#include "Marlin.h" #include "planner.h" #include "temperature.h" #include "ultralcd.h" #include "ConfigurationStore.h" #include "Configuration_prusa.h" #ifdef MESH_BED_LEVELING #include "mesh_bed_leveling.h" #endif #ifdef DEBUG_EEPROM_WRITE #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value), #value) #else //DEBUG_EEPROM_WRITE #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value), 0) #endif //DEBUG_EEPROM_WRITE void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size, char* name) { #ifdef DEBUG_EEPROM_WRITE printf_P(PSTR("EEPROM_WRITE_VAR addr=0x%04x size=0x%02hhx name=%s\n"), pos, size, name); #endif //DEBUG_EEPROM_WRITE while (size--) { uint8_t * const p = (uint8_t * const)pos; uint8_t v = *value; // EEPROM has only ~100,000 write cycles, // so only write bytes that have changed! if (v != eeprom_read_byte(p)) { eeprom_write_byte(p, v); if (eeprom_read_byte(p) != v) { SERIAL_ECHOLNPGM("EEPROM Error"); return; } } pos++; value++; }; } #ifdef DEBUG_EEPROM_READ #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value), #value) #else //DEBUG_EEPROM_READ #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value), 0) #endif //DEBUG_EEPROM_READ void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size, char* name) { #ifdef DEBUG_EEPROM_READ printf_P(PSTR("EEPROM_READ_VAR addr=0x%04x size=0x%02hhx name=%s\n"), pos, size, name); #endif //DEBUG_EEPROM_READ do { *value = eeprom_read_byte((unsigned char*)pos); pos++; value++; }while(--size); } //====================================================================================== #define EEPROM_OFFSET 20 #define EEPROM_M500_SIZE 188 //bytes // IMPORTANT: Whenever there are changes made to the variables stored in EEPROM // in the functions below, also increment the version number and update EEPROM_M500_SIZE. This makes sure that // the default values are used whenever there is a change to the data, to prevent // wrong data being written to the variables. // ALSO: always make sure the variables in the Store and retrieve sections are in the same order. #define EEPROM_VERSION "V3" #ifdef EEPROM_SETTINGS void Config_StoreSettings(uint16_t offset) { char ver[4]= "000"; int i = offset; EEPROM_WRITE_VAR(i,ver); // invalidate data first EEPROM_WRITE_VAR(i,axis_steps_per_unit); EEPROM_WRITE_VAR(i,max_feedrate_normal); EEPROM_WRITE_VAR(i,max_acceleration_units_per_sq_second_normal); EEPROM_WRITE_VAR(i,acceleration); EEPROM_WRITE_VAR(i,retract_acceleration); EEPROM_WRITE_VAR(i,minimumfeedrate); EEPROM_WRITE_VAR(i,mintravelfeedrate); EEPROM_WRITE_VAR(i,minsegmenttime); EEPROM_WRITE_VAR(i,max_jerk[X_AXIS]); EEPROM_WRITE_VAR(i,max_jerk[Y_AXIS]); EEPROM_WRITE_VAR(i,max_jerk[Z_AXIS]); EEPROM_WRITE_VAR(i,max_jerk[E_AXIS]); EEPROM_WRITE_VAR(i,add_homing); /* EEPROM_WRITE_VAR(i,plaPreheatHotendTemp); EEPROM_WRITE_VAR(i,plaPreheatHPBTemp); EEPROM_WRITE_VAR(i,plaPreheatFanSpeed); EEPROM_WRITE_VAR(i,absPreheatHotendTemp); EEPROM_WRITE_VAR(i,absPreheatHPBTemp); EEPROM_WRITE_VAR(i,absPreheatFanSpeed); */ EEPROM_WRITE_VAR(i,zprobe_zoffset); #ifdef PIDTEMP