/* -*- c++ -*- */

/*
    Reprap firmware based on Sprinter and grbl.
 Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 This firmware is a mashup between Sprinter and grbl.
  (https://github.com/kliment/Sprinter)
  (https://github.com/simen/grbl/tree)

 It has preliminary support for Matthew Roberts advance algorithm
    http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
 */

#include "Marlin.h"

#ifdef ENABLE_AUTO_BED_LEVELING
#include "vector_3.h"
  #ifdef AUTO_BED_LEVELING_GRID
    #include "qr_solve.h"
  #endif
#endif // ENABLE_AUTO_BED_LEVELING

#ifdef MESH_BED_LEVELING
  #include "mesh_bed_leveling.h"
  #include "mesh_bed_calibration.h"
#endif

#include "printers.h"
#include "ultralcd.h"
#include "Configuration_prusa.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "motion_control.h"
#include "cardreader.h"
#include "ConfigurationStore.h"
#include "language.h"
#include "pins_arduino.h"
#include "math.h"
#include "util.h"
#include "Timer.h"

#include <avr/wdt.h>
#include <avr/pgmspace.h>

#include "Dcodes.h"


#ifdef SWSPI
#include "swspi.h"
#endif //SWSPI

#ifdef NEW_SPI
#include "spi.h"
#endif //NEW_SPI

#ifdef SWI2C
#include "swi2c.h"
#endif //SWI2C

#ifdef PAT9125
#include "pat9125.h"
#include "fsensor.h"
#endif //PAT9125

#ifdef TMC2130
#include "tmc2130.h"
#endif //TMC2130


#ifdef BLINKM
#include "BlinkM.h"
#include "Wire.h"
#endif

#ifdef ULTRALCD
#include "ultralcd.h"
#endif

#if NUM_SERVOS > 0
#include "Servo.h"
#endif

#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
#include <SPI.h>
#endif

#define VERSION_STRING  "1.0.2"


#include "ultralcd.h"

#include "cmdqueue.h"

// Macros for bit masks
#define BIT(b) (1<<(b))
#define TEST(n,b) (((n)&BIT(b))!=0)
#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))

//Macro for print fan speed
#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms

// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes

//Implemented Codes
//-------------------

// PRUSA CODES
// P F - Returns FW versions
// P R - Returns revision of printer

// G0  -> G1
// G1  - Coordinated Movement X Y Z E
// G2  - CW ARC
// G3  - CCW ARC
// G4  - Dwell S<seconds> or P<milliseconds>
// G10 - retract filament according to settings of M207
// G11 - retract recover filament according to settings of M208
// G28 - Home all Axis
// G29 - Detailed Z-Probe, probes the bed at 3 or more points.  Will fail if you haven't homed yet.
// G30 - Single Z Probe, probes bed at current XY location.
// G31 - Dock sled (Z_PROBE_SLED only)
// G32 - Undock sled (Z_PROBE_SLED only)
// G80 - Automatic mesh bed leveling
// G81 - Print bed profile
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to coordinates given

// M Codes
// M0   - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
// M1   - Same as M0
// M17  - Enable/Power all stepper motors
// M18  - Disable all stepper motors; same as M84
// M20  - List SD card
// M21  - Init SD card
// M22  - Release SD card
// M23  - Select SD file (M23 filename.g)
// M24  - Start/resume SD print
// M25  - Pause SD print
// M26  - Set SD position in bytes (M26 S12345)
// M27  - Report SD print status
// M28  - Start SD write (M28 filename.g)
// M29  - Stop SD write
// M30  - Delete file from SD (M30 filename.g)
// M31  - Output time since last M109 or SD card start to serial
// M32  - Select file and start SD print (Can be used _while_ printing from SD card files):
//        syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
//        Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
//        The '#' is necessary when calling from within sd files, as it stops buffer prereading
// M42  - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
// M80  - Turn on Power Supply
// M81  - Turn off Power Supply
// M82  - Set E codes absolute (default)
// M83  - Set E codes relative while in Absolute Coordinates (G90) mode
// M84  - Disable steppers until next move,
//        or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.
// M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92  - Set axis_steps_per_unit - same syntax as G92
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
//        Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
//        IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
// M112 - Emergency stop
// M113 - Get or set the timeout interval for Host Keepalive "busy" messages
// M114 - Output current position to serial port
// M115 - Capabilities string
// M117 - display message
// M119 - Output Endstop status to serial port
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M140 - Set bed target temp
// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
//        Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2  also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
// M205 -  advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
// M206 - set additional homing offset
// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
// M220 S<factor in percent>- set speed factor override percentage
// M221 S<factor in percent>- set extrude factor override percentage
// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
// M240 - Trigger a camera to take a photograph
// M250 - Set LCD contrast C<contrast value> (value 0..63)
// M280 - set servo position absolute. P: servo index, S: angle or microseconds
// M300 - Play beep sound S<frequency Hz> P<duration ms>
// M301 - Set PID parameters P I and D
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
// M304 - Set bed PID parameters P I and D
// M400 - Finish all moves
// M401 - Lower z-probe if present
// M402 - Raise z-probe if present
// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
// M405 - Turn on Filament Sensor extrusion control.  Optional D<delay in cm> to set delay in centimeters between sensor and extruder 
// M406 - Turn off Filament Sensor extrusion control 
// M407 - Displays measured filament diameter 
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.
// M503 - print the current settings (from memory not from EEPROM)
// M509 - force language selection on next restart
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
// M860 - Wait for PINDA thermistor to reach target temperature.
// M861 - Set / Read PINDA temperature compensation offsets
// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
// M907 - Set digital trimpot motor current using axis codes.
// M908 - Control digital trimpot directly.
// M350 - Set microstepping mode.
// M351 - Toggle MS1 MS2 pins directly.

// M928 - Start SD logging (M928 filename.g) - ended by M29
// M999 - Restart after being stopped by error

//Stepper Movement Variables

//===========================================================================
//=============================imported variables============================
//===========================================================================


//===========================================================================
//=============================public variables=============================
//===========================================================================
#ifdef SDSUPPORT
CardReader card;
#endif

unsigned long PingTime = millis();
unsigned long NcTime;

union Data
{
byte b[2];
int value;
};

float homing_feedrate[] = HOMING_FEEDRATE;
// Currently only the extruder axis may be switched to a relative mode.
// Other axes are always absolute or relative based on the common relative_mode flag.
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int feedmultiply=100; //100->1 200->2
int saved_feedmultiply;
int extrudemultiply=100; //100->1 200->2
int extruder_multiply[EXTRUDERS] = {100
  #if EXTRUDERS > 1
    , 100
    #if EXTRUDERS > 2
      , 100
    #endif
  #endif
};

int bowden_length[4] = {385, 385, 385, 385};

bool is_usb_printing = false;
bool homing_flag = false;

bool temp_cal_active = false;

unsigned long kicktime = millis()+100000;

unsigned int  usb_printing_counter;

int lcd_change_fil_state = 0;

int feedmultiplyBckp = 100;
float HotendTempBckp = 0;
int fanSpeedBckp = 0;
float pause_lastpos[4];
unsigned long pause_time = 0;
unsigned long start_pause_print = millis();
unsigned long t_fan_rising_edge = millis();

