename++; n--; } while(n--) lcd_print(' '); } #define MENU_ITEM_SDDIR(str_fn, str_fnl) do { if (menu_item_sddir(str_fn, str_fnl)) return; } while (0) //#define MENU_ITEM_SDDIR(str, str_fn, str_fnl) MENU_ITEM(sddirectory, str, str_fn, str_fnl) //extern uint8_t menu_item_sddir(const char* str, const char* str_fn, char* str_fnl); #define MENU_ITEM_SDFILE(str, str_fn, str_fnl) do { if (menu_item_sdfile(str, str_fn, str_fnl)) return; } while (0) //#define MENU_ITEM_SDFILE(str, str_fn, str_fnl) MENU_ITEM(sdfile, str, str_fn, str_fnl) //extern uint8_t menu_item_sdfile(const char* str, const char* str_fn, char* str_fnl); uint8_t menu_item_sddir(const char* str_fn, char* str_fnl) { #ifdef NEW_SD_MENU // str_fnl[18] = 0; // printf_P(PSTR("menu dir %d '%s' '%s'\n"), menu_row, str_fn, str_fnl); if (menu_item == menu_line) { if (lcd_draw_update) { lcd_set_cursor(0, menu_row); int cnt = lcd_printf_P(PSTR("%c%c%-18s"), (lcd_encoder == menu_item)?'>':' ', LCD_STR_FOLDER[0], str_fnl[0]?str_fnl:str_fn); // int cnt = lcd_printf_P(PSTR("%c%c%-18s"), (lcd_encoder == menu_item)?'>':' ', LCD_STR_FOLDER[0], str_fn); } if (menu_clicked && (lcd_encoder == menu_item)) { uint8_t depth = (uint8_t)card.getWorkDirDepth(); strcpy(dir_names[depth], str_fn); // printf_P(PSTR("%s\n"), dir_names[depth]); card.chdir(str_fn); lcd_encoder = 0; return menu_item_ret(); } } menu_item++; return 0; #else //NEW_SD_MENU if (menu_item == menu_line) { if (lcd_draw_update) { if (lcd_encoder == menu_item) lcd_implementation_drawmenu_sddirectory_selected(menu_row, str_fn, str_fnl); else lcd_implementation_drawmenu_sddirectory(menu_row, str_fn, str_fnl); } if (menu_clicked && (lcd_encoder == menu_item)) { menu_clicked = false; lcd_update_enabled = 0; menu_action_sddirectory(str_fn); lcd_update_enabled = 1; return menu_item_ret(); } } menu_item++; return 0; #endif //NEW_SD_MENU } static uint8_t menu_item_sdfile(const char* #ifdef NEW_SD_MENU str #endif //NEW_SD_MENU ,const char* str_fn, char* str_fnl) { #ifdef NEW_SD_MENU // printf_P(PSTR("menu sdfile\n")); // str_fnl[19] = 0; // printf_P(PSTR("menu file %d '%s' '%s'\n"), menu_row, str_fn, str_fnl); if (menu_item == menu_line) { if (lcd_draw_update) { // printf_P(PSTR("menu file %d %d '%s'\n"), menu_row, menuData.sdcard_menu.viewState, str_fnl[0]?str_fnl:str_fn); lcd_set_cursor(0, menu_row); /* if (lcd_encoder == menu_item) { lcd_printf_P(PSTR("%c%-19s"), (lcd_encoder == menu_item)?'>':' ', (str_fnl[0]?str_fnl:str_fn) + 1); if (menuData.sdcard_menu.viewState == 0) { menuData.sdcard_menu.viewState++; lcd_printf_P(PSTR("%c%-19s"), (lcd_encoder == menu_item)?'>':' ', (str_fnl[0]?str_fnl:str_fn) + 1); } else if (menuData.sdcard_menu.viewState == 1) { lcd_printf_P(PSTR("%c%-19s"), (lcd_encoder == menu_item)?'>':' ', (str_fnl[0]?str_fnl:str_fn) + 2); } } else*/ { str_fnl[19] = 0; lcd_printf_P(PSTR("%c%-19s"), (lcd_encoder == menu_item)?'>':' ', str_fnl[0]?str_fnl:str_fn); } // int cnt = lcd_printf_P(PSTR("%c%-19s"), (lcd_encoder == menu_item)?'>':' ', str_fnl); // int cnt = lcd_printf_P(PSTR("%cTESTIK.gcode"), (lcd_encoder == menu_item)?'>':' '); } if (menu_clicked && (lcd_encoder == menu_item)) { return menu_item_ret(); } } menu_item++; return 0; #else //NEW_SD_MENU if (menu_item == menu_line) { if (lcd_draw_update) { if (lcd_encoder == menu_item) lcd_implementation_drawmenu_sdfile_selected(menu_row, str_fnl); else lcd_implementation_drawmenu_sdfile(menu_row, str_fn, str_fnl); } if (menu_clicked && (lcd_encoder == menu_item)) { lcd_consume_click(); menu_action_sdfile(str_fn); return menu_item_ret(); } } menu_item++; return 0; #endif //NEW_SD_MENU } // Print temperature (nozzle/bed) (9 chars total) void lcdui_print_temp(char type, int val_current, int val_target) { int chars = lcd_printf_P(_N("%c%3d/%d%c"), type, val_current, val_target, LCD_STR_DEGREE[0]); lcd_space(9 - chars); } // Print Z-coordinate (8 chars total) void lcdui_print_Z_coord(void) { if (custom_message_type == CUSTOM_MSG_TYPE_MESHBL) lcd_puts_P(_N("Z --- ")); else lcd_printf_P(_N("Z%6.2f "), current_position[Z_AXIS]); } #ifdef PLANNER_DIAGNOSTICS // Print planner diagnostics (8 chars total) void lcdui_print_planner_diag(void) { lcd_set_cursor(LCD_WIDTH - 8-2, 1); lcd_print(LCD_STR_FEEDRATE[0]); lcd_print(itostr3(feedmultiply)); lcd_puts_P(PSTR("% Q")); { uint8_t queue = planner_queue_min(); if (queue < (BLOCK_BUFFER_SIZE >> 1)) lcd_putc('!'); else { lcd_putc((char)(queue / 10) + '0'); queue %= 10; } lcd_putc((char)queue + '0'); planner_queue_min_reset(); } } #endif // PLANNER_DIAGNOSTICS // Print feedrate (8 chars total) void lcdui_print_feedrate(void) { int chars = lcd_printf_P(_N("%c%3d%%"), LCD_STR_FEEDRATE[0], feedmultiply); lcd_space(8 - chars); } // Print percent done in form "USB---%", " SD---%", " ---%" (7 chars total) void lcdui_print_percent_done(void) { const char* src = is_usb_printing?_N("USB"):(IS_SD_PRINTING?_N(" SD"):_N(" ")); char per[4]; bool num = IS_SD_PRINTING || (PRINTER_ACTIVE && (print_percent_done_normal != PRINT_PERCENT_DONE_INIT)); sprintf_P(per, num?_N("%3hhd"):_N("---"), calc_percent_done()); lcd_printf_P(_N("%3S%3s%%"), src, per); } // Print extruder status (5 chars total) void lcdui_print_extruder(void) { int chars = 0; if (mmu_extruder == tmp_extruder) { if (mmu_extruder == MMU_FILAMENT_UNKNOWN) chars = lcd_printf_P(_N(" F?")); else chars = lcd_printf_P(_N(" F%u"), mmu_extruder + 1); } else { if (mmu_extruder == MMU_FILAMENT_UNKNOWN) chars = lcd_printf_P(_N(" ?>%u"), tmp_extruder + 1); else chars = lcd_printf_P(_N(" %u>%u"), mmu_extruder + 1, tmp_extruder + 1); } lcd_space(5 - chars); } // Print farm number (5 chars total) void lcdui_print_farm(void) { int chars = lcd_printf_P(_N(" F0 ")); // lcd_space(5 - chars); /* // Farm number display if (farm_mode) { lcd_set_cursor(6, 2); lcd_puts_P(PSTR(" F")); lcd_print(farm_no); lcd_puts_P(PSTR(" ")); // Beat display lcd_set_cursor(LCD_WIDTH - 1, 0); if ( (_millis() - kicktime) < 60000 ) { lcd_puts_P(PSTR("L")); }else{ lcd_puts_P(PSTR(" ")); } } else { #ifdef SNMM lcd_puts_P(PSTR(" E")); lcd_print(get_ext_nr() + 1); #else lcd_set_cursor(LCD_WIDTH - 8 - 2, 2); lcd_puts_P(PSTR(" ")); #endif } */ } #ifdef CMD_DIAGNOSTICS // Print CMD queue diagnostic (8 chars total) void lcdui_print_cmd_diag(void) { lcd_set_cursor(LCD_WIDTH - 8 -1, 2); lcd_puts_P(PSTR(" C")); lcd_print(buflen); // number of commands in cmd buffer if (buflen < 9) lcd_puts_P(" "); } #endif //CMD_DIAGNOSTICS // Print time (8 chars total) void lcdui_print_time(void) { //if remaining print time estimation is available print it else print elapsed time uint16_t print_t = 0; if (print_time_remaining_normal != PRINT_TIME_REMAINING_INIT) print_t = print_time_remaining(); else if(starttime != 0) print_t = _millis() / 60000 - starttime / 60000; int chars = 0; if ((PRINTER_ACTIVE) && ((print_time_remaining_normal != PRINT_TIME_REMAINING_INIT) || (starttime != 0))) { char suff = ' '; char suff_doubt = ' '; if (print_time_remaining_normal != PRINT_TIME_REMAINING_INIT) { suff = 'R'; if (feedmultiply != 100) suff_doubt = '?'; } if (print_t < 6000) //time<100h chars = lcd_printf_P(_N("%c%02u:%02u%c%c"), LCD_STR_CLOCK[0], print_t / 60, print_t % 60, suff, suff_doubt); else //time>=100h chars = lcd_printf_P(_N("%c%3uh %c%c"), LCD_STR_CLOCK[0], print_t / 60, suff, suff_doubt); } else chars = lcd_printf_P(_N("%c--:-- "), LCD_STR_CLOCK[0]); lcd_space(8 - chars); } //Print status line on status screen void lcdui_print_status_line(void) { if (IS_SD_PRINTING) { if (strcmp(longFilenameOLD, card.longFilename) != 0) { memset(longFilenameOLD, '\0', strlen(longFilenameOLD)); sprintf_P(longFilenameOLD, PSTR("%s"), card.longFilename); scrollstuff = 0; } } if (heating_status) { // If heating flag, show progress of heating heating_status_counter++; if (heating_status_counter > 13) { heating_status_counter = 0; } lcd_set_cursor(7, 3); lcd_puts_P(PSTR(" ")); for (unsigned int dots = 0; dots < heating_status_counter; dots++) { lcd_set_cursor(7 + dots, 3); lcd_print('.'); } switch (heating_status) { case 1: lcd_set_cursor(0, 3); lcd_puts_P(_T(MSG_HEATING)); break; case 2: lcd_set_cursor(0, 3); lcd_puts_P(_T(MSG_HEATING_COMPLETE)); heating_status = 0; heating_status_counter = 0; break; case 3: lcd_set_cursor(0, 3); lcd_puts_P(_T(MSG_BED_HEATING)); break; case 4: lcd_set_cursor(0, 3); lcd_puts_P(_T(MSG_BED_DONE)); heating_status = 0; heating_status_counter = 0; break; default: break; } } else if ((IS_SD_PRINTING) && (custom_message_type == CUSTOM_MSG_TYPE_STATUS)) { // If printing from SD, show what we are printing if(strlen(card.longFilename) > LCD_WIDTH) { int inters = 0; int gh = scrollstuff; while (((gh - scrollstuff) < LCD_WIDTH) && (inters == 0)) { if (card.longFilename[gh] == '\0') { lcd_set_cursor(gh - scrollstuff, 3); lcd_print(card.longFilename[gh - 1]); scrollstuff = 0; gh = scrollstuff; inters = 1; } else { lcd_set_cursor(gh - scrollstuff, 3); lcd_print(card.longFilename[gh - 1]); gh++; } } scrollstuff++; } else { lcd_print(longFilenameOLD); } } else { // Otherwise check for other special events switch (custom_message_type) { case CUSTOM_MSG_TYPE_STATUS: // Nothing special, print status message normally lcd_print(lcd_status_message); break; case CUSTOM_MSG_TYPE_MESHBL: // If mesh bed leveling in progress, show the status if (custom_message_state > 10) { lcd_set_cursor(0, 3); lcd_puts_P(PSTR(" ")); lcd_set_cursor(0, 3); lcd_puts_P(_T(MSG_CALIBRATE_Z_AUTO)); lcd_puts_P(PSTR(" : ")); lcd_print(custom_message_state-10); } else { if (custom_message_state == 3) { lcd_puts_P(_T(WELCOME_MSG)); lcd_setstatuspgm(_T(WELCOME_MSG)); custom_message_type = CUSTOM_MSG_TYPE_STATUS; } if (custom_message_state > 3 && custom_message_state <= 10 ) { lcd_set_cursor(0, 3); lcd_puts_P(PSTR(" ")); lcd_set_cursor(0, 3); lcd_puts_P(_i("Calibration done"));////MSG_HOMEYZ_DONE c=0 r=0 custom_message_state--; } } break; case CUSTOM_MSG_TYPE_F_LOAD: // If loading filament, print status lcd_print(lcd_status_message); break; case CUSTOM_MSG_TYPE_PIDCAL: // PID tuning in progress lcd_print(lcd_status_message); if (pid_cycle <= pid_number_of_cycles && custom_message_state > 0) { lcd_set_cursor(10, 3); lcd_print(itostr3(pid_cycle)); lcd_print('/'); lcd_print(itostr3left(pid_number_of_cycles)); } break; case CUSTOM_MSG_TYPE_TEMCAL: // PINDA temp calibration in progress { char progress[4]; lcd_set_cursor(0, 3); lcd_puts_P(_T(MSG_TEMP_CALIBRATION)); lcd_set_cursor(12, 3); sprintf(progress, "%d/6", custom_message_state); lcd_print(progress); } break; case CUSTOM_MSG_TYPE_TEMPRE: // temp compensation preheat lcd_set_cursor(0, 3); lcd_puts_P(_i("PINDA Heating"));////MSG_PINDA_PREHEAT c=20 r=1 if (custom_message_state <= PINDA_HEAT_T) { lcd_puts_P(PSTR(": ")); lcd_print(custom_message_state); //seconds lcd_print(' '); } break; } } // Fill the rest of line to have nice and clean output for(int fillspace = 0; fillspace < 20; fillspace++) if ((lcd_status_message[fillspace] <= 31 )) lcd_print(' '); } void lcdui_print_status_screen(void) { //|01234567890123456789| //|N 000/000D Z000.0 | //|B 000/000D F100% | //|USB100% T0 t--:-- | //|Status line.........| //---------------------- //N - nozzle temp symbol LCD_STR_THERMOMETER //B - bed temp symbol LCD_STR_BEDTEMP //F - feedrate symbol LCD_STR_FEEDRATE //t - clock symbol LCD_STR_THERMOMETER lcd_set_cursor(0, 0); //line 0 //Print the hotend temperature (9 chars total) lcdui_print_temp(LCD_STR_THERMOMETER[0], (int)(degHotend(0) + 0.5), (int)(degTargetHotend(0) + 0.5)); lcd_space(3); //3 spaces //Print Z-coordinate (8 chars total) lcdui_print_Z_coord(); lcd_set_cursor(0, 1); //line 1 //Print the Bed temperature (9 chars total) lcdui_print_temp(LCD_STR_BEDTEMP[0], (int)(degBed() + 0.5), (int)(degTargetBed() + 0.5)); lcd_space(3); //3 spaces #ifdef PLANNER_DIAGNOSTICS //Print planner diagnostics (8 chars) lcdui_print_planner_diag(); #else // PLANNER_DIAGNOSTICS //Print Feedrate (8 chars) lcdui_print_feedrate(); #endif // PLANNER_DIAGNOSTICS lcd_set_cursor(0, 2); //line 2 //Print SD status (7 chars) lcdui_print_percent_done(); if (mmu_enabled) //Print extruder status (5 chars) lcdui_print_extruder(); else if (farm_mode) //Print farm number (5 chars) lcdui_print_farm(); else lcd_space(5); //5 spaces #ifdef CMD_DIAGNOSTICS //Print cmd queue diagnostics (8chars) lcdui_print_cmd_diag(); #else //Print time (8chars) lcdui_print_time(); #endif //CMD_DIAGNOSTICS lcd_set_cursor(0, 3); //line 3 #ifndef DEBUG_DISABLE_LCD_STATUS_LINE lcdui_print_status_line(); #endif //DEBUG_DISABLE_LCD_STATUS_LINE } // Main status screen. It's up to the implementation specific part to show what is needed. As this is very display dependent static void lcd_status_screen() { if (firstrun == 1) { firstrun = 0; if(lcd_status_message_level == 0) { strncpy_P(lcd_status_message, _T(WELCOME_MSG), LCD_WIDTH); lcd_finishstatus(); } if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255) { eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); } } if (lcd_status_update_delay) lcd_status_update_delay--; else lcd_draw_update = 1; if (lcd_draw_update) { ReInitLCD++; if (ReInitLCD == 30) { lcd_refresh(); // to maybe revive the LCD if static electricity killed it. ReInitLCD = 0 ; } else { if ((ReInitLCD % 10) == 0) lcd_refresh_noclear(); //to maybe revive the LCD if static electricity killed it. } lcdui_print_status_screen(); if (farm_mode) { farm_timer--; if (farm_timer < 1) { farm_timer = 10; prusa_statistics(0); } switch (farm_timer) { case 8: prusa_statistics(21); break; case 5: if (IS_SD_PRINTING) prusa_statistics(20); break; } } // end of farm_mode lcd_status_update_delay = 10; /* redraw the main screen every second. This is easier then trying keep track of all things that change on the screen */ if (lcd_commands_type != LCD_COMMAND_IDLE) lcd_commands(); } // end of lcd_draw_update bool current_click = LCD_CLICKED; if (ignore_click) { if (wait_for_unclick) { if (!current_click) ignore_click = wait_for_unclick = false; else current_click = false; } else if (current_click) { lcd_quick_feedback(); wait_for_unclick = true; current_click = false; } } if (current_click && (lcd_commands_type != LCD_COMMAND_STOP_PRINT)) //click is aborted unless stop print finishes { menu_depth = 0; //redundant, as already done in lcd_return_to_status(), just to be sure menu_submenu(lcd_main_menu); lcd_refresh(); // to maybe revive the LCD if static electricity killed it. } #ifdef ULTIPANEL_FEEDMULTIPLY // Dead zone at 100% feedrate if ((feedmultiply < 100 && (feedmultiply + int(lcd_encoder)) > 100) || (feedmultiply > 100 && (feedmultiply + int(lcd_encoder)) < 100)) { lcd_encoder = 0; feedmultiply = 100; } if (feedmultiply == 100 && int(lcd_encoder) > ENCODER_FEEDRATE_DEADZONE) { feedmultiply += int(lcd_encoder) - ENCODER_FEEDRATE_DEADZONE; lcd_encoder = 0; } else if (feedmultiply == 100 && int(lcd_encoder) < -ENCODER_FEEDRATE_DEADZONE) { feedmultiply += int(lcd_encoder) + ENCODER_FEEDRATE_DEADZONE; lcd_encoder = 0; } else if (feedmultiply != 100) { feedmultiply += int(lcd_encoder); lcd_encoder = 0; } #endif //ULTIPANEL_FEEDMULTIPLY if (feedmultiply < 10) feedmultiply = 10; else if (feedmultiply > 999) feedmultiply = 999; } void lcd_commands() { if (lcd_commands_type == LCD_COMMAND_LONG_PAUSE) { if (!blocks_queued() && !homing_flag) { lcd_setstatuspgm(_i("Print paused"));////MSG_PRINT_PAUSED c=20 r=1 long_pause(); lcd_commands_type = 0; lcd_commands_step = 0; } } #ifdef SNMM if (lcd_commands_type == LCD_COMMAND_V2_CAL) { char cmd1[30]; float width = 0.4; float length = 20 - width; float extr = count_e(0.2, width, length); float extr_short_segment = count_e(0.2, width, width); if (lcd_commands_step>1) lcd_timeoutToStatus.start(); //if user dont confirm live adjust Z value by pressing the knob, we are saving last value by timeout to status screen if (lcd_commands_step == 0) { lcd_commands_step = 10; } if (lcd_commands_step == 10 && !blocks_queued() && cmd_buffer_empty()) { enquecommand_P(PSTR("M107")); enquecommand_P(PSTR("M104 S" STRINGIFY(PLA_PREHEAT_HOTEND_TEMP))); enquecommand_P(PSTR("M140 S" STRINGIFY(PLA_PREHEAT_HPB_TEMP))); enquecommand_P(PSTR("M190 S" STRINGIFY(PLA_PREHEAT_HPB_TEMP))); enquecommand_P(PSTR("M109 S" STRINGIFY(PLA_PREHEAT_HOTEND_TEMP))); enquecommand_P(PSTR("T0")); enquecommand_P(_T(MSG_M117_V2_CALIBRATION)); enquecommand_P(PSTR("G87")); //sets calibration status enquecommand_P(PSTR("G28")); enquecommand_P(PSTR("G21")); //set units to millimeters enquecommand_P(PSTR("G90")); //use absolute coordinates enquecommand_P(PSTR("M83")); //use relative distances for extrusion enquecommand_P(PSTR("G92 E0")); enquecommand_P(PSTR("M203 E100")); enquecommand_P(PSTR("M92 E140")); lcd_commands_step = 9; } if (lcd_commands_step == 9 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus.start(); enquecommand_P(PSTR("G1 Z0.250 F7200.000")); enquecommand_P(PSTR("G1 X50.0 E80.0 F1000.0")); enquecommand_P(PSTR("G1 X160.0 E20.0 F1000.0")); enquecommand_P(PSTR("G1 Z0.200 F7200.000")); enquecommand_P(PSTR("G1 X220.0 E13 F1000.0")); enquecommand_P(PSTR("G1 X240.0 E0 F1000.0")); enquecommand_P(PSTR("G92 E0.0")); enquecommand_P(PSTR("G21")); enquecommand_P(PSTR("G90")); enquecommand_P(PSTR("M83")); enquecommand_P(PSTR("G1 E-4 F2100.00000")); enquecommand_P(PSTR("G1 Z0.150 F7200.000")); enquecommand_P(PSTR("M204 S1000")); enquecommand_P(PSTR("G1 F4000")); lcd_clear(); menu_goto(lcd_babystep_z, 0, false, true); lcd_commands_step = 8; } if (lcd_commands_step == 8 && !blocks_queued() && cmd_buffer_empty()) //draw meander { lcd_timeoutToStatus.start(); enquecommand_P(PSTR("G1 X50 Y155")); enquecommand_P(PSTR("G1 X60 Y155 E4")); enquecommand_P(PSTR("G1 F1080")); enquecommand_P(PSTR("G1 X75 Y155 E2.5")); enquecommand_P(PSTR("G1 X100 Y155 E2")); enquecommand_P(PSTR("G1 X200 Y155 E2.62773")); enquecommand_P(PSTR("G1 X200 Y135 E0.66174")); enquecommand_P(PSTR("G1 X50 Y135 E3.62773")); enquecommand_P(PSTR("G1 X50 Y115 E0.49386")); enquecommand_P(PSTR("G1 X200 Y115 E3.62773")); enquecommand_P(PSTR("G1 X200 Y95 E0.49386")); enquecommand_P(PSTR("G1 X50 Y95 E3.62773")); enquecommand_P(PSTR("G1 X50 Y75 E0.49386")); enquecommand_P(PSTR("G1 X200 Y75 E3.62773")); enquecommand_P(PSTR("G1 X200 Y55 E0.49386")); enquecommand_P(PSTR("G1 X50 Y55 E3.62773")); lcd_commands_step = 7; } if (lcd_commands_step == 7 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus.start(); strcpy(cmd1, "G1 X50 Y35 E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); for (int i = 0; i < 4; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 6; } if (lcd_commands_step == 6 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus.start(); for (int i = 4; i < 8; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 5; } if (lcd_commands_step == 5 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus.start(); for (int i = 8; i < 12; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 4; } if (lcd_commands_step == 4 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus.start(); for (int i = 12; i < 16; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 3; } if (lcd_commands_step == 3 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus.start(); enquecommand_P(PSTR("G1 E-0.07500 F2100.00000")); enquecommand_P(PSTR("G4 S0")); enquecommand_P(PSTR("G1 E-4 F2100.00000")); enquecommand_P(PSTR("G1 Z0.5 F7200.000")); enquecommand_P(PSTR("G1 X245 Y1")); enquecommand_P(PSTR("G1 X240 E4")); enquecommand_P(PSTR("G1 F4000")); enquecommand_P(PSTR("G1 X190 E2.7")); enquecommand_P(PSTR("G1 F4600")); enquecommand_P(PSTR("G1 X110 E2.8")); enquecommand_P(PSTR("G1 F5200")); enquecommand_P(PSTR("G1 X40 E3")); enquecommand_P(PSTR("G1 E-15.0000 F5000")); enquecommand_P(PSTR("G1 E-50.0000 F5400")); enquecommand_P(PSTR("G1 E-15.0000 F3000")); enquecommand_P(PSTR("G1 E-12.0000 F2000")); enquecommand_P(PSTR("G1 F1600")); lcd_commands_step = 2; } if (lcd_commands_step == 2 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus.start(); enquecommand_P(PSTR("G1 X0 Y1 E3.0000")); enquecommand_P(PSTR("G1 X50 Y1 E-5.0000")); enquecommand_P(PSTR("G1 F2000")); enquecommand_P(PSTR("G1 X0 Y1 E5.0000")); enquecommand_P(PSTR("G1 X50 Y1 E-5.0000")); enquecommand_P(PSTR("G1 F2400")); enquecommand_P(PSTR("G1 X0 Y1 E5.0000")); enquecommand_P(PSTR("G1 X50 Y1 E-5.0000")); enquecommand_P(PSTR("G1 F2400")); enquecommand_P(PSTR("G1 X0 Y1 E5.0000")); enquecommand_P(PSTR("G1 X50 Y1 E-3.0000")); enquecommand_P(PSTR("G4 S0")); enquecommand_P(PSTR("M107")); enquecommand_P(PSTR("M104 S0")); enquecommand_P(PSTR("M140 S0")); enquecommand_P(PSTR("G1 X10 Y180 F4000")); enquecommand_P(PSTR("G1 Z10 F1300.000")); enquecommand_P(PSTR("M84")); lcd_commands_step = 1; } if (lcd_commands_step == 1 && !blocks_queued() && cmd_buffer_empty()) { lcd_setstatuspgm(_T(WELCOME_MSG)); lcd_commands_step = 0; lcd_commands_type = 0; if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) { lcd_wizard(WizState::RepeatLay1Cal); } } } #else //if not SNMM if (lcd_commands_type == LCD_COMMAND_V2_CAL) { char cmd1[30]; static uint8_t filament = 0; float width = 0.4; float length = 20 - width; float extr = count_e(0.2, width, length); float extr_short_segment = count_e(0.2, width, width); if(lcd_commands_step>1) lcd_timeoutToStatus.start(); //if user dont confirm live adjust Z value by pressing the knob, we are saving last value by timeout to status screen if (lcd_commands_step == 0 && !blocks_queued() && cmd_buffer_empty()) { lcd_commands_step = 10; } if (lcd_commands_step == 20 && !blocks_queued() && cmd_buffer_empty()) { filament = 0; lcd_commands_step = 10; } if (lcd_commands_step == 21 && !blocks_queued() && cmd_buffer_empty()) { filament = 1; lcd_commands_step = 10; } if (lcd_commands_step == 22 && !blocks_queued() && cmd_buffer_empty()) { filament = 2; lcd_commands_step = 10; } if (lcd_commands_step == 23 && !blocks_queued() && cmd_buffer_empty()) { filament = 3; lcd_commands_step = 10; } if (lcd_commands_step == 24 && !blocks_queued() && cmd_buffer_empty()) { filament = 4; lcd_commands_step = 10; } if (lcd_commands_step == 10) { enquecommand_P(PSTR("M107")); enquecommand_P(PSTR("M104 S" STRINGIFY(PLA_PREHEAT_HOTEND_TEMP))); enquecommand_P(PSTR("M140 S" STRINGIFY(PLA_PREHEAT_HPB_TEMP))); enquecommand_P(PSTR("M190 S" STRINGIFY(PLA_PREHEAT_HPB_TEMP))); enquecommand_P(PSTR("M109 S" STRINGIFY(PLA_PREHEAT_HOTEND_TEMP))); enquecommand_P(_T(MSG_M117_V2_CALIBRATION)); enquecommand_P(PSTR("G28")); enquecommand_P(PSTR("G92 E0.0")); lcd_commands_step = 9; } if (lcd_commands_step == 9 && !blocks_queued() && cmd_buffer_empty()) { lcd_clear(); menu_depth = 0; menu_submenu(lcd_babystep_z); if (mmu_enabled) { enquecommand_P(PSTR("M83")); //intro line enquecommand_P(PSTR("G1 Y-3.0 F1000.0")); //intro line enquecommand_P(PSTR("G1 Z0.4 F1000.0")); //intro line strcpy(cmd1, "T"); strcat(cmd1, itostr3left(filament)); enquecommand(cmd1); enquecommand_P(PSTR("G1 X55.0 E32.0 F1073.0")); //intro line enquecommand_P(PSTR("G1 X5.0 E32.0 F1800.0")); //intro line enquecommand_P(PSTR("G1 X55.0 E8.0 F2000.0")); //intro line enquecommand_P(PSTR("G1 Z0.3 F1000.0")); //intro line enquecommand_P(PSTR("G92 E0.0")); //intro line enquecommand_P(PSTR("G1 X240.0 E25.0 F2200.0")); //intro line enquecommand_P(PSTR("G1 Y-2.0 F1000.0")); //intro line enquecommand_P(PSTR("G1 X55.0 E25 F1400.0")); //intro line enquecommand_P(PSTR("G1 Z0.20 F1000.0")); //intro line enquecommand_P(PSTR("G1 X5.0 E4.0 F1000.0")); //intro line } else { enquecommand_P(PSTR("G1 X60.0 E9.0 F1000.0")); //intro line enquecommand_P(PSTR("G1 X100.0 E12.5 F1000.0")); //intro line } lcd_commands_step = 8; } if (lcd_commands_step == 8 && !blocks_queued() && cmd_buffer_empty()) { enquecommand_P(PSTR("G92 E0.0")); enquecommand_P(PSTR("G21")); //set units to millimeters enquecommand_P(PSTR("G90")); //use absolute coordinates enquecommand_P(PSTR("M83")); //use relative distances for extrusion enquecommand_P(PSTR("G1 E-1.50000 F2100.00000")); enquecommand_P(PSTR("G1 Z5 F7200.000")); enquecommand_P(PSTR("M204 S1000")); //set acceleration enquecommand_P(PSTR("G1 F4000")); lcd_commands_step = 7; } if (lcd_commands_step == 7 && !blocks_queued() && cmd_buffer_empty()) //draw meander { lcd_timeoutToStatus.start(); //just opposite direction /*enquecommand_P(PSTR("G1 X50 Y55")); enquecommand_P(PSTR("G1 F1080")); enquecommand_P(PSTR("G1 X200 Y55 E3.62773")); enquecommand_P(PSTR("G1 X200 Y75 E0.49386")); enquecommand_P(PSTR("G1 X50 Y75 E3.62773")); enquecommand_P(PSTR("G1 X50 Y95 E0.49386")); enquecommand_P(PSTR("G1 X200 Y95 E3.62773")); enquecommand_P(PSTR("G1 X200 Y115 E0.49386")); enquecommand_P(PSTR("G1 X50 Y115 E3.62773")); enquecommand_P(PSTR("G1 X50 Y135 E0.49386")); enquecommand_P(PSTR("G1 