// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware. // License: GPL #ifndef MARLIN_H #define MARLIN_H #include "macros.h" #include #include #include #include #include #include #include #include #include #include "system_timer.h" #include "fastio.h" #include "Configuration.h" #include "pins.h" #include "Timer.h" extern uint8_t mbl_z_probe_nr; #ifndef AT90USB #define HardwareSerial_h // trick to disable the standard HWserial #endif #if (ARDUINO >= 100) # include "Arduino.h" #else # include "WProgram.h" #endif // Arduino < 1.0.0 does not define this, so we need to do it ourselves #ifndef analogInputToDigitalPin # define analogInputToDigitalPin(p) ((p) + A0) #endif #ifdef AT90USB #include "HardwareSerial.h" #endif #include "MarlinSerial.h" #ifndef cbi #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #endif #ifndef sbi #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) #endif //#include "WString.h" #ifdef AT90USB #ifdef BTENABLED #define MYSERIAL bt #else #define MYSERIAL Serial #endif // BTENABLED #else #define MYSERIAL MSerial #endif #include "lcd.h" #ifdef __cplusplus extern "C" { #endif extern FILE _uartout; #ifdef __cplusplus } #endif #define uartout (&_uartout) #define SERIAL_PROTOCOL(x) (MYSERIAL.print(x)) #define SERIAL_PROTOCOL_F(x,y) (MYSERIAL.print(x,y)) #define SERIAL_PROTOCOLPGM(x) (serialprintPGM(PSTR(x))) #define SERIAL_PROTOCOLRPGM(x) (serialprintPGM((x))) #define SERIAL_PROTOCOLLN(x) (MYSERIAL.println(x)/*,MYSERIAL.write('\n')*/) #define SERIAL_PROTOCOLLNPGM(x) (serialprintPGM(PSTR(x)),MYSERIAL.println()/*write('\n')*/) #define SERIAL_PROTOCOLLNRPGM(x) (serialprintPGM((x)),MYSERIAL.println()/*write('\n')*/) extern const char errormagic[] PROGMEM; extern const char echomagic[] PROGMEM; #define SERIAL_ERROR_START (serialprintPGM(errormagic)) #define SERIAL_ERROR(x) SERIAL_PROTOCOL(x) #define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ERRORRPGM(x) SERIAL_PROTOCOLRPGM(x) #define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x) #define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x) #define SERIAL_ERRORLNRPGM(x) SERIAL_PROTOCOLLNRPGM(x) #define SERIAL_ECHO_START (serialprintPGM(echomagic)) #define SERIAL_ECHO(x) SERIAL_PROTOCOL(x) #define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ECHORPGM(x) SERIAL_PROTOCOLRPGM(x) #define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x) #define SERIAL_ECHOLNPGM(x) SERIAL_PROTOCOLLNPGM(x) #define SERIAL_ECHOLNRPGM(x) SERIAL_PROTOCOLLNRPGM(x) #define SERIAL_ECHOPAIR(name,value) (serial_echopair_P(PSTR(name),(value))) void serial_echopair_P(const char *s_P, float v); void serial_echopair_P(const char *s_P, double v); void serial_echopair_P(const char *s_P, unsigned long v); //Things to write to serial from Program memory. Saves 400 to 2k of RAM. // Making this FORCE_INLINE is not a good idea when running out of FLASH // I'd rather skip a few CPU ticks than 5.5KB (!!) of FLASH void serialprintPGM(const char *str); bool is_buffer_empty(); void process_commands(); void ramming(); void manage_inactivity(bool ignore_stepper_queue=false); #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 #define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON) #define disable_x() { WRITE(X_ENABLE_PIN,!X_ENABLE_ON); axis_known_position[X_AXIS] = false; } #else #define enable_x() ; #define disable_x() ; #endif #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1 #ifdef Y_DUAL_STEPPER_DRIVERS #define enable_y() { WRITE(Y_ENABLE_PIN, Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, Y_ENABLE_ON); } #define disable_y() { WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, !Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; } #else #define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON) #define disable_y() { WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; } #endif #else #define enable_y() ; #define disable_y() ; #endif #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1 #if defined(Z_AXIS_ALWAYS_ON) #ifdef Z_DUAL_STEPPER_DRIVERS #define poweron_z() { WRITE(Z_ENABLE_PIN, Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN, Z_ENABLE_ON); } #define poweroff_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; } #else #define poweron_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON) #define poweroff_z() {} #endif #else #ifdef Z_DUAL_STEPPER_DRIVERS #define poweron_z() { WRITE(Z_ENABLE_PIN, Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN, Z_ENABLE_ON); } #define poweroff_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; } #else #define poweron_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON) #define poweroff_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; } #endif #endif #else #define poweron_z() {} #define poweroff_z() {} #endif #ifndef PSU_Delta #define enable_z() poweron_z() #define disable_z() poweroff_z() #else void init_force_z(); void check_force_z(); void enable_force_z(); void disable_force_z(); #define