EEPROM_WRITE_VAR(i,Kp); EEPROM_WRITE_VAR(i,Ki); EEPROM_WRITE_VAR(i,Kd); #else float dummy = 3000.0f; EEPROM_WRITE_VAR(i,dummy); dummy = 0.0f; EEPROM_WRITE_VAR(i,dummy); EEPROM_WRITE_VAR(i,dummy); #endif #ifdef PIDTEMPBED EEPROM_WRITE_VAR(i, bedKp); EEPROM_WRITE_VAR(i, bedKi); EEPROM_WRITE_VAR(i, bedKd); #endif int lcd_contrast = 0; EEPROM_WRITE_VAR(i,lcd_contrast); #ifdef FWRETRACT EEPROM_WRITE_VAR(i,autoretract_enabled); EEPROM_WRITE_VAR(i,retract_length); #if EXTRUDERS > 1 EEPROM_WRITE_VAR(i,retract_length_swap); #endif EEPROM_WRITE_VAR(i,retract_feedrate); EEPROM_WRITE_VAR(i,retract_zlift); EEPROM_WRITE_VAR(i,retract_recover_length); #if EXTRUDERS > 1 EEPROM_WRITE_VAR(i,retract_recover_length_swap); #endif EEPROM_WRITE_VAR(i,retract_recover_feedrate); #endif // Save filament sizes EEPROM_WRITE_VAR(i, volumetric_enabled); EEPROM_WRITE_VAR(i, filament_size[0]); #if EXTRUDERS > 1 EEPROM_WRITE_VAR(i, filament_size[1]); #if EXTRUDERS > 2 EEPROM_WRITE_VAR(i, filament_size[2]); #endif #endif EEPROM_WRITE_VAR(i,max_feedrate_silent); EEPROM_WRITE_VAR(i,max_acceleration_units_per_sq_second_silent); if (EEPROM_M500_SIZE + EEPROM_OFFSET == i) { char ver2[4] = EEPROM_VERSION; i = offset; EEPROM_WRITE_VAR(i, ver2); // validate data SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Settings Stored"); } else { //size of eeprom M500 section probably changed by mistake and data are not valid; do not validate data by storing eeprom version //M500 EEPROM section will be erased on next printer reboot and default vaules will be used puts_P(PSTR("Data stored to EEPROM not valid.")); } } #endif //EEPROM_SETTINGS #ifndef DISABLE_M503 void Config_PrintSettings(uint8_t level) { // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown #ifdef TMC2130 printf_P(PSTR( "%SSteps per unit:\n%S M92 X%.2f Y%.2f Z%.2f E%.2f\n" "%SMaximum feedrates - normal (mm/s):\n%S M203 X%.2f Y%.2f Z%.2f E%.2f\n" "%SMaximum feedrates - stealth (mm/s):\n%S M203 X%.2f Y%.2f Z%.2f E%.2f\n" "%SMaximum acceleration - normal (mm/s2):\n%S M201 X%lu Y%lu Z%lu E%lu\n" "%SMaximum acceleration - stealth (mm/s2):\n%S M201 X%lu Y%lu Z%lu E%lu\n" "%SAcceleration: S=acceleration, T=retract acceleration\n%S M204 S%.2f T%.2f\n" "%SAdvanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)\n%S M205 S%.2f T%.2f B%.2f X%.2f Y%.2f Z%.2f E%.2f\n" "%SHome offset (mm):\n%S M206 X%.2f Y%.2f Z%.2f\n" ), echomagic, echomagic, axis_steps_per_unit[X_AXIS], axis_steps_per_unit[Y_AXIS], axis_steps_per_unit[Z_AXIS], axis_steps_per_unit[E_AXIS], echomagic, echomagic, max_feedrate_normal[X_AXIS], max_feedrate_normal[Y_AXIS], max_feedrate_normal[Z_AXIS], max_feedrate_normal[E_AXIS], echomagic, echomagic, max_feedrate_silent[X_AXIS], max_feedrate_silent[Y_AXIS], max_feedrate_silent[Z_AXIS], max_feedrate_silent[E_AXIS], echomagic, echomagic, max_acceleration_units_per_sq_second_normal[X_AXIS], max_acceleration_units_per_sq_second_normal[Y_AXIS], max_acceleration_units_per_sq_second_normal[Z_AXIS], max_acceleration_units_per_sq_second_normal[E_AXIS], echomagic, echomagic, max