//mmu.cpp

#include "mmu.h"
#include "planner.h"
#include "language.h"
#include "lcd.h"
#include "uart2.h"
#include "temperature.h"
#include "Configuration_prusa.h"
#include "fsensor.h"
#include "cardreader.h"
#include "ultralcd.h"
#include "sound.h"
#include "printers.h"
#include <avr/pgmspace.h>

#define CHECK_FINDA ((IS_SD_PRINTING || is_usb_printing) && (mcode_in_progress != 600) && !saved_printing && e_active())

#define MMU_TODELAY 100
#define MMU_TIMEOUT 10
#define MMU_CMD_TIMEOUT 300000ul //5min timeout for mmu commands (except P0)
#define MMU_P0_TIMEOUT 3000ul //timeout for P0 command: 3seconds

#ifdef MMU_HWRESET
#define MMU_RST_PIN 76
#endif //MMU_HWRESET

bool mmu_enabled = false;

bool mmu_ready = false;

static int8_t mmu_state = 0;

uint8_t mmu_cmd = 0;

uint8_t mmu_extruder = 0;

//! This variable probably has no meaning and is planed to be removed
uint8_t tmp_extruder = 0;

int8_t mmu_finda = -1;

int16_t mmu_version = -1;

int16_t mmu_buildnr = -1;

uint32_t mmu_last_request = 0;
uint32_t mmu_last_response = 0;


//clear rx buffer
void mmu_clr_rx_buf(void)
{
	while (fgetc(uart2io) >= 0);
}

//send command - puts
int mmu_puts_P(const char* str)
{
	mmu_clr_rx_buf();                          //clear rx buffer
    int r = fputs_P(str, uart2io);             //send command
	mmu_last_request = millis();
	return r;
}

//send command - printf
int mmu_printf_P(const char* format, ...)
{
	va_list args;
	va_start(args, format);
	mmu_clr_rx_buf();                          //clear rx buffer
	int r = vfprintf_P(uart2io, format, args); //send command
	va_end(args);
	mmu_last_request = millis();
	return r;
}

//check 'ok' response
int8_t mmu_rx_ok(void)
{
	int8_t res = uart2_rx_str_P(PSTR("ok\n"));
	if (res == 1) mmu_last_response = millis();
	return res;
}

//check 'start' response
int8_t mmu_rx_start(void)
{
	int8_t res = uart2_rx_str_P(PSTR("start\n"));
	if (res == 1) mmu_last_response = millis();
	return res;
}

//initialize mmu2 unit - first part - should be done at begining of startup process
void mmu_init(void)
{
#ifdef MMU_HWRESET
	digitalWrite(MMU_RST_PIN, HIGH);
	pinMode(MMU_RST_PIN, OUTPUT);              //setup reset pin
#endif //MMU_HWRESET
	uart2_init();                              //init uart2
	_delay_ms(10);                             //wait 10ms for sure
	mmu_reset();                               //reset mmu (HW or SW), do not wait for response
	mmu_state = -1;
}

//mmu main loop - state machine processing
void mmu_loop(void)
{
	int filament = 0;
//	printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
	switch (mmu_state)
	{
	case 0:
		return;
	case -1:
		if (mmu_rx_start() > 0)
		{
#ifdef MMU_DEBUG
			puts_P(PSTR("MMU => 'start'"));
			puts_P(PSTR("MMU <= 'S1'"));
#endif //MMU_DEBUG
		    mmu_puts_P(PSTR("S1\n")); //send 'read version' request
			mmu_state = -2;
		}
		else if (millis() > 30000) //30sec after reset disable mmu
		{
			puts_P(PSTR("MMU not responding - DISABLED"));
			mmu_state = 0;
		}
		return;
	case -2:
		if (mmu_rx_ok() > 0)
		{
			fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
#ifdef MMU_DEBUG
			printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
			puts_P(PSTR("MMU <= 'S2'"));
#endif //MMU_DEBUG
			mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
			mmu_state = -3;
		}
		return;
	case -3:
		if (mmu_rx_ok() > 0)
		{
			fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
#ifdef MMU_DEBUG
			printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
#endif //MMU_DEBUG
			bool version_valid = mmu_check_version();
			if (!version_valid) mmu_show_warning();
			else puts_P(PSTR("MMU version valid"));

			if ((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3_SNMM))
			{
#ifdef MMU_DEBUG
				puts_P(PSTR("MMU <= 'P0'"));
#endif //MMU_DEBUG
				mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
				mmu_state = -4;
			}
			else
			{
#ifdef MMU_DEBUG
				puts_P(PSTR("MMU <= 'M1'"));
#endif //MMU_DEBUG
				mmu_puts_P(PSTR("M1\n")); //set mmu mode to stealth
				mmu_state = -5;
			}