//unsigned long load_filament_time;

bool mesh_bed_leveling_flag = false;
bool mesh_bed_run_from_menu = false;

unsigned char lang_selected = 0;
int8_t FarmMode = 0;

bool prusa_sd_card_upload = false;

unsigned int status_number = 0;

unsigned long total_filament_used;
unsigned int heating_status;
unsigned int heating_status_counter;
bool custom_message;
bool loading_flag = false;
unsigned int custom_message_type;
unsigned int custom_message_state;
char snmm_filaments_used = 0;

float distance_from_min[2];

bool fan_state[2];
int fan_edge_counter[2];
int fan_speed[2];

char dir_names[3][9];

bool sortAlpha = false;

bool volumetric_enabled = false;
float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  #if EXTRUDERS > 1
      , DEFAULT_NOMINAL_FILAMENT_DIA
    #if EXTRUDERS > 2
       , DEFAULT_NOMINAL_FILAMENT_DIA
    #endif
  #endif
};
float extruder_multiplier[EXTRUDERS] = {1.0
  #if EXTRUDERS > 1
    , 1.0
    #if EXTRUDERS > 2
      , 1.0
    #endif
  #endif
};
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
float add_homing[3]={0,0,0};

float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
bool axis_known_position[3] = {false, false, false};
float zprobe_zoffset;

// Extruder offset
#if EXTRUDERS > 1
  #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
#endif
};
#endif

uint8_t active_extruder = 0;
int fanSpeed=0;

#ifdef FWRETRACT
  bool autoretract_enabled=false;
  bool retracted[EXTRUDERS]={false
    #if EXTRUDERS > 1
    , false
     #if EXTRUDERS > 2
      , false
     #endif
  #endif
  };
  bool retracted_swap[EXTRUDERS]={false
    #if EXTRUDERS > 1
    , false
     #if EXTRUDERS > 2
      , false
     #endif
  #endif
  };

  float retract_length = RETRACT_LENGTH;
  float retract_length_swap = RETRACT_LENGTH_SWAP;
  float retract_feedrate = RETRACT_FEEDRATE;
  float retract_zlift = RETRACT_ZLIFT;
  float retract_recover_length = RETRACT_RECOVER_LENGTH;
  float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
#endif

#ifdef ULTIPANEL
  #ifdef PS_DEFAULT_OFF
    bool powersupply = false;
  #else
	  bool powersupply = true;
  #endif
#endif

bool cancel_heatup = false ;

#ifdef HOST_KEEPALIVE_FEATURE
  
  int busy_state = NOT_BUSY;
  static long prev_busy_signal_ms = -1;
  uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
#else
  #define host_keepalive();
  #define KEEPALIVE_STATE(n);
#endif

const char errormagic[] PROGMEM = "Error:";
const char echomagic[] PROGMEM = "echo:";

bool no_response = false;
uint8_t important_status;
uint8_t saved_filament_type;

//===========================================================================
//=============================Private Variables=============================
//===========================================================================
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
float destination[NUM_AXIS] = {  0.0, 0.0, 0.0, 0.0};

static float delta[3] = {0.0, 0.0, 0.0};

// For tracing an arc
static float offset[3] = {0.0, 0.0, 0.0};
static float feedrate = 1500.0, next_feedrate, saved_feedrate;

// Determines Absolute or Relative Coordinates.
// Also there is bool axis_relative_modes[] per axis flag.
static bool relative_mode = false;  

#ifndef _DISABLE_M42_M226
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
#endif //_DISABLE_M42_M226

//static float tt = 0;
//static float bt = 0;

//Inactivity shutdown variables
static unsigned long previous_millis_cmd = 0;
unsigned long max_inactive_time = 0;
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;

unsigned long starttime=0;
unsigned long stoptime=0;
unsigned long _usb_timer = 0;

static uint8_t tmp_extruder;

bool extruder_under_pressure = true;


bool Stopped=false;

#if NUM_SERVOS > 0
  Servo servos[NUM_SERVOS];
#endif

bool CooldownNoWait = true;
bool target_direction;

//Insert variables if CHDK is defined
#ifdef CHDK
unsigned long chdkHigh = 0;
boolean chdkActive = false;
#endif

//===========================================================================
//=============================Routines======================================
//===========================================================================

void get_arc_coordinates();
bool setTargetedHotend(int code);

void serial_echopair_P(const char *s_P, float v)
    { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, double v)
    { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, unsigned long v)
    { serialprintPGM(s_P); SERIAL_ECHO(v); }

#ifdef SDSUPPORT
  #include "SdFatUtil.h"
  int freeMemory() { return SdFatUtil::FreeRam(); }
#else
  extern "C" {
    extern unsigned int __bss_end;
    extern unsigned int __heap_start;
    extern void *__brkval;

    int freeMemory() {
      int free_memory;

      if ((int)__brkval == 0)
        free_memory = ((int)&free_memory) - ((int)&__bss_end);
      else
        free_memory = ((int)&free_memory) - ((int)__brkval);

      return free_memory;
    }
  }
#endif //!SDSUPPORT

void setup_killpin()
{
  #if defined(KILL_PIN) && KILL_PIN > -1
    SET_INPUT(KILL_PIN);
    WRITE(KILL_PIN,HIGH);
  #endif
}

// Set home pin
void setup_homepin(void)
{
#if defined(HOME_PIN) && HOME_PIN > -1
   SET_INPUT(HOME_PIN);
   WRITE(HOME_PIN,HIGH);
#endif
}

void setup_photpin()
{
  #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
    SET_OUTPUT(PHOTOGRAPH_PIN);
    WRITE(PHOTOGRAPH_PIN, LOW);
  #endif
}

void setup_powerhold()
{
  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
    SET_OUTPUT(SUICIDE_PIN);
    WRITE(SUICIDE_PIN, HIGH);
  #endif
  #if defined(PS_ON_PIN) && PS_ON_PIN > -1
    SET_OUTPUT(PS_ON_PIN);
	#if defined(PS_DEFAULT_OFF)
	  WRITE(PS_ON_PIN, PS_ON_ASLEEP);
    #else
	  WRITE(PS_ON_PIN, PS_ON_AWAKE);
	#endif
  #endif
}

void suicide()
{
  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
    SET_OUTPUT(SUICIDE_PIN);
    WRITE(SUICIDE_PIN, LOW);
  #endif
}

void servo_init()
{
  #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
    servos[0].attach(SERVO0_PIN);
  #endif
  #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
    servos[1].attach(SERVO1_PIN);
  #endif
  #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
    servos[2].attach(SERVO2_PIN);
  #endif
  #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
    servos[3].attach(SERVO3_PIN);
  #endif
  #if (NUM_SERVOS >= 5)
    #error "TODO: enter initalisation code for more servos"
  #endif
}

static void lcd_language_menu();

void stop_and_save_print_to_ram(float z_move, float e_move);
void restore_print_from_ram_and_continue(float e_move);

bool fans_check_enabled = true;
bool filament_autoload_enabled = true;