X200 Y135 E3.62773")); enquecommand_P(PSTR("G1 X200 Y155 E0.66174")); enquecommand_P(PSTR("G1 X100 Y155 E2.62773")); enquecommand_P(PSTR("G1 X75 Y155 E2")); enquecommand_P(PSTR("G1 X50 Y155 E2.5")); enquecommand_P(PSTR("G1 E - 0.07500 F2100.00000"));*/ enquecommand_P(PSTR("G1 X50 Y155")); enquecommand_P(PSTR("G1 Z0.150 F7200.000")); enquecommand_P(PSTR("G1 F1080")); enquecommand_P(PSTR("G1 X75 Y155 E2.5")); enquecommand_P(PSTR("G1 X100 Y155 E2")); enquecommand_P(PSTR("G1 X200 Y155 E2.62773")); enquecommand_P(PSTR("G1 X200 Y135 E0.66174")); enquecommand_P(PSTR("G1 X50 Y135 E3.62773")); enquecommand_P(PSTR("G1 X50 Y115 E0.49386")); enquecommand_P(PSTR("G1 X200 Y115 E3.62773")); enquecommand_P(PSTR("G1 X200 Y95 E0.49386")); enquecommand_P(PSTR("G1 X50 Y95 E3.62773")); enquecommand_P(PSTR("G1 X50 Y75 E0.49386")); enquecommand_P(PSTR("G1 X200 Y75 E3.62773")); enquecommand_P(PSTR("G1 X200 Y55 E0.49386")); enquecommand_P(PSTR("G1 X50 Y55 E3.62773")); strcpy(cmd1, "G1 X50 Y35 E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); lcd_commands_step = 6; } if (lcd_commands_step == 6 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus.start(); for (int i = 0; i < 4; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 5; } if (lcd_commands_step == 5 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus.start(); for (int i = 4; i < 8; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 4; } if (lcd_commands_step == 4 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus.start(); for (int i = 8; i < 12; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 3; } if (lcd_commands_step == 3 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus.start(); for (int i = 12; i < 16; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 2; } if (lcd_commands_step == 2 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus.start(); enquecommand_P(PSTR("M107")); //turn off printer fan enquecommand_P(PSTR("G1 E-0.07500 F2100.00000")); //retract enquecommand_P(PSTR("M104 S0")); // turn off temperature enquecommand_P(PSTR("M140 S0")); // turn off heatbed enquecommand_P(PSTR("G1 Z10 F1300.000")); //lift Z enquecommand_P(PSTR("G1 X10 Y180 F4000")); //Go to parking position if (mmu_enabled) enquecommand_P(PSTR("M702 C")); //unload from nozzle enquecommand_P(PSTR("M84"));// disable motors forceMenuExpire = true; //if user dont confirm live adjust Z value by pressing the knob, we are saving last value by timeout to status screen lcd_commands_step = 1; } if (lcd_commands_step == 1 && !blocks_queued() && cmd_buffer_empty()) { lcd_setstatuspgm(_T(WELCOME_MSG)); lcd_commands_step = 0; lcd_commands_type = 0; if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) { lcd_wizard(WizState::RepeatLay1Cal); } } } #endif // not SNMM if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) /// stop print { if (lcd_commands_step == 0) { lcd_commands_step = 6; } if (lcd_commands_step == 1 && !blocks_queued()) { lcd_commands_step = 0; lcd_commands_type = 0; lcd_setstatuspgm(_T(WELCOME_MSG)); custom_message_type = CUSTOM_MSG_TYPE_STATUS; isPrintPaused = false; } if (lcd_commands_step == 2 && !blocks_queued()) { setTargetBed(0); enquecommand_P(PSTR("M104 S0")); //set hotend temp to 0 manage_heater(); lcd_setstatuspgm(_T(WELCOME_MSG)); cancel_heatup = false; lcd_commands_step = 1; } if (lcd_commands_step == 3 && !blocks_queued()) { // M84: Disable steppers. enquecommand_P(PSTR("M84")); autotempShutdown(); lcd_commands_step = 2; } if (lcd_commands_step == 4 && !blocks_queued()) { lcd_setstatuspgm(_T(MSG_PLEASE_WAIT)); // G90: Absolute positioning. enquecommand_P(PSTR("G90")); // M83: Set extruder to relative mode. enquecommand_P(PSTR("M83")); #ifdef X_CANCEL_POS enquecommand_P(PSTR("G1 X" STRINGIFY(X_CANCEL_POS) " Y" STRINGIFY(Y_CANCEL_POS) " E0 F7000")); #else enquecommand_P(PSTR("G1 X50 Y" STRINGIFY(Y_MAX_POS) " E0 F7000")); #endif lcd_ignore_click(false); if (mmu_enabled) lcd_commands_step = 8; else lcd_commands_step = 3; } if (lcd_commands_step == 5 && !blocks_queued()) { lcd_setstatuspgm(_T(MSG_PRINT_ABORTED)); // G91: Set to relative positioning. enquecommand_P(PSTR("G91")); // Lift up. enquecommand_P(PSTR("G1 Z15 F1500")); if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) lcd_commands_step = 4; else lcd_commands_step = 3; } if (lcd_commands_step == 6 && !blocks_queued()) { lcd_setstatuspgm(_T(MSG_PRINT_ABORTED)); cancel_heatup = true; setTargetBed(0); if (mmu_enabled) setAllTargetHotends(0); manage_heater(); custom_message_type = CUSTOM_MSG_TYPE_F_LOAD; lcd_commands_step = 5; } if (lcd_commands_step == 7 && !blocks_queued()) { if (mmu_enabled) enquecommand_P(PSTR("M702 C")); //current else switch(snmm_stop_print_menu()) { case 0: enquecommand_P(PSTR("M702")); break;//all case 1: enquecommand_P(PSTR("M702 U")); break; //used case 2: enquecommand_P(PSTR("M702 C")); break; //current default: enquecommand_P(PSTR("M702")); break; } lcd_commands_step = 3; } if (lcd_commands_step == 8 && !blocks_queued()) { //step 8 is here for delay (going to next step after execution of all gcodes from step 4) lcd_commands_step = 7; } } if (lcd_commands_type == 3) { lcd_commands_type = 0; } if (lcd_commands_type == LCD_COMMAND_FARM_MODE_CONFIRM) /// farm mode confirm { if (lcd_commands_step == 0) { lcd_commands_step = 6; } if (lcd_commands_step == 1 && !blocks_queued()) { lcd_confirm_print(); lcd_commands_step = 0; lcd_commands_type = 0; } if (lcd_commands_step == 2 && !blocks_queued()) { lcd_commands_step = 1; } if (lcd_commands_step == 3 && !blocks_queued()) { lcd_commands_step = 2; } if (lcd_commands_step == 4 && !blocks_queued()) { enquecommand_P(PSTR("G90")); enquecommand_P(PSTR("G1 X" STRINGIFY(X_CANCEL_POS) " Y" STRINGIFY(Y_CANCEL_POS) " E0 F7000")); lcd_commands_step = 3; } if (lcd_commands_step == 5 && !blocks_queued()) { lcd_commands_step = 4; } if (lcd_commands_step == 6 && !blocks_queued()) { enquecommand_P(PSTR("G91")); enquecommand_P(PSTR("G1 Z15 F1500")); st_synchronize(); #ifdef SNMM lcd_commands_step = 7; #else lcd_commands_step = 5; #endif } } if (lcd_commands_type == LCD_COMMAND_PID_EXTRUDER) { char cmd1[30]; if (lcd_commands_step == 0) { custom_message_type = CUSTOM_MSG_TYPE_PIDCAL; custom_message_state = 1; lcd_draw_update = 3; lcd_commands_step = 3; } if (lcd_commands_step == 3 && !blocks_queued()) { //PID calibration strcpy(cmd1, "M303 E0 S"); strcat(cmd1, ftostr3(pid_temp)); enquecommand(cmd1); lcd_setstatuspgm(_i("PID cal. "));////MSG_PID_RUNNING c=20 r=1 lcd_commands_step = 2; } if (lcd_commands_step == 2 && pid_tuning_finished) { //saving to eeprom pid_tuning_finished = false; custom_message_state = 0; lcd_setstatuspgm(_i("PID cal. finished"));////MSG_PID_FINISHED c=20 r=1 if (_Kp != 0 || _Ki != 0 || _Kd != 0) { strcpy(cmd1, "M301 P"); strcat(cmd1, ftostr32(_Kp)); strcat(cmd1, " I"); strcat(cmd1, ftostr32(_Ki)); strcat(cmd1, " D"); strcat(cmd1, ftostr32(_Kd)); enquecommand(cmd1); enquecommand_P(PSTR("M500")); } else { SERIAL_ECHOPGM("Invalid PID cal. results. Not stored to EEPROM."); } display_time = _millis(); lcd_commands_step = 1; } if ((lcd_commands_step == 1) && ((_millis()- display_time)>2000)) { //calibration finished message lcd_setstatuspgm(_T(WELCOME_MSG)); custom_message_type = CUSTOM_MSG_TYPE_STATUS; pid_temp = DEFAULT_PID_TEMP; lcd_commands_step = 0; lcd_commands_type = 0; } } } static float count_e(float layer_heigth, float extrusion_width, float extrusion_length) { //returns filament length in mm which needs to be extrude to form line with extrusion_length * extrusion_width * layer heigth dimensions float extr = extrusion_length * layer_heigth * extrusion_width / (M_PI * pow(1.75, 2) / 4); return extr; } void lcd_return_to_status() { lcd_refresh(); // to maybe revive the LCD if static electricity killed it. menu_goto(lcd_status_screen, 0, false, true); menu_depth = 0; eFilamentAction=e_FILAMENT_ACTION_none; // i.e. non-autoLoad } //! @brief Pause print, disable nozzle heater, move to park position void lcd_pause_print() { lcd_return_to_status(); stop_and_save_print_to_ram(0.0,0.0); setAllTargetHotends(0); isPrintPaused = true; if (LCD_COMMAND_IDLE == lcd_commands_type) { lcd_commands_type = LCD_COMMAND_LONG_PAUSE; } } float move_menu_scale; static void lcd_move_menu_axis(); /* Menu implementation */ void lcd_preheat_farm() { setTargetHotend0(FARM_PREHEAT_HOTEND_TEMP); setTargetBed(FARM_PREHEAT_HPB_TEMP); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_farm_nozzle() { setTargetHotend0(FARM_PREHEAT_HOTEND_TEMP); setTargetBed(0); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_pla() { setTargetHotend0(PLA_PREHEAT_HOTEND_TEMP); if (!wizard_active) setTargetBed(PLA_PREHEAT_HPB_TEMP); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer if (wizard_active) lcd_wizard(WizState::Unload); } void lcd_preheat_abs() { setTargetHotend0(ABS_PREHEAT_HOTEND_TEMP); if (!wizard_active) setTargetBed(ABS_PREHEAT_HPB_TEMP); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer if (wizard_active) lcd_wizard(WizState::Unload); } void lcd_preheat_pp() { setTargetHotend0(PP_PREHEAT_HOTEND_TEMP); if (!wizard_active) setTargetBed(PP_PREHEAT_HPB_TEMP); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer if (wizard_active) lcd_wizard(WizState::Unload); } void lcd_preheat_pet() { setTargetHotend0(PET_PREHEAT_HOTEND_TEMP); if (!wizard_active) setTargetBed(PET_PREHEAT_HPB_TEMP); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer if (wizard_active) lcd_wizard(WizState::Unload); } void lcd_preheat_hips() { setTargetHotend0(HIPS_PREHEAT_HOTEND_TEMP); if (!wizard_active) setTargetBed(HIPS_PREHEAT_HPB_TEMP); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer if (wizard_active) lcd_wizard(WizState::Unload); } void lcd_preheat_flex() { setTargetHotend0(FLEX_PREHEAT_HOTEND_TEMP); if (!wizard_active) setTargetBed(FLEX_PREHEAT_HPB_TEMP); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer if (wizard_active) lcd_wizard(WizState::Unload); } void lcd_cooldown() { setAllTargetHotends(0); setTargetBed(0); fanSpeed = 0; lcd_return_to_status(); } static void lcd_menu_extruder_info() { //|01234567890123456789| //|Nozzle FAN: RPM| //|Print FAN: RPM| //|Fil. Xd: Yd: | //|Int: Shut: | //---------------------- int fan_speed_RPM[2]; // Display Nozzle fan RPM fan_speed_RPM[0] = 60*fan_speed[0]; fan_speed_RPM[1] = 60*fan_speed[1]; lcd_timeoutToStatus.stop(); //infinite timeout lcd_printf_P(_N( ESC_H(0,0) "%S: %4d RPM\n" "%S: %4d RPM\n" ), _i("Nozzle FAN"), fan_speed_RPM[0], _i("Print FAN"), fan_speed_RPM[1] ); #ifdef PAT9125 // Display X and Y difference from Filament sensor // Display Light intensity from Filament sensor // Frame_Avg register represents the average brightness of all pixels within a frame (324 pixels). This // value ranges from 0(darkest) to 255(brightest). // Display LASER shutter time from Filament sensor // Shutter register is an index of LASER shutter time. It is automatically controlled by the chip's internal // auto-exposure algorithm. When the chip is tracking on a good reflection surface, the Shutter is small. // When the chip is tracking on a poor reflection surface, the Shutter is large. Value ranges from 0 to 46. if (mmu_enabled == false) { if (!fsensor_enabled) lcd_puts_P(_N("Filament sensor\n" "is disabled.")); else { if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL)) pat9125_update(); lcd_printf_P(_N( "Fil. Xd:%3d Yd:%3d\n" "Int: %3d Shut: %3d" ), pat9125_x, pat9125_y, pat9125_b, pat9125_s ); } } #endif //PAT9125 menu_back_if_clicked(); } static void lcd_menu_fails_stats_mmu() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_SUBMENU_P(_i("Last print"), lcd_menu_fails_stats_mmu_print); MENU_ITEM_SUBMENU_P(_i("Total"), lcd_menu_fails_stats_mmu_total); MENU_END(); } static void lcd_menu_fails_stats_mmu_print() { //01234567890123456789 //Last print failures // MMU fails 000 // MMU load fails 000 // ////////////////////// lcd_timeoutToStatus.stop(); //infinite timeout uint8_t fails = eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL); uint16_t load_fails = eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL); // lcd_printf_P(PSTR(ESC_H(0,0) "Last print failures" ESC_H(1,1) "Power failures %-3d" ESC_H(1,2) "Filam. runouts %-3d" ESC_H(1,3) "Crash X %-3d Y %-3d"), power, filam, crashX, crashY); lcd_printf_P(PSTR(ESC_H(0,0) "%S" ESC_H(1,1) "%S %-3d" ESC_H(1,2) "%S %-3d" ESC_H(1,3)), _i("Last print failures"), _i("MMU fails"), fails, _i("MMU load fails"), load_fails); menu_back_if_clicked_fb(); } static void lcd_menu_fails_stats_mmu_total() { //01234567890123456789 //Last print failures // MMU fails 000 // MMU load fails 000 // ////////////////////// mmu_command(MmuCmd::S3); lcd_timeoutToStatus.stop(); //infinite timeout uint8_t fails = eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL_TOT); uint16_t load_fails = eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL_TOT); // lcd_printf_P(PSTR(ESC_H(0,0) "Last print failures" ESC_H(1,1) "Power failures %-3d" ESC_H(1,2) "Filam. runouts %-3d" ESC_H(1,3) "Crash X %-3d Y %-3d"), power, filam, crashX, crashY); lcd_printf_P(PSTR(ESC_H(0,0) "%S" ESC_H(1,1) "%S %-3d" ESC_H(1,2) "%S %-3d" ESC_H(1,3) "%S %-3d"), _i("Total failures"), _i("MMU fails"), fails, _i("MMU load fails"), load_fails, _i("MMU power fails"), mmu_power_failures); menu_back_if_clicked_fb(); } #if defined(TMC2130) && defined(FILAMENT_SENSOR) static void lcd_menu_fails_stats_total() { //01234567890123456789 //Total failures // Power failures 000 // Filam. runouts 000 // Crash X 000 Y 000 ////////////////////// lcd_timeoutToStatus.stop(); //infinite timeout uint16_t power = eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT); uint16_t filam = eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT); uint16_t crashX = eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT); uint16_t crashY = eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT); // lcd_printf_P(PSTR(ESC_H(0,0) "Total failures" ESC_H(1,1) "Power failures %-3d" ESC_H(1,2) "Filam. runouts %-3d" ESC_H(1,3) "Crash X %-3d Y %-3d"), power, filam, crashX, crashY); lcd_printf_P(PSTR(ESC_H(0,0) "%S" ESC_H(1,1) "%S %-3d" ESC_H(1,2) "%S %-3d" ESC_H(1,3) "%S X %-3d Y %-3d"), _i("Total failures"), _i("Power failures"), power, _i("Filam. runouts"), filam, _i("Crash"), crashX, crashY); menu_back_if_clicked_fb(); } static void lcd_menu_fails_stats_print() { //01234567890123456789 //Last print failures // Power failures 000 // Filam. runouts 000 // Crash X 000 Y 000 ////////////////////// lcd_timeoutToStatus.stop(); //infinite timeout uint8_t power = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT); uint8_t filam = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT); uint8_t crashX = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X); uint8_t crashY = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y); // lcd_printf_P(PSTR(ESC_H(0,0) "Last print failures" ESC_H(1,1) "Power failures %-3d" ESC_H(1,2) "Filam. runouts %-3d" ESC_H(1,3) "Crash X %-3d Y %-3d"), power, filam, crashX, crashY); lcd_printf_P(PSTR(ESC_H(0,0) "%S" ESC_H(1,1) "%S %-3d" ESC_H(1,2) "%S %-3d" ESC_H(1,3) "%S X %-3d Y %-3d"), _i("Last print failures"), _i("Power failures"), power, _i("Filam. runouts"), filam, _i("Crash"), crashX, crashY); menu_back_if_clicked_fb(); } /** * @brief Open fail statistics menu * * This version of function is used, when there is filament sensor, * power failure and crash detection. * There are Last print and Total menu items. */ static void lcd_menu_fails_stats() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_SUBMENU_P(_i("Last print"), lcd_menu_fails_stats_print); MENU_ITEM_SUBMENU_P(_i("Total"), lcd_menu_fails_stats_total); MENU_END(); } #elif defined(FILAMENT_SENSOR) /** * @brief Print last print and total filament run outs * * This version of function is used, when there is filament sensor, * but no other sensors (e.g. power failure, crash detection). * * Example screen: * @code * 01234567890123456789 * Last print failures * Filam. runouts 0 * Total failures * Filam. runouts 5 * @endcode */ static void lcd_menu_fails_stats() { lcd_timeoutToStatus.stop(); //infinite timeout uint8_t filamentLast = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT); uint16_t filamentTotal = eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT); lcd_printf_P(PSTR(ESC_H(0,0) "Last print failures" ESC_H(1,1) "Filam. runouts %-3d" ESC_H(0,2) "Total failures" ESC_H(1,3) "Filam. runouts %-3d"), filamentLast, filamentTotal); menu_back_if_clicked(); } #else static void lcd_menu_fails_stats() { lcd_timeoutToStatus.stop(); //infinite timeout MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_END(); } #endif //TMC2130 #ifdef DEBUG_BUILD #ifdef DEBUG_STACK_MONITOR extern uint16_t SP_min; extern char* __malloc_heap_start; extern char* __malloc_heap_end; #endif //DEBUG_STACK_MONITOR static void lcd_menu_debug() { #ifdef DEBUG_STACK_MONITOR lcd_printf_P(PSTR(ESC_H(1,1) "RAM statistics" ESC_H(5,1) "SP_min: 0x%04x" ESC_H(1,2) "heap_start: 0x%04x" ESC_H(3,3) "heap_end: 0x%04x"), SP_min, __malloc_heap_start, __malloc_heap_end); #endif //DEBUG_STACK_MONITOR menu_back_if_clicked_fb(); } #endif /* DEBUG_BUILD */ static void lcd_menu_temperatures() { lcd_timeoutToStatus.stop(); //infinite timeout lcd_printf_P(PSTR(ESC_H(1,0) "%S: %d%c" ESC_H(1,1) "%S: %d%c"), _i("Nozzle"), (int)current_temperature[0], '\x01', _i("Bed"), (int)current_temperature_bed, '\x01'); #ifdef AMBIENT_THERMISTOR lcd_printf_P(PSTR(ESC_H(1,2) "%S: %d%c" ESC_H(1,3) "PINDA: %d%c"), _i("Ambient"), (int)current_temperature_ambient, '\x01', (int)current_temperature_pinda, '\x01'); #else //AMBIENT_THERMISTOR lcd_printf_P(PSTR(ESC_H(1,2) "PINDA: %d%c"), (int)current_temperature_pinda, '\x01'); #endif //AMBIENT_THERMISTOR menu_back_if_clicked(); } #if defined (VOLT_BED_PIN) || defined (VOLT_PWR_PIN) #define VOLT_DIV_R1 10000 #define VOLT_DIV_R2 2370 #define VOLT_DIV_FAC ((float)VOLT_DIV_R2 / (VOLT_DIV_R2 + VOLT_DIV_R1)) #define VOLT_DIV_REF 5 static void lcd_menu_voltages() { lcd_timeoutToStatus.stop(); //infinite timeout float volt_pwr = VOLT_DIV_REF * ((float)current_voltage_raw_pwr / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC; float volt_bed = VOLT_DIV_REF * ((float)current_voltage_raw_bed / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC; lcd_printf_P(PSTR(ESC_H(1,1)"PWR: %d.%01dV" ESC_H(1,2)"BED: %d.%01dV"), (int)volt_pwr, (int)(10*fabs(volt_pwr - (int)volt_pwr)), (int)volt_bed, (int)(10*fabs(volt_bed - (int)volt_bed))); menu_back_if_clicked(); } #endif //defined VOLT_BED_PIN || defined VOLT_PWR_PIN #ifdef TMC2130 static void lcd_menu_belt_status() { lcd_printf_P(PSTR(ESC_H(1,0) "%S" ESC_H(2,1) "X %d" ESC_H(2,2) "Y %d" ), _i("Belt status"), eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_X)), eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_Y))); menu_back_if_clicked(); } #endif //TMC2130 #ifdef RESUME_DEBUG extern void stop_and_save_print_to_ram(float z_move, float e_move); extern void restore_print_from_ram_and_continue(float e_move); static void lcd_menu_test_save() { stop_and_save_print_to_ram(10, -0.8); } static void lcd_menu_test_restore() { restore_print_from_ram_and_continue(0.8); } #endif //RESUME_DEBUG static void lcd_preheat_menu() { MENU_BEGIN(); if (!wizard_active) MENU_ITEM_BACK_P(_T(MSG_MAIN)); if (farm_mode) { MENU_ITEM_FUNCTION_P(PSTR("farm - " STRINGIFY(FARM_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FARM_PREHEAT_HPB_TEMP)), lcd_preheat_farm); MENU_ITEM_FUNCTION_P(PSTR("nozzle - " STRINGIFY(FARM_PREHEAT_HOTEND_TEMP) "/0"), lcd_preheat_farm_nozzle); MENU_ITEM_FUNCTION_P(_T(MSG_COOLDOWN), lcd_cooldown); MENU_ITEM_FUNCTION_P(PSTR("ABS - " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP)), lcd_preheat_abs); } else { MENU_ITEM_FUNCTION_P(PSTR("PLA - " STRINGIFY(PLA_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PLA_PREHEAT_HPB_TEMP)), lcd_preheat_pla); MENU_ITEM_FUNCTION_P(PSTR("PET - " STRINGIFY(PET_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PET_PREHEAT_HPB_TEMP)), lcd_preheat_pet); MENU_ITEM_FUNCTION_P(PSTR("ABS - " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP)), lcd_preheat_abs); MENU_ITEM_FUNCTION_P(PSTR("HIPS - " STRINGIFY(HIPS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(HIPS_PREHEAT_HPB_TEMP)), lcd_preheat_hips); MENU_ITEM_FUNCTION_P(PSTR("PP - " STRINGIFY(PP_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PP_PREHEAT_HPB_TEMP)), lcd_preheat_pp); MENU_ITEM_FUNCTION_P(PSTR("FLEX - " STRINGIFY(FLEX_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FLEX_PREHEAT_HPB_TEMP)), lcd_preheat_flex); if (!wizard_active) MENU_ITEM_FUNCTION_P(_T(MSG_COOLDOWN), lcd_cooldown); } MENU_END(); } static void lcd_support_menu() { typedef struct { // 22bytes total int8_t status; // 1byte bool is_flash_air; // 1byte uint8_t ip[4]; // 4bytes char ip_str[3*4+3+1]; // 16bytes } _menu_data_t; static_assert(sizeof(menu_data)>= sizeof(_menu_data_t),"_menu_data_t doesn't fit into menu_data"); _menu_data_t* _md = (_menu_data_t*)&(menu_data[0]); if (_md->status == 0 || lcd_draw_update == 2) { // Menu was entered or SD card status has changed (plugged in or removed). // Initialize its status. _md->status = 1; _md->is_flash_air = card.ToshibaFlashAir_isEnabled() && card.ToshibaFlashAir_GetIP(_md->ip); if (_md->is_flash_air) sprintf_P(_md->ip_str, PSTR("%d.%d.%d.%d"), _md->ip[0], _md->ip[1], _md->ip[2], _md->ip[3]); } else if (_md->is_flash_air && _md->ip[0] == 0 && _md->ip[1] == 0 && _md->ip[2] == 0 && _md->ip[3] == 0 && ++ _md->status == 16) { // Waiting for the FlashAir card to get an IP address from a router. Force an update. _md->status = 0; } MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_BACK_P(PSTR("Firmware:")); MENU_ITEM_BACK_P(PSTR(" " FW_VERSION_FULL)); #if (FW_DEV_VERSION != FW_VERSION_GOLD) && (FW_DEV_VERSION != FW_VERSION_RC) MENU_ITEM_BACK_P(PSTR(" repo " FW_REPOSITORY)); #endif // Ideally this block would be optimized out by the compiler. /* const uint8_t fw_string_len = strlen_P(FW_VERSION_STR_P()); if (fw_string_len < 6) { MENU_ITEM_BACK_P(PSTR(MSG_FW_VERSION " - " FW_version)); } else { MENU_ITEM_BACK_P(PSTR("FW - " FW_version)); }*/ MENU_ITEM_BACK_P(_i("prusa3d.com"));////MSG_PRUSA3D c=0 r=0 MENU_ITEM_BACK_P(_i("forum.prusa3d.com"));////MSG_PRUSA3D_FORUM c=0 r=0 MENU_ITEM_BACK_P(_i("howto.prusa3d.com"));////MSG_PRUSA3D_HOWTO c=0 r=0 MENU_ITEM_BACK_P(STR_SEPARATOR); MENU_ITEM_BACK_P(PSTR(FILAMENT_SIZE)); MENU_ITEM_BACK_P(PSTR(ELECTRONICS)); MENU_ITEM_BACK_P(PSTR(NOZZLE_TYPE)); MENU_ITEM_BACK_P(STR_SEPARATOR); MENU_ITEM_BACK_P(_i("Date:"));////MSG_DATE c=17 r=1 MENU_ITEM_BACK_P(PSTR(__DATE__)); MENU_ITEM_BACK_P(STR_SEPARATOR); if (mmu_enabled) { MENU_ITEM_BACK_P(_i("MMU2 connected")); MENU_ITEM_BACK_P(PSTR(" FW:")); if (((menu_item - 1) == menu_line) && lcd_draw_update) { lcd_set_cursor(6, menu_row); if ((mmu_version > 0) && (mmu_buildnr > 0)) lcd_printf_P(PSTR("%d.%d.