		}
		return;
	case -5:
		if (mmu_rx_ok() > 0)
		{
#ifdef MMU_DEBUG
			puts_P(PSTR("MMU <= 'P0'"));
#endif //MMU_DEBUG
		    mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
			mmu_state = -4;
		}
		return;
	case -4:
		if (mmu_rx_ok() > 0)
		{
			fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
#ifdef MMU_DEBUG
			printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
#endif //MMU_DEBUG
			puts_P(PSTR("MMU - ENABLED"));
			mmu_enabled = true;
			mmu_state = 1;
		}
		return;
	case 1:
		if (mmu_cmd) //command request ?
		{
			if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
			{
				filament = mmu_cmd - MMU_CMD_T0;
#ifdef MMU_DEBUG
				printf_P(PSTR("MMU <= 'T%d'\n"), filament);
#endif //MMU_DEBUG
				mmu_printf_P(PSTR("T%d\n"), filament);
				mmu_state = 3; // wait for response
			}
			else if ((mmu_cmd >= MMU_CMD_L0) && (mmu_cmd <= MMU_CMD_L4))
			{
			    filament = mmu_cmd - MMU_CMD_L0;
#ifdef MMU_DEBUG
			    printf_P(PSTR("MMU <= 'L%d'\n"), filament);
#endif //MMU_DEBUG
			    mmu_printf_P(PSTR("L%d\n"), filament);
			    mmu_state = 3; // wait for response
			}
			else if (mmu_cmd == MMU_CMD_C0)
			{
#ifdef MMU_DEBUG
				printf_P(PSTR("MMU <= 'C0'\n"));
#endif //MMU_DEBUG
				mmu_puts_P(PSTR("C0\n")); //send 'continue loading'
				mmu_state = 3;
			}
			else if (mmu_cmd == MMU_CMD_U0)
			{
#ifdef MMU_DEBUG
				printf_P(PSTR("MMU <= 'U0'\n"));
#endif //MMU_DEBUG
				mmu_puts_P(PSTR("U0\n")); //send 'unload current filament'
				mmu_state = 3;
			}
			else if ((mmu_cmd >= MMU_CMD_E0) && (mmu_cmd <= MMU_CMD_E4))
			{
				int filament = mmu_cmd - MMU_CMD_E0;
#ifdef MMU_DEBUG				
				printf_P(PSTR("MMU <= 'E%d'\n"), filament);
#endif //MMU_DEBUG
				mmu_printf_P(PSTR("E%d\n"), filament); //send eject filament
				mmu_state = 3; // wait for response
			}
			else if (mmu_cmd == MMU_CMD_R0)
			{
#ifdef MMU_DEBUG
				printf_P(PSTR("MMU <= 'R0'\n"));
#endif //MMU_DEBUG
				mmu_puts_P(PSTR("R0\n")); //send recover after eject
				mmu_state = 3; // wait for response
			}
			mmu_cmd = 0;
		}
		else if ((mmu_last_response + 300) < millis()) //request every 300ms
		{
#ifdef MMU_DEBUG
			puts_P(PSTR("MMU <= 'P0'"));
#endif //MMU_DEBUG
		    mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
			mmu_state = 2;
		}
		return;
	case 2: //response to command P0
		if (mmu_rx_ok() > 0)
		{
			fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
#ifdef MMU_DEBUG
			printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
#endif //MMU_DEBUG
			//printf_P(PSTR("Eact: %d\n"), int(e_active()));
			if (!mmu_finda && CHECK_FINDA && fsensor_enabled) {
				fsensor_stop_and_save_print();
				enquecommand_front_P(PSTR("FSENSOR_RECOVER")); //then recover
				if (lcd_autoDeplete) enquecommand_front_P(PSTR("M600 AUTO")); //save print and run M600 command
				else enquecommand_front_P(PSTR("M600")); //save print and run M600 command
			}
			mmu_state = 1;
			if (mmu_cmd == 0)
				mmu_ready = true;
		}
		else if ((mmu_last_request + MMU_P0_TIMEOUT) < millis())
		{ //resend request after timeout (30s)
			mmu_state = 1;
		}
		return;
	case 3: //response to mmu commands
		if (mmu_rx_ok() > 0)
		{
#ifdef MMU_DEBUG
			printf_P(PSTR("MMU => 'ok'\n"));
#endif //MMU_DEBUG
			mmu_ready = true;
			mmu_state = 1;
		}
		else if ((mmu_last_request + MMU_CMD_TIMEOUT) < millis())
		{ //resend request after timeout (5 min)
			mmu_state = 1;
		}
		return;
	}
}

