//! @file #include "Marlin.h" #include "fsensor.h" #include #include "pat9125.h" #include "stepper.h" #include "io_atmega2560.h" #include "cmdqueue.h" #include "ultralcd.h" #include "mmu.h" #include "cardreader.h" //! @name Basic parameters //! @{ #define FSENSOR_CHUNK_LEN 0.64F //!< filament sensor chunk length 0.64mm #define FSENSOR_ERR_MAX 17 //!< filament sensor maximum error count for runout detection //! @} //! @name Optical quality measurement parameters //! @{ #define FSENSOR_OQ_MAX_ES 6 //!< maximum error sum while loading (length ~64mm = 100chunks) #define FSENSOR_OQ_MAX_EM 2 //!< maximum error counter value while loading #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd per chunk (applied to avg value) #define FSENSOR_OQ_MAX_YD 200 //!< maximum yd per chunk (applied to avg value) #define FSENSOR_OQ_MAX_PD 4 //!< maximum positive deviation (= yd_max/yd_avg) #define FSENSOR_OQ_MAX_ND 5 //!< maximum negative deviation (= yd_avg/yd_min) #define FSENSOR_OQ_MAX_SH 13 //!< maximum shutter value //! @} const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n"; // PJ7 can not be used (does not have PinChangeInterrupt possibility) #define FSENSOR_INT_PIN 75 //!< filament sensor interrupt pin PJ4 #define FSENSOR_INT_PIN_MASK 0x10 //!< filament sensor interrupt pin mask (bit4) #define FSENSOR_INT_PIN_PIN_REG PINJ // PIN register @ PJ4 #define FSENSOR_INT_PIN_VECT PCINT1_vect // PinChange ISR @ PJ4 #define FSENSOR_INT_PIN_PCMSK_REG PCMSK1 // PinChangeMaskRegister @ PJ4 #define FSENSOR_INT_PIN_PCMSK_BIT PCINT13 // PinChange Interrupt / PinChange Enable Mask @ PJ4 #define FSENSOR_INT_PIN_PCICR_BIT PCIE1 // PinChange Interrupt Enable / Flag @ PJ4 //uint8_t fsensor_int_pin = FSENSOR_INT_PIN; uint8_t fsensor_int_pin_old = 0; int16_t fsensor_chunk_len = 0; //! enabled = initialized and sampled every chunk event bool fsensor_enabled = true; //! runout watching is done in fsensor_update (called from main loop) bool fsensor_watch_runout = true; //! not responding - is set if any communication error occurred during initialization or readout bool fsensor_not_responding = false; //! printing saved bool fsensor_printing_saved = false; //! enable/disable quality meassurement bool fsensor_oq_meassure_enabled = false; //! number of errors, updated in ISR uint8_t fsensor_err_cnt = 0; //! variable for accumulating step count (updated callbacks from stepper and ISR) int16_t fsensor_st_cnt = 0; //! last dy value from pat9125 sensor (used in ISR) int16_t fsensor_dy_old = 0; //! log flag: 0=log disabled, 1=log enabled uint8_t fsensor_log = 1; //! @name filament autoload variables //! @{ //! autoload feature enabled bool fsensor_autoload_enabled = true; //! autoload watching enable/disable flag bool fsensor_watch_autoload = false; // uint16_t fsensor_autoload_y; // uint8_t fsensor_autoload_c; // uint32_t fsensor_autoload_last_millis; // uint8_t fsensor_autoload_sum; //! @} //! @name filament optical quality measurement variables //! @{ //! Measurement enable/disable flag bool fsensor_oq_meassure = false; //! skip-chunk counter, for accurate measurement is necessary to skip first chunk... uint8_t fsensor_oq_skipchunk; //! number of samples from start of measurement uint8_t fsensor_oq_samples; //! sum of steps in positive direction movements uint16_t fsensor_oq_st_sum; //! sum of deltas in positive direction movements uint16_t fsensor_oq_yd_sum; //! sum of errors during measurement uint16_t fsensor_oq_er_sum; //! max error counter value during measurement uint8_t fsensor_oq_er_max; //! minimum delta value int16_t fsensor_oq_yd_min; //! maximum delta value int16_t fsensor_oq_yd_max; //! sum of shutter value uint16_t fsensor_oq_sh_sum; //! @} void fsensor_stop_and_save_print(void) { printf_P(PSTR("fsensor_stop_and_save_print\n")); stop_and_save_print_to_ram(0, 0); //XYZE - no change } void fsensor_restore_print_and_continue(void) { printf_P(PSTR("fsensor_restore_print_and_continue\n")); fsensor_watch_runout = true; fsensor_err_cnt = 0; restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change } void fsensor_init(void) { #ifdef PAT9125 uint8_t pat9125 = pat9125_init(); printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125); #endif //PAT9125 uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR); fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED); #ifdef PAT9125 uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED); fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false; fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * cs.axis_steps_per_unit[E_AXIS]); if (!pat9125) { fsensor = 0; //disable sensor fsensor_not_responding = true; } else fsensor_not_responding = false; #endif //PAT9125 if (fsensor) fsensor_enable(); else fsensor_disable(); printf_P(PSTR("FSensor %S\n"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED\n"))); if (check_for_ir_sensor()) ir_sensor_detected = true; } bool fsensor_enable(void) { #ifdef PAT9125 if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working uint8_t pat9125 = pat9125_init(); printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125); if (pat9125) fsensor_not_responding = false; else fsensor_not_responding = true; fsensor_enabled = pat9125 ? true : false; fsensor_watch_runout = true; fsensor_oq_meassure = false; fsensor_err_cnt = 0; fsensor_dy_old = 0; eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00); FSensorStateMenu = fsensor_enabled ? 1 : 0; } else //filament sensor is FINDA, always enable { fsensor_enabled = true; eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01); FSensorStateMenu = 1; } #else // PAT9125 fsensor_enabled = true; eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01); FSensorStateMenu = 1; #endif // PAT9125 return fsensor_enabled; } void fsensor_disable(void) { fsensor_enabled = false; eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00); FSensorStateMenu = 0; } void fsensor_autoload_set(bool State) { #ifdef PAT9125 if (!State) fsensor_autoload_check_stop(); #endif //PAT9125 fsensor_autoload_enabled = State; eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled); } void pciSetup(byte pin) { // !!! "digitalPinTo?????bit()" does not provide the correct results for some MCU pins *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group } #ifdef PAT9125 void fsensor_autoload_check_start(void) { // puts_P(_N("fsensor_autoload_check_start\n")); if (!fsensor_enabled) return; if (!fsensor_autoload_enabled) return; if (fsensor_watch_autoload) return; if (!pat9125_update_y()) //update sensor { fsensor_disable(); fsensor_not_responding = true; fsensor_watch_autoload = false; printf_P(ERRMSG_PAT9125_NOT_RESP, 3); return; } puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n")); fsensor_autoload_y = pat9125_y; //save current y value fsensor_autoload_c = 0; //reset number of changes counter fsensor_autoload_sum = 0; fsensor_autoload_last_millis = _millis(); fsensor_watch_runout = false; fsensor_watch_autoload = true; fsensor_err_cnt = 0; } void fsensor_autoload_check_stop(void) { // puts_P(_N("fsensor_autoload_check_stop\n")); if (!fsensor_enabled) return; // puts_P(_N("fsensor_autoload_check_stop 1\n")); if (!fsensor_autoload_enabled) return; // puts_P(_N("fsensor_autoload_check_stop 2\n")); if (!fsensor_watch_autoload) return; puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n")); fsensor_autoload_sum = 0; fsensor_watch_autoload = false; fsensor_watch_runout = true; fsensor_err_cnt = 0; } #endif //PAT9125 bool fsensor_check_autoload(void) { if (!fsensor_enabled) return false; if (!fsensor_autoload_enabled) return false; if (ir_sensor_detected) { if (digitalRead(IR_SENSOR_PIN) == 1) { fsensor_watch_autoload = true; } else if (fsensor_watch_autoload == true) { fsensor_watch_autoload = false; return true; } } #ifdef PAT9125 if (!fsensor_watch_autoload) { fsensor_autoload_check_start(); return false; } #if 0 uint8_t fsensor_autoload_c_old = fsensor_autoload_c; #endif if ((_millis() - fsensor_autoload_last_millis) < 25) return false; fsensor_autoload_last_millis = _millis(); if (!pat9125_update_y()) //update sensor { fsensor_disable(); fsensor_not_responding = true; printf_P(ERRMSG_PAT9125_NOT_RESP, 2); return false; } int16_t dy = pat9125_y - fsensor_autoload_y; if (dy) //? dy value is nonzero { if (dy > 0) //? delta-y value is positive (inserting) { fsensor_autoload_sum += dy; fsensor_autoload_c += 3; //increment change counter by 3 } else if (fsensor_autoload_c > 1) fsensor_autoload_c -= 2; //decrement change counter by 2 fsensor_autoload_y = pat9125_y; //save current value } else if (fsensor_autoload_c > 0) fsensor_autoload_c--; if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0; #if 0 puts_P(_N("fsensor_check_autoload\n")); if (fsensor_autoload_c != fsensor_autoload_c_old) printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum); #endif // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30)) if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20)) { // puts_P(_N("fsensor_check_autoload = true !!!\n")); return true; } #endif //PAT9125 return false; } void fsensor_oq_meassure_set(bool State) { fsensor_oq_meassure_enabled = State; eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled); } void fsensor_oq_meassure_start(uint8_t skip) { if (!fsensor_enabled) return; if (!fsensor_oq_meassure_enabled) return; printf_P(PSTR("fsensor_oq_meassure_start\n")); fsensor_oq_skipchunk = skip; fsensor_oq_samples = 0; fsensor_oq_st_sum = 0; fsensor_oq_yd_sum = 0; fsensor_oq_er_sum = 0; fsensor_oq_er_max = 0; fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD; fsensor_oq_yd_max = 0; fsensor_oq_sh_sum = 0; pat9125_update(); pat9125_y = 0; fsensor_watch_runout = false; fsensor_oq_meassure = true; } void fsensor_oq_meassure_stop(void) { if (!fsensor_enabled) return; if (!fsensor_oq_meassure_enabled) return; printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples); printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max); printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples)); fsensor_oq_meassure = false; fsensor_watch_runout = true; fsensor_err_cnt = 0; } const char _OK[] PROGMEM = "OK"; const char _NG[] PROGMEM = "NG!"; bool fsensor_oq_result(void) { if (!fsensor_enabled) return true; if (!fsensor_oq_meassure_enabled) return true; printf_P(_N("fsensor_oq_result\n")); bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES); printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG)); bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM); printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG)); uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum); bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD); printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG)); bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD)); printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG)); bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND)); printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG)); uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min); printf_P(_N(" yd_dev = %u\n"), yd_dev); uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1); printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG)); uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples); bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH); if (yd_qua >= 8) res_sh_avg = true; printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG)); bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg; printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG)); return res; } #ifdef PAT9125 ISR(FSENSOR_INT_PIN_VECT) { if (mmu_enabled || ir_sensor_detected) return; if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return; fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG; static bool _lock = false; if (_lock) return; _lock = true; int st_cnt = fsensor_st_cnt; fsensor_st_cnt = 0; sei(); uint8_t old_err_cnt = fsensor_err_cnt; uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y(); if (!pat9125_res) { fsensor_disable(); fsensor_not_responding = true; printf_P(ERRMSG_PAT9125_NOT_RESP, 1); } if (st_cnt != 0) { //movement if (st_cnt > 0) //positive movement { if (pat9125_y < 0) { if (fsensor_err_cnt) fsensor_err_cnt += 2; else fsensor_err_cnt++; } else if (pat9125_y > 0) { if (fsensor_err_cnt) fsensor_err_cnt--; } else //(pat9125_y == 0) if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1))) fsensor_err_cnt++; if (fsensor_oq_meassure) { if (fsensor_oq_skipchunk) { fsensor_oq_skipchunk--; fsensor_err_cnt = 0; } else { if (st_cnt == fsensor_chunk_len) { if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2; if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2; } fsensor_oq_samples++; fsensor_oq_st_sum += st_cnt; if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y; if (fsensor_err_cnt > old_err_cnt) fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt); if (fsensor_oq_er_max < fsensor_err_cnt) fsensor_oq_er_max = fsensor_err_cnt; fsensor_oq_sh_sum += pat9125_s; } } } else //negative movement { } } else { //no movement } #ifdef DEBUG_FSENSOR_LOG if (fsensor_log) { printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK")); if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max); } #endif //DEBUG_FSENSOR_LOG fsensor_dy_old = pat9125_y; pat9125_y = 0; _lock = false; return; } void fsensor_setup_interrupt(void) { pinMode(FSENSOR_INT_PIN, OUTPUT); digitalWrite(FSENSOR_INT_PIN, LOW); fsensor_int_pin_old = 0; //pciSetup(FSENSOR_INT_PIN); // !!! "pciSetup()" does not provide the correct results for some MCU pins // so interrupt registers settings: FSENSOR_INT_PIN_PCMSK_REG |= bit(FSENSOR_INT_PIN_PCMSK_BIT); // enable corresponding PinChangeInterrupt (individual pin) PCIFR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // clear previous occasional interrupt (set of pins) PCICR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // enable corresponding PinChangeInterrupt (set of pins) } #endif //PAT9125 void fsensor_st_block_begin(bool rev __attribute__((unused))) { // There's really nothing to do here: the stepper ISR likely has called us // already at the end of the last block, making this integration redundant. // LA1.5 might not always do that during a coasting move, so attempt to drain // fsensor_st_cnt anyway at the beginning of the new block. fsensor_st_block_chunk(0); } void fsensor_st_block_chunk(int cnt) { if (!fsensor_enabled) return; fsensor_st_cnt += cnt; if (abs(fsensor_st_cnt) >= fsensor_chunk_len) { // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);} else {PIN_VAL(FSENSOR_INT_PIN, HIGH);} } } //! @brief filament sensor update (perform M600 on filament runout) //! //! Works only if filament sensor is enabled. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth. //! If there is still no plausible signal from filament sensor plans M600 (Filament change). void fsensor_update(void) { #ifdef PAT9125 if (fsensor_enabled && fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX)) { bool autoload_enabled_tmp = fsensor_autoload_enabled; fsensor_autoload_enabled = false; bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled; fsensor_oq_meassure_enabled = true; fsensor_stop_and_save_print(); fsensor_err_cnt = 0; fsensor_oq_meassure_start(0); enquecommand_front_P((PSTR("G1 E-3 F200"))); process_commands(); KEEPALIVE_STATE(IN_HANDLER); cmdqueue_pop_front(); st_synchronize(); enquecommand_front_P((PSTR("G1 E3 F200"))); process_commands(); KEEPALIVE_STATE(IN_HANDLER); cmdqueue_pop_front(); st_synchronize(); uint8_t err_cnt = fsensor_err_cnt; fsensor_oq_meassure_stop(); bool err = false; err |= (err_cnt > 1); err |= (fsensor_oq_er_sum > 2); err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD)); if (!err) { printf_P(PSTR("fsensor_err_cnt = 0\n")); fsensor_restore_print_and_continue(); } else { printf_P(PSTR("fsensor_update - M600\n")); eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1); eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1); enquecommand_front_P(PSTR("PRUSA fsensor_recover")); enquecommand_front_P((PSTR("M600"))); fsensor_watch_runout = false; } fsensor_autoload_enabled = autoload_enabled_tmp; fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp; } #else //PAT9125 if ((digitalRead(IR_SENSOR_PIN) == 1) && CHECK_FSENSOR && fsensor_enabled && ir_sensor_detected) { fsensor_stop_and_save_print(); printf_P(PSTR("fsensor_update - M600\n")); eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1); eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1); enquecommand_front_P(PSTR("PRUSA fsensor_recover")); enquecommand_front_P((PSTR("M600"))); } #endif //PAT9125 }