%d-%d"), mmu_version/100, mmu_version%100/10, mmu_version%10, mmu_buildnr); else lcd_puts_P(_i("unknown")); } } else MENU_ITEM_BACK_P(PSTR("MMU2 N/A")); // Show the FlashAir IP address, if the card is available. if (_md->is_flash_air) { MENU_ITEM_BACK_P(STR_SEPARATOR); MENU_ITEM_BACK_P(PSTR("FlashAir IP Addr:")); ///! MENU_ITEM(back_RAM, _md->ip_str, 0); } #ifndef MK1BP MENU_ITEM_BACK_P(STR_SEPARATOR); MENU_ITEM_SUBMENU_P(_i("XYZ cal. details"), lcd_menu_xyz_y_min);////MSG_XYZ_DETAILS c=19 r=1 MENU_ITEM_SUBMENU_P(_i("Extruder info"), lcd_menu_extruder_info);////MSG_INFO_EXTRUDER c=18 r=1 MENU_ITEM_SUBMENU_P(_i("Sensor info"), lcd_menu_show_sensors_state);////MSG_INFO_SENSORS c=18 r=1 #ifdef TMC2130 MENU_ITEM_SUBMENU_P(_i("Belt status"), lcd_menu_belt_status);////MSG_MENU_BELT_STATUS c=18 r=1 #endif //TMC2130 MENU_ITEM_SUBMENU_P(_i("Temperatures"), lcd_menu_temperatures);////MSG_MENU_TEMPERATURES c=18 r=1 #if defined (VOLT_BED_PIN) || defined (VOLT_PWR_PIN) MENU_ITEM_SUBMENU_P(_i("Voltages"), lcd_menu_voltages);////MSG_MENU_VOLTAGES c=18 r=1 #endif //defined VOLT_BED_PIN || defined VOLT_PWR_PIN #ifdef DEBUG_BUILD MENU_ITEM_SUBMENU_P(PSTR("Debug"), lcd_menu_debug); #endif /* DEBUG_BUILD */ #endif //MK1BP MENU_END(); } void lcd_set_fan_check() { fans_check_enabled = !fans_check_enabled; eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED, fans_check_enabled); } void lcd_set_filament_autoload() { fsensor_autoload_set(!fsensor_autoload_enabled); } void lcd_set_filament_oq_meass() { fsensor_oq_meassure_set(!fsensor_oq_meassure_enabled); } eFILAMENT_ACTION eFilamentAction=e_FILAMENT_ACTION_none; // must be initialized as 'non-autoLoad' bool bFilamentFirstRun; bool bFilamentPreheatState; bool bFilamentAction=false; bool bFilamentWaitingFlag=false; static void mFilamentPrompt() { uint8_t nLevel; lcd_set_cursor(0,0); lcdui_print_temp(LCD_STR_THERMOMETER[0],(int)degHotend(0),(int)degTargetHotend(0)); lcd_set_cursor(0,2); lcd_puts_P(_i("Press the knob")); ////MSG_ c=20 r=1 lcd_set_cursor(0,3); switch(eFilamentAction) { case e_FILAMENT_ACTION_Load: case e_FILAMENT_ACTION_autoLoad: case e_FILAMENT_ACTION_mmuLoad: lcd_puts_P(_i("to load filament")); ////MSG_ c=20 r=1 break; case e_FILAMENT_ACTION_unLoad: case e_FILAMENT_ACTION_mmuUnLoad: lcd_puts_P(_i("to unload filament")); ////MSG_ c=20 r=1 break; case e_FILAMENT_ACTION_mmuEject: lcd_puts_P(_i("to eject filament")); ////MSG_ c=20 r=1 break; } if(lcd_clicked()) { nLevel=2; if(!bFilamentPreheatState) { nLevel++; // setTargetHotend0(0.0); // uncoment if return to base-state is required } menu_back(nLevel); switch(eFilamentAction) { case e_FILAMENT_ACTION_Load: case e_FILAMENT_ACTION_autoLoad: loading_flag=true; enquecommand_P(PSTR("M701")); // load filament break; case e_FILAMENT_ACTION_unLoad: enquecommand_P(PSTR("M702")); // unload filament break; /* case e_FILAMENT_ACTION_mmuLoad: //./ MYSERIAL.println("mFilamentPrompt - mmuLoad"); bFilamentAction=true; menu_submenu(mmu_load_to_nozzle_menu); break; */ /* case e_FILAMENT_ACTION_mmuUnLoad: //./ MYSERIAL.println("mFilamentPrompt - mmuUnLoad"); bFilamentAction=true; extr_unload(); break; */ /* case e_FILAMENT_ACTION_mmuEject: MYSERIAL.println("mFilamentPrompt - mmuEject"); bFilamentAction=true; // menu_submenu(mmu_fil_eject_menu); break; */ } if(eFilamentAction==e_FILAMENT_ACTION_autoLoad) eFilamentAction=e_FILAMENT_ACTION_none; // i.e. non-autoLoad } } /* void _mFilamentItem(uint16_t nTemp,uint16_t nTempBed) { static int nTargetOld,nTargetBedOld; uint8_t nLevel; static bool bBeep=false; //if(bPreheatState) // not necessary nTargetOld=target_temperature[0]; nTargetBedOld=target_temperature_bed; setTargetHotend0((float)nTemp); setTargetBed((float)nTempBed); lcd_timeoutToStatus.stop(); lcd_set_cursor(0,0); lcdui_print_temp(LCD_STR_THERMOMETER[0],(int)degHotend(0),(int)degTargetHotend(0)); lcd_set_cursor(0,1); switch(eFilamentAction) { case e_FILAMENT_ACTION_Load: case e_FILAMENT_ACTION_autoLoad: case e_FILAMENT_ACTION_mmuLoad: lcd_puts_P(_i("Preheating to load")); ////MSG_ c=20 r=1 break; case e_FILAMENT_ACTION_unLoad: case e_FILAMENT_ACTION_mmuUnLoad: lcd_puts_P(_i("Preheating to unload")); ////MSG_ c=20 r=1 break; case e_FILAMENT_ACTION_mmuEject: lcd_puts_P(_i("Preheating to eject")); ////MSG_ c=20 r=1 break; } lcd_set_cursor(0,3); lcd_puts_P(_i(">Cancel")); ////MSG_ c=20 r=1 if(lcd_clicked()) { if(!bFilamentPreheatState) { setTargetHotend0(0.0); setTargetBed(0.0); menu_back(); } else { setTargetHotend0((float)nTargetOld); setTargetBed((float)nTargetBedOld); } menu_back(); if(eFilamentAction==e_FILAMENT_ACTION_autoLoad) eFilamentAction=e_FILAMENT_ACTION_none; // i.e. non-autoLoad } else { if(current_temperature[0]>(target_temperature[0]*0.95)) { switch(eFilamentAction) { case e_FILAMENT_ACTION_Load: case e_FILAMENT_ACTION_autoLoad: case e_FILAMENT_ACTION_unLoad: menu_submenu(mFilamentPrompt); break; case e_FILAMENT_ACTION_mmuLoad: nLevel=1; if(!bFilamentPreheatState) nLevel++; bFilamentAction=true; menu_back(nLevel); menu_submenu(mmu_load_to_nozzle_menu); break; case e_FILAMENT_ACTION_mmuUnLoad: nLevel=1; if(!bFilamentPreheatState) nLevel++; bFilamentAction=true; menu_back(nLevel); extr_unload(); break; case e_FILAMENT_ACTION_mmuEject: nLevel=1; if(!bFilamentPreheatState) nLevel++; bFilamentAction=true; menu_back(nLevel); menu_submenu(mmu_fil_eject_menu); break; } if(bBeep) Sound_MakeSound(e_SOUND_TYPE_StandardPrompt); bBeep=false; } else bBeep=true; } } */ void mFilamentItem(uint16_t nTemp,uint16_t nTempBed) { static int nTargetOld,nTargetBedOld; uint8_t nLevel; //if(bPreheatState) // not necessary nTargetOld=target_temperature[0]; nTargetBedOld=target_temperature_bed; setTargetHotend0((float)nTemp); setTargetBed((float)nTempBed); lcd_timeoutToStatus.stop(); if(current_temperature[0]>(target_temperature[0]*0.95)) { switch(eFilamentAction) { case e_FILAMENT_ACTION_Load: case e_FILAMENT_ACTION_autoLoad: case e_FILAMENT_ACTION_unLoad: if(bFilamentWaitingFlag) menu_submenu(mFilamentPrompt); else { nLevel=bFilamentPreheatState?1:2; menu_back(nLevel); if((eFilamentAction==e_FILAMENT_ACTION_Load)||(eFilamentAction==e_FILAMENT_ACTION_autoLoad)) { loading_flag=true; enquecommand_P(PSTR("M701")); // load filament if(eFilamentAction==e_FILAMENT_ACTION_autoLoad) eFilamentAction=e_FILAMENT_ACTION_none; // i.e. non-autoLoad } if(eFilamentAction==e_FILAMENT_ACTION_unLoad) enquecommand_P(PSTR("M702")); // unload filament } break; case e_FILAMENT_ACTION_mmuLoad: nLevel=bFilamentPreheatState?1:2; bFilamentAction=true; menu_back(nLevel); menu_submenu(mmu_load_to_nozzle_menu); break; case e_FILAMENT_ACTION_mmuUnLoad: nLevel=bFilamentPreheatState?1:2; bFilamentAction=true; menu_back(nLevel); extr_unload(); break; case e_FILAMENT_ACTION_mmuEject: nLevel=bFilamentPreheatState?1:2; bFilamentAction=true; menu_back(nLevel); menu_submenu(mmu_fil_eject_menu); break; } if(bFilamentWaitingFlag) Sound_MakeSound(e_SOUND_TYPE_StandardPrompt); bFilamentWaitingFlag=false; } else { bFilamentWaitingFlag=true; lcd_set_cursor(0,0); lcdui_print_temp(LCD_STR_THERMOMETER[0],(int)degHotend(0),(int)degTargetHotend(0)); lcd_set_cursor(0,1); switch(eFilamentAction) { case e_FILAMENT_ACTION_Load: case e_FILAMENT_ACTION_autoLoad: case e_FILAMENT_ACTION_mmuLoad: lcd_puts_P(_i("Preheating to load")); ////MSG_ c=20 r=1 break; case e_FILAMENT_ACTION_unLoad: case e_FILAMENT_ACTION_mmuUnLoad: lcd_puts_P(_i("Preheating to unload")); ////MSG_ c=20 r=1 break; case e_FILAMENT_ACTION_mmuEject: lcd_puts_P(_i("Preheating to eject")); ////MSG_ c=20 r=1 break; } lcd_set_cursor(0,3); lcd_puts_P(_i(">Cancel")); ////MSG_ c=20 r=1 if(lcd_clicked()) { bFilamentWaitingFlag=false; if(!bFilamentPreheatState) { setTargetHotend0(0.0); setTargetBed(0.0); menu_back(); } else { setTargetHotend0((float)nTargetOld); setTargetBed((float)nTargetBedOld); } menu_back(); if(eFilamentAction==e_FILAMENT_ACTION_autoLoad) eFilamentAction=e_FILAMENT_ACTION_none; // i.e. non-autoLoad } } } static void mFilamentItem_PLA() { bFilamentPreheatState=false; mFilamentItem(PLA_PREHEAT_HOTEND_TEMP,PLA_PREHEAT_HPB_TEMP); } static void mFilamentItem_PET() { bFilamentPreheatState=false; mFilamentItem(PET_PREHEAT_HOTEND_TEMP,PET_PREHEAT_HPB_TEMP); } static void mFilamentItem_ABS() { bFilamentPreheatState=false; mFilamentItem(ABS_PREHEAT_HOTEND_TEMP,ABS_PREHEAT_HPB_TEMP); } static void mFilamentItem_HIPS() { bFilamentPreheatState=false; mFilamentItem(HIPS_PREHEAT_HOTEND_TEMP,HIPS_PREHEAT_HPB_TEMP); } static void mFilamentItem_PP() { bFilamentPreheatState=false; mFilamentItem(PP_PREHEAT_HOTEND_TEMP,PP_PREHEAT_HPB_TEMP); } static void mFilamentItem_FLEX() { bFilamentPreheatState=false; mFilamentItem(FLEX_PREHEAT_HOTEND_TEMP,FLEX_PREHEAT_HPB_TEMP); } void mFilamentBack() { menu_back(); if(eFilamentAction==e_FILAMENT_ACTION_autoLoad) eFilamentAction=e_FILAMENT_ACTION_none; // i.e. non-autoLoad } void mFilamentMenu() { MENU_BEGIN(); MENU_ITEM_FUNCTION_P(_T(MSG_MAIN),mFilamentBack); MENU_ITEM_SUBMENU_P(PSTR("PLA - " STRINGIFY(PLA_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PLA_PREHEAT_HPB_TEMP)),mFilamentItem_PLA); MENU_ITEM_SUBMENU_P(PSTR("PET - " STRINGIFY(PET_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PET_PREHEAT_HPB_TEMP)),mFilamentItem_PET); MENU_ITEM_SUBMENU_P(PSTR("ABS - " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP)),mFilamentItem_ABS); MENU_ITEM_SUBMENU_P(PSTR("HIPS - " STRINGIFY(HIPS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(HIPS_PREHEAT_HPB_TEMP)),mFilamentItem_HIPS); MENU_ITEM_SUBMENU_P(PSTR("PP - " STRINGIFY(PP_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PP_PREHEAT_HPB_TEMP)),mFilamentItem_PP); MENU_ITEM_SUBMENU_P(PSTR("FLEX - " STRINGIFY(FLEX_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FLEX_PREHEAT_HPB_TEMP)),mFilamentItem_FLEX); MENU_END(); } void mFilamentItemForce() { mFilamentItem(target_temperature[0],target_temperature_bed); } void lcd_unLoadFilament() { //./if((degHotend0()>EXTRUDE_MINTEMP)&&bFilamentFirstRun) if(0) { menu_back(); enquecommand_P(PSTR("M702")); // unload filament } else { eFilamentAction=e_FILAMENT_ACTION_unLoad; bFilamentFirstRun=false; if(target_temperature[0]>=EXTRUDE_MINTEMP) { bFilamentPreheatState=true; mFilamentItem(target_temperature[0],target_temperature_bed); } else mFilamentMenu(); } } void lcd_wait_interact() { lcd_clear(); lcd_set_cursor(0, 1); #ifdef SNMM lcd_puts_P(_i("Prepare new filament"));////MSG_PREPARE_FILAMENT c=20 r=1 #else lcd_puts_P(_i("Insert filament"));////MSG_INSERT_FILAMENT c=20 r=0 #endif if (!fsensor_autoload_enabled) { lcd_set_cursor(0, 2); lcd_puts_P(_i("and press the knob"));////MSG_PRESS c=20 r=0 } } void lcd_change_success() { lcd_clear(); lcd_set_cursor(0, 2); lcd_puts_P(_i("Change success!"));////MSG_CHANGE_SUCCESS c=0 r=0 } static void lcd_loading_progress_bar(uint16_t loading_time_ms) { for (int i = 0; i < 20; i++) { lcd_set_cursor(i, 3); lcd_print("."); //loading_time_ms/20 delay for (int j = 0; j < 5; j++) { delay_keep_alive(loading_time_ms / 100); } } } void lcd_loading_color() { //we are extruding 25mm with feedrate 200mm/min -> 7.5 seconds for whole action, 0.375 s for one character lcd_clear(); lcd_set_cursor(0, 0); lcd_puts_P(_i("Loading color"));////MSG_LOADING_COLOR c=0 r=0 lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT)); lcd_loading_progress_bar((FILAMENTCHANGE_FINALFEED * 1000ul) / FILAMENTCHANGE_EFEED_FINAL); //show progress bar during filament loading slow sequence } void lcd_loading_filament() { lcd_clear(); lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT)); lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT)); #ifdef SNMM for (int i = 0; i < 20; i++) { lcd_set_cursor(i, 3); lcd_print("."); for (int j = 0; j < 10 ; j++) { manage_heater(); manage_inactivity(true); _delay(153); } } #else //SNMM uint16_t slow_seq_time = (FILAMENTCHANGE_FINALFEED * 1000ul) / FILAMENTCHANGE_EFEED_FINAL; uint16_t fast_seq_time = (FILAMENTCHANGE_FIRSTFEED * 1000ul) / FILAMENTCHANGE_EFEED_FIRST; lcd_loading_progress_bar(slow_seq_time + fast_seq_time); //show progress bar for total time of filament loading fast + slow sequence #endif //SNMM } void lcd_alright() { int enc_dif = 0; int cursor_pos = 1; lcd_clear(); lcd_set_cursor(0, 0); lcd_puts_P(_i("Changed correctly?"));////MSG_CORRECTLY c=20 r=0 lcd_set_cursor(1, 1); lcd_puts_P(_T(MSG_YES)); lcd_set_cursor(1, 2); lcd_puts_P(_i("Filament not loaded"));////MSG_NOT_LOADED c=19 r=0 lcd_set_cursor(1, 3); lcd_puts_P(_i("Color not correct"));////MSG_NOT_COLOR c=0 r=0 lcd_set_cursor(0, 1); lcd_print(">"); enc_dif = lcd_encoder_diff; lcd_consume_click(); while (lcd_change_fil_state == 0) { manage_heater(); manage_inactivity(true); if ( abs((enc_dif - lcd_encoder_diff)) > 4 ) { if ( (abs(enc_dif - lcd_encoder_diff)) > 1 ) { if (enc_dif > lcd_encoder_diff ) { cursor_pos --; } if (enc_dif < lcd_encoder_diff ) { cursor_pos ++; } if (cursor_pos > 3) { cursor_pos = 3; } if (cursor_pos < 1) { cursor_pos = 1; } lcd_set_cursor(0, 1); lcd_print(" "); lcd_set_cursor(0, 2); lcd_print(" "); lcd_set_cursor(0, 3); lcd_print(" "); lcd_set_cursor(0, cursor_pos); lcd_print(">"); enc_dif = lcd_encoder_diff; _delay(100); } } if (lcd_clicked()) { lcd_change_fil_state = cursor_pos; _delay(500); } }; lcd_clear(); lcd_return_to_status(); } void show_preheat_nozzle_warning() { lcd_clear(); lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_ERROR)); lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PREHEAT_NOZZLE)); _delay(2000); lcd_clear(); } void lcd_load_filament_color_check() { bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true); while (!clean) { lcd_update_enable(true); lcd_update(2); load_filament_final_feed(); st_synchronize(); clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true); } } #ifdef FILAMENT_SENSOR static void lcd_menu_AutoLoadFilament() { uint8_t nlines; lcd_display_message_fullscreen_nonBlocking_P(_i("Autoloading filament is active, just press the knob and insert filament..."),nlines);////MSG_AUTOLOADING_ENABLED c=20 r=4 menu_back_if_clicked(); } #endif //FILAMENT_SENSOR static void lcd_LoadFilament() { //-// if (degHotend0() > EXTRUDE_MINTEMP) if(0) { // menu_back(); // not necessary (see "lcd_return_to_status()" below) custom_message_type = CUSTOM_MSG_TYPE_F_LOAD; loading_flag = true; enquecommand_P(PSTR("M701")); //load filament SERIAL_ECHOLN("Loading filament"); lcd_return_to_status(); } else { eFilamentAction=e_FILAMENT_ACTION_Load; bFilamentFirstRun=false; if(target_temperature[0]>=EXTRUDE_MINTEMP) { bFilamentPreheatState=true; mFilamentItem(target_temperature[0],target_temperature_bed); } else mFilamentMenu(); } } //! @brief Show filament used a print time //! //! If printing current print statistics are shown //! //! @code{.unparsed} //! |01234567890123456789| //! |Filament used: | //! | 00.00m | //! |Print time: | //! | 00h 00m 00s | //! ---------------------- //! @endcode //! //! If not printing, total statistics are shown //! //! @code{.unparsed} //! |01234567890123456789| //! |Total filament : | //! | 000.00 m | //! |Total print time : | //! | 00d :00h :00 m | //! ---------------------- //! @endcode void lcd_menu_statistics() { if (IS_SD_PRINTING) { const float _met = ((float)total_filament_used) / (100000.f); const uint32_t _t = (_millis() - starttime) / 1000ul; const int _h = _t / 3600; const int _m = (_t - (_h * 3600ul)) / 60ul; const int _s = _t - ((_h * 3600ul) + (_m * 60ul)); lcd_printf_P(_N( ESC_2J "%S:" ESC_H(6,1) "%8.2fm \n" "%S :" ESC_H(8,3) "%2dh %02dm %02ds" ), _i("Filament used"), _met, _i("Print time"), _h, _m, _s ); menu_back_if_clicked_fb(); } else { unsigned long _filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); unsigned long _time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //in minutes uint8_t _hours, _minutes; uint32_t _days; float _filament_m = (float)_filament/100; // int _filament_km = (_filament >= 100000) ? _filament / 100000 : 0; // if (_filament_km > 0) _filament_m = _filament - (_filament_km * 100000); _days = _time / 1440; _hours = (_time - (_days * 1440)) / 60; _minutes = _time - ((_days * 1440) + (_hours * 60)); lcd_printf_P(_N( ESC_2J "%S :" ESC_H(9,1) "%8.2f m\n" "%S :\n" "%7ldd :%2hhdh :%02hhd m" ), _i("Total filament"), _filament_m, _i("Total print time"), _days, _hours, _minutes ); KEEPALIVE_STATE(PAUSED_FOR_USER); while (!lcd_clicked()) { manage_heater(); manage_inactivity(true); _delay(100); } KEEPALIVE_STATE(NOT_BUSY); lcd_quick_feedback(); menu_back(); } } static void _lcd_move(const char *name, int axis, int min, int max) { typedef struct { // 2bytes total bool initialized; // 1byte bool endstopsEnabledPrevious; // 1byte } _menu_data_t; static_assert(sizeof(menu_data)>= sizeof(_menu_data_t),"_menu_data_t doesn't fit into menu_data"); _menu_data_t* _md = (_menu_data_t*)&(menu_data[0]); if (!_md->initialized) { _md->endstopsEnabledPrevious = enable_endstops(false); _md->initialized = true; } if (lcd_encoder != 0) { refresh_cmd_timeout(); if (! planner_queue_full()) { current_position[axis] += float((int)lcd_encoder) * move_menu_scale; if (min_software_endstops && current_position[axis] < min) current_position[axis] = min; if (max_software_endstops && current_position[axis] > max) current_position[axis] = max; lcd_encoder = 0; world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis] / 60, active_extruder); lcd_draw_update = 1; } } if (lcd_draw_update) { lcd_set_cursor(0, 1); menu_draw_float31(' ', name, current_position[axis]); } if (menu_leaving || LCD_CLICKED) (void)enable_endstops(_md->endstopsEnabledPrevious); if (LCD_CLICKED) menu_back(); } static void lcd_move_e() { if (degHotend0() > EXTRUDE_MINTEMP) { if (lcd_encoder != 0) { refresh_cmd_timeout(); if (! planner_queue_full()) { current_position[E_AXIS] += float((int)lcd_encoder) * move_menu_scale; lcd_encoder = 0; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[E_AXIS] / 60, active_extruder); lcd_draw_update = 1; } } if (lcd_draw_update) { lcd_set_cursor(0, 1); menu_draw_float31(' ', PSTR("Extruder"), current_position[E_AXIS]); } if (LCD_CLICKED) menu_back(); } else { show_preheat_nozzle_warning(); lcd_return_to_status(); } } //@brief Show measured Y distance of front calibration points from Y_MIN_POS //If those points are detected too close to edge of reachable area, their confidence is lowered. //This functionality is applied more often for MK2 printers. static void lcd_menu_xyz_y_min() { //|01234567890123456789| //|Y distance from min:| //|--------------------| //|Left: N/A | //|Right: N/A | //---------------------- float distanceMin[2]; count_xyz_details(distanceMin); lcd_printf_P(_N( ESC_H(0,0) "%S:\n" "%S\n" "%S:\n" "%S:" ), _i("Y distance from min"), separator, _i("Left"), _i("Right") ); for (uint8_t i = 0; i < 2; i++) { lcd_set_cursor(11,2+i); if (distanceMin[i] >= 200) lcd_puts_P(_N("N/A")); else lcd_printf_P(_N("%6.2fmm"), distanceMin[i]); } if (lcd_clicked()) menu_goto(lcd_menu_xyz_skew, 0, true, true); } //@brief Show measured axis skewness float _deg(float rad) { return rad * 180 / M_PI; } static void lcd_menu_xyz_skew() { //|01234567890123456789| //|Measured skew: N/A | //|--------------------| //|Slight skew: 0.12d| //|Severe skew: 0.25d| //---------------------- float angleDiff = eeprom_read_float((float*)(EEPROM_XYZ_CAL_SKEW)); lcd_printf_P(_N( ESC_H(0,0) "%S:\n" "%S\n" "%S: %5.2f\x01\n" "%S: %5.2f\x01" ), _i("Measured skew"), separator, _i("Slight skew"), _deg(bed_skew_angle_mild), _i("Severe skew"), _deg(bed_skew_angle_extreme) ); if (angleDiff < 100) lcd_printf_P(_N(ESC_H(15,0)"%4.2f\x01"), _deg(angleDiff)); else lcd_puts_P(_N(ESC_H(15,0)"N/A")); if (lcd_clicked()) menu_goto(lcd_menu_xyz_offset, 0, true, true); } /** * @brief Show measured bed offset from expected position */ static void lcd_menu_xyz_offset() { lcd_set_cursor(0,0); lcd_puts_P(_i("[0;0] point offset"));////MSG_MEASURED_OFFSET c=0 r=0 lcd_puts_at_P(0, 1, separator); lcd_puts_at_P(0, 2, PSTR("X")); lcd_puts_at_P(0, 3, PSTR("Y")); float vec_x[2]; float vec_y[2]; float cntr[2]; world2machine_read_valid(vec_x, vec_y, cntr); for (int i = 0; i < 2; i++) { lcd_puts_at_P(11, i + 2, PSTR("")); lcd_print(cntr[i]); lcd_puts_at_P((cntr[i] < 0) ? 17 : 16, i + 2, PSTR("mm")); } menu_back_if_clicked(); } // Save a single axis babystep value. void EEPROM_save_B(int pos, int* value) { eeprom_update_byte((unsigned char*)pos, (unsigned char)((*value) & 0xff)); eeprom_update_byte((unsigned char*)pos + 1, (unsigned char)((*value) >> 8)); } // Read a single axis babystep value. void EEPROM_read_B(int pos, int* value) { *value = (int)eeprom_read_byte((unsigned char*)pos) | (int)(eeprom_read_byte((unsigned char*)pos + 1) << 8); } static void lcd_move_x() { _lcd_move(PSTR("X"), X_AXIS, X_MIN_POS, X_MAX_POS); } static void lcd_move_y() { _lcd_move(PSTR("Y"), Y_AXIS, Y_MIN_POS, Y_MAX_POS); } static void lcd_move_z() { _lcd_move(PSTR("Z"), Z_AXIS, Z_MIN_POS, Z_MAX_POS); } /** * @brief Adjust first layer offset from bed if axis is Z_AXIS * * If menu is left (button pushed or timed out), value is stored to EEPROM and * if the axis is Z_AXIS, CALIBRATION_STATUS_CALIBRATED is also stored. * Purpose of this function for other axis then Z is unknown. * * @param axis AxisEnum X_AXIS Y_AXIS Z_AXIS * other value leads to storing Z_AXIS * @param msg text to be displayed */ static void _lcd_babystep(int axis, const char *msg) { typedef struct { // 19bytes total int8_t status; // 1byte int babystepMem[3]; // 6bytes float babystepMemMM[3]; // 12bytes } _menu_data_t; static_assert(sizeof(menu_data)>= sizeof(_menu_data_t),"_menu_data_t doesn't fit into menu_data"); _menu_data_t* _md = (_menu_data_t*)&(menu_data[0]); if (_md->status == 0) { // Menu was entered. // Initialize its status. _md->status = 1; check_babystep(); EEPROM_read_B(EEPROM_BABYSTEP_X, &_md->babystepMem[0]); EEPROM_read_B(EEPROM_BABYSTEP_Y, &_md->babystepMem[1]); EEPROM_read_B(EEPROM_BABYSTEP_Z, &_md->babystepMem[2]); // same logic as in babystep_load if (calibration_status() >= CALIBRATION_STATUS_LIVE_ADJUST) _md->babystepMem[2] = 0; _md->babystepMemMM[0] = _md->babystepMem[0]/cs.axis_steps_per_unit[X_AXIS]; _md->babystepMemMM[1] = _md->babystepMem[1]/cs.axis_steps_per_unit[Y_AXIS]; _md->babystepMemMM[2] = _md->babystepMem[2]/cs.axis_steps_per_unit[Z_AXIS]; lcd_draw_update = 1; //SERIAL_ECHO("Z baby step: "); //SERIAL_ECHO(_md->babystepMem[2]); // Wait 90 seconds before closing the live adjust dialog. lcd_timeoutToStatus.start(); } if (lcd_encoder != 0) { if (homing_flag) lcd_encoder = 0; _md->babystepMem[axis] += (int)lcd_encoder; if (axis == 2) { if (_md->babystepMem[axis] < Z_BABYSTEP_MIN) _md->babystepMem[axis] = Z_BABYSTEP_MIN; //-3999 -> -9.99 mm else if (_md->babystepMem[axis] > Z_BABYSTEP_MAX) _md->babystepMem[axis] = Z_BABYSTEP_MAX; //0 else { CRITICAL_SECTION_START babystepsTodo[axis] += (int)lcd_encoder; CRITICAL_SECTION_END } } _md->babystepMemMM[axis] = _md->babystepMem[axis]/cs.axis_steps_per_unit[axis]; _delay(50); lcd_encoder = 0; lcd_draw_update = 1; } if (lcd_draw_update) { lcd_set_cursor(0, 1); menu_draw_float13(' ', msg, _md->babystepMemMM[axis]); } if (LCD_CLICKED || menu_leaving) { // Only update the EEPROM when leaving the menu. EEPROM_save_B( (axis == X_AXIS) ? EEPROM_BABYSTEP_X : ((axis == Y_AXIS) ? EEPROM_BABYSTEP_Y : EEPROM_BABYSTEP_Z), &_md->babystepMem[axis]); if(Z_AXIS == axis) calibration_status_store(CALIBRATION_STATUS_CALIBRATED); } if (LCD_CLICKED) menu_back(); } static void lcd_babystep_z() { _lcd_babystep(Z_AXIS, (_i("Adjusting Z")));////MSG_BABYSTEPPING_Z c=20 r=0 } typedef struct { // 12bytes + 9bytes = 21bytes total menu_data_edit_t reserved; //12 bytes reserved for number editing functions int8_t status; // 1byte int16_t left; // 2byte int16_t right; // 2byte int16_t front; // 2byte int16_t rear; // 2byte } _menu_data_adjust_bed_t; static_assert(sizeof(menu_data)>= sizeof(_menu_data_adjust_bed_t),"_menu_data_adjust_bed_t doesn't fit into menu_data"); void lcd_adjust_bed_reset(void) { eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT , 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR , 0); _menu_data_adjust_bed_t* _md = (_menu_data_adjust_bed_t*)&(menu_data[0]); _md->status = 0; } void lcd_adjust_bed(void) { _menu_data_adjust_bed_t* _md = (_menu_data_adjust_bed_t*)&(menu_data[0]); if (_md->status == 0) { // Menu was entered. _md->left = 0; _md->right = 0; _md->front = 0; _md->rear = 0; if (eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1) { _md->left = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT); _md->right = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT); _md->front = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT); _md->rear = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR); } _md->status = 1; } MENU_BEGIN(); // leaving menu - this condition must be immediately before MENU_ITEM_BACK_P if (((menu_item == menu_line) && menu_clicked && (lcd_encoder == menu_item)) || menu_leaving) { eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT, _md->left); eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, _md->right); eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT, _md->front); eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR, _md->rear); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1); } MENU_ITEM_BACK_P(_T(MSG_SETTINGS)); MENU_ITEM_EDIT_int3_P(_i("Left side [um]"), &_md->left, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_LEFT c=14 r=1 MENU_ITEM_EDIT_int3_P(_i("Right side[um]"), &_md->right, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_RIGHT c=14 r=1 MENU_ITEM_EDIT_int3_P(_i("Front side[um]"), &_md->front, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_FRONT c=14 r=1 MENU_ITEM_EDIT_int3_P(_i("Rear side [um]"), &_md->rear, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_REAR c=14 r=1 MENU_ITEM_FUNCTION_P(_i("Reset"), lcd_adjust_bed_reset);////MSG_BED_CORRECTION_RESET c=0 r=0 MENU_END(); } void pid_extruder() { lcd_clear(); lcd_set_cursor(1, 0); lcd_puts_P(_i("Set temperature:"));////MSG_SET_TEMPERATURE c=19 r=1 pid_temp += int(lcd_encoder); if (pid_temp > HEATER_0_MAXTEMP) pid_temp = HEATER_0_MAXTEMP; if (pid_temp < HEATER_0_MINTEMP) pid_temp = HEATER_0_MINTEMP; lcd_encoder = 0; lcd_set_cursor(1, 2); lcd_print(ftostr3(pid_temp)); if (lcd_clicked()) { lcd_commands_type = LCD_COMMAND_PID_EXTRUDER; lcd_return_to_status(); lcd_update(2); } } /* void lcd_adjust_z() { int enc_dif = 0; int cursor_pos = 1; int fsm = 0; lcd_clear(); lcd_set_cursor(0, 0); lcd_puts_P(_i("Auto adjust Z?"));////MSG_ADJUSTZ c=0 r=0 lcd_set_cursor(1, 1); lcd_puts_P(_T(MSG_YES)); lcd_set_cursor(1, 2); lcd_puts_P(_T(MSG_NO)); lcd_set_cursor(0, 1); lcd_print(">"); enc_dif = lcd_encoder_diff; while (fsm == 0) { manage_heater(); manage_inactivity(true); if ( abs((enc_dif - lcd_encoder_diff)) > 4 ) { if ( (abs(enc_dif - lcd_encoder_diff)) > 1 ) { if (enc_dif > lcd_encoder_diff ) { cursor_pos --; } if (enc_dif < lcd_encoder_diff ) { cursor_pos ++; } if (cursor_pos > 2) { cursor_pos = 2; } if (cursor_pos < 1) { cursor_pos = 1; } lcd_set_cursor(0, 1); lcd_print(" "); lcd_set_cursor(0, 2); lcd_print(" "); lcd_set_cursor(0, cursor_pos); lcd_print(">"); enc_dif = lcd_encoder_diff; _delay(100); } } if (lcd_clicked()) { fsm = cursor_pos; if (fsm == 1) { int babystepLoadZ = 0; EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystepLoadZ); CRITICAL_SECTION_START babystepsTodo[Z_AXIS] = babystepLoadZ; CRITICAL_SECTION_END } else { int zero = 0; EEPROM_save_B(EEPROM_BABYSTEP_X, &zero); EEPROM_save_B(EEPROM_BABYSTEP_Y, &zero); EEPROM_save_B(EEPROM_BABYSTEP_Z, &zero); } _delay(500); } }; lcd_clear(); lcd_return_to_status(); }*/ bool lcd_wait_for_pinda(float temp) { lcd_set_custom_characters_degree(); setAllTargetHotends(0); setTargetBed(0); LongTimer pinda_timeout; pinda_timeout.start(); bool target_temp_reached = true; while (current_temperature_pinda > temp){ lcd_display_message_fullscreen_P(_i("Waiting for PINDA probe cooling"));////MSG_WAITING_TEMP_PINDA c=20 r=3 lcd_set_cursor(0, 4); lcd_print(LCD_STR_THERMOMETER[0]); lcd_print(ftostr3(current_temperature_pinda)); lcd_print("/"); lcd_print(ftostr3(temp)); lcd_print(LCD_STR_DEGREE); delay_keep_alive(1000); serialecho_temperatures(); if (pinda_timeout.expired(8 * 60 * 1000ul)) { //PINDA cooling from 60 C to 35 C takes about 7 minutes target_temp_reached = false; break; } } lcd_set_custom_characters_arrows(); lcd_update_enable(true); return target_temp_reached; } void lcd_wait_for_heater() { lcd_display_message_fullscreen_P(_T(MSG_WIZARD_HEATING)); lcd_set_degree(); lcd_set_cursor(0, 4); lcd_print(LCD_STR_THERMOMETER[0]); lcd_print(ftostr3(degHotend(active_extruder))); lcd_print("/"); lcd_print(ftostr3(degTargetHotend(active_extruder))); lcd_print(LCD_STR_DEGREE); } void lcd_wait_for_cool_down() { lcd_set_custom_characters_degree(); setAllTargetHotends(0); setTargetBed(0); while ((degHotend(0)>MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) { lcd_display_message_fullscreen_P(_i("Waiting for nozzle and bed cooling"));////MSG_WAITING_TEMP c=20 r=3 lcd_set_cursor(0, 4); lcd_print(LCD_STR_THERMOMETER[0]); lcd_print(ftostr3(degHotend(0))); lcd_print("/0"); lcd_print(LCD_STR_DEGREE); lcd_set_cursor(9, 4); lcd_print(LCD_STR_BEDTEMP[0]); lcd_print(ftostr3(degBed())); lcd_print("/0"); lcd_print(LCD_STR_DEGREE); lcd_set_custom_characters(); delay_keep_alive(1000); serialecho_temperatures(); } lcd_set_custom_characters_arrows(); lcd_update_enable(true); } // Lets the user move the Z carriage up to the end stoppers. // When done, it sets the current Z to Z_MAX_POS and returns true. // Otherwise the Z calibration is not changed and false is returned. #ifndef TMC2130 bool lcd_calibrate_z_end_stop_manual(bool only_z) { // Don't know where we are. Let's claim we are Z=0, so the soft end stops will not be triggered when moving up. current_position[Z_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); // Until confirmed by the confirmation dialog. for (;;) { unsigned long previous_millis_cmd = _millis(); const char *msg = only_z ? _i("Calibrating Z. Rotate the knob to move the Z carriage up to the end stoppers. Click when done.") : _i("Calibrating XYZ. Rotate the knob to move the Z carriage up to the end stoppers. Click when done.");////MSG_MOVE_CARRIAGE_TO_THE_TOP c=20 r=8////MSG_MOVE_CARRIAGE_TO_THE_TOP_Z c=20 r=8 const char *msg_next = lcd_display_message_fullscreen_P(msg); const bool multi_screen = msg_next != NULL; unsigned long previous_millis_msg = _millis(); // Until the user finishes the z up movement. lcd_encoder_diff = 0; lcd_encoder = 0; for (;;) { // if (_millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS) // goto canceled; manage_heater(); manage_inactivity(true); if (abs(lcd_encoder_diff) >= ENCODER_PULSES_PER_STEP) { _delay(50); previous_millis_cmd = _millis(); lcd_encoder += abs(lcd_encoder_diff / ENCODER_PULSES_PER_STEP); lcd_encoder_diff = 0; if (! planner_queue_full()) { // Only move up, whatever direction the user rotates the encoder. current_position[Z_AXIS] += fabs(lcd_encoder); lcd_encoder = 0; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[Z_AXIS] / 60, active_extruder); } } if (lcd_clicked()) { // Abort a move if in progress. planner_abort_hard(); while (lcd_clicked()) ; _delay(10); while (lcd_clicked()) ; break; } if (multi_screen && _millis() - previous_millis_msg > 5000) { if (msg_next == NULL) msg_next = msg; msg_next = lcd_display_message_fullscreen_P(msg_next); previous_millis_msg = _millis(); } } // Let the user confirm, that the Z carriage is at the top end stoppers. int8_t result = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Are left and right Z~carriages all up?"), false);////MSG_CONFIRM_CARRIAGE_AT_THE_TOP c=20 r=2 if (result == -1) goto canceled; else if (result == 1) goto calibrated; // otherwise perform another round of the Z up dialog. } calibrated: // Let the machine think the Z axis is a bit higher than it is, so it will not home into the bed // during the search for the induction points. if ((PRINTER_TYPE == PRINTER_MK25) || (PRINTER_TYPE == PRINTER_MK2) || (PRINTER_TYPE == PRINTER_MK2_SNMM)) { current_position[Z_AXIS] = Z_MAX_POS-3.f; } else { current_position[Z_AXIS] = Z_MAX_POS+4.f; } plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); return true; canceled: return false; } #endif // TMC2130 static inline bool pgm_is_whitespace(const char *c_addr) { const char c = pgm_read_byte(c_addr); return c == ' ' || c == '\t' || c == '\r' || c == '\n'; } static inline bool pgm_is_interpunction(const char *c_addr) { const char c = pgm_read_byte(c_addr); return c == '.' || c == ',' || c == ':'|| c == ';' || c == '?' || c == '!' || c == '/'; } /** * @brief show full screen message * * This function is non-blocking * @param msg message to be displayed from PROGMEM * @param nlines * @return rest of the text (to be displayed on next page) */ static const char* lcd_display_message_fullscreen_nonBlocking_P(const char *msg, uint8_t &nlines) { lcd_set_cursor(0, 0); const char *msgend = msg; uint8_t row = 0; bool multi_screen = false; for (; row < 4; ++ row) { while (pgm_is_whitespace(msg)) ++ msg; if (pgm_read_byte(msg) == 0) // End of the message. break; lcd_set_cursor(0, row); uint8_t linelen = min(strlen_P(msg), 20); const char *msgend2 = msg + linelen; msgend = msgend2; if (row == 3 && linelen == 20) { // Last line of the display, full line shall be displayed. // Find out, whether this message will be split into multiple screens. while (pgm_is_whitespace(msgend)) ++ msgend; multi_screen = pgm_read_byte(msgend) != 0; if (multi_screen) msgend = (msgend2 -= 2); } if (pgm_read_byte(msgend) != 0 && ! pgm_is_whitespace(msgend) && ! pgm_is_interpunction(msgend)) { // Splitting a word. Find the start of the current word. while (msgend > msg && ! pgm_is_whitespace(msgend - 1)) -- msgend; if (msgend == msg) // Found a single long word, which cannot be split. Just cut it. msgend = msgend2; } for (; msg < msgend; ++ msg) { char c = char(pgm_read_byte(msg)); if (c == '~') c = ' '; lcd_print(c); } } if (multi_screen) { // Display the "next screen" indicator character. // lcd_set_custom_characters_arrows(); lcd_set_custom_characters_nextpage(); lcd_set_cursor(19, 3); // Display the down arrow. lcd_print(char(1)); } nlines = row; return multi_screen ? msgend : NULL; } const char* lcd_display_message_fullscreen_P(const char *msg, uint8_t &nlines) { // Disable update of the screen by the usual lcd_update(0) routine. lcd_update_enable(false); lcd_clear(); // uint8_t nlines; return lcd_display_message_fullscreen_nonBlocking_P(msg, nlines); } const char* lcd_display_message_fullscreen_P(const char *msg) { uint8_t nlines; return lcd_display_message_fullscreen_P(msg, nlines); } /** * @brief show full screen message and wait * * This function is blocking. * @param msg message to be displayed from PROGMEM */ void lcd_show_fullscreen_message_and_wait_P(const char *msg) { LcdUpdateDisabler lcdUpdateDisabler; const char *msg_next = lcd_display_message_fullscreen_P(msg); bool multi_screen = msg_next != NULL; lcd_set_custom_characters_nextpage(); lcd_consume_click(); KEEPALIVE_STATE(PAUSED_FOR_USER); // Until confirmed by a button click. for (;;) { if (!multi_screen) { lcd_set_cursor(19, 3); // Display the confirm char. lcd_print(char(2)); } // Wait for 5 seconds before displaying the next text. for (uint8_t i = 0; i < 100; ++ i) { delay_keep_alive(50); if (lcd_clicked()) { if (msg_next == NULL) { KEEPALIVE_STATE(IN_HANDLER); lcd_set_custom_characters(); lcd_update_enable(true); lcd_update(2); return; } else { break; } } } if (multi_screen) { if (msg_next == NULL) msg_next = msg; msg_next = lcd_display_message_fullscreen_P(msg_next); if (msg_next == NULL) { lcd_set_cursor(19, 3); // Display the confirm char. lcd_print(char(2)); } } } } bool lcd_wait_for_click_delay(uint16_t nDelay) // nDelay :: timeout [s] (0 ~ no timeout) // true ~ clicked, false ~ delayed { bool bDelayed; long nTime0 = _millis()/1000; lcd_consume_click(); KEEPALIVE_STATE(PAUSED_FOR_USER); for (;;) { manage_heater(); manage_inactivity(true); bDelayed = ((_millis()/1000-nTime0) > nDelay); bDelayed = (bDelayed && (nDelay != 0)); // 0 ~ no timeout, always waiting for click if (lcd_clicked() || bDelayed) { KEEPALIVE_STATE(IN_HANDLER); return(!bDelayed); } } } void lcd_wait_for_click() { lcd_wait_for_click_delay(0); } //! @brief Show multiple screen message with yes and no possible choices and wait with possible timeout //! @param msg Message to show //! @param allow_timeouting if true, allows time outing of the screen //! @param default_yes if true, yes choice is selected by default, otherwise no choice is preselected //! @retval 1 yes choice selected by user //! @retval 0 no choice selected by user //! @retval -1 screen timed out int8_t lcd_show_multiscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting, bool default_yes) //currently just max. n*4 + 3 lines supported (set in language header files) { return lcd_show_multiscreen_message_two_choices_and_wait_P(msg, allow_timeouting, default_yes, _T(MSG_YES), _T(MSG_NO)); } //! @brief Show multiple screen message with two possible choices and wait with possible timeout //! @param msg Message to show //! @param allow_timeouting if true, allows time outing of the screen //! @param default_first if true, fist choice is selected by default, otherwise second choice is preselected //! @param first_choice text caption of first possible choice //! @param second_choice text caption of second possible choice //! @retval 1 first choice selected by user //! @retval 0 second choice selected by user //! @retval -1 screen timed out int8_t lcd_show_multiscreen_message_two_choices_and_wait_P(const char *msg, bool allow_timeouting, bool default_first, const char *first_choice, const char *second_choice) { const char *msg_next = lcd_display_message_fullscreen_P(msg); bool multi_screen = msg_next != NULL; bool yes = default_first ? true : false; // Wait for user confirmation or a timeout. unsigned long previous_millis_cmd = _millis(); int8_t enc_dif = lcd_encoder_diff; lcd_consume_click(); //KEEPALIVE_STATE(PAUSED_FOR_USER); for (;;) { for (uint8_t i = 0; i < 100; ++i) { delay_keep_alive(50); if (allow_timeouting && _millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS) return -1; manage_heater(); manage_inactivity(true); if (abs(enc_dif - lcd_encoder_diff) > 4) { if (msg_next == NULL) { lcd_set_cursor(0, 3); if (enc_dif < lcd_encoder_diff && yes) { lcd_puts_P((PSTR(" "))); lcd_set_cursor(7, 3); lcd_puts_P((PSTR(">"))); yes = false; } else if (enc_dif > lcd_encoder_diff && !yes) { lcd_puts_P((PSTR(">"))); lcd_set_cursor(7, 3); lcd_puts_P((PSTR(" "))); yes = true; } enc_dif = lcd_encoder_diff; } else { break; //turning knob skips waiting loop } } if (lcd_clicked()) { if (msg_next == NULL) { //KEEPALIVE_STATE(IN_HANDLER); lcd_set_custom_characters(); return yes; } else break; } } if (multi_screen) { if (msg_next == NULL) { msg_next = msg; } msg_next = lcd_display_message_fullscreen_P(msg_next); } if (msg_next == NULL) { lcd_set_cursor(0, 3); if (yes) lcd_puts_P(PSTR(">")); lcd_set_cursor(1, 3); lcd_puts_P(first_choice); lcd_set_cursor(7, 3); if (!yes) lcd_puts_P(PSTR(">")); lcd_set_cursor(8, 3); lcd_puts_P(second_choice); } } } //! @brief Show single screen message with yes and no possible choices and wait with possible timeout //! @param msg Message to show //! @param allow_timeouting if true, allows time outing of the screen //! @param default_yes if true, yes choice is selected by default, otherwise no choice is preselected //! @retval 1 yes choice selected by user //! @retval 0 no choice selected by user //! @retval -1 screen timed out int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting, bool default_yes) { lcd_display_message_fullscreen_P(msg); if (default_yes) { lcd_set_cursor(0, 2); lcd_puts_P(PSTR(">")); lcd_puts_P(_T(MSG_YES)); lcd_set_cursor(1, 3); lcd_puts_P(_T(MSG_NO)); } else { lcd_set_cursor(1, 2); lcd_puts_P(_T(MSG_YES)); lcd_set_cursor(0, 3); lcd_puts_P(PSTR(">")); lcd_puts_P(_T(MSG_NO)); } bool yes = default_yes ? true : false; // Wait for user confirmation or a timeout. unsigned long previous_millis_cmd = _millis(); int8_t enc_dif = lcd_encoder_diff; lcd_consume_click(); KEEPALIVE_STATE(PAUSED_FOR_USER); for (;;) { if (allow_timeouting && _millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS) return -1; manage_heater(); manage_inactivity(true); if (abs(enc_dif - lcd_encoder_diff) > 4) { lcd_set_cursor(0, 2); if (enc_dif < lcd_encoder_diff && yes) { lcd_puts_P((PSTR(" "))); lcd_set_cursor(0, 3); lcd_puts_P((PSTR(">"))); yes = false; } else if (enc_dif > lcd_encoder_diff && !yes) { lcd_puts_P((PSTR(">"))); lcd_set_cursor(0, 3); lcd_puts_P((PSTR(" "))); yes = true; } enc_dif = lcd_encoder_diff; } if (lcd_clicked()) { KEEPALIVE_STATE(IN_HANDLER); return yes; } } } void lcd_bed_calibration_show_result(BedSkewOffsetDetectionResultType result, uint8_t point_too_far_mask) { const char *msg = NULL; if (result == BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND) { lcd_show_fullscreen_message_and_wait_P(_i("XYZ calibration failed. Bed calibration point was not found."));////MSG_BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND c=20 r=8 } else if (result == BED_SKEW_OFFSET_DETECTION_FITTING_FAILED) { if (point_too_far_mask == 0) msg = _T(MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED); else if (point_too_far_mask == 2 || point_too_far_mask == 7) // Only the center point or all the three front points. msg = _i("XYZ calibration failed. Front calibration points not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_BOTH_FAR c=20 r=8 else if ((point_too_far_mask & 1) == 0) // The right and maybe the center point out of reach. msg = _i("XYZ calibration failed. Right front calibration point not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_RIGHT_FAR c=20 r=8 else // The left and maybe the center point out of reach. msg = _i("XYZ calibration failed. Left front calibration point not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_LEFT_FAR c=20 r=8 lcd_show_fullscreen_message_and_wait_P(msg); } else { if (point_too_far_mask != 0) { if (point_too_far_mask == 2 || point_too_far_mask == 7) // Only the center point or all the three front points. msg = _i("XYZ calibration compromised. Front calibration points not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_BOTH_FAR c=20 r=8 else if ((point_too_far_mask & 1) == 0) // The right and maybe the center point out of reach. msg = _i("XYZ calibration compromised. Right front calibration point not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_RIGHT_FAR c=20 r=8 else // The left and maybe the center point out of reach. msg = _i("XYZ calibration compromised. Left front calibration point not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_LEFT_FAR c=20 r=8 lcd_show_fullscreen_message_and_wait_P(msg); } if (point_too_far_mask == 0 || result > 0) { switch (result) { default: // should not happen msg = _T(MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED); break; case BED_SKEW_OFFSET_DETECTION_PERFECT: msg = _i("XYZ calibration ok. X/Y axes are perpendicular. Congratulations!");////MSG_BED_SKEW_OFFSET_DETECTION_PERFECT c=20 r=8 break; case BED_SKEW_OFFSET_DETECTION_SKEW_MILD: msg = _i("XYZ calibration all right. X/Y axes are slightly skewed. Good job!");////MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD c=20 r=8 break; case BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME: msg = _i("XYZ calibration all right. Skew will be corrected automatically.");////MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME c=20 r=8 break; } lcd_show_fullscreen_message_and_wait_P(msg); } } } void lcd_temp_cal_show_result(bool result) { custom_message_type = CUSTOM_MSG_TYPE_STATUS; disable_x(); disable_y(); disable_z(); disable_e0(); disable_e1(); disable_e2(); setTargetBed(0); //set bed target temperature back to 0 if (result == true) { eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob."); lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE)); temp_cal_active = true; eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1); } else { eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); SERIAL_ECHOLNPGM("Temperature calibration failed. Continue with pressing the knob."); lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration failed"));////MSG_TEMP_CAL_FAILED c=20 r=8 temp_cal_active = false; eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 0); } lcd_update_enable(true); lcd_update(2); } static void lcd_show_end_stops() { lcd_set_cursor(0, 0); lcd_puts_P((PSTR("End stops diag"))); lcd_set_cursor(0, 1); lcd_puts_P((READ(X_MIN_PIN) ^ (bool)X_MIN_ENDSTOP_INVERTING) ? (PSTR("X1")) : (PSTR("X0"))); lcd_set_cursor(0, 2); lcd_puts_P((READ(Y_MIN_PIN) ^ (bool)Y_MIN_ENDSTOP_INVERTING) ? (PSTR("Y1")) : (PSTR("Y0"))); lcd_set_cursor(0, 3); lcd_puts_P((READ(Z_MIN_PIN) ^ (bool)Z_MIN_ENDSTOP_INVERTING) ? (PSTR("Z1")) : (PSTR("Z0"))); } #ifndef TMC2130 static void menu_show_end_stops() { lcd_show_end_stops(); if (LCD_CLICKED) menu_back(); } #endif // not defined TMC2130 // Lets the user move the Z carriage up to the end stoppers. // When done, it sets the current Z to Z_MAX_POS and returns true. // Otherwise the Z calibration is not changed and false is returned. void lcd_diag_show_end_stops() { lcd_clear(); lcd_consume_click(); for (;;) { manage_heater(); manage_inactivity(true); lcd_show_end_stops(); if (lcd_clicked()) { break; } } lcd_clear(); lcd_return_to_status(); } static void lcd_print_state(uint8_t state) { switch (state) { case STATE_ON: lcd_puts_P(_i(" 1")); break; case STATE_OFF: lcd_puts_P(_i(" 0")); break; default: lcd_puts_P(_i("N/A")); break; } } static void lcd_show_sensors_state() { //0: N/A; 1: OFF; 2: ON uint8_t chars = 0; uint8_t pinda_state = STATE_NA; uint8_t finda_state = STATE_NA; uint8_t idler_state = STATE_NA; pinda_state = READ(Z_MIN_PIN); if (mmu_enabled) { finda_state = mmu_finda; } if (ir_sensor_detected) { idler_state = !PIN_GET(IR_SENSOR_PIN); } lcd_puts_at_P(0, 0, _i("Sensor state")); lcd_puts_at_P(1, 1, _i("PINDA:")); lcd_set_cursor(LCD_WIDTH - 4, 1); lcd_print_state(pinda_state); lcd_puts_at_P(1, 2, _i("FINDA:")); lcd_set_cursor(LCD_WIDTH - 4, 2); lcd_print_state(finda_state); lcd_puts_at_P(1, 3, _i("IR:")); lcd_set_cursor(LCD_WIDTH - 4, 3); lcd_print_state(idler_state); } static void lcd_menu_show_sensors_state() { lcd_timeoutToStatus.stop(); lcd_show_sensors_state(); if(LCD_CLICKED) { lcd_timeoutToStatus.start(); menu_back(); } } void prusa_statistics(int _message, uint8_t _fil_nr) { #ifdef DEBUG_DISABLE_PRUSA_STATISTICS return; #endif //DEBUG_DISABLE_PRUSA_STATISTICS switch (_message) { case 0: // default message if (IS_SD_PRINTING) { SERIAL_ECHO("{"); prusa_stat_printerstatus(4); prusa_stat_farm_number(); prusa_stat_printinfo(); SERIAL_ECHOLN("}"); status_number = 4; } else { SERIAL_ECHO("{"); prusa_stat_printerstatus(1); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 1; } break; case 1: // 1 heating farm_status = 2; SERIAL_ECHO("{"); prusa_stat_printerstatus(2); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 2; farm_timer = 1; break; case 2: // heating done farm_status = 3; SERIAL_ECHO("{"); prusa_stat_printerstatus(3); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 3; farm_timer = 1; if (IS_SD_PRINTING) { farm_status = 4; SERIAL_ECHO("{"); prusa_stat_printerstatus(4); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 4; } else { SERIAL_ECHO("{"); prusa_stat_printerstatus(3); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 3; } farm_timer = 1; break; case 3: // filament change break; case 4: // print succesfull SERIAL_ECHO("{[RES:1][FIL:"); MYSERIAL.print(int(_fil_nr)); SERIAL_ECHO("]"); prusa_stat_printerstatus(status_number); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); farm_timer = 2; break; case 5: // print not succesfull SERIAL_ECHO("{[RES:0][FIL:"); MYSERIAL.print(int(_fil_nr)); SERIAL_ECHO("]"); prusa_stat_printerstatus(status_number); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); farm_timer = 2; break; case 6: // print done SERIAL_ECHO("{[PRN:8]"); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 8; farm_timer = 2; break; case 7: // print done - stopped SERIAL_ECHO("{[PRN:9]"); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 9; farm_timer = 2; break; case 8: // printer started SERIAL_ECHO("{[PRN:0][PFN:"); status_number = 0; SERIAL_ECHO(farm_no); SERIAL_ECHOLN("]}"); farm_timer = 2; break; case 20: // echo farm no SERIAL_ECHO("{"); prusa_stat_printerstatus(status_number); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); farm_timer = 4; break; case 21: // temperatures SERIAL_ECHO("{"); prusa_stat_temperatures(); prusa_stat_farm_number(); prusa_stat_printerstatus(status_number); SERIAL_ECHOLN("}"); break; case 22: // waiting for filament change SERIAL_ECHO("{[PRN:5]"); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 5; break; case 90: // Error - Thermal Runaway SERIAL_ECHO("{[ERR:1]"); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); break; case 91: // Error - Thermal Runaway Preheat SERIAL_ECHO("{[ERR:2]"); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); break; case 92: // Error - Min temp SERIAL_ECHO("{[ERR:3]"); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); break; case 93: // Error - Max temp SERIAL_ECHO("{[ERR:4]"); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); break; case 99: // heartbeat SERIAL_ECHO("{[PRN:99]"); prusa_stat_temperatures(); SERIAL_ECHO("[PFN:"); SERIAL_ECHO(farm_no); SERIAL_ECHO("]"); SERIAL_ECHOLN("}"); break; } } static void prusa_stat_printerstatus(int _status) { SERIAL_ECHO("[PRN:"); SERIAL_ECHO(_status); SERIAL_ECHO("]"); } static void prusa_stat_farm_number() { SERIAL_ECHO("[PFN:"); SERIAL_ECHO(farm_no); SERIAL_ECHO("]"); } static void prusa_stat_temperatures() { SERIAL_ECHO("[ST0:"); SERIAL_ECHO(target_temperature[0]); SERIAL_ECHO("][STB:"); SERIAL_ECHO(target_temperature_bed); SERIAL_ECHO("][AT0:"); SERIAL_ECHO(current_temperature[0]); SERIAL_ECHO("][ATB:"); SERIAL_ECHO(current_temperature_bed); SERIAL_ECHO("]"); } static void prusa_stat_printinfo() { SERIAL_ECHO("[TFU:"); SERIAL_ECHO(total_filament_used); SERIAL_ECHO("][PCD:"); SERIAL_ECHO(itostr3(card.percentDone())); SERIAL_ECHO("][FEM:"); SERIAL_ECHO(itostr3(feedmultiply)); SERIAL_ECHO("][FNM:"); SERIAL_ECHO(longFilenameOLD); SERIAL_ECHO("][TIM:"); if (starttime != 0) { SERIAL_ECHO(_millis() / 1000 - starttime / 1000); } else { SERIAL_ECHO(0); } SERIAL_ECHO("][FWR:"); SERIAL_ECHO(FW_VERSION); SERIAL_ECHO("]"); } /* void lcd_pick_babystep(){ int enc_dif = 0; int cursor_pos = 1; int fsm = 0; lcd_clear(); lcd_set_cursor(0, 0); lcd_puts_P(_i("Pick print"));////MSG_PICK_Z c=0 r=0 lcd_set_cursor(3, 2); lcd_print("1"); lcd_set_cursor(3, 3); lcd_print("2"); lcd_set_cursor(12, 2); lcd_print("3"); lcd_set_cursor(12, 