#ifdef TMC2130

extern int8_t CrashDetectMenu;

void crashdet_enable()
{
//	MYSERIAL.println("crashdet_enable"); 
	tmc2130_sg_stop_on_crash = true;
	eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF); 
	CrashDetectMenu = 1;

}

void crashdet_disable()
{
//	MYSERIAL.println("crashdet_disable"); 
	tmc2130_sg_stop_on_crash = false;
	tmc2130_sg_crash = 0;
	eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00); 
	CrashDetectMenu = 0;
}

void crashdet_stop_and_save_print()
{
	stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
}

void crashdet_restore_print_and_continue()
{
	restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
//	babystep_apply();
}


void crashdet_stop_and_save_print2()
{
	cli();
	planner_abort_hard(); //abort printing
	cmdqueue_reset(); //empty cmdqueue
	card.sdprinting = false;
	card.closefile();
  // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  st_reset_timer();
	sei();
}

void crashdet_detected(uint8_t mask)
{
//	printf("CRASH_DETECTED");
/*	while (!is_buffer_empty())
	{
		process_commands();
	    cmdqueue_pop_front();
	}*/
	st_synchronize();

	lcd_update_enable(true);
	lcd_implementation_clear();
	lcd_update(2);

	if (mask & X_AXIS_MASK)
	{
		eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
		eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
	}
	if (mask & Y_AXIS_MASK)
	{
		eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
		eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
	}
    
#ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
    bool yesno = true;
#else
    bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
#endif
	lcd_update_enable(true);
	lcd_update(2);
	lcd_setstatuspgm(MSG_CRASH_DETECTED);
	if (yesno)
	{
		enquecommand_P(PSTR("G28 X Y"));
		enquecommand_P(PSTR("CRASH_RECOVER"));
	}
	else
	{
		enquecommand_P(PSTR("CRASH_CANCEL"));
	}
}

void crashdet_recover()
{
	crashdet_restore_print_and_continue();
	tmc2130_sg_stop_on_crash = true;
}

void crashdet_cancel()
{
	card.sdprinting = false;
	card.closefile();
	tmc2130_sg_stop_on_crash = true;
}
#endif //TMC2130

void failstats_reset_print()
{
	eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
	eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
	eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
	eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
}



#ifdef MESH_BED_LEVELING
   enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
#endif


// Factory reset function
// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
// Level input parameter sets depth of reset
// Quiet parameter masks all waitings for user interact.
int  er_progress = 0;
void factory_reset(char level, bool quiet)
{	
	lcd_implementation_clear();
	int cursor_pos = 0;
    switch (level) {
                   
        // Level 0: Language reset
        case 0:
            WRITE(BEEPER, HIGH);
            _delay_ms(100);
            WRITE(BEEPER, LOW);
            
            lcd_force_language_selection();
            break;
         
		//Level 1: Reset statistics
		case 1:
			WRITE(BEEPER, HIGH);
			_delay_ms(100);
			WRITE(BEEPER, LOW);
			eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
			eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);

			eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
			eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
			eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
			eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);

			eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
			eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
			eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
			eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);

			lcd_menu_statistics();
            
			break;

        // Level 2: Prepare for shipping
        case 2:
			//lcd_printPGM(PSTR("Factory RESET"));
            //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
            
            // Force language selection at the next boot up.
            lcd_force_language_selection();
            // Force the "Follow calibration flow" message at the next boot up.
            calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
			eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
            farm_no = 0;
			farm_mode == false;
			eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
            EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
                       
            WRITE(BEEPER, HIGH);
            _delay_ms(100);
            WRITE(BEEPER, LOW);
			//_delay_ms(2000);
            break;

			// Level 3: erase everything, whole EEPROM will be set to 0xFF

		case 3:
			lcd_printPGM(PSTR("Factory RESET"));
			lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));

			WRITE(BEEPER, HIGH);
			_delay_ms(100);
			WRITE(BEEPER, LOW);

			er_progress = 0;
			lcd_print_at_PGM(3, 3, PSTR("      "));
			lcd_implementation_print_at(3, 3, er_progress);

			// Erase EEPROM
			for (int i = 0; i < 4096; i++) {
				eeprom_write_byte((uint8_t*)i, 0xFF);

				if (i % 41 == 0) {
					er_progress++;
					lcd_print_at_PGM(3, 3, PSTR("      "));
					lcd_implementation_print_at(3, 3, er_progress);
					lcd_printPGM(PSTR("%"));
				}

			}


			break;
		case 4:
			bowden_menu();
			break;
        
        default:
            break;
    }
    

}
#include "LiquidCrystal_Prusa.h"
extern LiquidCrystal_Prusa lcd;

FILE _lcdout = {0};

int lcd_putchar(char c, FILE *stream)
{
	lcd.write(c);
	return 0;
}

FILE _uartout = {0};

int uart_putchar(char c, FILE *stream)
{
	MYSERIAL.write(c);
	return 0;
}

void lcd_splash()
{
//	lcd_print_at_PGM(0, 1, PSTR("   Original Prusa   "));
//	lcd_print_at_PGM(0, 2, PSTR("    3D  Printers    "));
//	lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D  Printers"));
    fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
}

void factory_reset() 
{
	KEEPALIVE_STATE(PAUSED_FOR_USER);
	if (!READ(BTN_ENC))
	{
		_delay_ms(1000);
		if (!READ(BTN_ENC))
		{
			lcd_implementation_clear();


			lcd_printPGM(PSTR("Factory RESET"));


			SET_OUTPUT(BEEPER);
			WRITE(BEEPER, HIGH);

			while (!READ(BTN_ENC));

			WRITE(BEEPER, LOW);



			_delay_ms(2000);

			char level = reset_menu();
			factory_reset(level, false);

			switch (level) {
			case 0: _delay_ms(0); break;
			case 1: _delay_ms(0); break;
			case 2: _delay_ms(0); break;
			case 3: _delay_ms(0); break;
			}
			// _delay_ms(100);
			/*
			#ifdef MESH_BED_LEVELING
			_delay_ms(2000);

			if (!READ(BTN_ENC))
			{
			WRITE(BEEPER, HIGH);
			_delay_ms(100);
			WRITE(BEEPER, LOW);
			_delay_ms(200);
			WRITE(BEEPER, HIGH);
			_delay_ms(100);
			WRITE(BEEPER, LOW);

			int _z = 0;
			calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
			EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
			EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
			EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
			}
			else
			{