_acceleration_units_per_sq_second_silent[X_AXIS], max_acceleration_units_per_sq_second_silent[Y_AXIS], max_acceleration_units_per_sq_second_silent[Z_AXIS], max_acceleration_units_per_sq_second_silent[E_AXIS], echomagic, echomagic, acceleration, retract_acceleration, echomagic, echomagic, minimumfeedrate, mintravelfeedrate, minsegmenttime, max_jerk[X_AXIS], max_jerk[Y_AXIS], max_jerk[Z_AXIS], max_jerk[E_AXIS], echomagic, echomagic, add_homing[X_AXIS], add_homing[Y_AXIS], add_homing[Z_AXIS] #else //TMC2130 printf_P(PSTR( "%SSteps per unit:\n%S M92 X%.2f Y%.2f Z%.2f E%.2f\n" "%SMaximum feedrates (mm/s):\n%S M203 X%.2f Y%.2f Z%.2f E%.2f\n" "%SMaximum acceleration (mm/s2):\n%S M201 X%lu Y%lu Z%lu E%lu\n" "%SAcceleration: S=acceleration, T=retract acceleration\n%S M204 S%.2f T%.2f\n" "%SAdvanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)\n%S M205 S%.2f T%.2f B%.2f X%.2f Y%.2f Z%.2f E%.2f\n" "%SHome offset (mm):\n%S M206 X%.2f Y%.2f Z%.2f\n" ), echomagic, echomagic, axis_steps_per_unit[X_AXIS], axis_steps_per_unit[Y_AXIS], axis_steps_per_unit[Z_AXIS], axis_steps_per_unit[E_AXIS], echomagic, echomagic, max_feedrate[X_AXIS], max_feedrate[Y_AXIS], max_feedrate[Z_AXIS], max_feedrate[E_AXIS], echomagic, echomagic, max_acceleration_units_per_sq_second[X_AXIS], max_acceleration_units_per_sq_second[Y_AXIS], max_acceleration_units_per_sq_second[Z_AXIS], max_acceleration_units_per_sq_second[E_AXIS], echomagic, echomagic, acceleration, retract_acceleration, echomagic, echomagic, minimumfeedrate, mintravelfeedrate, minsegmenttime, max_jerk[X_AXIS], max_jerk[Y_AXIS], max_jerk[Z_AXIS], max_jerk[E_AXIS], echomagic, echomagic, add_homing[X_AXIS], add_homing[Y_AXIS], add_homing[Z_AXIS] #endif //TMC2130 ); #ifdef PIDTEMP printf_P(PSTR("%SPID settings:\n%S M301 P%.2f I%.2f D%.2f\n"), echomagic, echomagic, Kp, unscalePID_i(Ki), unscalePID_d(Kd)); #endif #ifdef PIDTEMPBED printf_P(PSTR("%SPID heatbed settings:\n%S M304 P%.2f I%.2f D%.2f\n"), echomagic, echomagic, bedKp, unscalePID_i(bedKi), unscalePID_d(bedKd)); #endif #ifdef FWRETRACT printf_P(PSTR( "%SRetract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)\n%S M207 S%.2f F%.2f Z%.2f\n" "%SRecover: S=Extra length (mm) F:Speed (mm/m)\n%S M208 S%.2f F%.2f\n" "%SAuto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries\n%S M209 S%d\n" ), echomagic, echomagic, retract_length, retract_feedrate*60, retract_zlift, echomagic, echomagic, retract_recover_length, retract_recover_feedrate*60, echomagic, echomagic, (autoretract_enabled ? 1 : 0) ); #if EXTRUDERS > 1 printf_P(PSTR("%SMulti-extruder settings:\n%S Swap retract length (mm): %.2f\n%S Swap rec. addl. length (mm): %.2f\n"), echomagic, echomagic, retract_length_swap, echomagic, retract_recover_length_swap); #endif if (volumetric_enabled) { printf_P(PSTR("%SFilament settings:\n%S M200 D%.2f\n"), echomagic, echomagic, filament_size[0]); #if EXTRUDERS > 1 printf_P(PSTR("%S M200 T1 D%.2f\n"), echomagic, echomagic, filament_size[1]); #if EXTRUDERS > 2 printf_P(PSTR("%S M200 T1 D%.2f\n"), echomagic, echomagic, filament_size[2]); #endif #endif } else { printf_P(PSTR("%SFilament settings: Disabled\n"), echomagic); } #endif if (level >= 10) { #ifdef LIN_ADVANCE printf_P(PSTR("%SLinear advance settings:\n M900 K%.2f E/D = %.2f\n"), echomagic, extruder_advance_k, advance_ed_ratio); #endif //LIN_ADVANCE } } #endif #ifdef EEPROM_SETTINGS bool Config_RetrieveSettings(uint16_t offset) { int i=offset; bool previous_settings_retrieved = true; char stored_ver[4]; char ver[4]=EEPROM_VERSION; EEPROM_READ_VAR(i,stored_ver); //read stored version // SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]"); if (strncmp(ver,stored_ver,3) == 0) { // version number match EEPROM_READ_VAR(i,axis_steps_per_unit); EEPROM_READ_VAR(i,max_feedrate_normal); EEPROM_READ_VAR(i,max_acceleration_units_per_sq_second_normal); // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) EEPROM_READ_VAR(i,acceleration); EEPROM_READ_VAR(i,retract_acceleration); EEPROM_READ_VAR(i,minimumfeedrate); EEPROM_READ_VAR(i,mintravelfeedrate); EEPROM_READ_VAR(i,minsegmenttime); EEPROM_READ_VAR(i,max_jerk[X_AXIS]); EEPROM_READ_VAR(i,max_jerk[Y_AXIS]); EEPROM_READ_VAR(i,max_jerk[Z_AXIS]); EEPROM_READ_VAR(i,max_jerk[E_AXIS]); if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK; if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK; EEPROM_READ_VAR(i,add_homing); /* EEPROM_READ_VAR(i,plaPreheatHotendTemp); EEPROM_READ_VAR(i,plaPreheatHPBTemp); EEPROM_READ_VAR(i,plaPreheatFanSpeed); EEPROM_READ_VAR(i,absPreheatHotendTemp); EEPROM_READ_VAR(i,absPreheatHPBTemp); EEPROM_READ_VAR(i,absPreheatFanSpeed); */ EEPROM_READ_VAR(i,zprobe_zoffset); #ifndef PIDTEMP float Kp,Ki,Kd; #endif // do not need to scale PID values as the values in EEPROM are already scaled EEPROM_READ_VAR(i,Kp); EEPROM_READ_VAR(i,Ki); EEPROM_READ_VAR(i,Kd); #ifdef PIDTEMPBED EEPROM_READ_VAR(i, bedKp); EEPROM_READ_VAR(i, bedKi); EEPROM_READ_VAR(i, bedKd); #endif int lcd_contrast; EEPROM_READ_VAR(i,lcd_contrast); #ifdef FWRETRACT EEPROM_READ_VAR(i,autoretract_enabled); EEPROM_READ_VAR(i,retract_length); #if EXTRUDERS > 1 EEPROM_READ_VAR(i,retract_length_swap); #endif EEPROM_READ_VAR(i,retract_feedrate); EEPROM_READ_VAR(i,retract_zlift); EEPROM_READ_VAR(i,retract_recover_length); #if EXTRUDERS > 1 EEPROM_READ_VAR(i,retract_recover_length_swap); #endif EEPROM_READ_VAR(i,retract_recover_feedrate); #endif EEPROM_READ_VAR(i, volumetric_enabled); EEPROM_READ_VAR(i, filament_size[0]); #if EXTRUDERS > 1 EEPROM_READ_VAR(i, filament_size[1]); #if EXTRUDERS > 2 EEPROM_READ_VAR(i, filament_size[2]); #endif #endif calculate_extruder_multipliers(); EEPROM_READ_VAR(i,max_feedrate_silent); EEPROM_READ_VAR(i,max_acceleration_units_per_sq_second_silent); #ifdef TMC2130 for (uint8_t j = X_AXIS; j <= Y_AXIS; j++) { if (max_feedrate_normal[j] > NORMAL_MAX_FEEDRATE_XY) max_feedrate_normal[j] = NORMAL_MAX_FEEDRATE_XY; if (max_feedrate_silent[j] > SILENT_MAX_FEEDRATE_XY) max_feedrate_silent[j] = SILENT_MAX_FEEDRATE_XY; if (max_acceleration_units_per_sq_second_normal[j] > NORMAL_MAX_ACCEL_XY) max_acceleration_units_per_sq_second_normal[j] = NORMAL_MAX_ACCEL_XY; if (max_acceleration_units_per_sq_second_silent[j] > SILENT_MAX_ACCEL_XY) max_acceleration_units_per_sq_second_silent[j] = SILENT_MAX_ACCEL_XY; } #endif //TMC2130 reset_acceleration_rates(); // Call updatePID (similar to when we have processed M301) updatePID(); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Stored settings retrieved"); } else { Config_ResetDefault(); //Return false to inform user that eeprom version was changed and firmware is using default hardcoded settings now. //In case that storing to eeprom was not used yet, do not inform user that hardcoded settings are used. if (eeprom_read_byte((uint8_t *)offset) != 0xFF || eeprom_read_byte((uint8_t *)offset + 1) != 0xFF || eeprom_read_byte((uint8_t *)offset + 2) != 0xFF) { previous_settings_retrieved = false; } } #ifdef EEPROM_CHITCHAT Config_PrintSettings(); #endif return previous_settings_retrieved; } #endif void Config_ResetDefault() { float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT; float tmp2[]=DEFAULT_MAX_FEEDRATE; long tmp3[]=DEFAULT_MAX_ACCELERATION; float tmp4[]=DEFAULT_MAX_FEEDRATE_SILENT; long tmp5[]=DEFAULT_MAX_ACCELERATION_SILENT; for (short i=0;i<4;i++) { axis_steps_per_unit[i]=tmp1[i]; max_feedrate_normal[i]=tmp2[i]; max_acceleration_units_per_sq_second_normal[i]=tmp3[i]; max_feedrate_silent[i]=tmp4[i]; max_acceleration_units_per_sq_second_silent[i]=tmp5[i]; } // steps per sq second need to be updated to agree with the units per sq second reset_acceleration_rates(); acceleration=DEFAULT_ACCELERATION; retract_acceleration=DEFAULT_RETRACT_ACCELERATION; minimumfeedrate=DEFAULT_MINIMUMFEEDRATE; minsegmenttime=DEFAULT_MINSEGMENTTIME; mintravelfeedrate=DEFAULT_MINTRAVELFEEDRATE; max_jerk[X_AXIS] = DEFAULT_XJERK; max_jerk[Y_AXIS] = DEFAULT_YJERK; max_jerk[Z_AXIS] = DEFAULT_ZJERK; max_jerk[E_AXIS] = DEFAULT_EJERK; add_homing[X_AXIS] = add_homing[Y_AXIS] = add_homing[Z_AXIS] = 0; #ifdef ENABLE_AUTO_BED_LEVELING zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER; #endif #ifdef PIDTEMP Kp = DEFAULT_Kp; Ki = scalePID_i(DEFAULT_Ki); Kd = scalePID_d(DEFAULT_Kd); // call updatePID (similar to when we have processed M301) updatePID(); #ifdef PID_ADD_EXTRUSION_RATE Kc = DEFAULT_Kc; #endif//PID_ADD_EXTRUSION_RATE #endif//PIDTEMP #ifdef FWRETRACT autoretract_enabled = false; retract_length = RETRACT_LENGTH; #if EXTRUDERS > 1 retract_length_swap = RETRACT_LENGTH_SWAP; #endif retract_feedrate = RETRACT_FEEDRATE; retract_zlift = RETRACT_ZLIFT; retract_recover_length = RETRACT_RECOVER_LENGTH; #if EXTRUDERS > 1 retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; #endif retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; #endif volumetric_enabled = false; filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA; #if EXTRUDERS > 1 filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA; #if EXTRUDERS > 2 filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA; #endif #endif calculate_extruder_multipliers(); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded"); }