3); lcd_print("4"); lcd_set_cursor(1, 2); lcd_print(">"); enc_dif = lcd_encoder_diff; while (fsm == 0) { manage_heater(); manage_inactivity(true); if ( abs((enc_dif - lcd_encoder_diff)) > 4 ) { if ( (abs(enc_dif - lcd_encoder_diff)) > 1 ) { if (enc_dif > lcd_encoder_diff ) { cursor_pos --; } if (enc_dif < lcd_encoder_diff ) { cursor_pos ++; } if (cursor_pos > 4) { cursor_pos = 4; } if (cursor_pos < 1) { cursor_pos = 1; } lcd_set_cursor(1, 2); lcd_print(" "); lcd_set_cursor(1, 3); lcd_print(" "); lcd_set_cursor(10, 2); lcd_print(" "); lcd_set_cursor(10, 3); lcd_print(" "); if (cursor_pos < 3) { lcd_set_cursor(1, cursor_pos+1); lcd_print(">"); }else{ lcd_set_cursor(10, cursor_pos-1); lcd_print(">"); } enc_dif = lcd_encoder_diff; _delay(100); } } if (lcd_clicked()) { fsm = cursor_pos; int babyStepZ; EEPROM_read_B(EEPROM_BABYSTEP_Z0+((fsm-1)*2),&babyStepZ); EEPROM_save_B(EEPROM_BABYSTEP_Z,&babyStepZ); calibration_status_store(CALIBRATION_STATUS_CALIBRATED); _delay(500); } }; lcd_clear(); lcd_return_to_status(); } */ void lcd_move_menu_axis() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_SETTINGS)); MENU_ITEM_SUBMENU_P(_i("Move X"), lcd_move_x);////MSG_MOVE_X c=0 r=0 MENU_ITEM_SUBMENU_P(_i("Move Y"), lcd_move_y);////MSG_MOVE_Y c=0 r=0 MENU_ITEM_SUBMENU_P(_i("Move Z"), lcd_move_z);////MSG_MOVE_Z c=0 r=0 MENU_ITEM_SUBMENU_P(_i("Extruder"), lcd_move_e);////MSG_MOVE_E c=0 r=0 MENU_END(); } static void lcd_move_menu_1mm() { move_menu_scale = 1.0; lcd_move_menu_axis(); } void EEPROM_save(int pos, uint8_t* value, uint8_t size) { do { eeprom_write_byte((unsigned char*)pos, *value); pos++; value++; } while (--size); } void EEPROM_read(int pos, uint8_t* value, uint8_t size) { do { *value = eeprom_read_byte((unsigned char*)pos); pos++; value++; } while (--size); } #ifdef SDCARD_SORT_ALPHA static void lcd_sort_type_set() { uint8_t sdSort; EEPROM_read(EEPROM_SD_SORT, (uint8_t*)&sdSort, sizeof(sdSort)); switch (sdSort) { case SD_SORT_TIME: sdSort = SD_SORT_ALPHA; break; case SD_SORT_ALPHA: sdSort = SD_SORT_NONE; break; default: sdSort = SD_SORT_TIME; } eeprom_update_byte((unsigned char *)EEPROM_SD_SORT, sdSort); presort_flag = true; } #endif //SDCARD_SORT_ALPHA #ifdef TMC2130 static void lcd_crash_mode_info() { lcd_update_enable(true); static uint32_t tim = 0; if ((tim + 1000) < _millis()) { fputs_P(_i("\x1b[2JCrash detection can\x1b[1;0Hbe turned on only in\x1b[2;0HNormal mode"), lcdout);////MSG_CRASH_DET_ONLY_IN_NORMAL c=20 r=4 tim = _millis(); } menu_back_if_clicked(); } static void lcd_crash_mode_info2() { lcd_update_enable(true); static uint32_t tim = 0; if ((tim + 1000) < _millis()) { fputs_P(_i("\x1b[2JWARNING:\x1b[1;0HCrash detection\x1b[2;0Hdisabled in\x1b[3;0HStealth mode"), lcdout);////MSG_CRASH_DET_STEALTH_FORCE_OFF c=20 r=4 tim = _millis(); } menu_back_if_clicked(); } #endif //TMC2130 #ifdef FILAMENT_SENSOR static void lcd_filament_autoload_info() { uint8_t nlines; lcd_update_enable(true); static uint32_t tim = 0; if ((tim + 1000) < _millis()) { lcd_display_message_fullscreen_nonBlocking_P(_i("Autoloading filament available only when filament sensor is turned on..."), nlines); ////MSG_AUTOLOADING_ONLY_IF_FSENS_ON c=20 r=4 tim = _millis(); } menu_back_if_clicked(); } static void lcd_fsensor_fail() { uint8_t nlines; lcd_update_enable(true); static uint32_t tim = 0; if ((tim + 1000) < _millis()) { lcd_display_message_fullscreen_nonBlocking_P(_i("ERROR: Filament sensor is not responding, please check connection."), nlines);////MSG_FSENS_NOT_RESPONDING c=20 r=4 tim = _millis(); } menu_back_if_clicked(); } #endif //FILAMENT_SENSOR //-// static void lcd_sound_state_set(void) { Sound_CycleState(); } static void lcd_silent_mode_set() { switch (SilentModeMenu) { #ifdef TMC2130 case SILENT_MODE_NORMAL: SilentModeMenu = SILENT_MODE_STEALTH; break; case SILENT_MODE_STEALTH: SilentModeMenu = SILENT_MODE_NORMAL; break; default: SilentModeMenu = SILENT_MODE_NORMAL; break; // (probably) not needed #else case SILENT_MODE_POWER: SilentModeMenu = SILENT_MODE_SILENT; break; case SILENT_MODE_SILENT: SilentModeMenu = SILENT_MODE_AUTO; break; case SILENT_MODE_AUTO: SilentModeMenu = SILENT_MODE_POWER; break; default: SilentModeMenu = SILENT_MODE_POWER; break; // (probably) not needed #endif //TMC2130 } eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu); #ifdef TMC2130 // Wait until the planner queue is drained and the stepper routine achieves // an idle state. st_synchronize(); if (tmc2130_wait_standstill_xy(1000)) {} // MYSERIAL.print("standstill OK"); // else // MYSERIAL.print("standstill NG!"); cli(); tmc2130_mode = (SilentModeMenu != SILENT_MODE_NORMAL)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL; update_mode_profile(); tmc2130_init(); // We may have missed a stepper timer interrupt due to the time spent in tmc2130_init. // Be safe than sorry, reset the stepper timer before re-enabling interrupts. st_reset_timer(); sei(); #endif //TMC2130 st_current_init(); #ifdef TMC2130 if (CrashDetectMenu && (SilentModeMenu != SILENT_MODE_NORMAL)) menu_submenu(lcd_crash_mode_info2); #endif //TMC2130 } #ifdef TMC2130 static void lcd_crash_mode_set() { CrashDetectMenu = !CrashDetectMenu; //set also from crashdet_enable() and crashdet_disable() if (CrashDetectMenu==0) { crashdet_disable(); }else{ crashdet_enable(); } if (IS_SD_PRINTING || is_usb_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL)) menu_goto(lcd_tune_menu, 9, true, true); else menu_goto(lcd_settings_menu, 9, true, true); } #endif //TMC2130 #ifdef FILAMENT_SENSOR static void lcd_fsensor_state_set() { FSensorStateMenu = !FSensorStateMenu; //set also from fsensor_enable() and fsensor_disable() if (!FSensorStateMenu) { fsensor_disable(); if (fsensor_autoload_enabled && !mmu_enabled) menu_submenu(lcd_filament_autoload_info); } else { fsensor_enable(); if (fsensor_not_responding && !mmu_enabled) menu_submenu(lcd_fsensor_fail); } } #endif //FILAMENT_SENSOR #if !SDSORT_USES_RAM void lcd_set_degree() { lcd_set_custom_characters_degree(); } void lcd_set_progress() { lcd_set_custom_characters_progress(); } #endif #if (LANG_MODE != 0) void menu_setlang(unsigned char lang) { if (!lang_select(lang)) { if (lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Copy selected language?"), false, true)) lang_boot_update_start(lang); lcd_update_enable(true); lcd_clear(); menu_goto(lcd_language_menu, 0, true, true); lcd_timeoutToStatus.stop(); //infinite timeout lcd_draw_update = 2; } } static void lcd_language_menu() { MENU_BEGIN(); if (lang_is_selected()) MENU_ITEM_BACK_P(_T(MSG_SETTINGS)); // if (menu_item_text_P(lang_get_name_by_code(lang_get_code(0)))) //primary language { menu_setlang(0); return; } uint8_t cnt = lang_get_count(); #ifdef W25X20CL if (cnt == 2) //display secondary language in case of clear xflash { if (menu_item_text_P(lang_get_name_by_code(lang_get_code(1)))) { menu_setlang(1); return; } } else for (int i = 2; i < cnt; i++) //skip seconday language - solved in lang_select (MK3) #else //W25X20CL for (int i = 1; i < cnt; i++) //all seconday languages (MK2/25) #endif //W25X20CL if (menu_item_text_P(lang_get_name_by_code(lang_get_code(i)))) { menu_setlang(i); return; } MENU_END(); } #endif //(LANG_MODE != 0) void lcd_mesh_bedleveling() { mesh_bed_run_from_menu = true; enquecommand_P(PSTR("G80")); lcd_return_to_status(); } void lcd_mesh_calibration() { enquecommand_P(PSTR("M45")); lcd_return_to_status(); } void lcd_mesh_calibration_z() { enquecommand_P(PSTR("M45 Z")); lcd_return_to_status(); } void lcd_pinda_calibration_menu() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MENU_CALIBRATION)); MENU_ITEM_SUBMENU_P(_i("Calibrate"), lcd_calibrate_pinda);////MSG_CALIBRATE_PINDA c=17 r=1 MENU_END(); } void lcd_temp_calibration_set() { temp_cal_active = !temp_cal_active; eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, temp_cal_active); st_current_init(); } #ifdef HAS_SECOND_SERIAL_PORT void lcd_second_serial_set() { if(selectedSerialPort == 1) selectedSerialPort = 0; else selectedSerialPort = 1; eeprom_update_byte((unsigned char *)EEPROM_SECOND_SERIAL_ACTIVE, selectedSerialPort); MYSERIAL.begin(BAUDRATE); } #endif //HAS_SECOND_SERIAL_PORT void lcd_calibrate_pinda() { enquecommand_P(PSTR("G76")); lcd_return_to_status(); } #ifndef SNMM /*void lcd_calibrate_extruder() { if (degHotend0() > EXTRUDE_MINTEMP) { current_position[E_AXIS] = 0; //set initial position to zero plan_set_e_position(current_position[E_AXIS]); //long steps_start = st_get_position(E_AXIS); long steps_final; float e_steps_per_unit; float feedrate = (180 / axis_steps_per_unit[E_AXIS]) * 1; //3 //initial automatic extrusion feedrate (depends on current value of axis_steps_per_unit to avoid too fast extrusion) float e_shift_calibration = (axis_steps_per_unit[E_AXIS] > 180 ) ? ((180 / axis_steps_per_unit[E_AXIS]) * 70): 70; //length of initial automatic extrusion sequence const char *msg_e_cal_knob = _i("Rotate knob until mark reaches extruder body. Click when done.");////MSG_E_CAL_KNOB c=20 r=8 const char *msg_next_e_cal_knob = lcd_display_message_fullscreen_P(msg_e_cal_knob); const bool multi_screen = msg_next_e_cal_knob != NULL; unsigned long msg_millis; lcd_show_fullscreen_message_and_wait_P(_i("Mark filament 100mm from extruder body. Click when done."));////MSG_MARK_FIL c=20 r=8 lcd_clear(); lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_PLEASE_WAIT)); current_position[E_AXIS] += e_shift_calibration; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate, active_extruder); st_synchronize(); lcd_display_message_fullscreen_P(msg_e_cal_knob); msg_millis = _millis(); while (!LCD_CLICKED) { if (multi_screen && _millis() - msg_millis > 5000) { if (msg_next_e_cal_knob == NULL) msg_next_e_cal_knob = msg_e_cal_knob; msg_next_e_cal_knob = lcd_display_message_fullscreen_P(msg_next_e_cal_knob); msg_millis = _millis(); } //manage_inactivity(true); manage_heater(); if (abs(lcd_encoder_diff) >= ENCODER_PULSES_PER_STEP) { //adjusting mark by knob rotation delay_keep_alive(50); //previous_millis_cmd = _millis(); lcd_encoder += (lcd_encoder_diff / ENCODER_PULSES_PER_STEP); lcd_encoder_diff = 0; if (!planner_queue_full()) { current_position[E_AXIS] += float(abs((int)lcd_encoder)) * 0.01; //0.05 lcd_encoder = 0; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate, active_extruder); } } } steps_final = current_position[E_AXIS] * axis_steps_per_unit[E_AXIS]; //steps_final = st_get_position(E_AXIS); lcd_draw_update = 1; e_steps_per_unit = ((float)(steps_final)) / 100.0f; if (e_steps_per_unit < MIN_E_STEPS_PER_UNIT) e_steps_per_unit = MIN_E_STEPS_PER_UNIT; if (e_steps_per_unit > MAX_E_STEPS_PER_UNIT) e_steps_per_unit = MAX_E_STEPS_PER_UNIT; lcd_clear(); axis_steps_per_unit[E_AXIS] = e_steps_per_unit; enquecommand_P(PSTR("M500")); //store settings to eeprom //lcd_drawedit(PSTR("Result"), ftostr31(axis_steps_per_unit[E_AXIS])); //delay_keep_alive(2000); delay_keep_alive(500); lcd_show_fullscreen_message_and_wait_P(_i("E calibration finished. Please clean the nozzle. Click when done."));////MSG_CLEAN_NOZZLE_E c=20 r=8 lcd_update_enable(true); lcd_draw_update = 2; } else { show_preheat_nozzle_warning(); } lcd_return_to_status(); } void lcd_extr_cal_reset() { float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT; axis_steps_per_unit[E_AXIS] = tmp1[3]; //extrudemultiply = 100; enquecommand_P(PSTR("M500")); }*/ #endif void lcd_toshiba_flash_air_compatibility_toggle() { card.ToshibaFlashAir_enable(! card.ToshibaFlashAir_isEnabled()); eeprom_update_byte((uint8_t*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY, card.ToshibaFlashAir_isEnabled()); } void lcd_v2_calibration() { if (mmu_enabled) { const uint8_t filament = choose_menu_P(_i("Select PLA filament:"),_T(MSG_FILAMENT),_i("Cancel")); ////c=20 r=1 ////c=19 r=1 if (filament < 5) { lcd_commands_step = 20 + filament; lcd_commands_type = LCD_COMMAND_V2_CAL; } } else { bool loaded = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Is PLA filament loaded?"), false, true);////MSG_PLA_FILAMENT_LOADED c=20 r=2 if (loaded) { lcd_commands_type = LCD_COMMAND_V2_CAL; } else { lcd_display_message_fullscreen_P(_i("Please load PLA filament first."));////MSG_PLEASE_LOAD_PLA c=20 r=4 lcd_consume_click(); for (int i = 0; i < 20; i++) { //wait max. 2s delay_keep_alive(100); if (lcd_clicked()) { break; } } } } lcd_return_to_status(); lcd_update_enable(true); } void lcd_wizard() { bool result = true; if (calibration_status() != CALIBRATION_STATUS_ASSEMBLED) { result = lcd_show_multiscreen_message_yes_no_and_wait_P(_i("Running Wizard will delete current calibration results and start from the beginning. Continue?"), false, false);////MSG_WIZARD_RERUN c=20 r=7 } if (result) { calibration_status_store(CALIBRATION_STATUS_ASSEMBLED); lcd_wizard(WizState::Run); } else { lcd_return_to_status(); lcd_update_enable(true); lcd_update(2); } } void lcd_language() { lcd_update_enable(true); lcd_clear(); menu_goto(lcd_language_menu, 0, true, true); lcd_timeoutToStatus.stop(); //infinite timeout lcd_draw_update = 2; while ((menu_menu != lcd_status_screen) && (!lang_is_selected())) { _delay(50); lcd_update(0); manage_heater(); manage_inactivity(true); } if (lang_is_selected()) lcd_return_to_status(); else lang_select(LANG_ID_PRI); } static void wait_preheat() { current_position[Z_AXIS] = 100; //move in z axis to make space for loading filament plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder); delay_keep_alive(2000); lcd_display_message_fullscreen_P(_T(MSG_WIZARD_HEATING)); lcd_set_custom_characters(); while (abs(degHotend(0) - degTargetHotend(0)) > 3) { lcd_display_message_fullscreen_P(_T(MSG_WIZARD_HEATING)); lcd_set_cursor(0, 4); //Print the hotend temperature (9 chars total) lcdui_print_temp(LCD_STR_THERMOMETER[0], (int)(degHotend(0) + 0.5), (int)(degTargetHotend(0) + 0.5)); delay_keep_alive(1000); } } static void lcd_wizard_unload() { if(mmu_enabled) { int8_t unload = lcd_show_multiscreen_message_two_choices_and_wait_P( _i("Use unload to remove filament 1 if it protrudes outside of the rear MMU tube. Use eject if it is hidden in tube.") ,false, true, _i("Unload"), _i("Eject")); if (unload) { extr_unload_0(); } else { mmu_eject_fil_0(); } } else { unload_filament(); } } static void lcd_wizard_load() { if (mmu_enabled) { lcd_show_fullscreen_message_and_wait_P(_i("Please insert PLA filament to the first tube of MMU, then press the knob to load it."));////c=20 r=8 } else { lcd_show_fullscreen_message_and_wait_P(_i("Please insert PLA filament to the extruder, then press knob to load it."));////MSG_WIZARD_LOAD_FILAMENT c=20 r=8 } lcd_update_enable(false); lcd_clear(); lcd_puts_at_P(0, 2, _T(MSG_LOADING_FILAMENT)); #ifdef SNMM change_extr(0); #endif loading_flag = true; gcode_M701(); } bool lcd_autoDepleteEnabled() { return (lcd_autoDeplete && fsensor_enabled); } //! @brief Printer first run wizard (Selftest and calibration) //! //! //! First layer calibration with MMU state diagram //! //! @startuml //! [*] --> IsFil //! IsFil : Is filament 1 loaded? //! isPLA : Is filament 1 PLA? //! unload : Eject or Unload? //! load : Push the button to start loading PLA Filament 1 //! //! IsFil --> isPLA : yes //! IsFil --> load : no //! isPLA --> unload : no //! unload --> load : eject //! unload --> load : unload //! load --> calibration : click //! isPLA --> calibration : yes //! @enduml //! //! @param state Entry point of the wizard //! //! state | description //! ---------------------- | ---------------- //! WizState::Run | Main entry point //! WizState::RepeatLay1Cal | Entry point after passing 1st layer calibration void lcd_wizard(WizState state) { using S = WizState; bool end = false; int wizard_event; const char *msg = NULL; while (!end) { printf_P(PSTR("Wizard state: %d"), state); switch (state) { case S::Run: //Run wizard? wizard_active = true; wizard_event = lcd_show_multiscreen_message_yes_no_and_wait_P(_i("Hi, I am your Original Prusa i3 printer. Would you like me to guide you through the setup process?"), false, true);////MSG_WIZARD_WELCOME c=20 r=7 if (wizard_event) { state = S::Restore; eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); } else { eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 0); end = true; } break; case S::Restore: // restore calibration status switch (calibration_status()) { case CALIBRATION_STATUS_ASSEMBLED: state = S::Selftest; break; //run selftest case CALIBRATION_STATUS_XYZ_CALIBRATION: state = S::Xyz; break; //run xyz cal. case CALIBRATION_STATUS_Z_CALIBRATION: state = S::Z; break; //run z cal. case CALIBRATION_STATUS_LIVE_ADJUST: state = S::IsFil; break; //run live adjust case CALIBRATION_STATUS_CALIBRATED: end = true; eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 0); break; default: state = S::Selftest; break; //if calibration status is unknown, run wizard from the beginning } break; case S::Selftest: lcd_show_fullscreen_message_and_wait_P(_i("First, I will run the selftest to check most common assembly problems."));////MSG_WIZARD_SELFTEST c=20 r=8 wizard_event = lcd_selftest(); if (wizard_event) { calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION); state = S::Xyz; } else end = true; break; case S::Xyz: //xyz calibration lcd_show_fullscreen_message_and_wait_P(_i("I will run xyz calibration now. It will take approx. 12 mins."));////MSG_WIZARD_XYZ_CAL c=20 r=8 wizard_event = gcode_M45(false, 0); if (wizard_event) state = S::IsFil; else end = true; break; case S::Z: //z calibration lcd_show_fullscreen_message_and_wait_P(_i("Please remove shipping helpers first.")); lcd_show_fullscreen_message_and_wait_P(_i("Now remove the test print from steel sheet.")); lcd_show_fullscreen_message_and_wait_P(_i("I will run z calibration now."));////MSG_WIZARD_Z_CAL c=20 r=8 wizard_event = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false); if (!wizard_event) lcd_show_fullscreen_message_and_wait_P(_T(MSG_PLACE_STEEL_SHEET)); wizard_event = gcode_M45(true, 0); if (wizard_event) { //current filament needs to be unloaded and then new filament should be loaded //start to preheat nozzle for unloading remaining PLA filament setTargetHotend(PLA_PREHEAT_HOTEND_TEMP, 0); lcd_display_message_fullscreen_P(_i("Now I will preheat nozzle for PLA.")); wait_preheat(); //unload current filament lcd_wizard_unload(); //load filament lcd_wizard_load(); setTargetHotend(0, 0); //we are finished, cooldown nozzle state = S::Finish; //shipped, no need to set first layer, go to final message directly } else end = true; break; case S::IsFil: //is filament loaded? //start to preheat nozzle and bed to save some time later setTargetHotend(PLA_PREHEAT_HOTEND_TEMP, 0); setTargetBed(PLA_PREHEAT_HPB_TEMP); if (mmu_enabled) { wizard_event = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Is filament 1 loaded?"), false);////c=20 r=2 } else { wizard_event = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Is filament loaded?"), false);////MSG_WIZARD_FILAMENT_LOADED c=20 r=2 } if (wizard_event) state = S::IsPla; else { if(mmu_enabled) state = S::LoadFil; else state = S::PreheatPla; } break; case S::PreheatPla: #ifndef SNMM lcd_display_message_fullscreen_P(_i("Now I will preheat nozzle for PLA."));////MSG_WIZARD_WILL_PREHEAT c=20 r=4 wait_preheat(); #endif //not SNMM state = S::LoadFil; break; case S::Preheat: menu_goto(lcd_preheat_menu,0,false,true); lcd_show_fullscreen_message_and_wait_P(_i("Select nozzle preheat temperature which matches your material.")); end = true; // Leave wizard temporarily for lcd_preheat_menu break; case S::Unload: wait_preheat(); lcd_wizard_unload(); state = S::LoadFil; break; case S::LoadFil: //load filament lcd_wizard_load(); state = S::Lay1Cal; break; case S::IsPla: wizard_event = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Is it PLA filament?"), false, true);////MSG_WIZARD_PLA_FILAMENT c=20 r=2 if (wizard_event) state = S::Lay1Cal; else state = S::Preheat; break; case S::Lay1Cal: lcd_show_fullscreen_message_and_wait_P(_i("Now I will calibrate distance between tip of the nozzle and heatbed surface."));////MSG_WIZARD_V2_CAL c=20 r=8 lcd_show_fullscreen_message_and_wait_P(_i("I will start to print line and you will gradually lower the nozzle by rotating the knob, until you reach optimal height. Check the pictures in our handbook in chapter Calibration."));////MSG_WIZARD_V2_CAL_2 c=20 r=12 lcd_commands_type = LCD_COMMAND_V2_CAL; lcd_return_to_status(); end = true; break; case S::RepeatLay1Cal: //repeat first layer cal.? wizard_event = lcd_show_multiscreen_message_yes_no_and_wait_P(_i("Do you want to repeat last step to readjust distance between nozzle and heatbed?"), false);////MSG_WIZARD_REPEAT_V2_CAL c=20 r=7 if (wizard_event) { lcd_show_fullscreen_message_and_wait_P(_i("Please clean heatbed and then press the knob."));////MSG_WIZARD_CLEAN_HEATBED c=20 r=8 state = S::Lay1Cal; } else { state = S::Finish; } break; case S::Finish: //we are finished eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 0); end = true; break; default: break; } } printf_P(_N("Wizard end state: %d\n"), state); switch (state) { //final message case S::Restore: //printer was already calibrated msg = _T(MSG_WIZARD_DONE); break; case S::Selftest: //selftest case S::Xyz: //xyz cal. case S::Z: //z cal. msg = _T(MSG_WIZARD_CALIBRATION_FAILED); break; case S::Finish: //we are finished msg = _T(MSG_WIZARD_DONE); lcd_reset_alert_level(); lcd_setstatuspgm(_T(WELCOME_MSG)); lcd_return_to_status(); break; default: msg = _T(MSG_WIZARD_QUIT); break; } if (!((S::Lay1Cal == state) || (S::Preheat == state))) { lcd_show_fullscreen_message_and_wait_P(msg); wizard_active = false; } lcd_update_enable(true); lcd_update(2); } #ifdef TMC2130 void lcd_settings_linearity_correction_menu(void) { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_SETTINGS)); #ifdef TMC2130_LINEARITY_CORRECTION_XYZ //tmc2130_wave_fac[X_AXIS] MENU_ITEM_EDIT_int3_P(_i("X-correct"), &tmc2130_wave_fac[X_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);////MSG_EXTRUDER_CORRECTION c=9 r=0 MENU_ITEM_EDIT_int3_P(_i("Y-correct"), &tmc2130_wave_fac[Y_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);////MSG_EXTRUDER_CORRECTION c=9 r=0 MENU_ITEM_EDIT_int3_P(_i("Z-correct"), &tmc2130_wave_fac[Z_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);////MSG_EXTRUDER_CORRECTION c=9 r=0 #endif //TMC2130_LINEARITY_CORRECTION_XYZ MENU_ITEM_EDIT_int3_P(_i("E-correct"), &tmc2130_wave_fac[E_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);////MSG_EXTRUDER_CORRECTION c=9 r=0 MENU_END(); if(menu_leaving) { lcd_settings_linearity_correction_menu_save(); } } #endif // TMC2130 #ifdef FILAMENT_SENSOR #define SETTINGS_FILAMENT_SENSOR \ do\ {\ if (FSensorStateMenu == 0)\ {\ if (fsensor_not_responding && (mmu_enabled == false))\ {\ /* Filament sensor not working*/\ MENU_ITEM_FUNCTION_P(_i("Fil. sensor [N/A]"), lcd_fsensor_state_set);/*////MSG_FSENSOR_NA c=0 r=0*/\ MENU_ITEM_SUBMENU_P(_T(MSG_FSENS_AUTOLOAD_NA), lcd_fsensor_fail);\ }\ else\ {\ /* Filament sensor turned off, working, no problems*/\ MENU_ITEM_FUNCTION_P(_T(MSG_FSENSOR_OFF), lcd_fsensor_state_set);\ if (mmu_enabled == false)\ {\ MENU_ITEM_SUBMENU_P(_T(MSG_FSENS_AUTOLOAD_NA), lcd_filament_autoload_info);\ }\ }\ }\ else\ {\ /* Filament sensor turned on, working, no problems*/\ MENU_ITEM_FUNCTION_P(_T(MSG_FSENSOR_ON), lcd_fsensor_state_set);\ if (mmu_enabled == false)\ {\ if (fsensor_autoload_enabled)\ MENU_ITEM_FUNCTION_P(_i("F. autoload [on]"), lcd_set_filament_autoload);/*////MSG_FSENS_AUTOLOAD_ON c=17 r=1*/\ else\ MENU_ITEM_FUNCTION_P(_i("F. autoload [off]"), lcd_set_filament_autoload);/*////MSG_FSENS_AUTOLOAD_OFF c=17 r=1*/\ /*if (fsensor_oq_meassure_enabled)*/\ /*MENU_ITEM_FUNCTION_P(_i("F. OQ meass. [on]"), lcd_set_filament_oq_meass);*//*////MSG_FSENS_OQMEASS_ON c=17 r=1*/\ /*else*/\ /*MENU_ITEM_FUNCTION_P(_i("F. OQ meass.