			WRITE(BEEPER, HIGH);
			_delay_ms(100);
			WRITE(BEEPER, LOW);
			}
			#endif // mesh */

		}
	}
	else
	{
		//_delay_ms(1000);  // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
	}
	KEEPALIVE_STATE(IN_HANDLER);
}

void show_fw_version_warnings() {
	if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
	switch (FW_DEV_VERSION) {
	case(FW_VERSION_ALPHA):   lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA);   break;
	case(FW_VERSION_BETA):    lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA);    break;
  case(FW_VERSION_DEVEL):
	case(FW_VERSION_DEBUG):
    lcd_update_enable(false);
    lcd_implementation_clear();
  #if FW_DEV_VERSION == FW_VERSION_DEVEL
    lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  #else
    lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  #endif
    lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
    lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
    lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
    lcd_wait_for_click();
    break;
	default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
	}
	lcd_update_enable(true);
}

uint8_t check_printer_version()
{
	uint8_t version_changed = 0;
	uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
	uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);

	if (printer_type != PRINTER_TYPE) {
		if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
		else version_changed |= 0b10;
	}
	if (motherboard != MOTHERBOARD) {
		if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
		else version_changed |= 0b01;
	}
	return version_changed;
}

void erase_eeprom_section(uint16_t offset, uint16_t bytes)
{
	for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
}

// "Setup" function is called by the Arduino framework on startup.
// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code 
// are initialized by the main() routine provided by the Arduino framework.
void setup()
{
    lcd_init();
	fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
	lcd_splash();
	setup_killpin();
	setup_powerhold();

	farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE); 
	EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
	if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF)) 
		farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
	if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
	
	selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
	if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
	if (farm_mode)
	{ 
		no_response = true; //we need confirmation by recieving PRUSA thx
		important_status = 8;
		prusa_statistics(8);
		selectedSerialPort = 1;
	}
	MYSERIAL.begin(BAUDRATE);
	fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
	stdout = uartout;
	SERIAL_PROTOCOLLNPGM("start");
	SERIAL_ECHO_START;
	printf_P(PSTR(" "FW_VERSION_FULL"\n"));

#if 0
	SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
	for (int i = 0; i < 4096; ++i) {
		int b = eeprom_read_byte((unsigned char*)i);
		if (b != 255) {
			SERIAL_ECHO(i);
			SERIAL_ECHO(":");
			SERIAL_ECHO(b);
			SERIAL_ECHOLN("");
		}
	}
	SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
#endif

	// Check startup - does nothing if bootloader sets MCUSR to 0
	byte mcu = MCUSR;
/*	if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
	if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
	if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
	if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
	if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
	if (mcu & 1) puts_P(MSG_POWERUP);
	if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
	if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
	if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
	if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
	MCUSR = 0;

	//SERIAL_ECHORPGM(MSG_MARLIN);
	//SERIAL_ECHOLNRPGM(VERSION_STRING);

#ifdef STRING_VERSION_CONFIG_H
#ifdef STRING_CONFIG_H_AUTHOR
	SERIAL_ECHO_START;
	SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
	SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
	SERIAL_ECHORPGM(MSG_AUTHOR);
	SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
	SERIAL_ECHOPGM("Compiled: ");
	SERIAL_ECHOLNPGM(__DATE__);
#endif
#endif

	SERIAL_ECHO_START;
	SERIAL_ECHORPGM(MSG_FREE_MEMORY);
	SERIAL_ECHO(freeMemory());
	SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
	SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
	//lcd_update_enable(false); // why do we need this?? - andre
	// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
	
	bool previous_settings_retrieved = false; 
	uint8_t hw_changed = check_printer_version();
	if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
		previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
	} 
	else { //printer version was changed so use default settings 
		Config_ResetDefault();
	}
	SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack

	tp_init();    // Initialize temperature loop

	lcd_splash(); // we need to do this again, because tp_init() kills lcd

	plan_init();  // Initialize planner;

	factory_reset();

#ifdef TMC2130
	uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
	if (silentMode == 0xff) silentMode = 0;
//	tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
	tmc2130_mode = TMC2130_MODE_NORMAL;
	uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
	if (crashdet)
	{
		crashdet_enable();
	    MYSERIAL.println("CrashDetect ENABLED!");
	}
	else
	{
		crashdet_disable();
	    MYSERIAL.println("CrashDetect DISABLED");
	}

#ifdef TMC2130_LINEARITY_CORRECTION
#ifdef EXPERIMENTAL_FEATURES
	tmc2130_wave_fac[X_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
	tmc2130_wave_fac[Y_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
	tmc2130_wave_fac[Z_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
#endif //EXPERIMENTAL_FEATURES
	tmc2130_wave_fac[E_AXIS] = eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_E_FAC);
	if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
	if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
	if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
	if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
#endif //TMC2130_LINEARITY_CORRECTION

#ifdef TMC2130_VARIABLE_RESOLUTION
	tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
	tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
	tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
	tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
	if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
	if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
	if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
	if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
	eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
	eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
	eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
	eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
#else //TMC2130_VARIABLE_RESOLUTION
	tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
	tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
	tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
	tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
#endif //TMC2130_VARIABLE_RESOLUTION

#endif //TMC2130

#ifdef NEW_SPI
	spi_init();
#endif //NEW_SPI

	st_init();    // Initialize stepper, this enables interrupts!

#ifdef TMC2130
	tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
	tmc2130_init();
#endif //TMC2130
    
	setup_photpin();

	servo_init();
	// Reset the machine correction matrix.
	// It does not make sense to load the correction matrix until the machine is homed.
	world2machine_reset();
    
#ifdef PAT9125
	fsensor_init();
#endif //PAT9125


#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
	SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
#endif


	setup_homepin();

#ifdef TMC2130

  if (1) {
///    SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
    // try to run to zero phase before powering the Z motor.    
    // Move in negative direction
    WRITE(Z_DIR_PIN,INVERT_Z_DIR);
    // Round the current micro-micro steps to micro steps.
    for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
      // Until the phase counter is reset to zero.
      WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
      delay(2);
      WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
      delay(2);
    }
//    SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  }
#endif //TMC2130

#if defined(Z_AXIS_ALWAYS_ON)
	enable_z();
#endif
	farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
	EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
	if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode 
	if (farm_no == 0xFFFF) farm_no = 0;
	if (farm_mode)
	{
		prusa_statistics(8);
	}