void mmu_reset(void)
{
#ifdef MMU_HWRESET                             //HW - pulse reset pin
	digitalWrite(MMU_RST_PIN, LOW);
	_delay_us(100);
	digitalWrite(MMU_RST_PIN, HIGH);
#else                                          //SW - send X0 command
    mmu_puts_P(PSTR("X0\n"));
#endif
}

int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
{
	printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
	mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
	unsigned char timeout = MMU_TIMEOUT;       //10x100ms
	while ((mmu_rx_ok() <= 0) && (--timeout))
		delay_keep_alive(MMU_TODELAY);
	return timeout?1:0;
}

void mmu_command(uint8_t cmd)
{
	mmu_cmd = cmd;
	mmu_ready = false;
}

bool mmu_get_response(void)
{
//	printf_P(PSTR("mmu_get_response - begin\n"));
	KEEPALIVE_STATE(IN_PROCESS);
	while (mmu_cmd != 0)
	{
//		mmu_loop();
		delay_keep_alive(100);
	}
	while (!mmu_ready)
	{
//		mmu_loop();
		if (mmu_state != 3)
			break;
		delay_keep_alive(100);
	}
	bool ret = mmu_ready;
	mmu_ready = false;
//	printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
	return ret;

/*	//waits for "ok" from mmu
	//function returns true if "ok" was received
	//if timeout is set to true function return false if there is no "ok" received before timeout
	bool response = true;
	LongTimer mmu_get_reponse_timeout;
	KEEPALIVE_STATE(IN_PROCESS);
	mmu_get_reponse_timeout.start();
	while (mmu_rx_ok() <= 0)
	{
		delay_keep_alive(100);
		if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
		{ //5 minutes timeout
			response = false;
			break;
		}
	}
	printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
	return response;*/
}


void manage_response(bool move_axes, bool turn_off_nozzle)
{
	bool response = false;
	mmu_print_saved = false;
	bool lcd_update_was_enabled = false;
	float hotend_temp_bckp = degTargetHotend(active_extruder);
	float z_position_bckp = current_position[Z_AXIS];
	float x_position_bckp = current_position[X_AXIS];
	float y_position_bckp = current_position[Y_AXIS];	
	uint8_t screen = 0; //used for showing multiscreen messages
	while(!response)
	{
		  response = mmu_get_response(); //wait for "ok" from mmu
		  if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
			  if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
				  if (lcd_update_enabled) {
					  lcd_update_was_enabled = true;
					  lcd_update_enable(false);
				  }
				  st_synchronize();
				  mmu_print_saved = true;
				  printf_P(PSTR("MMU not responding\n"));
				  hotend_temp_bckp = degTargetHotend(active_extruder);
				  if (move_axes) {
					  z_position_bckp = current_position[Z_AXIS];
					  x_position_bckp = current_position[X_AXIS];
					  y_position_bckp = current_position[Y_AXIS];
				  
					  //lift z
					  current_position[Z_AXIS] += Z_PAUSE_LIFT;
					  if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
					  plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
					  st_synchronize();
					  					  
					  //Move XY to side
					  current_position[X_AXIS] = X_PAUSE_POS;
					  current_position[Y_AXIS] = Y_PAUSE_POS;
					  plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
					  st_synchronize();
				  }
				  if (turn_off_nozzle) {
					  //set nozzle target temperature to 0
					  setAllTargetHotends(0);
				  }
			  }