[off]"), lcd_set_filament_oq_meass);*//*////MSG_FSENS_OQMEASS_OFF c=17 r=1*/\ }\ }\ }\ while(0) #else //FILAMENT_SENSOR #define SETTINGS_FILAMENT_SENSOR do{}while(0) #endif //FILAMENT_SENSOR static void auto_deplete_switch() { lcd_autoDeplete = !lcd_autoDeplete; eeprom_update_byte((unsigned char *)EEPROM_AUTO_DEPLETE, lcd_autoDeplete); } static bool settingsAutoDeplete() { if (mmu_enabled) { if (!fsensor_enabled) { if (menu_item_text_P(_i("SpoolJoin [N/A]"))) return true; } else if (lcd_autoDeplete) { if (menu_item_function_P(_i("SpoolJoin [on]"), auto_deplete_switch)) return true; } else { if (menu_item_function_P(_i("SpoolJoin [off]"), auto_deplete_switch)) return true; } } return false; } #define SETTINGS_AUTO_DEPLETE \ do\ {\ if(settingsAutoDeplete()) return;\ }\ while(0)\ #ifdef TMC2130 #define SETTINGS_SILENT_MODE \ do\ {\ if(!farm_mode)\ {\ if (SilentModeMenu == SILENT_MODE_NORMAL)\ {\ MENU_ITEM_FUNCTION_P(_T(MSG_STEALTH_MODE_OFF), lcd_silent_mode_set);\ }\ else MENU_ITEM_FUNCTION_P(_T(MSG_STEALTH_MODE_ON), lcd_silent_mode_set);\ if (SilentModeMenu == SILENT_MODE_NORMAL)\ {\ if (CrashDetectMenu == 0)\ {\ MENU_ITEM_FUNCTION_P(_T(MSG_CRASHDETECT_OFF), lcd_crash_mode_set);\ }\ else MENU_ITEM_FUNCTION_P(_T(MSG_CRASHDETECT_ON), lcd_crash_mode_set);\ }\ else MENU_ITEM_SUBMENU_P(_T(MSG_CRASHDETECT_NA), lcd_crash_mode_info);\ }\ }\ while (0) #else //TMC2130 #define SETTINGS_SILENT_MODE \ do\ {\ if(!farm_mode)\ {\ switch (SilentModeMenu)\ {\ case SILENT_MODE_POWER:\ MENU_ITEM_FUNCTION_P(_T(MSG_SILENT_MODE_OFF), lcd_silent_mode_set);\ break;\ case SILENT_MODE_SILENT:\ MENU_ITEM_FUNCTION_P(_T(MSG_SILENT_MODE_ON), lcd_silent_mode_set);\ break;\ case SILENT_MODE_AUTO:\ MENU_ITEM_FUNCTION_P(_T(MSG_AUTO_MODE_ON), lcd_silent_mode_set);\ break;\ default:\ MENU_ITEM_FUNCTION_P(_T(MSG_SILENT_MODE_OFF), lcd_silent_mode_set);\ break; /* (probably) not needed*/\ }\ }\ }\ while (0) #endif //TMC2130 #ifdef SDCARD_SORT_ALPHA #define SETTINGS_SD \ do\ {\ if (card.ToshibaFlashAir_isEnabled())\ MENU_ITEM_FUNCTION_P(_i("SD card [flshAir]"), lcd_toshiba_flash_air_compatibility_toggle);/*////MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_ON c=19 r=1*/\ else\ MENU_ITEM_FUNCTION_P(_i("SD card [normal]"), lcd_toshiba_flash_air_compatibility_toggle);/*////MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_OFF c=19 r=1*/\ \ if (!farm_mode)\ {\ uint8_t sdSort;\ EEPROM_read(EEPROM_SD_SORT, (uint8_t*)&sdSort, sizeof(sdSort));\ switch (sdSort)\ {\ case SD_SORT_TIME: MENU_ITEM_FUNCTION_P(_i("Sort: [time]"), lcd_sort_type_set); break;/*////MSG_SORT_TIME c=17 r=1*/\ case SD_SORT_ALPHA: MENU_ITEM_FUNCTION_P(_i("Sort: [alphabet]"), lcd_sort_type_set); break;/*////MSG_SORT_ALPHA c=17 r=1*/\ default: MENU_ITEM_FUNCTION_P(_i("Sort: [none]"), lcd_sort_type_set);/*////MSG_SORT_NONE c=17 r=1*/\ }\ }\ }\ while (0) #else // SDCARD_SORT_ALPHA #define SETTINGS_SD \ do\ {\ if (card.ToshibaFlashAir_isEnabled())\ MENU_ITEM_FUNCTION_P(_i("SD card [flshAir]"), lcd_toshiba_flash_air_compatibility_toggle);/*////MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_ON c=19 r=1*/\ else\ MENU_ITEM_FUNCTION_P(_i("SD card [normal]"), lcd_toshiba_flash_air_compatibility_toggle);/*////MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_OFF c=19 r=1*/\ }\ while (0) #endif // SDCARD_SORT_ALPHA #define SETTINGS_SOUND \ do\ {\ switch(eSoundMode)\ {\ case e_SOUND_MODE_LOUD:\ MENU_ITEM_FUNCTION_P(_i(MSG_SOUND_MODE_LOUD),lcd_sound_state_set);\ break;\ case e_SOUND_MODE_ONCE:\ MENU_ITEM_FUNCTION_P(_i(MSG_SOUND_MODE_ONCE),lcd_sound_state_set);\ break;\ case e_SOUND_MODE_SILENT:\ MENU_ITEM_FUNCTION_P(_i(MSG_SOUND_MODE_SILENT),lcd_sound_state_set);\ break;\ case e_SOUND_MODE_MUTE:\ MENU_ITEM_FUNCTION_P(_i(MSG_SOUND_MODE_MUTE),lcd_sound_state_set);\ break;\ default:\ MENU_ITEM_FUNCTION_P(_i(MSG_SOUND_MODE_LOUD),lcd_sound_state_set);\ }\ }\ while (0) static void lcd_settings_menu() { EEPROM_read(EEPROM_SILENT, (uint8_t*)&SilentModeMenu, sizeof(SilentModeMenu)); MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_SUBMENU_P(_i("Temperature"), lcd_control_temperature_menu);////MSG_TEMPERATURE c=0 r=0 if (!homing_flag) MENU_ITEM_SUBMENU_P(_i("Move axis"), lcd_move_menu_1mm);////MSG_MOVE_AXIS c=0 r=0 if (!isPrintPaused) MENU_ITEM_GCODE_P(_i("Disable steppers"), PSTR("M84"));////MSG_DISABLE_STEPPERS c=0 r=0 SETTINGS_FILAMENT_SENSOR; SETTINGS_AUTO_DEPLETE; if (fans_check_enabled == true) MENU_ITEM_FUNCTION_P(_i("Fans check [on]"), lcd_set_fan_check);////MSG_FANS_CHECK_ON c=17 r=1 else MENU_ITEM_FUNCTION_P(_i("Fans check [off]"), lcd_set_fan_check);////MSG_FANS_CHECK_OFF c=17 r=1 SETTINGS_SILENT_MODE; #if defined (TMC2130) && defined (LINEARITY_CORRECTION) MENU_ITEM_SUBMENU_P(_i("Lin. correction"), lcd_settings_linearity_correction_menu); #endif //LINEARITY_CORRECTION && TMC2130 if (temp_cal_active == false) MENU_ITEM_FUNCTION_P(_i("Temp. cal. [off]"), lcd_temp_calibration_set);////MSG_TEMP_CALIBRATION_OFF c=20 r=1 else MENU_ITEM_FUNCTION_P(_i("Temp. cal. [on]"), lcd_temp_calibration_set);////MSG_TEMP_CALIBRATION_ON c=20 r=1 #ifdef HAS_SECOND_SERIAL_PORT if (selectedSerialPort == 0) MENU_ITEM_FUNCTION_P(_i("RPi port [off]"), lcd_second_serial_set);////MSG_SECOND_SERIAL_OFF c=17 r=1 else MENU_ITEM_FUNCTION_P(_i("RPi port [on]"), lcd_second_serial_set);////MSG_SECOND_SERIAL_ON c=17 r=1 #endif //HAS_SECOND_SERIAL if (!isPrintPaused && !homing_flag) MENU_ITEM_SUBMENU_P(_T(MSG_BABYSTEP_Z), lcd_babystep_z); #if (LANG_MODE != 0) MENU_ITEM_SUBMENU_P(_i("Select language"), lcd_language_menu);////MSG_LANGUAGE_SELECT c=0 r=0 #endif //(LANG_MODE != 0) SETTINGS_SD; SETTINGS_SOUND; if (farm_mode) { MENU_ITEM_SUBMENU_P(PSTR("Farm number"), lcd_farm_no); MENU_ITEM_FUNCTION_P(PSTR("Disable farm mode"), lcd_disable_farm_mode); } MENU_END(); } #ifdef TMC2130 static void lcd_ustep_linearity_menu_save() { eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC, tmc2130_wave_fac[X_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC, tmc2130_wave_fac[Y_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC, tmc2130_wave_fac[Z_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC, tmc2130_wave_fac[E_AXIS]); } #endif //TMC2130 static void lcd_settings_linearity_correction_menu_save() { #ifdef TMC2130 bool changed = false; if (tmc2130_wave_fac[X_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[X_AXIS] = 0; if (tmc2130_wave_fac[Y_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[Y_AXIS] = 0; if (tmc2130_wave_fac[Z_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[Z_AXIS] = 0; if (tmc2130_wave_fac[E_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[E_AXIS] = 0; changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC) != tmc2130_wave_fac[X_AXIS]); changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC) != tmc2130_wave_fac[Y_AXIS]); changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC) != tmc2130_wave_fac[Z_AXIS]); changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC) != tmc2130_wave_fac[E_AXIS]); lcd_ustep_linearity_menu_save(); if (changed) tmc2130_init(); #endif //TMC2130 } static void lcd_calibration_menu() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); if (!isPrintPaused) { MENU_ITEM_FUNCTION_P(_i("Wizard"), lcd_wizard);////MSG_WIZARD c=17 r=1 MENU_ITEM_SUBMENU_P(_i("First layer cal."), lcd_v2_calibration);////MSG_V2_CALIBRATION c=17 r=1 MENU_ITEM_GCODE_P(_T(MSG_AUTO_HOME), PSTR("G28 W")); MENU_ITEM_FUNCTION_P(_i("Selftest "), lcd_selftest_v);////MSG_SELFTEST c=0 r=0 #ifdef MK1BP // MK1 // "Calibrate Z" MENU_ITEM_GCODE_P(_T(MSG_HOMEYZ), PSTR("G28 Z")); #else //MK1BP // MK2 MENU_ITEM_FUNCTION_P(_i("Calibrate XYZ"), lcd_mesh_calibration);////MSG_CALIBRATE_BED c=0 r=0 // "Calibrate Z" with storing the reference values to EEPROM. MENU_ITEM_SUBMENU_P(_T(MSG_HOMEYZ), lcd_mesh_calibration_z); #ifndef SNMM //MENU_ITEM_FUNCTION_P(_i("Calibrate E"), lcd_calibrate_extruder);////MSG_CALIBRATE_E c=20 r=1 #endif // "Mesh Bed Leveling" MENU_ITEM_SUBMENU_P(_i("Mesh Bed Leveling"), lcd_mesh_bedleveling);////MSG_MESH_BED_LEVELING c=0 r=0 #endif //MK1BP MENU_ITEM_SUBMENU_P(_i("Bed level correct"), lcd_adjust_bed);////MSG_BED_CORRECTION_MENU c=0 r=0 MENU_ITEM_SUBMENU_P(_i("PID calibration"), pid_extruder);////MSG_PID_EXTRUDER c=17 r=1 #ifndef TMC2130 MENU_ITEM_SUBMENU_P(_i("Show end stops"), menu_show_end_stops);////MSG_SHOW_END_STOPS c=17 r=1 #endif #ifndef MK1BP MENU_ITEM_GCODE_P(_i("Reset XYZ calibr."), PSTR("M44"));////MSG_CALIBRATE_BED_RESET c=0 r=0 #endif //MK1BP #ifndef SNMM //MENU_ITEM_FUNCTION_P(MSG_RESET_CALIBRATE_E, lcd_extr_cal_reset); #endif #ifndef MK1BP MENU_ITEM_SUBMENU_P(_i("Temp. calibration"), lcd_pinda_calibration_menu);////MSG_CALIBRATION_PINDA_MENU c=17 r=1 #endif //MK1BP } MENU_END(); } void bowden_menu() { int enc_dif = lcd_encoder_diff; int cursor_pos = 0; lcd_clear(); lcd_set_cursor(0, 0); lcd_print(">"); for (int i = 0; i < 4; i++) { lcd_set_cursor(1, i); lcd_print("Extruder "); lcd_print(i); lcd_print(": "); EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]); lcd_print(bowden_length[i] - 48); } enc_dif = lcd_encoder_diff; lcd_consume_click(); while (1) { manage_heater(); manage_inactivity(true); if (abs((enc_dif - lcd_encoder_diff)) > 2) { if (enc_dif > lcd_encoder_diff) { cursor_pos--; } if (enc_dif < lcd_encoder_diff) { cursor_pos++; } if (cursor_pos > 3) { cursor_pos = 3; } if (cursor_pos < 0) { cursor_pos = 0; } lcd_set_cursor(0, 0); lcd_print(" "); lcd_set_cursor(0, 1); lcd_print(" "); lcd_set_cursor(0, 2); lcd_print(" "); lcd_set_cursor(0, 3); lcd_print(" "); lcd_set_cursor(0, cursor_pos); lcd_print(">"); enc_dif = lcd_encoder_diff; _delay(100); } if (lcd_clicked()) { lcd_clear(); while (1) { manage_heater(); manage_inactivity(true); lcd_set_cursor(1, 1); lcd_print("Extruder "); lcd_print(cursor_pos); lcd_print(": "); lcd_set_cursor(13, 1); lcd_print(bowden_length[cursor_pos] - 48); if (abs((enc_dif - lcd_encoder_diff)) > 2) { if (enc_dif > lcd_encoder_diff) { bowden_length[cursor_pos]--; lcd_set_cursor(13, 1); lcd_print(bowden_length[cursor_pos] - 48); enc_dif = lcd_encoder_diff; } if (enc_dif < lcd_encoder_diff) { bowden_length[cursor_pos]++; lcd_set_cursor(13, 1); lcd_print(bowden_length[cursor_pos] - 48); enc_dif = lcd_encoder_diff; } } _delay(100); if (lcd_clicked()) { EEPROM_save_B(EEPROM_BOWDEN_LENGTH + cursor_pos * 2, &bowden_length[cursor_pos]); if (lcd_show_fullscreen_message_yes_no_and_wait_P(PSTR("Continue with another bowden?"))) { lcd_update_enable(true); lcd_clear(); enc_dif = lcd_encoder_diff; lcd_set_cursor(0, cursor_pos); lcd_print(">"); for (int i = 0; i < 4; i++) { lcd_set_cursor(1, i); lcd_print("Extruder "); lcd_print(i); lcd_print(": "); EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]); lcd_print(bowden_length[i] - 48); } break; } else return; } } } } } //#ifdef SNMM static char snmm_stop_print_menu() { //menu for choosing which filaments will be unloaded in stop print lcd_clear(); lcd_puts_at_P(0,0,_T(MSG_UNLOAD_FILAMENT)); lcd_print(":"); lcd_set_cursor(0, 1); lcd_print(">"); lcd_puts_at_P(1,2,_i("Used during print"));////MSG_USED c=19 r=1 lcd_puts_at_P(1,3,_i("Current"));////MSG_CURRENT c=19 r=1 char cursor_pos = 1; int enc_dif = 0; KEEPALIVE_STATE(PAUSED_FOR_USER); lcd_consume_click(); while (1) { manage_heater(); manage_inactivity(true); if (abs((enc_dif - lcd_encoder_diff)) > 4) { if ((abs(enc_dif - lcd_encoder_diff)) > 1) { if (enc_dif > lcd_encoder_diff) cursor_pos--; if (enc_dif < lcd_encoder_diff) cursor_pos++; if (cursor_pos > 3) cursor_pos = 3; if (cursor_pos < 1) cursor_pos = 1; lcd_set_cursor(0, 1); lcd_print(" "); lcd_set_cursor(0, 2); lcd_print(" "); lcd_set_cursor(0, 3); lcd_print(" "); lcd_set_cursor(0, cursor_pos); lcd_print(">"); enc_dif = lcd_encoder_diff; _delay(100); } } if (lcd_clicked()) { KEEPALIVE_STATE(IN_HANDLER); return(cursor_pos - 1); } } } //! @brief Select one of numbered items //! //! Create list of items with header. Header can not be selected. //! Each item has text description passed by function parameter and //! number. There are 5 numbered items, if mmu_enabled, 4 otherwise. //! Items are numbered from 1 to 4 or 5. But index returned starts at 0. //! There can be last item with different text and no number. //! //! @param header Header text //! @param item Item text //! @param last_item Last item text, or nullptr if there is no Last item //! @return selected item index, first item index is 0 uint8_t choose_menu_P(const char *header, const char *item, const char *last_item) { //following code should handle 3 to 127 number of items well const int8_t items_no = last_item?(mmu_enabled?6:5):(mmu_enabled?5:4); const uint8_t item_len = item?strlen_P(item):0; int8_t first = 0; int8_t enc_dif = lcd_encoder_diff; int8_t cursor_pos = 1; lcd_clear(); KEEPALIVE_STATE(PAUSED_FOR_USER); while (1) { manage_heater(); manage_inactivity(true); if (abs((enc_dif - lcd_encoder_diff)) > 4) { if (enc_dif > lcd_encoder_diff) { cursor_pos--; } if (enc_dif < lcd_encoder_diff) { cursor_pos++; } enc_dif = lcd_encoder_diff; } if (cursor_pos > 3) { cursor_pos = 3; if (first < items_no - 3) { first++; lcd_clear(); } } if (cursor_pos < 1) { cursor_pos = 1; if (first > 0) { first--; lcd_clear(); } } if (header) lcd_puts_at_P(0,0,header); const bool last_visible = (first == items_no - 3); const int8_t ordinary_items = (last_item&&last_visible)?2:3; for (int i = 0; i < ordinary_items; i++) { if (item) lcd_puts_at_P(1, i + 1, item); } for (int i = 0; i < ordinary_items; i++) { lcd_set_cursor(2 + item_len, i+1); lcd_print(first + i + 1); } if (last_item&&last_visible) lcd_puts_at_P(1, 3, last_item); lcd_set_cursor(0, 1); lcd_print(" "); lcd_set_cursor(0, 2); lcd_print(" "); lcd_set_cursor(0, 3); lcd_print(" "); lcd_set_cursor(0, cursor_pos); lcd_print(">"); _delay(100); if (lcd_clicked()) { KEEPALIVE_STATE(IN_HANDLER); lcd_encoder_diff = 0; return(cursor_pos + first - 1); } } } char reset_menu() { #ifdef SNMM int items_no = 5; #else int items_no = 4; #endif static int first = 0; int enc_dif = 0; char cursor_pos = 0; const char *item [items_no]; item[0] = "Language"; item[1] = "Statistics"; item[2] = "Shipping prep"; item[3] = "All Data"; #ifdef SNMM item[4] = "Bowden length"; #endif // SNMM enc_dif = lcd_encoder_diff; lcd_clear(); lcd_set_cursor(0, 0); lcd_print(">"); lcd_consume_click(); while (1) { for (int i = 0; i < 4; i++) { lcd_set_cursor(1, i); lcd_print(item[first + i]); } manage_heater(); manage_inactivity(true); if (abs((enc_dif - lcd_encoder_diff)) > 4) { if ((abs(enc_dif - lcd_encoder_diff)) > 1) { if (enc_dif > lcd_encoder_diff) { cursor_pos--; } if (enc_dif < lcd_encoder_diff) { cursor_pos++; } if (cursor_pos > 3) { cursor_pos = 3; if (first < items_no - 4) { first++; lcd_clear(); } } if (cursor_pos < 0) { cursor_pos = 0; if (first > 0) { first--; lcd_clear(); } } lcd_set_cursor(0, 0); lcd_print(" "); lcd_set_cursor(0, 1); lcd_print(" "); lcd_set_cursor(0, 2); lcd_print(" "); lcd_set_cursor(0, 3); lcd_print(" "); lcd_set_cursor(0, cursor_pos); lcd_print(">"); enc_dif = lcd_encoder_diff; _delay(100); } } if (lcd_clicked()) { return(cursor_pos + first); } } } static void lcd_disable_farm_mode() { int8_t disable = lcd_show_fullscreen_message_yes_no_and_wait_P(PSTR("Disable farm mode?"), true, false); //allow timeouting, default no if (disable) { enquecommand_P(PSTR("G99")); lcd_return_to_status(); } lcd_update_enable(true); lcd_draw_update = 2; } static void fil_load_menu() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_FUNCTION_P(_i("Load all"), load_all);////MSG_LOAD_ALL c=17 r=0 MENU_ITEM_FUNCTION_P(_i("Load filament 1"), extr_adj_0);////MSG_LOAD_FILAMENT_1 c=17 r=0 MENU_ITEM_FUNCTION_P(_i("Load filament 2"), extr_adj_1);////MSG_LOAD_FILAMENT_2 c=17 r=0 MENU_ITEM_FUNCTION_P(_i("Load filament 3"), extr_adj_2);////MSG_LOAD_FILAMENT_3 c=17 r=0 MENU_ITEM_FUNCTION_P(_i("Load filament 4"), extr_adj_3);////MSG_LOAD_FILAMENT_4 c=17 r=0 if (mmu_enabled) MENU_ITEM_FUNCTION_P(_i("Load filament 5"), extr_adj_4); MENU_END(); } static void mmu_load_to_nozzle_menu() { //-//if (degHotend0() > EXTRUDE_MINTEMP) if(bFilamentAction) { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_FUNCTION_P(_i("Load filament 1"), mmu_load_to_nozzle_0); MENU_ITEM_FUNCTION_P(_i("Load filament 2"), mmu_load_to_nozzle_1); MENU_ITEM_FUNCTION_P(_i("Load filament 3"), mmu_load_to_nozzle_2); MENU_ITEM_FUNCTION_P(_i("Load filament 4"), mmu_load_to_nozzle_3); MENU_ITEM_FUNCTION_P(_i("Load filament 5"), mmu_load_to_nozzle_4); MENU_END(); } else { eFilamentAction=e_FILAMENT_ACTION_mmuLoad; bFilamentFirstRun=false; if(target_temperature[0]>=EXTRUDE_MINTEMP) { bFilamentPreheatState=true; mFilamentItem(target_temperature[0],target_temperature_bed); } else mFilamentMenu(); } } static void mmu_fil_eject_menu() { //-//if (degHotend0() > EXTRUDE_MINTEMP) if(bFilamentAction) { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_FUNCTION_P(_i("Eject filament 1"), mmu_eject_fil_0); MENU_ITEM_FUNCTION_P(_i("Eject filament 2"), mmu_eject_fil_1); MENU_ITEM_FUNCTION_P(_i("Eject filament 3"), mmu_eject_fil_2); MENU_ITEM_FUNCTION_P(_i("Eject filament 4"), mmu_eject_fil_3); MENU_ITEM_FUNCTION_P(_i("Eject filament 5"), mmu_eject_fil_4); MENU_END(); } else { eFilamentAction=e_FILAMENT_ACTION_mmuEject; bFilamentFirstRun=false; if(target_temperature[0]>=EXTRUDE_MINTEMP) { bFilamentPreheatState=true; mFilamentItem(target_temperature[0],target_temperature_bed); } else mFilamentMenu(); } } #ifdef SNMM static void fil_unload_menu() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_FUNCTION_P(_i("Unload all"), extr_unload_all);////MSG_UNLOAD_ALL c=17 r=0 MENU_ITEM_FUNCTION_P(_i("Unload filament 1"), extr_unload_0);////MSG_UNLOAD_FILAMENT_1 c=17 r=0 MENU_ITEM_FUNCTION_P(_i("Unload filament 2"), extr_unload_1);////MSG_UNLOAD_FILAMENT_2 c=17 r=0 MENU_ITEM_FUNCTION_P(_i("Unload filament 3"), extr_unload_2);////MSG_UNLOAD_FILAMENT_3 c=17 r=0 MENU_ITEM_FUNCTION_P(_i("Unload filament 4"), extr_unload_3);////MSG_UNLOAD_FILAMENT_4 c=17 r=0 if (mmu_enabled) MENU_ITEM_FUNCTION_P(_i("Unload filament 5"), extr_unload_4);////MSG_UNLOAD_FILAMENT_5 c=17 r=0 MENU_END(); } static void change_extr_menu(){ MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_FUNCTION_P(_i("Extruder 1"), extr_change_0);////MSG_EXTRUDER_1 c=17 r=1 MENU_ITEM_FUNCTION_P(_i("Extruder 2"), extr_change_1);////MSG_EXTRUDER_2 c=17 r=1 MENU_ITEM_FUNCTION_P(_i("Extruder 3"), extr_change_2);////MSG_EXTRUDER_3 c=17 r=1 MENU_ITEM_FUNCTION_P(_i("Extruder 4"), extr_change_3);////MSG_EXTRUDER_4 c=17 r=1 MENU_END(); } #endif //SNMM //unload filament for single material printer (used in M702 gcode) void unload_filament() { custom_message_type = CUSTOM_MSG_TYPE_F_LOAD; lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT)); // extr_unload2(); current_position[E_AXIS] -= 45; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder); st_synchronize(); current_position[E_AXIS] -= 15; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder); st_synchronize(); current_position[E_AXIS] -= 20; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder); st_synchronize(); lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT)); //disable extruder steppers so filament can be removed disable_e0(); disable_e1(); disable_e2(); _delay(100); Sound_MakeSound(e_SOUND_TYPE_StandardPrompt); uint8_t counterBeep = 0; while (!lcd_clicked() && (counterBeep < 50)) { delay_keep_alive(100); counterBeep++; } st_synchronize(); while (lcd_clicked()) delay_keep_alive(100); lcd_update_enable(true); lcd_setstatuspgm(_T(WELCOME_MSG)); custom_message_type = CUSTOM_MSG_TYPE_STATUS; } static void lcd_farm_no() { char step = 0; int enc_dif = 0; int _farmno = farm_no; int _ret = 0; lcd_clear(); lcd_set_cursor(0, 0); lcd_print("Farm no"); do { if (abs((enc_dif - lcd_encoder_diff)) > 2) { if (enc_dif > lcd_encoder_diff) { switch (step) { case(0): if (_farmno >= 100) _farmno -= 100; break; case(1): if (_farmno % 100 >= 10) _farmno -= 10; break; case(2): if (_farmno % 10 >= 1) _farmno--; break; default: break; } } if (enc_dif < lcd_encoder_diff) { switch (step) { case(0): if (_farmno < 900) _farmno += 100; break; case(1): if (_farmno % 100 < 90) _farmno += 10; break; case(2): if (_farmno % 10 <= 8)_farmno++; break; default: break; } } enc_dif = 0; lcd_encoder_diff = 0; } lcd_set_cursor(0, 2); if (_farmno < 100) lcd_print("0"); if (_farmno < 10) lcd_print("0"); lcd_print(_farmno); lcd_print(" "); lcd_set_cursor(0, 3); lcd_print(" "); lcd_set_cursor(step, 3); lcd_print("^"); _delay(100); if (lcd_clicked()) { _delay(200); step++; if(step == 3) { _ret = 1; farm_no = _farmno; EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no); prusa_statistics(20); lcd_return_to_status(); } } manage_heater(); } while (_ret == 0); } unsigned char lcd_choose_color() { //function returns index of currently chosen item //following part can be modified from 2 to 255 items: //----------------------------------------------------- unsigned char items_no = 2; const char *item[items_no]; item[0] = "Orange"; item[1] = "Black"; //----------------------------------------------------- unsigned char active_rows; static int first = 0; int enc_dif = 0; unsigned char cursor_pos = 1; enc_dif = lcd_encoder_diff; lcd_clear(); lcd_set_cursor(0, 1); lcd_print(">"); active_rows = items_no < 3 ? items_no : 3; lcd_consume_click(); while (1) { lcd_puts_at_P(0, 0, PSTR("Choose color:")); for (int i = 0; i < active_rows; i++) { lcd_set_cursor(1, i+1); lcd_print(item[first + i]); } manage_heater(); manage_inactivity(true); proc_commands(); if (abs((enc_dif - lcd_encoder_diff)) > 12) { if (enc_dif > lcd_encoder_diff) { cursor_pos--; } if (enc_dif < lcd_encoder_diff) { cursor_pos++; } if (cursor_pos > active_rows) { cursor_pos = active_rows; if (first < items_no - active_rows) { first++; lcd_clear(); } } if (cursor_pos < 1) { cursor_pos = 1; if (first > 0) { first--; lcd_clear(); } } lcd_set_cursor(0, 1); lcd_print(" "); lcd_set_cursor(0, 2); lcd_print(" "); lcd_set_cursor(0, 3); lcd_print(" "); lcd_set_cursor(0, cursor_pos); lcd_print(">"); enc_dif = lcd_encoder_diff; _delay(100); } if (lcd_clicked()) { switch(cursor_pos + first - 1) { case 0: return 1; break; case 1: return 0; break; default: return 99; break; } } } } void lcd_confirm_print() { uint8_t filament_type; int enc_dif = 0; int cursor_pos = 1; int _ret = 0; int _t = 0; enc_dif = lcd_encoder_diff; lcd_clear(); lcd_set_cursor(0, 0); lcd_print("Print ok ?"); do { if (abs(enc_dif - lcd_encoder_diff) > 12) { if (enc_dif > lcd_encoder_diff) { cursor_pos--; } if (enc_dif < lcd_encoder_diff) { cursor_pos++; } enc_dif = lcd_encoder_diff; } if (cursor_pos > 2) { cursor_pos = 2; } if (cursor_pos < 1) { cursor_pos = 1; } lcd_set_cursor(0, 2); lcd_print(" "); lcd_set_cursor(0, 3); lcd_print(" "); lcd_set_cursor(2, 2); lcd_puts_P(_T(MSG_YES)); lcd_set_cursor(2, 3); lcd_puts_P(_T(MSG_NO)); lcd_set_cursor(0, 1 + cursor_pos); lcd_print(">"); _delay(100); _t = _t + 1; if (_t>100) { prusa_statistics(99); _t = 0; } if (lcd_clicked()) { if (cursor_pos == 1) { _ret = 1; filament_type = lcd_choose_color(); prusa_statistics(4, filament_type); no_response = true; //we need confirmation by recieving PRUSA thx important_status = 4; saved_filament_type = filament_type; NcTime = _millis(); } if (cursor_pos == 2) { _ret = 2; filament_type = lcd_choose_color(); prusa_statistics(5, filament_type); no_response = true; //we need confirmation by recieving PRUSA thx important_status = 5; saved_filament_type = filament_type; NcTime = _millis(); } } manage_heater(); manage_inactivity(); proc_commands(); } while (_ret == 0); } #include "w25x20cl.h" #ifdef LCD_TEST static void lcd_test_menu() { W25X20CL_SPI_ENTER(); w25x20cl_enable_wr(); w25x20cl_chip_erase(); w25x20cl_disable_wr(); } #endif //LCD_TEST //! @brief Resume paused print //! @todo It is not good to call restore_print_from_ram_and_continue() from function called by lcd_update(), //! as restore_print_from_ram_and_continue() calls lcd_update() internally. void lcd_resume_print() { lcd_return_to_status(); lcd_setstatuspgm(_T(MSG_RESUMING_PRINT)); lcd_reset_alert_level(); //for fan speed error restore_print_from_ram_and_continue(0.0); pause_time += (_millis() - start_pause_print); //accumulate time when print is paused for correct statistics calculation refresh_cmd_timeout(); isPrintPaused = false; } static void lcd_main_menu() { MENU_BEGIN(); // Majkl superawesome menu MENU_ITEM_BACK_P(_T(MSG_WATCH)); #ifdef RESUME_DEBUG if (!saved_printing) MENU_ITEM_FUNCTION_P(PSTR("tst - Save"), lcd_menu_test_save); else MENU_ITEM_FUNCTION_P(PSTR("tst - Restore"), lcd_menu_test_restore); #endif //RESUME_DEBUG #ifdef TMC2130_DEBUG MENU_ITEM_FUNCTION_P(PSTR("recover print"), recover_print); MENU_ITEM_FUNCTION_P(PSTR("power panic"), uvlo_); #endif //TMC2130_DEBUG /* if (farm_mode && !IS_SD_PRINTING ) { int tempScrool = 0; if (lcd_draw_update == 0 && LCD_CLICKED == 0) //_delay(100); return; // nothing to do (so don't thrash the SD card) uint16_t fileCnt = card.getnrfilenames(); card.getWorkDirName(); if (card.filename[0] == '/') { #if SDCARDDETECT == -1 MENU_ITEM_FUNCTION_P(_T(MSG_REFRESH), lcd_sd_refresh); #endif } else { MENU_ITEM_FUNCTION_P(PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir); } for (uint16_t i = 0; i < fileCnt; i++) { if (menu_item == menu_line) { #ifndef SDCARD_RATHERRECENTFIRST card.getfilename(i); #else card.getfilename(fileCnt - 1 - i); #endif if (card.filenameIsDir) { MENU_ITEM_SDDIR(_T(MSG_CARD_MENU), card.filename, card.longFilename); } else { MENU_ITEM_SDFILE(_T(MSG_CARD_MENU), card.filename, card.longFilename); } } else { MENU_ITEM_DUMMY(); } } MENU_ITEM_BACK_P(PSTR("- - - - - - - - -")); }*/ if ( ( IS_SD_PRINTING || is_usb_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL)) && (current_position[Z_AXIS] < Z_HEIGHT_HIDE_LIVE_ADJUST_MENU) && !homing_flag && !mesh_bed_leveling_flag) { MENU_ITEM_SUBMENU_P(_T(MSG_BABYSTEP_Z), lcd_babystep_z);//8 } if ( moves_planned() || IS_SD_PRINTING || is_usb_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL)) { MENU_ITEM_SUBMENU_P(_i("Tune"), lcd_tune_menu);////MSG_TUNE c=0 r=0 } else { MENU_ITEM_SUBMENU_P(_i("Preheat"), lcd_preheat_menu);////MSG_PREHEAT c=0 r=0 } #ifdef SDSUPPORT if (card.cardOK || lcd_commands_type == LCD_COMMAND_V2_CAL) { if (card.isFileOpen()) { if (mesh_bed_leveling_flag == false && homing_flag == false) { if (card.sdprinting) { MENU_ITEM_FUNCTION_P(_i("Pause print"), lcd_pause_print);////MSG_PAUSE_PRINT c=0 r=0 } else { MENU_ITEM_SUBMENU_P(_i("Resume print"), lcd_resume_print);////MSG_RESUME_PRINT c=0 r=0 } MENU_ITEM_SUBMENU_P(_T(MSG_STOP_PRINT), lcd_sdcard_stop); } } else if (lcd_commands_type == LCD_COMMAND_V2_CAL && mesh_bed_leveling_flag == false && homing_flag == false) { //MENU_ITEM_SUBMENU_P(_T(MSG_STOP_PRINT), lcd_sdcard_stop); } else { if (!is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL)) { //if (farm_mode) MENU_ITEM_SUBMENU_P(MSG_FARM_CARD_MENU, lcd_farm_sdcard_menu); /*else*/ { bMain=true; // flag ('fake parameter') for 'lcd_sdcard_menu()' function MENU_ITEM_SUBMENU_P(_T(MSG_CARD_MENU), lcd_sdcard_menu); } } #if SDCARDDETECT < 1 MENU_ITEM_GCODE_P(_i("Change SD card"), PSTR("M21")); // SD-card changed by user////MSG_CNG_SDCARD c=0 r=0 #endif } } else { bMain=true; // flag (i.e. 