enable_z() enable_force_z() #define disable_z() disable_force_z() #endif // PSU_Delta //#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1 //#ifdef Z_DUAL_STEPPER_DRIVERS //#define enable_z() { WRITE(Z_ENABLE_PIN, Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN, Z_ENABLE_ON); } //#define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; } //#else //#define enable_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON) //#define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; } //#endif //#else //#define enable_z() ; //#define disable_z() ; //#endif #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1) #define enable_e0() WRITE(E0_ENABLE_PIN, E_ENABLE_ON) #define disable_e0() WRITE(E0_ENABLE_PIN,!E_ENABLE_ON) #else #define enable_e0() /* nothing */ #define disable_e0() /* nothing */ #endif #if (EXTRUDERS > 1) && defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1) #define enable_e1() WRITE(E1_ENABLE_PIN, E_ENABLE_ON) #define disable_e1() WRITE(E1_ENABLE_PIN,!E_ENABLE_ON) #else #define enable_e1() /* nothing */ #define disable_e1() /* nothing */ #endif #if (EXTRUDERS > 2) && defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1) #define enable_e2() WRITE(E2_ENABLE_PIN, E_ENABLE_ON) #define disable_e2() WRITE(E2_ENABLE_PIN,!E_ENABLE_ON) #else #define enable_e2() /* nothing */ #define disable_e2() /* nothing */ #endif #define FARM_FILAMENT_COLOR_NONE 99; enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5}; #define X_AXIS_MASK 1 #define Y_AXIS_MASK 2 #define Z_AXIS_MASK 4 #define E_AXIS_MASK 8 #define X_HEAD_MASK 16 #define Y_HEAD_MASK 32 void FlushSerialRequestResend(); void ClearToSend(); void update_currents(); void get_coordinates(); void prepare_move(); void kill(const char *full_screen_message = NULL, unsigned char id = 0); void finishAndDisableSteppers(); void UnconditionalStop(); // Stop heaters, motion and clear current print status void Stop(); // Emergency stop used by overtemp functions which allows recovery bool IsStopped(); // Returns true if the print has been stopped //put an ASCII command at the end of the current buffer, read from flash #define enquecommand_P(cmd) enquecommand(cmd, true) //put an ASCII command at the begin of the current buffer, read from flash #define enquecommand_front_P(cmd) enquecommand_front(cmd, true) void prepare_arc_move(char isclockwise); void clamp_to_software_endstops(float target[3]); void refresh_cmd_timeout(void); // Timer counter, incremented by the 1ms Arduino timer. // The standard Arduino timer() function returns this value atomically // by disabling / enabling interrupts. This is costly, if the interrupts are known // to be disabled. #ifdef SYSTEM_TIMER_2 extern volatile unsigned long timer2_millis; #else //SYSTEM_TIMER_2 extern volatile unsigned long timer0_millis; #endif //SYSTEM_TIMER_2 // An unsynchronized equivalent to a standard Arduino _millis() function. // To be used inside an interrupt routine. FORCE_INLINE unsigned long millis_nc() { #ifdef SYSTEM_TIMER_2 return timer2_millis; #else //SYSTEM_TIMER_2 return timer0_millis; #endif //SYSTEM_TIMER_2 } #ifdef FAST_PWM_FAN void setPwmFrequency(uint8_t pin, int val); #endif extern bool fans_check_enabled; extern float homing_feedrate[]; extern uint8_t axis_relative_modes; extern float feedrate; extern int feedmultiply; extern int extrudemultiply; // Sets extrude multiply factor (in percent) for all extruders extern int extruder_multiply[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually extern float extruder_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner extern float current_position[NUM_AXIS] ; extern float destination[NUM_AXIS] ; extern float min_pos[3]; extern float max_pos[3]; extern bool axis_known_position[3]; extern int fanSpeed; extern uint8_t newFanSpeed; extern int8_t lcd_change_fil_state; extern float default_retraction; #ifdef TMC2130 void homeaxis(int axis, uint8_t cnt = 1, uint8_t* pstep = 0); #else void homeaxis(int axis, uint8_t cnt = 1); #endif //TMC2130 #ifdef FAN_SOFT_PWM extern unsigned char fanSpeedSoftPwm; #endif #ifdef FWRETRACT extern bool retracted[EXTRUDERS]; extern float retract_length_swap; extern float retract_recover_length_swap; #endif extern uint8_t host_keepalive_interval; extern unsigned long starttime; extern unsigned long stoptime; extern int bowden_length[4]; extern bool is_usb_printing; extern bool homing_flag; extern bool loading_flag; extern unsigned int usb_printing_counter; extern unsigned long kicktime; extern unsigned long total_filament_used; void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time); extern unsigned int heating_status; extern unsigned int status_number; extern unsigned int heating_status_counter; extern char snmm_filaments_used; extern unsigned long PingTime; extern unsigned long NcTime; extern bool no_response; extern uint8_t important_status; extern uint8_t saved_filament_type; extern bool fan_state[2]; extern int fan_edge_counter[2]; extern int