			  //first three lines are used for printing multiscreen message; last line contains measured and target nozzle temperature
			  if (screen == 0) { //screen 0
				  lcd_display_message_fullscreen_P(_i("MMU needs user attention."));
				  screen++;
			  }
			  else {  //screen 1
				  if((degTargetHotend(active_extruder) == 0) && turn_off_nozzle) lcd_display_message_fullscreen_P(_i("Press the knob to resume nozzle temperature."));
				  else lcd_display_message_fullscreen_P(_i("Fix the issue and then press button on MMU unit."));
				  screen=0;
			  }

			  lcd_set_degree();
			  lcd_set_cursor(0, 4); //line 4
			  //Print the hotend temperature (9 chars total) and fill rest of the line with space
			  int chars = lcd_printf_P(_N("%c%3d/%d%c"), LCD_STR_THERMOMETER[0],(int)(degHotend(active_extruder) + 0.5), (int)(degTargetHotend(active_extruder) + 0.5), LCD_STR_DEGREE[0]);
			  lcd_space(9 - chars);


			  //5 seconds delay
			  for (uint8_t i = 0; i < 50; i++) {
				  if (lcd_clicked()) {
					  setTargetHotend(hotend_temp_bckp, active_extruder);
					  break;
				  }
				  delay_keep_alive(100);
			  }
		  }
		  else if (mmu_print_saved) {
			  printf_P(PSTR("MMU starts responding\n"));
			  if (turn_off_nozzle) 
			  {
				lcd_clear();
				setTargetHotend(hotend_temp_bckp, active_extruder);
				if (((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)) {
					lcd_display_message_fullscreen_P(_i("MMU OK. Resuming temperature..."));
					delay_keep_alive(3000);
				}
				while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) 
				{
					delay_keep_alive(1000);
					lcd_wait_for_heater();
				}
			  }			  
			  if (move_axes) {
				  lcd_clear();
				  lcd_display_message_fullscreen_P(_i("MMU OK. Resuming position..."));
				  current_position[X_AXIS] = x_position_bckp;
				  current_position[Y_AXIS] = y_position_bckp;
				  plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
				  st_synchronize();
				  current_position[Z_AXIS] = z_position_bckp;
				  plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
				  st_synchronize();
			  }
			  else {
				  lcd_clear();
				  lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
				  delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
			  }
		  }
	}
	if (lcd_update_was_enabled) lcd_update_enable(true);
}

//! @brief load filament to nozzle of multimaterial printer
//!
//! This function is used only only after T? (user select filament) and M600 (change filament).
//! It is not used after T0 .. T4 command (select filament), in such case, gcode is responsible for loading
//! filament to nozzle.
//!
void mmu_load_to_nozzle()
{
	st_synchronize();
	
	bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
	if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
	current_position[E_AXIS] += 7.2f;
    float feedrate = 562;
	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
    st_synchronize();
	current_position[E_AXIS] += 14.4f;
	feedrate = 871;
	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
    st_synchronize();
	current_position[E_AXIS] += 36.0f;
	feedrate = 1393;
	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
    st_synchronize();
	current_position[E_AXIS] += 14.4f;
	feedrate = 871;
	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
    st_synchronize();
	if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
}

void mmu_M600_wait_and_beep() {
		//Beep and wait for user to remove old filament and prepare new filament for load

		KEEPALIVE_STATE(PAUSED_FOR_USER);

		int counterBeep = 0;
		lcd_display_message_fullscreen_P(_i("Remove old filament and press the knob to start loading new filament."));
		bool bFirst=true;

		while (!lcd_clicked()){
			manage_heater();
			manage_inactivity(true);

			#if BEEPER > 0
			if (counterBeep == 500) {
				counterBeep = 0;
			}
			SET_OUTPUT(BEEPER);
			if (counterBeep == 0) {
				if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
				{
					bFirst=false;
					WRITE(BEEPER, HIGH);
				}
			}
			if (counterBeep == 20) {
				WRITE(BEEPER, LOW);
			}
				
			counterBeep++;
			#endif //BEEPER > 0

			delay_keep_alive(4);
		}
		WRITE(BEEPER, LOW);
}

void mmu_M600_load_filament(bool automatic)
{ 
	//load filament for mmu v2
		  tmp_extruder = mmu_extruder;
		  if (!automatic) {
#ifdef MMU_M600_SWITCH_EXTRUDER
		      bool yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
			  if(yes) tmp_extruder = choose_extruder_menu();
#endif //MMU_M600_SWITCH_EXTRUDER
		  }
		  else {
			  tmp_extruder = (tmp_extruder+1)%5;
		  }
		  lcd_update_enable(false);
		  lcd_clear();
		  lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
		  lcd_print(" ");
		  lcd_print(tmp_extruder + 1);
		  snmm_filaments_used |= (1 << tmp_extruder); //for stop print