	// Enable Toshiba FlashAir SD card / WiFi enahanced card.
	card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);

	if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
		eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
		// Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
		// where all the EEPROM entries are set to 0x0ff.
		// Once a firmware boots up, it forces at least a language selection, which changes
		// EEPROM_LANG to number lower than 0x0ff.
		// 1) Set a high power mode.
#ifdef TMC2130
		eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
		tmc2130_mode = TMC2130_MODE_NORMAL;
#endif //TMC2130
		eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
	}

	// Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false), 
	// but this times out if a blocking dialog is shown in setup().
	card.initsd();
#ifdef DEBUG_SD_SPEED_TEST
	if (card.cardOK)
	{
		uint8_t* buff = (uint8_t*)block_buffer;
		uint32_t block = 0;
		uint32_t sumr = 0;
		uint32_t sumw = 0;
		for (int i = 0; i < 1024; i++)
		{
			uint32_t u = micros();
			bool res = card.card.readBlock(i, buff);
			u = micros() - u;
			if (res)
			{
				printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
				sumr += u;
				u = micros();
				res = card.card.writeBlock(i, buff);
				u = micros() - u;
				if (res)
				{
					printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
					sumw += u;
				}
				else
				{
					printf_P(PSTR("writeBlock %4d error\n"), i);
					break;
				}
			}
			else
			{
				printf_P(PSTR("readBlock %4d error\n"), i);
				break;
			}
		}
		uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
		uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
		printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
		printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
	}
	else
		printf_P(PSTR("Card NG!\n"));
#endif DEBUG_SD_SPEED_TEST

	if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
	if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
	if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
	if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
	if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
	if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
	if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
	if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
#ifdef SNMM
	if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
	  int _z = BOWDEN_LENGTH;
	  for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
	}
#endif

  // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  // is being written into the EEPROM, so the update procedure will be triggered only once.
    lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
    if (lang_selected >= LANG_NUM){
      lcd_mylang();
    }
	
	if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
		eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
		temp_cal_active = false;
	} else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);

	if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
		//eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
		eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 0); //40C
		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 0); //45C
		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 0); //50C
		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 0); //55C
		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 0); //60C

		eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
		temp_cal_active = false;
	}
	if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
		eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
	}
	if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
		eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
	}

	check_babystep(); //checking if Z babystep is in allowed range

#ifdef UVLO_SUPPORT
	setup_uvlo_interrupt();
#endif //UVLO_SUPPORT

#if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
	setup_fan_interrupt();
#endif //DEBUG_DISABLE_FANCHECK

#ifdef PAT9125
#ifndef DEBUG_DISABLE_FSENSORCHECK
	fsensor_setup_interrupt();
#endif //DEBUG_DISABLE_FSENSORCHECK
#endif //PAT9125
	for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]); 
	
#ifndef DEBUG_DISABLE_STARTMSGS
  KEEPALIVE_STATE(PAUSED_FOR_USER);

  show_fw_version_warnings();

  switch (hw_changed) { 
	  //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
	  //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
	case(0b01): 
		lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_MOTHERBOARD); 
		eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD); 
		break;
	case(0b10): 
		lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_PRINTER); 
		eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE); 
		break;
	case(0b11): 
		lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_BOTH); 
		eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
		eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD); 
		break;
	default: break; //no change, show no message
  }

  if (!previous_settings_retrieved) {
	  lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version or printer type was changed, inform user that default setting were loaded
	  erase_eeprom_section(EEPROM_OFFSET, 156); 							   //erase M500 part of eeprom
  }
  if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
	  lcd_wizard(0);
  }
  if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
	  if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
		  calibration_status() == CALIBRATION_STATUS_UNKNOWN || 
		  calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
		  // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
		  eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
		  // Show the message.
		  lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
	  }
	  else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
		  // Show the message.
		  lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
		  lcd_update_enable(true);
	  }
	  else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
		  //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
		  lcd_update_enable(true);
	  }
	  else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
		  // Show the message.
		  lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
	  }
  }

#if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
	  lcd_show_fullscreen_message_and_wait_P(MSG_FORCE_SELFTEST);
	  update_current_firmware_version_to_eeprom();
	  lcd_selftest();
  }
#endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST

  KEEPALIVE_STATE(IN_PROCESS);
#endif //DEBUG_DISABLE_STARTMSGS
  lcd_update_enable(true);
  lcd_implementation_clear();
  lcd_update(2);
  // Store the currently running firmware into an eeprom,
  // so the next time the firmware gets updated, it will know from which version it has been updated.
  update_current_firmware_version_to_eeprom();

#ifdef TMC2130
  	tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
	tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
	tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
	if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
	if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
	if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;

	tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
	tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
	tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
	if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
	if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
	if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;

	tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
	if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
#endif //TMC2130

#ifdef UVLO_SUPPORT
  if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
/*
	  if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false))	recover_print();
	  else {
		  eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
		  lcd_update_enable(true);
		  lcd_update(2);
		  lcd_setstatuspgm(WELCOME_MSG);
	  }
*/
      manage_heater(); // Update temperatures 
#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER 
      MYSERIAL.println("Power panic detected!"); 
      MYSERIAL.print("Current bed temp:"); 
      MYSERIAL.println(degBed()); 
      MYSERIAL.print("Saved bed temp:"); 
      MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED)); 
#endif 
     if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){ 
          #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER 
        MYSERIAL.println("Automatic recovery!"); 
          #endif 
         recover_print(1); 
      } 
      else{ 
          #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER 
        MYSERIAL.println("Normal recovery!"); 
          #endif 
          if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0); 
          else { 
              eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); 
              lcd_update_enable(true); 
              lcd_update(2); 
              lcd_setstatuspgm(WELCOME_MSG); 
          } 
           
      } 
	   
  }
#endif //UVLO_SUPPORT

  KEEPALIVE_STATE(NOT_BUSY);
#ifdef WATCHDOG
  wdt_enable(WDTO_4S);
#endif //WATCHDOG
}

#ifdef PAT9125
void fsensor_init() {
	int pat9125 = pat9125_init();
	printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
	uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
	if (!pat9125)
	{
		fsensor = 0; //disable sensor
		fsensor_not_responding = true;
	}
	else {
		fsensor_not_responding = false;
	}
	puts_P(PSTR("FSensor "));
	if (fsensor)
	{
		puts_P(PSTR("ENABLED\n"));
		fsensor_enable();
	}
	else
	{
		puts_P(PSTR("DISABLED\n"));
		fsensor_disable();
	}
#ifdef DEBUG_DISABLE_FSENSORCHECK
	filament_autoload_enabled = false;
	fsensor_disable();
#endif //DEBUG_DISABLE_FSENSORCHECK
}

#endif //PAT9125

void trace();