'fake parameter') for 'lcd_sdcard_menu()' function MENU_ITEM_SUBMENU_P(_i("No SD card"), lcd_sdcard_menu);////MSG_NO_CARD c=0 r=0 #if SDCARDDETECT < 1 MENU_ITEM_GCODE_P(_i("Init. SD card"), PSTR("M21")); // Manually initialize the SD-card via user interface////MSG_INIT_SDCARD c=0 r=0 #endif } #endif if (IS_SD_PRINTING || is_usb_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL)) { if (farm_mode) { MENU_ITEM_SUBMENU_P(PSTR("Farm number"), lcd_farm_no); } } else { if (mmu_enabled) { MENU_ITEM_SUBMENU_P(_T(MSG_LOAD_FILAMENT), fil_load_menu); MENU_ITEM_SUBMENU_P(_i("Load to nozzle"), mmu_load_to_nozzle_menu); //-// MENU_ITEM_FUNCTION_P(_T(MSG_UNLOAD_FILAMENT), extr_unload); //bFilamentFirstRun=true; MENU_ITEM_SUBMENU_P(_T(MSG_UNLOAD_FILAMENT), extr_unload_); MENU_ITEM_SUBMENU_P(_i("Eject filament"), mmu_fil_eject_menu); } else { #ifdef SNMM MENU_ITEM_SUBMENU_P(_T(MSG_UNLOAD_FILAMENT), fil_unload_menu); MENU_ITEM_SUBMENU_P(_i("Change extruder"), change_extr_menu);////MSG_CHANGE_EXTR c=20 r=1 #endif #ifdef FILAMENT_SENSOR if ((fsensor_autoload_enabled == true) && (fsensor_enabled == true) && (mmu_enabled == false)) MENU_ITEM_SUBMENU_P(_i("AutoLoad filament"), lcd_menu_AutoLoadFilament);////MSG_AUTOLOAD_FILAMENT c=17 r=0 else #endif //FILAMENT_SENSOR { bFilamentFirstRun=true; MENU_ITEM_SUBMENU_P(_T(MSG_LOAD_FILAMENT), lcd_LoadFilament); } bFilamentFirstRun=true; MENU_ITEM_SUBMENU_P(_T(MSG_UNLOAD_FILAMENT), lcd_unLoadFilament); } MENU_ITEM_SUBMENU_P(_T(MSG_SETTINGS), lcd_settings_menu); if(!isPrintPaused) MENU_ITEM_SUBMENU_P(_T(MSG_MENU_CALIBRATION), lcd_calibration_menu); } if (!is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL)) { MENU_ITEM_SUBMENU_P(_i("Statistics "), lcd_menu_statistics);////MSG_STATISTICS c=0 r=0 } #if defined(TMC2130) || defined(FILAMENT_SENSOR) MENU_ITEM_SUBMENU_P(_i("Fail stats"), lcd_menu_fails_stats); #endif if (mmu_enabled) { MENU_ITEM_SUBMENU_P(_i("Fail stats MMU"), lcd_menu_fails_stats_mmu); } MENU_ITEM_SUBMENU_P(_i("Support"), lcd_support_menu);////MSG_SUPPORT c=0 r=0 #ifdef LCD_TEST MENU_ITEM_SUBMENU_P(_i("W25x20CL init"), lcd_test_menu);////MSG_SUPPORT c=0 r=0 #endif //LCD_TEST MENU_END(); } void stack_error() { SET_OUTPUT(BEEPER); if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT)) WRITE(BEEPER, HIGH); _delay(1000); WRITE(BEEPER, LOW); lcd_display_message_fullscreen_P(_i("Error - static memory has been overwritten"));////MSG_STACK_ERROR c=20 r=4 //err_triggered = 1; while (1) delay_keep_alive(1000); } #ifdef DEBUG_STEPPER_TIMER_MISSED bool stepper_timer_overflow_state = false; uint16_t stepper_timer_overflow_max = 0; uint16_t stepper_timer_overflow_last = 0; uint16_t stepper_timer_overflow_cnt = 0; void stepper_timer_overflow() { char msg[28]; sprintf_P(msg, PSTR("#%d %d max %d"), ++ stepper_timer_overflow_cnt, stepper_timer_overflow_last >> 1, stepper_timer_overflow_max >> 1); lcd_setstatus(msg); stepper_timer_overflow_state = false; if (stepper_timer_overflow_last > stepper_timer_overflow_max) stepper_timer_overflow_max = stepper_timer_overflow_last; SERIAL_ECHOPGM("Stepper timer overflow: "); MYSERIAL.print(msg); SERIAL_ECHOLNPGM(""); WRITE(BEEPER, LOW); } #endif /* DEBUG_STEPPER_TIMER_MISSED */ static void lcd_colorprint_change() { enquecommand_P(PSTR("M600")); custom_message_type = CUSTOM_MSG_TYPE_F_LOAD; //just print status message lcd_setstatuspgm(_T(MSG_FINISHING_MOVEMENTS)); lcd_return_to_status(); lcd_draw_update = 3; } static void lcd_tune_menu() { typedef struct { menu_data_edit_t reserved; //!< reserved for number editing functions int8_t status; //!< To recognize, whether the menu has been just initialized. //! Backup of extrudemultiply, to recognize, that the value has been changed and //! it needs to be applied. int16_t extrudemultiply; } _menu_data_t; static_assert(sizeof(menu_data)>= sizeof(_menu_data_t),"_menu_data_t doesn't fit into menu_data"); _menu_data_t* _md = (_menu_data_t*)&(menu_data[0]); if (_md->status == 0) { // Menu was entered. Mark the menu as entered and save the current extrudemultiply value. _md->status = 1; _md->extrudemultiply = extrudemultiply; } else if (_md->extrudemultiply != extrudemultiply) { // extrudemultiply has been changed from the child menu. Apply the new value. _md->extrudemultiply = extrudemultiply; calculate_extruder_multipliers(); } EEPROM_read(EEPROM_SILENT, (uint8_t*)&SilentModeMenu, sizeof(SilentModeMenu)); MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); //1 MENU_ITEM_EDIT_int3_P(_i("Speed"), &feedmultiply, 10, 999);//2////MSG_SPEED c=0 r=0 MENU_ITEM_EDIT_int3_P(_T(MSG_NOZZLE), &target_temperature[0], 0, HEATER_0_MAXTEMP - 10);//3 MENU_ITEM_EDIT_int3_P(_T(MSG_BED), &target_temperature_bed, 0, BED_MAXTEMP - 10);//4 MENU_ITEM_EDIT_int3_P(_T(MSG_FAN_SPEED), &fanSpeed, 0, 255);//5 MENU_ITEM_EDIT_int3_P(_i("Flow"), &extrudemultiply, 10, 999);//6////MSG_FLOW c=0 r=0 #ifdef FILAMENTCHANGEENABLE MENU_ITEM_FUNCTION_P(_T(MSG_FILAMENTCHANGE), lcd_colorprint_change);//7 #endif #ifdef FILAMENT_SENSOR if (FSensorStateMenu == 0) { MENU_ITEM_FUNCTION_P(_T(MSG_FSENSOR_OFF), lcd_fsensor_state_set); } else { MENU_ITEM_FUNCTION_P(_T(MSG_FSENSOR_ON), lcd_fsensor_state_set); } #endif //FILAMENT_SENSOR SETTINGS_AUTO_DEPLETE; #ifdef TMC2130 if(!farm_mode) { if (SilentModeMenu == SILENT_MODE_NORMAL) MENU_ITEM_FUNCTION_P(_T(MSG_STEALTH_MODE_OFF), lcd_silent_mode_set); else MENU_ITEM_FUNCTION_P(_T(MSG_STEALTH_MODE_ON), lcd_silent_mode_set); if (SilentModeMenu == SILENT_MODE_NORMAL) { if (CrashDetectMenu == 0) MENU_ITEM_FUNCTION_P(_T(MSG_CRASHDETECT_OFF), lcd_crash_mode_set); else MENU_ITEM_FUNCTION_P(_T(MSG_CRASHDETECT_ON), lcd_crash_mode_set); } else MENU_ITEM_SUBMENU_P(_T(MSG_CRASHDETECT_NA), lcd_crash_mode_info); } #else //TMC2130 if (!farm_mode) { //dont show in menu if we are in farm mode switch (SilentModeMenu) { case SILENT_MODE_POWER: MENU_ITEM_FUNCTION_P(_T(MSG_SILENT_MODE_OFF), lcd_silent_mode_set); break; case SILENT_MODE_SILENT: MENU_ITEM_FUNCTION_P(_T(MSG_SILENT_MODE_ON), lcd_silent_mode_set); break; case SILENT_MODE_AUTO: MENU_ITEM_FUNCTION_P(_T(MSG_AUTO_MODE_ON), lcd_silent_mode_set); break; default: MENU_ITEM_FUNCTION_P(_T(MSG_SILENT_MODE_OFF), lcd_silent_mode_set); break; // (probably) not needed } } #endif //TMC2130 switch(eSoundMode) { case e_SOUND_MODE_LOUD: MENU_ITEM_FUNCTION_P(_i(MSG_SOUND_MODE_LOUD),lcd_sound_state_set); break; case e_SOUND_MODE_ONCE: MENU_ITEM_FUNCTION_P(_i(MSG_SOUND_MODE_ONCE),lcd_sound_state_set); break; case e_SOUND_MODE_SILENT: MENU_ITEM_FUNCTION_P(_i(MSG_SOUND_MODE_SILENT),lcd_sound_state_set); break; case e_SOUND_MODE_MUTE: MENU_ITEM_FUNCTION_P(_i(MSG_SOUND_MODE_MUTE),lcd_sound_state_set); break; default: MENU_ITEM_FUNCTION_P(_i(MSG_SOUND_MODE_LOUD),lcd_sound_state_set); } MENU_END(); } static void lcd_control_temperature_menu() { #ifdef PIDTEMP // set up temp variables - undo the default scaling // raw_Ki = unscalePID_i(Ki); // raw_Kd = unscalePID_d(Kd); #endif MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_SETTINGS)); #if TEMP_SENSOR_0 != 0 MENU_ITEM_EDIT_int3_P(_T(MSG_NOZZLE), &target_temperature[0], 0, HEATER_0_MAXTEMP - 10); #endif #if TEMP_SENSOR_1 != 0 MENU_ITEM_EDIT_int3_P(_i("Nozzle2"), &target_temperature[1], 0, HEATER_1_MAXTEMP - 10);////MSG_NOZZLE1 c=0 r=0 #endif #if TEMP_SENSOR_2 != 0 MENU_ITEM_EDIT_int3_P(_i("Nozzle3"), &target_temperature[2], 0, HEATER_2_MAXTEMP - 10);////MSG_NOZZLE2 c=0 r=0 #endif #if TEMP_SENSOR_BED != 0 MENU_ITEM_EDIT_int3_P(_T(MSG_BED), &target_temperature_bed, 0, BED_MAXTEMP - 3); #endif MENU_ITEM_EDIT_int3_P(_T(MSG_FAN_SPEED), &fanSpeed, 0, 255); #if defined AUTOTEMP && (TEMP_SENSOR_0 != 0) //MENU_ITEM_EDIT removed, following code must be redesigned if AUTOTEMP enabled MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &autotemp_enabled); MENU_ITEM_EDIT(float3, _i(" \002 Min"), &autotemp_min, 0, HEATER_0_MAXTEMP - 10);////MSG_MIN c=0 r=0 MENU_ITEM_EDIT(float3, _i(" \002 Max"), &autotemp_max, 0, HEATER_0_MAXTEMP - 10);////MSG_MAX c=0 r=0 MENU_ITEM_EDIT(float32, _i(" \002 Fact"), &autotemp_factor, 0.0, 1.0);////MSG_FACTOR c=0 r=0 #endif MENU_END(); } #if SDCARDDETECT == -1 static void lcd_sd_refresh() { card.initsd(); menu_top = 0; } #endif static void lcd_sd_updir() { card.updir(); menu_top = 0; } void lcd_print_stop() { saved_printing = false; cancel_heatup = true; #ifdef MESH_BED_LEVELING mbl.active = false; #endif // Stop the stoppers, update the position from the stoppers. if (mesh_bed_leveling_flag == false && homing_flag == false) { planner_abort_hard(); // Because the planner_abort_hard() initialized current_position[Z] from the stepper, // Z baystep is no more applied. Reset it. babystep_reset(); } // Clean the input command queue. cmdqueue_reset(); lcd_setstatuspgm(_T(MSG_PRINT_ABORTED)); card.sdprinting = false; card.closefile(); stoptime = _millis(); unsigned long t = (stoptime - starttime - pause_time) / 1000; //time in s pause_time = 0; save_statistics(total_filament_used, t); lcd_return_to_status(); lcd_ignore_click(true); lcd_commands_step = 0; lcd_commands_type = LCD_COMMAND_STOP_PRINT; // Turn off the print fan SET_OUTPUT(FAN_PIN); WRITE(FAN_PIN, 0); fanSpeed = 0; } void lcd_sdcard_stop() { lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_STOP_PRINT)); lcd_set_cursor(2, 2); lcd_puts_P(_T(MSG_NO)); lcd_set_cursor(2, 3); lcd_puts_P(_T(MSG_YES)); lcd_set_cursor(0, 2); lcd_print(" "); lcd_set_cursor(0, 3); lcd_print(" "); if ((int32_t)lcd_encoder > 2) { lcd_encoder = 2; } if ((int32_t)lcd_encoder < 1) { lcd_encoder = 1; } lcd_set_cursor(0, 1 + lcd_encoder); lcd_print(">"); if (lcd_clicked()) { if ((int32_t)lcd_encoder == 1) { lcd_return_to_status(); } if ((int32_t)lcd_encoder == 2) { lcd_print_stop(); } } } void lcd_sdcard_menu() { uint8_t sdSort = eeprom_read_byte((uint8_t*)EEPROM_SD_SORT); if (presort_flag == true) { presort_flag = false; card.presort(); } if (lcd_draw_update == 0 && LCD_CLICKED == 0) //_delay(100); return; // nothing to do (so don't thrash the SD card) uint16_t fileCnt = card.getnrfilenames(); MENU_BEGIN(); if(bMain) // i.e. default menu-item MENU_ITEM_BACK_P(_T(MSG_MAIN)); else // i.e. menu-item after card insertion MENU_ITEM_FUNCTION_P(_T(MSG_WATCH),lcd_return_to_status); card.getWorkDirName(); if (card.filename[0] == '/') { #if SDCARDDETECT == -1 MENU_ITEM_FUNCTION_P(_T(MSG_REFRESH), lcd_sd_refresh); #endif } else { MENU_ITEM_FUNCTION_P(PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir); } for (uint16_t i = 0; i < fileCnt; i++) { if (menu_item == menu_line) { const uint16_t nr = ((sdSort == SD_SORT_NONE) || farm_mode || (sdSort == SD_SORT_TIME)) ? (fileCnt - 1 - i) : i; /*#ifdef SDCARD_RATHERRECENTFIRST #ifndef SDCARD_SORT_ALPHA fileCnt - 1 - #endif #endif i;*/ #ifdef SDCARD_SORT_ALPHA if (sdSort == SD_SORT_NONE) card.getfilename(nr); else card.getfilename_sorted(nr); #else card.getfilename(nr); #endif if (card.filenameIsDir) MENU_ITEM_SDDIR(card.filename, card.longFilename); else MENU_ITEM_SDFILE(_T(MSG_CARD_MENU), card.filename, card.longFilename); } else { MENU_ITEM_DUMMY(); } } MENU_END(); } static void lcd_selftest_v() { (void)lcd_selftest(); } bool lcd_selftest() { int _progress = 0; bool _result = true; lcd_wait_for_cool_down(); lcd_clear(); lcd_set_cursor(0, 0); lcd_puts_P(_i("Self test start "));////MSG_SELFTEST_START c=20 r=0 #ifdef TMC2130 FORCE_HIGH_POWER_START; #endif // TMC2130 _delay(2000); KEEPALIVE_STATE(IN_HANDLER); _progress = lcd_selftest_screen(testScreen::extruderFan, _progress, 3, true, 2000); #if (defined(FANCHECK) && defined(TACH_0)) _result = lcd_selftest_fan_dialog(0); #else //defined(TACH_0) _result = lcd_selftest_manual_fan_check(0, false); if (!_result) { const char *_err; lcd_selftest_error(7, _err, _err); //extruder fan not spinning } #endif //defined(TACH_0) if (_result) { _progress = lcd_selftest_screen(testScreen::printFan, _progress, 3, true, 2000); #if (defined(FANCHECK) && defined(TACH_1)) _result = lcd_selftest_fan_dialog(1); #else //defined(TACH_1) _result = lcd_selftest_manual_fan_check(1, false); if (!_result) { const char *_err; lcd_selftest_error(6, _err, _err); //print fan not spinning } #endif //defined(TACH_1) } if (_result) { _progress = lcd_selftest_screen(testScreen::fansOk, _progress, 3, true, 2000); #ifndef TMC2130 _result = lcd_selfcheck_endstops(); #else _result = true; #endif } if (_result) { //current_position[Z_AXIS] += 15; //move Z axis higher to avoid false triggering of Z end stop in case that we are very low - just above heatbed _progress = lcd_selftest_screen(testScreen::axisX, _progress, 3, true, 2000); #ifdef TMC2130 _result = lcd_selfcheck_axis_sg(X_AXIS); #else _result = lcd_selfcheck_axis(X_AXIS, X_MAX_POS); #endif //TMC2130 } if (_result) { _progress = lcd_selftest_screen(testScreen::axisX, _progress, 3, true, 0); #ifndef TMC2130 _result = lcd_selfcheck_pulleys(X_AXIS); #endif } if (_result) { _progress = lcd_selftest_screen(testScreen::axisY, _progress, 3, true, 1500); #ifdef TMC2130 _result = lcd_selfcheck_axis_sg(Y_AXIS); #else _result = lcd_selfcheck_axis(Y_AXIS, Y_MAX_POS); #endif // TMC2130 } if (_result) { _progress = lcd_selftest_screen(testScreen::axisZ, _progress, 3, true, 0); #ifndef TMC2130 _result = lcd_selfcheck_pulleys(Y_AXIS); #endif // TMC2130 } if (_result) { #ifdef TMC2130 tmc2130_home_exit(); enable_endstops(false); current_position[X_AXIS] = current_position[X_AXIS] + 14; current_position[Y_AXIS] = current_position[Y_AXIS] + 12; #endif //homeaxis(X_AXIS); //homeaxis(Y_AXIS); current_position[Z_AXIS] = current_position[Z_AXIS] + 10; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); _progress = lcd_selftest_screen(testScreen::axisZ, _progress, 3, true, 1500); _result = lcd_selfcheck_axis(2, Z_MAX_POS); if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) { enquecommand_P(PSTR("G28 W")); enquecommand_P(PSTR("G1 Z15 F1000")); } } #ifdef TMC2130 if (_result) { current_position[Z_AXIS] = current_position[Z_AXIS] + 10; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); _progress = lcd_selftest_screen(testScreen::home, 0, 2, true, 0); bool bres = tmc2130_home_calibrate(X_AXIS); _progress = lcd_selftest_screen(testScreen::home, 1, 2, true, 0); bres &= tmc2130_home_calibrate(Y_AXIS); _progress = lcd_selftest_screen(testScreen::home, 2, 2, true, 0); if (bres) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED, 1); _result = bres; } #endif //TMC2130 if (_result) { _progress = lcd_selftest_screen(testScreen::bed, _progress, 3, true, 2000); _result = lcd_selfcheck_check_heater(true); } if (_result) { _progress = lcd_selftest_screen(testScreen::hotend, _progress, 3, true, 1000); _result = lcd_selfcheck_check_heater(false); } if (_result) { _progress = lcd_selftest_screen(testScreen::hotendOk, _progress, 3, true, 2000); //nozzle ok } #ifdef FILAMENT_SENSOR if (_result) { if (mmu_enabled) { _progress = lcd_selftest_screen(testScreen::fsensor, _progress, 3, true, 2000); //check filaments sensor _result = selftest_irsensor(); if (_result) { _progress = lcd_selftest_screen(testScreen::fsensorOk, _progress, 3, true, 2000); //fil sensor OK } } else { #ifdef PAT9125 _progress = lcd_selftest_screen(testScreen::fsensor, _progress, 3, true, 2000); //check filaments sensor _result = lcd_selftest_fsensor(); if (_result) { _progress = lcd_selftest_screen(testScreen::fsensorOk, _progress, 3, true, 2000); //fil sensor OK } #endif //PAT9125 } } #endif //FILAMENT_SENSOR if (_result) { _progress = lcd_selftest_screen(testScreen::allCorrect, _progress, 3, true, 5000); //all correct } else { _progress = lcd_selftest_screen(testScreen::failed, _progress, 3, true, 5000); } lcd_reset_alert_level(); enquecommand_P(PSTR("M84")); lcd_update_enable(true); if (_result) { LCD_ALERTMESSAGERPGM(_i("Self test OK"));////MSG_SELFTEST_OK c=0 r=0 } else { LCD_ALERTMESSAGERPGM(_T(MSG_SELFTEST_FAILED)); } #ifdef TMC2130 FORCE_HIGH_POWER_END; #endif // TMC2130 KEEPALIVE_STATE(NOT_BUSY); return(_result); } #ifdef TMC2130 static void reset_crash_det(unsigned char axis) { current_position[axis] += 10; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET)) tmc2130_sg_stop_on_crash = true; } static bool lcd_selfcheck_axis_sg(unsigned char axis) { // each axis length is measured twice float axis_length, current_position_init, current_position_final; float measured_axis_length[2]; float margin = 60; float max_error_mm = 5; switch (axis) { case 0: axis_length = X_MAX_POS; break; case 1: axis_length = Y_MAX_POS + 8; break; default: axis_length = 210; break; } tmc2130_sg_stop_on_crash = false; tmc2130_home_exit(); enable_endstops(true); if (axis == X_AXIS) { //there is collision between cables and PSU cover in X axis if Z coordinate is too low current_position[Z_AXIS] += 17; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); tmc2130_home_enter(Z_AXIS_MASK); st_synchronize(); tmc2130_home_exit(); } // first axis length measurement begin current_position[axis] -= (axis_length + margin); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); tmc2130_sg_meassure_start(axis); current_position_init = st_get_position_mm(axis); current_position[axis] += 2 * margin; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); current_position[axis] += axis_length; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); uint16_t sg1 = tmc2130_sg_meassure_stop(); printf_P(PSTR("%c AXIS SG1=%d\n"), 'X'+axis, sg1); eeprom_write_word(((uint16_t*)((axis == X_AXIS)?EEPROM_BELTSTATUS_X:EEPROM_BELTSTATUS_Y)), sg1); current_position_final = st_get_position_mm(axis); measured_axis_length[0] = abs(current_position_final - current_position_init); // first measurement end and second measurement begin current_position[axis] -= margin; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); current_position[axis] -= (axis_length + margin); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); current_position_init = st_get_position_mm(axis); measured_axis_length[1] = abs(current_position_final - current_position_init); //end of second measurement, now check for possible errors: for(int i = 0; i < 2; i++){ //check if measured axis length corresponds to expected length printf_P(_N("Measured axis length:%.3f\n"), measured_axis_length[i]); if (abs(measured_axis_length[i] - axis_length) > max_error_mm) { enable_endstops(false); const char *_error_1; if (axis == X_AXIS) _error_1 = "X"; if (axis == Y_AXIS) _error_1 = "Y"; if (axis == Z_AXIS) _error_1 = "Z"; lcd_selftest_error(9, _error_1, NULL); current_position[axis] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); reset_crash_det(axis); return false; } } printf_P(_N("Axis length difference:%.3f\n"), abs(measured_axis_length[0] - measured_axis_length[1])); if (abs(measured_axis_length[0] - measured_axis_length[1]) > 1) { //check if difference between first and second measurement is low //loose pulleys const char *_error_1; if (axis == X_AXIS) _error_1 = "X"; if (axis == Y_AXIS) _error_1 = "Y"; if (axis == Z_AXIS) _error_1 = "Z"; lcd_selftest_error(8, _error_1, NULL); current_position[axis] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); reset_crash_det(axis); return false; } current_position[axis] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); reset_crash_det(axis); return true; } #endif //TMC2130 //#ifndef TMC2130 static bool lcd_selfcheck_axis(int _axis, int _travel) { // printf_P(PSTR("lcd_selfcheck_axis %d, %d\n"), _axis, _travel); bool _stepdone = false; bool _stepresult = false; int _progress = 0; int _travel_done = 0; int _err_endstop = 0; int _lcd_refresh = 0; _travel = _travel + (_travel / 10); if (_axis == X_AXIS) { current_position[Z_AXIS] += 17; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); } do { current_position[_axis] = current_position[_axis] - 1; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); #ifdef TMC2130 if ((READ(Z_MIN_PIN) ^ (bool)Z_MIN_ENDSTOP_INVERTING)) #else //TMC2130 if ((READ(X_MIN_PIN) ^ (bool)X_MIN_ENDSTOP_INVERTING) || (READ(Y_MIN_PIN) ^ (bool)Y_MIN_ENDSTOP_INVERTING) || (READ(Z_MIN_PIN) ^ (bool)Z_MIN_ENDSTOP_INVERTING)) #endif //TMC2130 { if (_axis == 0) { _stepresult = ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ? true : false; _err_endstop = ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) ? 1 : 2; } if (_axis == 1) { _stepresult = ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) ? true : false; _err_endstop = ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ? 0 : 2; } if (_axis == 2) { _stepresult = ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) ? true : false; _err_endstop = ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ? 0 : 1; printf_P(PSTR("lcd_selfcheck_axis %d, %d\n"), _stepresult, _err_endstop); /*disable_x(); disable_y(); disable_z();*/ } _stepdone = true; } if (_lcd_refresh < 6) { _lcd_refresh++; } else { _progress = lcd_selftest_screen(static_cast(static_cast(testScreen::axisX) + _axis), _progress, 3, false, 0); _lcd_refresh = 0; } manage_heater(); manage_inactivity(true); //_delay(100); (_travel_done <= _travel) ? _travel_done++ : _stepdone = true; } while (!_stepdone); //current_position[_axis] = current_position[_axis] + 15; //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); if (!_stepresult) { const char *_error_1; const char *_error_2; if (_axis == X_AXIS) _error_1 = "X"; if (_axis == Y_AXIS) _error_1 = "Y"; if (_axis == Z_AXIS) _error_1 = "Z"; if (_err_endstop == 0) _error_2 = "X"; if (_err_endstop == 1) _error_2 = "Y"; if (_err_endstop == 2) _error_2 = "Z"; if (_travel_done >= _travel) { lcd_selftest_error(5, _error_1, _error_2); } else { lcd_selftest_error(4, _error_1, _error_2); } } return _stepresult; } #ifndef TMC2130 static bool lcd_selfcheck_pulleys(int axis) { float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT; float current_position_init; float move; bool endstop_triggered = false; int i; unsigned long timeout_counter; refresh_cmd_timeout(); manage_inactivity(true); if (axis == 0) move = 50; //X_AXIS else move = 50; //Y_AXIS current_position_init = current_position[axis]; current_position[axis] += 2; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); for (i = 0; i < 5; i++) { refresh_cmd_timeout(); current_position[axis] = current_position[axis] + move; st_current_set(0, 850); //set motor current higher plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], 200, active_extruder); st_synchronize(); if (SilentModeMenu != SILENT_MODE_OFF) st_current_set(0, tmp_motor[0]); //set back to normal operation currents else st_current_set(0, tmp_motor_loud[0]); //set motor current back current_position[axis] = current_position[axis] - move; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], 50, active_extruder); st_synchronize(); if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1)) { lcd_selftest_error(8, (axis == 0) ? "X" : "Y", ""); return(false); } } timeout_counter = _millis() + 2500; endstop_triggered = false; manage_inactivity(true); while (!endstop_triggered) { if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1)) { endstop_triggered = true; if (current_position_init - 1 <= current_position[axis] && current_position_init + 1 >= current_position[axis]) { current_position[axis] += (axis == X_AXIS) ? 