//		  printf_P(PSTR("T code: %d \n"), tmp_extruder);
//		  mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
		  mmu_command(MMU_CMD_T0 + tmp_extruder);

		  manage_response(false, true);
		  mmu_command(MMU_CMD_C0);
    	  mmu_extruder = tmp_extruder; //filament change is finished
		  mmu_load_to_nozzle();
		  load_filament_final_feed();
}


void extr_mov(float shift, float feed_rate)
{ //move extruder no matter what the current heater temperature is
	set_extrude_min_temp(.0);
	current_position[E_AXIS] += shift;
	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
	set_extrude_min_temp(EXTRUDE_MINTEMP);
}


void change_extr(int
#ifdef SNMM
        extr
#endif //SNMM
        ) { //switches multiplexer for extruders
#ifdef SNMM
	st_synchronize();
	delay(100);

	disable_e0();
	disable_e1();
	disable_e2();

	mmu_extruder = extr;

	pinMode(E_MUX0_PIN, OUTPUT);
	pinMode(E_MUX1_PIN, OUTPUT);

	switch (extr) {
	case 1:
		WRITE(E_MUX0_PIN, HIGH);
		WRITE(E_MUX1_PIN, LOW);
		
		break;
	case 2:
		WRITE(E_MUX0_PIN, LOW);
		WRITE(E_MUX1_PIN, HIGH);
		
		break;
	case 3:
		WRITE(E_MUX0_PIN, HIGH);
		WRITE(E_MUX1_PIN, HIGH);
		
		break;
	default:
		WRITE(E_MUX0_PIN, LOW);
		WRITE(E_MUX1_PIN, LOW);
		
		break;
	}
	delay(100);
#endif
}

int get_ext_nr()
{ //reads multiplexer input pins and return current extruder number (counted from 0)
#ifndef SNMM
	return(mmu_extruder); //update needed
#else 
	return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
#endif
}


void display_loading()
{
	switch (mmu_extruder) 
	{
	case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
	case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
	case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
	default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
	}
}

void extr_adj(int extruder) //loading filament for SNMM
{
#ifndef SNMM
    uint8_t cmd = MMU_CMD_L0 + extruder;
    if (cmd > MMU_CMD_L4)
    {
        printf_P(PSTR("Filament out of range %d \n"),extruder);
        return;
    }
    mmu_command(cmd);
	
	//show which filament is currently loaded
	
	lcd_update_enable(false);
	lcd_clear();
	lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
	//if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
	//else lcd.print(" ");
	lcd_print(" ");
	lcd_print(extruder + 1);

	// get response
	manage_response(false, false);

	lcd_update_enable(true);
	
	
	//lcd_return_to_status();
#else

	bool correct;
	max_feedrate[E_AXIS] =80;
	//max_feedrate[E_AXIS] = 50;
	START:
	lcd_clear();
	lcd_set_cursor(0, 0); 
	switch (extruder) {
	case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
	case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
	case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
	default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;   
	}
	KEEPALIVE_STATE(PAUSED_FOR_USER);
	do{
		extr_mov(0.001,1000);
		delay_keep_alive(2);
	} while (!lcd_clicked());
	//delay_keep_alive(500);
	KEEPALIVE_STATE(IN_HANDLER);
	st_synchronize();
	//correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
	//if (!correct) goto	START;
	//extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
	//extr_mov(BOWDEN_LENGTH/2.f, 500);
	extr_mov(bowden_length[extruder], 500);
	lcd_clear();
	lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
	if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
	else lcd_print(" ");
	lcd_print(mmu_extruder + 1);
	lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
	st_synchronize();
	max_feedrate[E_AXIS] = 50;
	lcd_update_enable(true);
	lcd_return_to_status();
	lcdDrawUpdate = 2;
#endif
}

struct E_step
{
    float extrude;   //!< extrude distance in mm
    float feed_rate; //!< feed rate in mm/s
};
static const E_step ramming_sequence[] PROGMEM =
{
    {1.0,   1000.0/60},
    {1.0,   1500.0/60},
    {2.0,   2000.0/60},
    {1.5,   3000.0/60},
    {2.5,   4000.0/60},
    {-15.0, 5000.0/60},
    {-14.0, 1200.0/60},
    {-6.0,  600.0/60},
    {10.0,  700.0/60},
    {-10.0, 400.0/60},
    {-50.0, 2000.0/60},
};