#define CHUNK_SIZE 64 // bytes
#define SAFETY_MARGIN 1
char chunk[CHUNK_SIZE+SAFETY_MARGIN];
int chunkHead = 0;

int serial_read_stream() {

    setTargetHotend(0, 0);
    setTargetBed(0);

    lcd_implementation_clear();
    lcd_printPGM(PSTR(" Upload in progress"));

    // first wait for how many bytes we will receive
    uint32_t bytesToReceive;

    // receive the four bytes
    char bytesToReceiveBuffer[4];
    for (int i=0; i<4; i++) {
        int data;
        while ((data = MYSERIAL.read()) == -1) {};
        bytesToReceiveBuffer[i] = data;

    }

    // make it a uint32
    memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);

    // we're ready, notify the sender
    MYSERIAL.write('+');

    // lock in the routine
    uint32_t receivedBytes = 0;
    while (prusa_sd_card_upload) {
        int i;
        for (i=0; i<CHUNK_SIZE; i++) {
            int data;

            // check if we're not done
            if (receivedBytes == bytesToReceive) {
                break;
            }

            // read the next byte
            while ((data = MYSERIAL.read()) == -1) {};
            receivedBytes++;

            // save it to the chunk
            chunk[i] = data;
        }

        // write the chunk to SD
        card.write_command_no_newline(&chunk[0]);

        // notify the sender we're ready for more data
        MYSERIAL.write('+');

        // for safety
        manage_heater();

        // check if we're done
        if(receivedBytes == bytesToReceive) {
            trace(); // beep
            card.closefile();
            prusa_sd_card_upload = false;
            SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
            return 0;
        }

    }
}

#ifdef HOST_KEEPALIVE_FEATURE
/**
* Output a "busy" message at regular intervals
* while the machine is not accepting commands.
*/
void host_keepalive() {
  if (farm_mode) return;
  long ms = millis();
  if (host_keepalive_interval && busy_state != NOT_BUSY) {
    if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
     switch (busy_state) {
      case IN_HANDLER:
      case IN_PROCESS:
        SERIAL_ECHO_START;
        SERIAL_ECHOLNPGM("busy: processing");
        break;
      case PAUSED_FOR_USER:
        SERIAL_ECHO_START;
        SERIAL_ECHOLNPGM("busy: paused for user");
        break;
      case PAUSED_FOR_INPUT:
        SERIAL_ECHO_START;
        SERIAL_ECHOLNPGM("busy: paused for input");
        break;
      default:
	break;
    }
  }
  prev_busy_signal_ms = ms;
}
#endif

// The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
// Before loop(), the setup() function is called by the main() routine.
void loop()
{
	KEEPALIVE_STATE(NOT_BUSY);
	bool stack_integrity = true;

	if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
	{
		is_usb_printing = true;
		usb_printing_counter--;
		_usb_timer = millis();
	}
	if (usb_printing_counter == 0)
	{
		is_usb_printing = false;
	}

    if (prusa_sd_card_upload)
    {
        //we read byte-by byte
        serial_read_stream();
    } else 
    {

        get_command();

  #ifdef SDSUPPORT
  card.checkautostart(false);
  #endif
  if(buflen)
  {
    cmdbuffer_front_already_processed = false;
    #ifdef SDSUPPORT
      if(card.saving)
      {
        // Saving a G-code file onto an SD-card is in progress.
        // Saving starts with M28, saving until M29 is seen.
        if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
          card.write_command(CMDBUFFER_CURRENT_STRING);
          if(card.logging)
            process_commands();
          else
           SERIAL_PROTOCOLLNRPGM(MSG_OK);
        } else {
          card.closefile();
          SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
        }
      } else {
        process_commands();
      }
    #else
      process_commands();
    #endif //SDSUPPORT

    if (! cmdbuffer_front_already_processed && buflen)
    {
      // ptr points to the start of the block currently being processed.
      // The first character in the block is the block type.      
      char *ptr = cmdbuffer + bufindr;
      if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
        // To support power panic, move the lenght of the command on the SD card to a planner buffer.
        union {
          struct {
              char lo;
              char hi;
          } lohi;
          uint16_t value;
        } sdlen;
        sdlen.value = 0;
        {
          // This block locks the interrupts globally for 3.25 us,
          // which corresponds to a maximum repeat frequency of 307.69 kHz.
          // This blocking is safe in the context of a 10kHz stepper driver interrupt
          // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
          cli();
          // Reset the command to something, which will be ignored by the power panic routine,
          // so this buffer length will not be counted twice.
          *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
          // Extract the current buffer length.
          sdlen.lohi.lo = *ptr ++;
          sdlen.lohi.hi = *ptr;
          // and pass it to the planner queue.
          planner_add_sd_length(sdlen.value);
          sei();
        }
      }
      // Now it is safe to release the already processed command block. If interrupted by the power panic now,
      // this block's SD card length will not be counted twice as its command type has been replaced 
      // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
      cmdqueue_pop_front();
    }
	host_keepalive();
  }
}
  //check heater every n milliseconds
  manage_heater();
  isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  checkHitEndstops();
  lcd_update();
#ifdef PAT9125
	fsensor_update();
#endif //PAT9125
#ifdef TMC2130
	tmc2130_check_overtemp();
	if (tmc2130_sg_crash)
	{
		uint8_t crash = tmc2130_sg_crash;
		tmc2130_sg_crash = 0;
//		crashdet_stop_and_save_print();
		switch (crash)
		{
		case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
		case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
		case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
		}
	}
#endif //TMC2130

}

#define DEFINE_PGM_READ_ANY(type, reader)       \
    static inline type pgm_read_any(const type *p)  \
    { return pgm_read_##reader##_near(p); }

DEFINE_PGM_READ_ANY(float,       float);
DEFINE_PGM_READ_ANY(signed char, byte);

#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array##_P[3] =        \
    { X_##CONFIG, Y_##CONFIG, Z_##CONFIG };     \
static inline type array(int axis)              \
    { return pgm_read_any(&array##_P[axis]); }  \
type array##_ext(int axis)                      \
    { return pgm_read_any(&array##_P[axis]); }

XYZ_CONSTS_FROM_CONFIG(float, base_min_pos,    MIN_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos,    MAX_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos,   HOME_POS);
XYZ_CONSTS_FROM_CONFIG(float, max_length,      MAX_LENGTH);
XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir,  HOME_DIR);

static void axis_is_at_home(int axis) {
  current_position[axis] = base_home_pos(axis) + add_homing[axis];
  min_pos[axis] =          base_min_pos(axis) + add_homing[axis];
  max_pos[axis] =          base_max_pos(axis) + add_homing[axis];
}


inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }


static void setup_for_endstop_move(bool enable_endstops_now = true) {
    saved_feedrate = feedrate;
    saved_feedmultiply = feedmultiply;
    feedmultiply = 100;
    previous_millis_cmd = millis();
    
    enable_endstops(enable_endstops_now);
}

static void clean_up_after_endstop_move() {
#ifdef ENDSTOPS_ONLY_FOR_HOMING
    enable_endstops(false);
#endif
    
    feedrate = saved_feedrate;
    feedmultiply = saved_feedmultiply;
    previous_millis_cmd = millis();
}