fan_speed[2]; // Handling multiple extruders pins extern uint8_t active_extruder; //Long pause extern unsigned long pause_time; extern unsigned long start_pause_print; extern unsigned long t_fan_rising_edge; extern bool mesh_bed_leveling_flag; extern bool mesh_bed_run_from_menu; extern int8_t lcd_change_fil_state; // save/restore printing extern bool saved_printing; extern uint8_t saved_printing_type; #define PRINTING_TYPE_SD 0 #define PRINTING_TYPE_USB 1 #define PRINTING_TYPE_NONE 2 //save/restore printing in case that mmu is not responding extern bool mmu_print_saved; //estimated time to end of the print extern uint8_t print_percent_done_normal; extern uint8_t print_percent_done_silent; extern uint16_t print_time_remaining_normal; extern uint16_t print_time_remaining_silent; extern uint16_t print_time_to_change_normal; extern uint16_t print_time_to_change_silent; #define PRINT_TIME_REMAINING_INIT 0xffff extern uint16_t mcode_in_progress; extern uint16_t gcode_in_progress; extern LongTimer safetyTimer; #define PRINT_PERCENT_DONE_INIT 0xff #define PRINTER_ACTIVE (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == CustomMsg::TempCal) || saved_printing || (lcd_commands_type == LcdCommands::Layer1Cal) || mmu_print_saved || homing_flag || mesh_bed_leveling_flag) //! Beware - mcode_in_progress is set as soon as the command gets really processed, //! which is not the same as posting the M600 command into the command queue //! There can be a considerable lag between posting M600 and its real processing which might result //! in posting multiple M600's into the command queue //! Instead, the fsensor uses another state variable :( , which is set to true, when the M600 command is enqued //! and is reset to false when the fsensor returns into its filament runout finished handler //! I'd normally change this macro, but who knows what would happen in the MMU :) #define CHECK_FSENSOR ((IS_SD_PRINTING || is_usb_printing) && (mcode_in_progress != 600) && !saved_printing && e_active()) extern void calculate_extruder_multipliers(); // Similar to the default Arduino delay function, // but it keeps the background tasks running. extern void delay_keep_alive(unsigned int ms); extern void check_babystep(); extern void long_pause(); extern void crashdet_stop_and_save_print(); #ifdef HEATBED_ANALYSIS void d_setup(); float d_ReadData(); void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y); void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y); #endif //HEATBED_ANALYSIS float temp_comp_interpolation(float temperature); void show_fw_version_warnings(); uint8_t check_printer_version(); #ifdef PINDA_THERMISTOR float temp_compensation_pinda_thermistor_offset(float temperature_pinda); #endif //PINDA_THERMISTOR void serialecho_temperatures(); bool check_commands(); void uvlo_(); void uvlo_tiny(); void recover_print(uint8_t automatic); void setup_uvlo_interrupt(); #if defined(TACH_1) && TACH_1 >-1 void setup_fan_interrupt(); #endif extern bool recover_machine_state_after_power_panic(); extern void restore_print_from_eeprom(bool mbl_was_active); extern void position_menu(); extern void print_world_coordinates(); extern void print_physical_coordinates(); extern void print_mesh_bed_leveling_table(); extern void stop_and_save_print_to_ram(float z_move, float e_move); extern void restore_print_from_ram_and_continue(float e_move); extern void cancel_saved_printing(); //estimated time to end of the print extern uint8_t calc_percent_done(); // States for managing Marlin and host communication // Marlin sends messages if blocked or busy /*enum MarlinBusyState { NOT_BUSY, // Not in a handler IN_HANDLER, // Processing a GCode IN_PROCESS, // Known to be blocking command input (as in G29) PAUSED_FOR_USER, // Blocking pending any input PAUSED_FOR_INPUT // Blocking pending text input (concept) };*/ #define NOT_BUSY 1 #define IN_HANDLER 2 #define IN_PROCESS 3 #define PAUSED_FOR_USER 4 #define PAUSED_FOR_INPUT 5 #define KEEPALIVE_STATE(n) do { busy_state = n;} while (0) extern void host_keepalive(); //extern MarlinBusyState busy_state; extern int8_t busy_state; #ifdef TMC2130 #define FORCE_HIGH_POWER_START force_high_power_mode(true) #define FORCE_HIGH_POWER_END force_high_power_mode(false) void force_high_power_mode(bool start_high_power_section); #endif //TMC2130 // G-codes bool gcode_M45(bool onlyZ, int8_t verbosity_level); void gcode_M114(); #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))) void gcode_M123(); #endif //FANCHECK and TACH_0 and TACH_1 void gcode_M701(); #define UVLO !(PINE & (1<<4)) void proc_commands(); void M600_load_filament(); void M600_load_filament_movements(); void M600_wait_for_user(float HotendTempBckp); void M600_check_state(float nozzle_temp); void load_filament_final_feed(); void marlin_wait_for_click(); void raise_z_above(float target, bool plan=true); extern "C" void softReset(); void stack_error(); void pullup_error(bool fromTempISR); extern uint32_t IP_address; #endif