//! @brief Unload sequence to optimize shape of the tip of the unloaded filament
static void filament_ramming()
{
    for(uint8_t i = 0; i < (sizeof(ramming_sequence)/sizeof(E_step));++i)
    {
        current_position[E_AXIS] += pgm_read_float(&(ramming_sequence[i].extrude));
        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
                current_position[E_AXIS], pgm_read_float(&(ramming_sequence[i].feed_rate)), active_extruder);
        st_synchronize();
    }
}

void extr_unload()
{ //unload just current filament for multimaterial printers
#ifdef SNMM
	float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
	float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
	uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
#endif

	if (degHotend0() > EXTRUDE_MINTEMP)
	{
#ifndef SNMM
		st_synchronize();
		
		//show which filament is currently unloaded
		lcd_update_enable(false);
		lcd_clear();
		lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
		lcd_print(" ");
		lcd_print(mmu_extruder + 1);

		filament_ramming();

		mmu_command(MMU_CMD_U0);
		// get response
		manage_response(false, true);

		lcd_update_enable(true);
#else //SNMM

		lcd_clear();
		lcd_display_message_fullscreen_P(PSTR(""));
		max_feedrate[E_AXIS] = 50;
		lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
		lcd_print(" ");
		lcd_print(mmu_extruder + 1);
		lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
		if (current_position[Z_AXIS] < 15) {
			current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
		}
		
		current_position[E_AXIS] += 10; //extrusion
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
		st_current_set(2, E_MOTOR_HIGH_CURRENT);
		if (current_temperature[0] < 230) { //PLA & all other filaments
			current_position[E_AXIS] += 5.4;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
			current_position[E_AXIS] += 3.2;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
			current_position[E_AXIS] += 3;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
		}
		else { //ABS
			current_position[E_AXIS] += 3.1;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
			current_position[E_AXIS] += 3.1;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
			current_position[E_AXIS] += 4;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
			/*current_position[X_AXIS] += 23; //delay
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
			current_position[X_AXIS] -= 23; //delay
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
			delay_keep_alive(4700);
		}
	
		max_feedrate[E_AXIS] = 80;
		current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
		current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
		st_synchronize();
		//st_current_init();
		if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
		else st_current_set(2, tmp_motor_loud[2]);
		lcd_update_enable(true);
		lcd_return_to_status();
		max_feedrate[E_AXIS] = 50;
#endif //SNMM
	}
	else
	{
		show_preheat_nozzle_warning();
	}
	//lcd_return_to_status();
}

//wrapper functions for loading filament
void extr_adj_0()
{
#ifndef SNMM
	enquecommand_P(PSTR("M701 E0"));
#else
	change_extr(0);
	extr_adj(0);
#endif
}

void extr_adj_1()
{
#ifndef SNMM
	enquecommand_P(PSTR("M701 E1"));
#else
	change_extr(1);
	extr_adj(1);
#endif
}

void extr_adj_2()
{
#ifndef SNMM
	enquecommand_P(PSTR("M701 E2"));
#else
	change_extr(2);
	extr_adj(2);
#endif
}

void extr_adj_3()
{
#ifndef SNMM
	enquecommand_P(PSTR("M701 E3"));
#else
	change_extr(3);
	extr_adj(3);
#endif
}

void extr_adj_4()
{
#ifndef SNMM
	enquecommand_P(PSTR("M701 E4"));
#else
	change_extr(4);
	extr_adj(4);
#endif
}