#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
{
    vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
    planeNormal.debug("planeNormal");
    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
    //bedLevel.debug("bedLevel");

    //plan_bed_level_matrix.debug("bed level before");
    //vector_3 uncorrected_position = plan_get_position_mm();
    //uncorrected_position.debug("position before");

    vector_3 corrected_position = plan_get_position();
//    corrected_position.debug("position after");
    current_position[X_AXIS] = corrected_position.x;
    current_position[Y_AXIS] = corrected_position.y;
    current_position[Z_AXIS] = corrected_position.z;

    // put the bed at 0 so we don't go below it.
    current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure

    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}

#else // not AUTO_BED_LEVELING_GRID

static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {

    plan_bed_level_matrix.set_to_identity();

    vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
    vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
    vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);

    vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
    vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
    vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
    planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));

    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);

    vector_3 corrected_position = plan_get_position();
    current_position[X_AXIS] = corrected_position.x;
    current_position[Y_AXIS] = corrected_position.y;
    current_position[Z_AXIS] = corrected_position.z;

    // put the bed at 0 so we don't go below it.
    current_position[Z_AXIS] = zprobe_zoffset;

    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);

}

#endif // AUTO_BED_LEVELING_GRID

static void run_z_probe() {
    plan_bed_level_matrix.set_to_identity();
    feedrate = homing_feedrate[Z_AXIS];

    // move down until you find the bed
    float zPosition = -10;
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
    st_synchronize();

        // we have to let the planner know where we are right now as it is not where we said to go.
    zPosition = st_get_position_mm(Z_AXIS);
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);

    // move up the retract distance
    zPosition += home_retract_mm(Z_AXIS);
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
    st_synchronize();

    // move back down slowly to find bed
    feedrate = homing_feedrate[Z_AXIS]/4;
    zPosition -= home_retract_mm(Z_AXIS) * 2;
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
    st_synchronize();

    current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
    // make sure the planner knows where we are as it may be a bit different than we last said to move to
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}

static void do_blocking_move_to(float x, float y, float z) {
    float oldFeedRate = feedrate;

    feedrate = homing_feedrate[Z_AXIS];

    current_position[Z_AXIS] = z;
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
    st_synchronize();

    feedrate = XY_TRAVEL_SPEED;

    current_position[X_AXIS] = x;
    current_position[Y_AXIS] = y;
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
    st_synchronize();

    feedrate = oldFeedRate;
}

static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
    do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
}


/// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before) {
  // move to right place
  do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);

  run_z_probe();
  float measured_z = current_position[Z_AXIS];

  SERIAL_PROTOCOLRPGM(MSG_BED);
  SERIAL_PROTOCOLPGM(" x: ");
  SERIAL_PROTOCOL(x);
  SERIAL_PROTOCOLPGM(" y: ");
  SERIAL_PROTOCOL(y);
  SERIAL_PROTOCOLPGM(" z: ");
  SERIAL_PROTOCOL(measured_z);
  SERIAL_PROTOCOLPGM("\n");
  return measured_z;
}

#endif // #ifdef ENABLE_AUTO_BED_LEVELING

#ifdef LIN_ADVANCE
   /**
    * M900: Set and/or Get advance K factor and WH/D ratio
    *
    *  K<factor>                  Set advance K factor
    *  R<ratio>                   Set ratio directly (overrides WH/D)
    *  W<width> H<height> D<diam> Set ratio from WH/D
    */
inline void gcode_M900() {
    st_synchronize();
    
    const float newK = code_seen('K') ? code_value_float() : -1;
    if (newK >= 0) extruder_advance_k = newK;
    
    float newR = code_seen('R') ? code_value_float() : -1;
    if (newR < 0) {
        const float newD = code_seen('D') ? code_value_float() : -1,
        newW = code_seen('W') ? code_value_float() : -1,
        newH = code_seen('H') ? code_value_float() : -1;
        if (newD >= 0 && newW >= 0 && newH >= 0)
            newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
    }
    if (newR >= 0) advance_ed_ratio = newR;
    
    SERIAL_ECHO_START;
    SERIAL_ECHOPGM("Advance K=");
    SERIAL_ECHOLN(extruder_advance_k);
    SERIAL_ECHOPGM(" E/D=");
    const float ratio = advance_ed_ratio;
    if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
    }
#endif // LIN_ADVANCE

bool check_commands() {
	bool end_command_found = false;
	
		while (buflen)
		{
		if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
		if (!cmdbuffer_front_already_processed)
			 cmdqueue_pop_front();
		cmdbuffer_front_already_processed = false;
		}
	return end_command_found;
	
}

#ifdef TMC2130
bool calibrate_z_auto()
{
	//lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
	lcd_implementation_clear();
	lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
	bool endstops_enabled  = enable_endstops(true);
	int axis_up_dir = -home_dir(Z_AXIS);
	tmc2130_home_enter(Z_AXIS_MASK);
	current_position[Z_AXIS] = 0;
	plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
	set_destination_to_current();
	destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
	feedrate = homing_feedrate[Z_AXIS];
	plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
	st_synchronize();
//	current_position[axis] = 0;
//	plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
	tmc2130_home_exit();
    enable_endstops(false);
	current_position[Z_AXIS] = 0;
	plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
	set_destination_to_current();
	destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
	feedrate = homing_feedrate[Z_AXIS] / 2;
	plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
	st_synchronize();
    enable_endstops(endstops_enabled);
    current_position[Z_AXIS] = Z_MAX_POS+2.0;
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
	return true;
}
#endif //TMC2130

void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
{
	bool endstops_enabled  = enable_endstops(true); //RP: endstops should be allways enabled durring homing
#define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
    if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
	{
        int axis_home_dir = home_dir(axis);
        feedrate = homing_feedrate[axis];