13 : 9; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); return(true); } else { lcd_selftest_error(8, (axis == 0) ? "X" : "Y", ""); return(false); } } else { current_position[axis] -= 1; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); if (_millis() > timeout_counter) { lcd_selftest_error(8, (axis == 0) ? "X" : "Y", ""); return(false); } } } return(true); } static bool lcd_selfcheck_endstops() { bool _result = true; if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1)) { if ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) current_position[0] += 10; if ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) current_position[1] += 10; if ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) current_position[2] += 10; } plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[0] / 60, active_extruder); _delay(500); if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1)) { _result = false; char _error[4] = ""; if ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) strcat(_error, "X"); if ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) strcat(_error, "Y"); if ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) strcat(_error, "Z"); lcd_selftest_error(3, _error, ""); } manage_heater(); manage_inactivity(true); return _result; } #endif //not defined TMC2130 static bool lcd_selfcheck_check_heater(bool _isbed) { int _counter = 0; int _progress = 0; bool _stepresult = false; bool _docycle = true; int _checked_snapshot = (_isbed) ? degBed() : degHotend(0); int _opposite_snapshot = (_isbed) ? degHotend(0) : degBed(); int _cycles = (_isbed) ? 180 : 60; //~ 90s / 30s target_temperature[0] = (_isbed) ? 0 : 200; target_temperature_bed = (_isbed) ? 100 : 0; manage_heater(); manage_inactivity(true); KEEPALIVE_STATE(NOT_BUSY); //we are sending temperatures on serial line, so no need to send host keepalive messages do { _counter++; _docycle = (_counter < _cycles) ? true : false; manage_heater(); manage_inactivity(true); _progress = (_isbed) ? lcd_selftest_screen(testScreen::bed, _progress, 2, false, 400) : lcd_selftest_screen(testScreen::hotend, _progress, 2, false, 400); /*if (_isbed) { MYSERIAL.print("Bed temp:"); MYSERIAL.println(degBed()); } else { MYSERIAL.print("Hotend temp:"); MYSERIAL.println(degHotend(0)); }*/ if(_counter%5 == 0) serialecho_temperatures(); //show temperatures once in two seconds } while (_docycle); target_temperature[0] = 0; target_temperature_bed = 0; manage_heater(); int _checked_result = (_isbed) ? degBed() - _checked_snapshot : degHotend(0) - _checked_snapshot; int _opposite_result = (_isbed) ? degHotend(0) - _opposite_snapshot : degBed() - _opposite_snapshot; /* MYSERIAL.println(""); MYSERIAL.print("Checked result:"); MYSERIAL.println(_checked_result); MYSERIAL.print("Opposite result:"); MYSERIAL.println(_opposite_result); */ if (_opposite_result < ((_isbed) ? 30 : 9)) { if (_checked_result >= ((_isbed) ? 9 : 30)) { _stepresult = true; } else { lcd_selftest_error(1, "", ""); } } else { lcd_selftest_error(2, "", ""); } manage_heater(); manage_inactivity(true); KEEPALIVE_STATE(IN_HANDLER); return _stepresult; } static void lcd_selftest_error(int _error_no, const char *_error_1, const char *_error_2) { lcd_beeper_quick_feedback(); target_temperature[0] = 0; target_temperature_bed = 0; manage_heater(); manage_inactivity(); lcd_clear(); lcd_set_cursor(0, 0); lcd_puts_P(_i("Selftest error !"));////MSG_SELFTEST_ERROR c=0 r=0 lcd_set_cursor(0, 1); lcd_puts_P(_i("Please check :"));////MSG_SELFTEST_PLEASECHECK c=0 r=0 switch (_error_no) { case 1: lcd_set_cursor(0, 2); lcd_puts_P(_i("Heater/Thermistor"));////MSG_SELFTEST_HEATERTHERMISTOR c=0 r=0 lcd_set_cursor(0, 3); lcd_puts_P(_i("Not connected"));////MSG_SELFTEST_NOTCONNECTED c=0 r=0 break; case 2: lcd_set_cursor(0, 2); lcd_puts_P(_i("Bed / Heater"));////MSG_SELFTEST_BEDHEATER c=0 r=0 lcd_set_cursor(0, 3); lcd_puts_P(_T(MSG_SELFTEST_WIRINGERROR)); break; case 3: lcd_set_cursor(0, 2); lcd_puts_P(_i("Endstops"));////MSG_SELFTEST_ENDSTOPS c=0 r=0 lcd_set_cursor(0, 3); lcd_puts_P(_T(MSG_SELFTEST_WIRINGERROR)); lcd_set_cursor(17, 3); lcd_print(_error_1); break; case 4: lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_SELFTEST_MOTOR)); lcd_set_cursor(18, 2); lcd_print(_error_1); lcd_set_cursor(0, 3); lcd_puts_P(_i("Endstop"));////MSG_SELFTEST_ENDSTOP c=0 r=0 lcd_set_cursor(18, 3); lcd_print(_error_2); break; case 5: lcd_set_cursor(0, 2); lcd_puts_P(_i("Endstop not hit"));////MSG_SELFTEST_ENDSTOP_NOTHIT c=20 r=1 lcd_set_cursor(0, 3); lcd_puts_P(_T(MSG_SELFTEST_MOTOR)); lcd_set_cursor(18, 3); lcd_print(_error_1); break; case 6: lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_SELFTEST_COOLING_FAN)); lcd_set_cursor(0, 3); lcd_puts_P(_T(MSG_SELFTEST_WIRINGERROR)); lcd_set_cursor(18, 3); lcd_print(_error_1); break; case 7: lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_SELFTEST_EXTRUDER_FAN)); lcd_set_cursor(0, 3); lcd_puts_P(_T(MSG_SELFTEST_WIRINGERROR)); lcd_set_cursor(18, 3); lcd_print(_error_1); break; case 8: lcd_set_cursor(0, 2); lcd_puts_P(_i("Loose pulley"));////MSG_LOOSE_PULLEY c=20 r=1 lcd_set_cursor(0, 3); lcd_puts_P(_T(MSG_SELFTEST_MOTOR)); lcd_set_cursor(18, 3); lcd_print(_error_1); break; case 9: lcd_set_cursor(0, 2); lcd_puts_P(_i("Axis length"));////MSG_SELFTEST_AXIS_LENGTH c=0 r=0 lcd_set_cursor(0, 3); lcd_puts_P(_i("Axis"));////MSG_SELFTEST_AXIS c=0 r=0 lcd_set_cursor(18, 3); lcd_print(_error_1); break; case 10: lcd_set_cursor(0, 2); lcd_puts_P(_i("Front/left fans"));////MSG_SELFTEST_FANS c=0 r=0 lcd_set_cursor(0, 3); lcd_puts_P(_i("Swapped"));////MSG_SELFTEST_SWAPPED c=0 r=0 lcd_set_cursor(18, 3); lcd_print(_error_1); break; case 11: lcd_set_cursor(0, 2); lcd_puts_P(_i("Filament sensor"));////MSG_FILAMENT_SENSOR c=20 r=0 lcd_set_cursor(0, 3); lcd_puts_P(_T(MSG_SELFTEST_WIRINGERROR)); break; } _delay(1000); lcd_beeper_quick_feedback(); do { _delay(100); manage_heater(); manage_inactivity(); } while (!lcd_clicked()); LCD_ALERTMESSAGERPGM(_T(MSG_SELFTEST_FAILED)); lcd_return_to_status(); } #ifdef FILAMENT_SENSOR static bool lcd_selftest_fsensor(void) { fsensor_init(); if (fsensor_not_responding) { lcd_selftest_error(11, NULL, NULL); } return (!fsensor_not_responding); } //! @brief Self-test of infrared barrier filament sensor mounted on MK3S with MMUv2 printer //! //! Test whether sensor is not triggering filament presence when extruder idler is moving without filament. //! //! Steps: //! * Backup current active extruder temperature //! * Pre-heat to PLA extrude temperature. //! * Unload filament possibly present. //! * Move extruder idler same way as during filament load //! and sample IR_SENSOR_PIN. //! * Check that pin doesn't go low. //! //! @retval true passed //! @retval false failed static bool selftest_irsensor() { class TempBackup { public: TempBackup(): m_temp(degTargetHotend(active_extruder)), m_extruder(active_extruder){} ~TempBackup(){setTargetHotend(m_temp,m_extruder);} private: float m_temp; uint8_t m_extruder; }; uint8_t progress; { TempBackup tempBackup; setTargetHotend(ABS_PREHEAT_HOTEND_TEMP,active_extruder); mmu_wait_for_heater_blocking(); progress = lcd_selftest_screen(testScreen::fsensor, 0, 1, true, 0); mmu_filament_ramming(); } progress = lcd_selftest_screen(testScreen::fsensor, progress, 1, true, 0); mmu_command(MmuCmd::U0); manage_response(false, false); for(uint_least8_t i = 0; i < 200; ++i) { if (0 == (i % 32)) progress = lcd_selftest_screen(testScreen::fsensor, progress, 1, true, 0); mmu_load_step(false); while (blocks_queued()) { if (PIN_GET(IR_SENSOR_PIN) == 0) return false; #ifdef TMC2130 manage_heater(); // Vojtech: Don't disable motors inside the planner! if (!tmc2130_update_sg()) { manage_inactivity(true); } #else //TMC2130 manage_heater(); // Vojtech: Don't disable motors inside the planner! manage_inactivity(true); #endif //TMC2130 } } return true; } #endif //FILAMENT_SENSOR static bool lcd_selftest_manual_fan_check(int _fan, bool check_opposite) { bool _result = check_opposite; lcd_clear(); lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_SELFTEST_FAN)); switch (_fan) { case 0: // extruder cooling fan lcd_set_cursor(0, 1); if(check_opposite == true) lcd_puts_P(_T(MSG_SELFTEST_COOLING_FAN)); else lcd_puts_P(_T(MSG_SELFTEST_EXTRUDER_FAN)); SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN); WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1); break; case 1: // object cooling fan lcd_set_cursor(0, 1); if (check_opposite == true) lcd_puts_P(_T(MSG_SELFTEST_EXTRUDER_FAN)); else lcd_puts_P(_T(MSG_SELFTEST_COOLING_FAN)); SET_OUTPUT(FAN_PIN); #ifdef FAN_SOFT_PWM fanSpeedSoftPwm = 255; #else //FAN_SOFT_PWM analogWrite(FAN_PIN, 255); #endif //FAN_SOFT_PWM break; } _delay(500); lcd_set_cursor(1, 2); lcd_puts_P(_T(MSG_SELFTEST_FAN_YES)); lcd_set_cursor(0, 3); lcd_print(">"); lcd_set_cursor(1, 3); lcd_puts_P(_T(MSG_SELFTEST_FAN_NO)); int8_t enc_dif = 0; KEEPALIVE_STATE(PAUSED_FOR_USER); lcd_button_pressed = false; do { switch (_fan) { case 0: // extruder cooling fan SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN); WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1); break; case 1: // object cooling fan SET_OUTPUT(FAN_PIN); #ifdef FAN_SOFT_PWM fanSpeedSoftPwm = 255; #else //FAN_SOFT_PWM analogWrite(FAN_PIN, 255); #endif //FAN_SOFT_PWM break; } if (abs((enc_dif - lcd_encoder_diff)) > 2) { if (enc_dif > lcd_encoder_diff) { _result = !check_opposite; lcd_set_cursor(0, 2); lcd_print(">"); lcd_set_cursor(1, 2); lcd_puts_P(_T(MSG_SELFTEST_FAN_YES)); lcd_set_cursor(0, 3); lcd_print(" "); lcd_set_cursor(1, 3); lcd_puts_P(_T(MSG_SELFTEST_FAN_NO)); } if (enc_dif < lcd_encoder_diff) { _result = check_opposite; lcd_set_cursor(0, 2); lcd_print(" "); lcd_set_cursor(1, 2); lcd_puts_P(_T(MSG_SELFTEST_FAN_YES)); lcd_set_cursor(0, 3); lcd_print(">"); lcd_set_cursor(1, 3); lcd_puts_P(_T(MSG_SELFTEST_FAN_NO)); } enc_dif = 0; lcd_encoder_diff = 0; } manage_heater(); _delay(100); } while (!lcd_clicked()); KEEPALIVE_STATE(IN_HANDLER); SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN); WRITE(EXTRUDER_0_AUTO_FAN_PIN, 0); SET_OUTPUT(FAN_PIN); #ifdef FAN_SOFT_PWM fanSpeedSoftPwm = 0; #else //FAN_SOFT_PWM analogWrite(FAN_PIN, 0); #endif //FAN_SOFT_PWM fanSpeed = 0; manage_heater(); return _result; } #ifdef FANCHECK static bool lcd_selftest_fan_dialog(int _fan) { bool _result = true; int _errno = 7; switch (_fan) { case 0: fanSpeed = 0; manage_heater(); //turn off fan setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, 1); //extruder fan #ifdef FAN_SOFT_PWM extruder_autofan_last_check = _millis(); fan_measuring = true; #endif //FAN_SOFT_PWM _delay(2000); //delay_keep_alive would turn off extruder fan, because temerature is too low manage_heater(); //count average fan speed from 2s delay and turn off fans if (!fan_speed[0]) _result = false; printf_P(PSTR("Test 1:\n")); printf_P(PSTR("Print fan speed: %d \n"), fan_speed[1]); printf_P(PSTR("Extr fan speed: %d \n"), fan_speed[0]); //SERIAL_ECHOPGM("Extruder fan speed: "); //MYSERIAL.println(fan_speed[0]); //SERIAL_ECHOPGM("Print fan speed: "); //MYSERIAL.print(fan_speed[1]); break; case 1: //will it work with Thotend > 50 C ? #ifdef FAN_SOFT_PWM fanSpeed = 255; fanSpeedSoftPwm = 255; extruder_autofan_last_check = _millis(); //store time when measurement starts fan_measuring = true; //start fan measuring, rest is on manage_heater #else //FAN_SOFT_PWM fanSpeed = 150; //print fan #endif //FAN_SOFT_PWM for (uint8_t i = 0; i < 5; i++) { delay_keep_alive(1000); lcd_set_cursor(18, 3); lcd_print("-"); delay_keep_alive(1000); lcd_set_cursor(18, 3); lcd_print("|"); } #ifdef FAN_SOFT_PWM fanSpeed = 0; fanSpeedSoftPwm = 0; #else //FAN_SOFT_PWM fanSpeed = 0; manage_heater(); //turn off fan manage_inactivity(true); //to turn off print fan #endif //FAN_SOFT_PWM printf_P(PSTR("Test 2:\n")); printf_P(PSTR("Print fan speed: %d \n"), fan_speed[1]); printf_P(PSTR("Extr fan speed: %d \n"), fan_speed[0]); if (!fan_speed[1]) { _result = false; _errno = 6; //print fan not spinning } #ifdef FAN_SOFT_PWM else { #else //FAN_SOFT_PWM else if (fan_speed[1] < 34) { //fan is spinning, but measured RPM are too low for print fan, it must be left extruder fan #endif //FAN_SOFT_PWM //check fans manually _result = lcd_selftest_manual_fan_check(1, true); //turn on print fan and check that left extruder fan is not spinning if (_result) { _result = lcd_selftest_manual_fan_check(1, false); //print fan is stil turned on; check that it is spinning if (!_result) _errno = 6; //print fan not spinning } else { _errno = 10; //swapped fans } } //SERIAL_ECHOPGM("Extruder fan speed: "); //MYSERIAL.println(fan_speed[0]); //SERIAL_ECHOPGM("Print fan speed: "); //MYSERIAL.println(fan_speed[1]); break; } if (!_result) { lcd_selftest_error(_errno, NULL, NULL); } return _result; } #endif //FANCHECK static int lcd_selftest_screen(testScreen screen, int _progress, int _progress_scale, bool _clear, int _delay) { lcd_update_enable(false); const char *_indicator = (_progress >= _progress_scale) ? "-" : "|"; if (_clear) lcd_clear(); lcd_set_cursor(0, 0); if (screen == testScreen::extruderFan) lcd_puts_P(_T(MSG_SELFTEST_FAN)); if (screen == testScreen::printFan) lcd_puts_P(_T(MSG_SELFTEST_FAN)); if (screen == testScreen::fansOk) lcd_puts_P(_T(MSG_SELFTEST_FAN)); if (screen == testScreen::endStops) lcd_puts_P(_i("Checking endstops"));////MSG_SELFTEST_CHECK_ENDSTOPS c=20 r=0 if (screen == testScreen::axisX) lcd_puts_P(_i("Checking X axis "));////MSG_SELFTEST_CHECK_X c=20 r=0 if (screen == testScreen::axisY) lcd_puts_P(_i("Checking Y axis "));////MSG_SELFTEST_CHECK_Y c=20 r=0 if (screen == testScreen::axisZ) lcd_puts_P(_i("Checking Z axis "));////MSG_SELFTEST_CHECK_Z c=20 r=0 if (screen == testScreen::bed) lcd_puts_P(_T(MSG_SELFTEST_CHECK_BED)); if (screen == testScreen::hotend || screen == testScreen::hotendOk) lcd_puts_P(_i("Checking hotend "));////MSG_SELFTEST_CHECK_HOTEND c=20 r=0 if (screen == testScreen::fsensor) lcd_puts_P(_T(MSG_SELFTEST_CHECK_FSENSOR)); if (screen == testScreen::fsensorOk) lcd_puts_P(_T(MSG_SELFTEST_CHECK_FSENSOR)); if (screen == testScreen::allCorrect) lcd_puts_P(_i("All correct "));////MSG_SELFTEST_CHECK_ALLCORRECT c=20 r=0 if (screen == testScreen::failed) lcd_puts_P(_T(MSG_SELFTEST_FAILED)); if (screen == testScreen::home) lcd_puts_P(_i("Calibrating home"));////c=20 r=1 lcd_set_cursor(0, 1); lcd_puts_P(separator); if ((screen >= testScreen::extruderFan) && (screen <= testScreen::fansOk)) { //SERIAL_ECHOLNPGM("Fan test"); lcd_puts_at_P(0, 2, _i("Extruder fan:"));////MSG_SELFTEST_EXTRUDER_FAN_SPEED c=18 r=0 lcd_set_cursor(18, 2); (screen < testScreen::printFan) ? lcd_print(_indicator) : lcd_print("OK"); lcd_puts_at_P(0, 3, _i("Print fan:"));////MSG_SELFTEST_PRINT_FAN_SPEED c=18 r=0 lcd_set_cursor(18, 3); (screen < testScreen::fansOk) ? lcd_print(_indicator) : lcd_print("OK"); } else if (screen >= testScreen::fsensor && screen <= testScreen::fsensorOk) { lcd_puts_at_P(0, 2, _i("Filament sensor:"));////MSG_SELFTEST_FILAMENT_SENSOR c=18 r=0 lcd_set_cursor(18, 2); (screen == testScreen::fsensor) ? lcd_print(_indicator) : lcd_print("OK"); } else if (screen < testScreen::fsensor) { //SERIAL_ECHOLNPGM("Other tests"); testScreen _step_block = testScreen::axisX; lcd_selftest_screen_step(2, 2, ((screen == _step_block) ? 1 : (screen < _step_block) ? 0 : 2), "X", _indicator); _step_block = testScreen::axisY; lcd_selftest_screen_step(2, 8, ((screen == _step_block) ? 1 : (screen < _step_block) ? 0 : 2), "Y", _indicator); _step_block = testScreen::axisZ; lcd_selftest_screen_step(2, 14, ((screen == _step_block) ? 1 : (screen < _step_block) ? 0 : 2), "Z", _indicator); _step_block = testScreen::bed; lcd_selftest_screen_step(3, 0, ((screen == _step_block) ? 1 : (screen < _step_block) ? 0 : 2), "Bed", _indicator); _step_block = testScreen::hotend; lcd_selftest_screen_step(3, 9, ((screen == _step_block) ? 1 : (screen < _step_block) ? 0 : 2), "Hotend", _indicator); } if (_delay > 0) delay_keep_alive(_delay); _progress++; return (_progress >= _progress_scale * 2) ? 0 : _progress; } static void lcd_selftest_screen_step(int _row, int _col, int _state, const char *_name, const char *_indicator) { lcd_set_cursor(_col, _row); switch (_state) { case 1: lcd_print(_name); lcd_set_cursor(_col + strlen(_name), _row); lcd_print(":"); lcd_set_cursor(_col + strlen(_name) + 1, _row); lcd_print(_indicator); break; case 2: lcd_print(_name); lcd_set_cursor(_col + strlen(_name), _row); lcd_print(":"); lcd_set_cursor(_col + strlen(_name) + 1, _row); lcd_print("OK"); break; default: lcd_print(_name); } } /** End of menus **/ /** Menu action functions **/ static bool check_file(const char* filename) { if (farm_mode) return true; bool result = false; uint32_t filesize; card.openFile((char*)filename, true); filesize = card.getFileSize(); if (filesize > END_FILE_SECTION) { card.setIndex(filesize - END_FILE_SECTION); } while (!card.eof() && !result) { card.sdprinting = true; get_command(); result = check_commands(); } card.printingHasFinished(); strncpy_P(lcd_status_message, _T(WELCOME_MSG), LCD_WIDTH); lcd_finishstatus(); return result; } static void menu_action_sdfile(const char* filename) { loading_flag = false; char cmd[30]; char* c; bool result = true; sprintf_P(cmd, PSTR("M23 %s"), filename); for (c = &cmd[4]; *c; c++) *c = tolower(*c); const char end[5] = ".gco"; //we are storing just first 8 characters of 8.3 filename assuming that extension is always ".gco" for (int i = 0; i < 8; i++) { if (strcmp((cmd + i + 4), end) == 0) { //filename is shorter then 8.3, store '\0' character on position where ".gco" string was found to terminate stored string properly eeprom_write_byte((uint8_t*)EEPROM_FILENAME + i, '\0'); break; } else { eeprom_write_byte((uint8_t*)EEPROM_FILENAME + i, cmd[i + 4]); } } uint8_t depth = (uint8_t)card.getWorkDirDepth(); eeprom_write_byte((uint8_t*)EEPROM_DIR_DEPTH, depth); for (uint8_t i = 0; i < depth; i++) { for (int j = 0; j < 8; j++) { eeprom_write_byte((uint8_t*)EEPROM_DIRS + j + 8 * i, dir_names[i][j]); } } if (!check_file(filename)) { result = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("File incomplete. Continue anyway?"), false, false);////MSG_FILE_INCOMPLETE c=20 r=2 lcd_update_enable(true); } if (result) { enquecommand(cmd); enquecommand_P(PSTR("M24")); } lcd_return_to_status(); } void menu_action_sddirectory(const char* filename) { uint8_t depth = (uint8_t)card.getWorkDirDepth(); strcpy(dir_names[depth], filename); MYSERIAL.println(dir_names[depth]); card.chdir(filename); lcd_encoder = 0; } /** LCD API **/ void ultralcd_init() { { uint8_t autoDepleteRaw = eeprom_read_byte(reinterpret_cast(EEPROM_AUTO_DEPLETE)); if (0xff == autoDepleteRaw) lcd_autoDeplete = false; else lcd_autoDeplete = autoDepleteRaw; } lcd_init(); lcd_refresh(); lcd_longpress_func = menu_lcd_longpress_func; lcd_charsetup_func = menu_lcd_charsetup_func; lcd_lcdupdate_func = menu_lcd_lcdupdate_func; menu_menu = lcd_status_screen; menu_lcd_charsetup_func(); SET_INPUT(BTN_EN1); SET_INPUT(BTN_EN2); WRITE(BTN_EN1, HIGH); WRITE(BTN_EN2, HIGH); #if BTN_ENC > 0 SET_INPUT(BTN_ENC); WRITE(BTN_ENC, HIGH); #endif #if defined (SDSUPPORT) && defined(SDCARDDETECT) && (SDCARDDETECT > 0) pinMode(SDCARDDETECT, INPUT); WRITE(SDCARDDETECT, HIGH); lcd_oldcardstatus = IS_SD_INSERTED; #endif//(SDCARDDETECT > 0) lcd_encoder_diff = 0; } void lcd_printer_connected() { printer_connected = true; } static void lcd_send_status() { if (farm_mode && no_response && ((_millis() - NcTime) > (NC_TIME * 1000))) { //send important status messages periodicaly prusa_statistics(important_status, saved_filament_type); NcTime = _millis(); #ifdef FARM_CONNECT_MESSAGE lcd_connect_printer(); #endif //FARM_CONNECT_MESSAGE } } #ifdef FARM_CONNECT_MESSAGE static void lcd_connect_printer() { lcd_update_enable(false); lcd_clear(); int i = 0; int t = 0; lcd_set_custom_characters_progress(); lcd_puts_at_P(0, 0, _i("Connect printer to")); lcd_puts_at_P(0, 1, _i("monitoring or hold")); lcd_puts_at_P(0, 2, _i("the knob to continue")); while (no_response) { i++; t++; delay_keep_alive(100); proc_commands(); if (t == 10) { prusa_statistics(important_status, saved_filament_type); t = 0; } if (READ(BTN_ENC)) { //if button is not pressed i = 0; lcd_puts_at_P(0, 3, PSTR(" ")); } if (i!=0) lcd_puts_at_P((i * 20) / (NC_BUTTON_LONG_PRESS * 10), 3, "\x01"); if (i == NC_BUTTON_LONG_PRESS * 10) { no_response = false; } } lcd_set_custom_characters_degree(); lcd_update_enable(true); lcd_update(2); } #endif //FARM_CONNECT_MESSAGE void lcd_ping() { //chceck if printer is connected to monitoring when in farm mode if (farm_mode) { bool empty = is_buffer_empty(); if ((_millis() - PingTime) * 0.001 > (empty ? PING_TIME : PING_TIME_LONG)) { //if commands buffer is empty use shorter time period //if there are comamnds in buffer, some long gcodes can delay execution of ping command //therefore longer period is used printer_connected = false; } else { lcd_printer_connected(); } } } void lcd_ignore_click(bool b) { ignore_click = b; wait_for_unclick = false; } void lcd_finishstatus() { int len = strlen(lcd_status_message); if (len > 0) { while (len < LCD_WIDTH) { lcd_status_message[len++] = ' '; } } lcd_status_message[LCD_WIDTH] = '\0'; lcd_draw_update = 2; } void lcd_setstatus(const char* message) { if (lcd_status_message_level > 0) return; strncpy(lcd_status_message, message, LCD_WIDTH); lcd_finishstatus(); } void lcd_setstatuspgm(const char* message) { if (lcd_status_message_level > 0) return; strncpy_P(lcd_status_message, message, LCD_WIDTH); lcd_status_message[LCD_WIDTH] = 0; lcd_finishstatus(); } void lcd_setalertstatuspgm(const char* message) { lcd_setstatuspgm(message); lcd_status_message_level = 1; lcd_return_to_status(); } void lcd_reset_alert_level() { lcd_status_message_level = 0; } uint8_t get_message_level() { return lcd_status_message_level; } void menu_lcd_longpress_func(void) { move_menu_scale = 1.0; menu_submenu(lcd_move_z); } void menu_lcd_charsetup_func(void) { if (menu_menu == lcd_status_screen) lcd_set_custom_characters_degree(); else lcd_set_custom_characters_arrows(); } static inline bool z_menu_expired() { return (menu_menu == lcd_babystep_z && lcd_timeoutToStatus.expired(LCD_TIMEOUT_TO_STATUS_BABYSTEP_Z)); } static inline bool other_menu_expired() { return (menu_menu != lcd_status_screen && menu_menu != lcd_babystep_z && lcd_timeoutToStatus.expired(LCD_TIMEOUT_TO_STATUS)); } static inline bool forced_menu_expire() { bool retval = (menu_menu != lcd_status_screen && forceMenuExpire); forceMenuExpire = false; return retval; } void menu_lcd_lcdupdate_func(void) { #if (SDCARDDETECT > 0) if ((IS_SD_INSERTED != lcd_oldcardstatus)) { lcd_draw_update = 2; lcd_oldcardstatus = IS_SD_INSERTED; lcd_refresh(); // to maybe revive the LCD if static electricity killed it. if (lcd_oldcardstatus) { card.initsd(); LCD_MESSAGERPGM(_T(WELCOME_MSG)); bMain=false; // flag (i.e. 'fake parameter') for 'lcd_sdcard_menu()' function menu_submenu(lcd_sdcard_menu); //get_description(); } else { card.release(); LCD_MESSAGERPGM(_i("Card removed"));////MSG_SD_REMOVED c=0 r=0 } } #endif//CARDINSERTED if (lcd_next_update_millis < _millis()) { if (abs(lcd_encoder_diff) >= ENCODER_PULSES_PER_STEP) { if (lcd_draw_update == 0) lcd_draw_update = 1; lcd_encoder += lcd_encoder_diff / ENCODER_PULSES_PER_STEP; lcd_encoder_diff = 0; lcd_timeoutToStatus.start(); } if (LCD_CLICKED) lcd_timeoutToStatus.start(); (*menu_menu)(); if (z_menu_expired() || other_menu_expired() || forced_menu_expire()) { // Exiting a menu. Let's call the menu function the last time with menu_leaving flag set to true // to give it a chance to save its state. // This is useful for example, when the babystep value has to be written into EEPROM. if (menu_menu != NULL) { menu_leaving = 1; (*menu_menu)(); menu_leaving = 0; } lcd_clear(); lcd_return_to_status(); lcd_draw_update = 2; } if (lcd_draw_update == 2) lcd_clear(); if (lcd_draw_update) lcd_draw_update--; lcd_next_update_millis = _millis() + LCD_UPDATE_INTERVAL; } if (!SdFatUtil::test_stack_integrity()) stack_error(); lcd_ping(); //check that we have received ping command if we are in farm mode lcd_send_status(); if (lcd_commands_type == LCD_COMMAND_V2_CAL) lcd_commands(); }