void mmu_load_to_nozzle_0() 
{
	lcd_mmu_load_to_nozzle(0);
}

void mmu_load_to_nozzle_1() 
{
	lcd_mmu_load_to_nozzle(1);
}

void mmu_load_to_nozzle_2() 
{
	lcd_mmu_load_to_nozzle(2);
}

void mmu_load_to_nozzle_3() 
{
	lcd_mmu_load_to_nozzle(3);
}

void mmu_load_to_nozzle_4() 
{
	lcd_mmu_load_to_nozzle(4);
}

void mmu_eject_fil_0()
{
	mmu_eject_filament(0, true);
}

void mmu_eject_fil_1()
{
	mmu_eject_filament(1, true);
}

void mmu_eject_fil_2()
{
	mmu_eject_filament(2, true);
}

void mmu_eject_fil_3()
{
	mmu_eject_filament(3, true);
}

void mmu_eject_fil_4()
{
	mmu_eject_filament(4, true);
}

void load_all()
{
#ifndef SNMM
	enquecommand_P(PSTR("M701 E0"));
	enquecommand_P(PSTR("M701 E1"));
	enquecommand_P(PSTR("M701 E2"));
	enquecommand_P(PSTR("M701 E3"));
	enquecommand_P(PSTR("M701 E4"));
#else
	for (int i = 0; i < 4; i++)
	{
		change_extr(i);
		extr_adj(i);
	}
#endif
}

//wrapper functions for changing extruders
void extr_change_0()
{
	change_extr(0);
	lcd_return_to_status();
}

void extr_change_1()
{
	change_extr(1);
	lcd_return_to_status();
}

void extr_change_2()
{
	change_extr(2);
	lcd_return_to_status();
}

void extr_change_3()
{
	change_extr(3);
	lcd_return_to_status();
}

#ifdef SNMM
//wrapper functions for unloading filament
void extr_unload_all()
{
	if (degHotend0() > EXTRUDE_MINTEMP)
	{
		for (int i = 0; i < 4; i++)
		{
			change_extr(i);
			extr_unload();
		}
	}
	else
	{
		show_preheat_nozzle_warning();
		lcd_return_to_status();
	}
}

//unloading just used filament (for snmm)
void extr_unload_used()
{
	if (degHotend0() > EXTRUDE_MINTEMP) {
		for (int i = 0; i < 4; i++) {
			if (snmm_filaments_used & (1 << i)) {
				change_extr(i);
				extr_unload();
			}
		}
		snmm_filaments_used = 0;
	}
	else {
		show_preheat_nozzle_warning();
		lcd_return_to_status();
	}
}
#endif //SNMM

void extr_unload_0()
{
	change_extr(0);
	extr_unload();
}

void extr_unload_1()
{
	change_extr(1);
	extr_unload();
}

void extr_unload_2()
{
	change_extr(2);
	extr_unload();
}

void extr_unload_3()
{
	change_extr(3);
	extr_unload();
}

void extr_unload_4()
{
	change_extr(4);
	extr_unload();
}

bool mmu_check_version()
{
	return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
}

void mmu_show_warning()
{
	printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
	kill(_i("Please update firmware in your MMU2. Waiting for reset."));
}

void lcd_mmu_load_to_nozzle(uint8_t filament_nr)
{
  if (degHotend0() > EXTRUDE_MINTEMP)
  {
	tmp_extruder = filament_nr;
	lcd_update_enable(false);
	lcd_clear();
	lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
	lcd_print(" ");
	lcd_print(tmp_extruder + 1);
	mmu_command(MMU_CMD_T0 + tmp_extruder);
	manage_response(true, true);
	mmu_command(MMU_CMD_C0);
	mmu_extruder = tmp_extruder; //filament change is finished
	mmu_load_to_nozzle();
	load_filament_final_feed();
	custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
	lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
	lcd_return_to_status();
	lcd_update_enable(true);	
	lcd_load_filament_color_check();
	lcd_setstatuspgm(_T(WELCOME_MSG));
	custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  }
  else
  {
	  show_preheat_nozzle_warning();
  }
}

void mmu_eject_filament(uint8_t filament, bool recover)
{
	if (filament < 5) 
	{

		if (degHotend0() > EXTRUDE_MINTEMP)
		{
			st_synchronize();

			{
			    LcdUpdateDisabler disableLcdUpdate;
                lcd_clear();
                lcd_set_cursor(0, 1); lcd_puts_P(_i("Ejecting filament"));
                current_position[E_AXIS] -= 80;
                plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
                st_synchronize();
                mmu_command(MMU_CMD_E0 + filament);
                manage_response(false, false);
                if (recover)
                {
                    lcd_show_fullscreen_message_and_wait_P(_i("Please remove filament and then press the knob."));
                    mmu_command(MMU_CMD_R0);
                    manage_response(false, false);
                }

            }
		}
		else
		{
			show_preheat_nozzle_warning();
		}
	}
	else
	{
		puts_P(PSTR("Filament nr out of range!"));
	}
}