#ifdef TMC2130
    	tmc2130_home_enter(X_AXIS_MASK << axis);
#endif //TMC2130


        // Move right a bit, so that the print head does not touch the left end position,
        // and the following left movement has a chance to achieve the required velocity
        // for the stall guard to work.
        current_position[axis] = 0;
        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
		set_destination_to_current();
//        destination[axis] = 11.f;
        destination[axis] = 3.f;
        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
        st_synchronize();
        // Move left away from the possible collision with the collision detection disabled.
        endstops_hit_on_purpose();
        enable_endstops(false);
        current_position[axis] = 0;
        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
        destination[axis] = - 1.;
        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
        st_synchronize();
        // Now continue to move up to the left end stop with the collision detection enabled.
        enable_endstops(true);
        destination[axis] = - 1.1 * max_length(axis);
        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
        st_synchronize();
		for (uint8_t i = 0; i < cnt; i++)
		{
			// Move right from the collision to a known distance from the left end stop with the collision detection disabled.
			endstops_hit_on_purpose();
			enable_endstops(false);
			current_position[axis] = 0;
			plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
			destination[axis] = 10.f;
			plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
			st_synchronize();
			endstops_hit_on_purpose();
			// Now move left up to the collision, this time with a repeatable velocity.
			enable_endstops(true);
			destination[axis] = - 11.f;
#ifdef TMC2130
			feedrate = homing_feedrate[axis];
#else //TMC2130
			feedrate = homing_feedrate[axis] / 2;
#endif //TMC2130
			plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
			st_synchronize();
#ifdef TMC2130
			uint16_t mscnt = tmc2130_rd_MSCNT(axis);
			if (pstep) pstep[i] = mscnt >> 4;
			printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
#endif //TMC2130
		}
		endstops_hit_on_purpose();
		enable_endstops(false);

#ifdef TMC2130
		uint8_t orig = tmc2130_home_origin[axis];
		uint8_t back = tmc2130_home_bsteps[axis];
		if (tmc2130_home_enabled && (orig <= 63))
		{
			tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
			if (back > 0)
				tmc2130_do_steps(axis, back, 1, 1000);
		}
		else
			tmc2130_do_steps(axis, 8, 2, 1000);
		tmc2130_home_exit();
#endif //TMC2130

        axis_is_at_home(axis);
        axis_known_position[axis] = true;
        // Move from minimum
#ifdef TMC2130
        float dist = 0.01f * tmc2130_home_fsteps[axis];
#else //TMC2130
        float dist = 0.01f * 64;
#endif //TMC2130
        current_position[axis] -= dist;
        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
        current_position[axis] += dist;
        destination[axis] = current_position[axis];
        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
        st_synchronize();

   		feedrate = 0.0;
    }
    else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
	{
        int axis_home_dir = home_dir(axis);
        current_position[axis] = 0;
        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
        destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
        feedrate = homing_feedrate[axis];
        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
        st_synchronize();
        current_position[axis] = 0;
        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
        destination[axis] = -home_retract_mm(axis) * axis_home_dir;
        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
        st_synchronize();
        destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
        feedrate = homing_feedrate[axis]/2 ;
        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
        st_synchronize();
        axis_is_at_home(axis);
        destination[axis] = current_position[axis];
        feedrate = 0.0;
        endstops_hit_on_purpose();
        axis_known_position[axis] = true;
    }
    enable_endstops(endstops_enabled);
}

/**/
void home_xy()
{
    set_destination_to_current();
    homeaxis(X_AXIS);
    homeaxis(Y_AXIS);
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
    endstops_hit_on_purpose();
}

void refresh_cmd_timeout(void)
{
  previous_millis_cmd = millis();
}

#ifdef FWRETRACT
  void retract(bool retracting, bool swapretract = false) {
    if(retracting && !retracted[active_extruder]) {
      destination[X_AXIS]=current_position[X_AXIS];
      destination[Y_AXIS]=current_position[Y_AXIS];
      destination[Z_AXIS]=current_position[Z_AXIS];
      destination[E_AXIS]=current_position[E_AXIS];
      current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
      plan_set_e_position(current_position[E_AXIS]);
      float oldFeedrate = feedrate;
      feedrate=retract_feedrate*60;
      retracted[active_extruder]=true;
      prepare_move();
      current_position[Z_AXIS]-=retract_zlift;
      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
      prepare_move();
      feedrate = oldFeedrate;
    } else if(!retracting && retracted[active_extruder]) {
      destination[X_AXIS]=current_position[X_AXIS];
      destination[Y_AXIS]=current_position[Y_AXIS];
      destination[Z_AXIS]=current_position[Z_AXIS];
      destination[E_AXIS]=current_position[E_AXIS];
      current_position[Z_AXIS]+=retract_zlift;
      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
      current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
      plan_set_e_position(current_position[E_AXIS]);
      float oldFeedrate = feedrate;
      feedrate=retract_recover_feedrate*60;
      retracted[active_extruder]=false;
      prepare_move();
      feedrate = oldFeedrate;
    }
  } //retract
#endif //FWRETRACT

void trace() {
    tone(BEEPER, 440);
    delay(25);
    noTone(BEEPER);
    delay(20);
}
/*
void ramming() {
//	  float tmp[4] = DEFAULT_MAX_FEEDRATE;
	if (current_temperature[0] < 230) {
		//PLA

		max_feedrate[E_AXIS] = 50;
		//current_position[E_AXIS] -= 8;
		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
		//current_position[E_AXIS] += 8;
		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
		current_position[E_AXIS] += 5.4;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
		current_position[E_AXIS] += 3.2;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
		current_position[E_AXIS] += 3;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
		st_synchronize();
		max_feedrate[E_AXIS] = 80;
		current_position[E_AXIS] -= 82;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
		max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
		current_position[E_AXIS] -= 20;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
		current_position[E_AXIS] += 5;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
		current_position[E_AXIS] += 5;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
		current_position[E_AXIS] -= 10;
		st_synchronize();
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
		current_position[E_AXIS] += 10;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
		current_position[E_AXIS] -= 10;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
		current_position[E_AXIS] += 10;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
		current_position[E_AXIS] -= 10;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
		st_synchronize();
	}
	else {
		//ABS
		max_feedrate[E_AXIS] = 50;
		//current_position[E_AXIS] -= 8;
		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
		//current_position[E_AXIS] += 8;
		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
		current_position[E_AXIS] += 3.1;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
		current_position[E_AXIS] += 3.1;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
		current_position[E_AXIS] += 4;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
		st_synchronize();
		//current_position[X_AXIS] += 23; //delay
		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
		//current_position[X_AXIS] -= 23; //delay
		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
		delay(4700);
		max_feedrate[E_AXIS] = 80;
		current_position[E_AXIS] -= 92;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
		max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
		current_position[E_AXIS] -= 5;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
		current_position[E_AXIS] += 5;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
		current_position[E_AXIS] -= 5;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
		st_synchronize();
		current_position[E_AXIS] += 5;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
		current_position[E_AXIS] -= 5;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
		current_position[E_AXIS] += 5;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
		current_position[E_AXIS] -= 5;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
		st_synchronize();

	}
  }
*/

#ifdef TMC2130
void force_high_power_mode(bool start_high_power_section) {
	uint8_t silent;
	silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
	if (silent == 1) {
		//we are in silent mode, set to normal mode to enable crash detection

    // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
		st_synchronize();
		cli();
		tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
		tmc2130_init();
    // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
    // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
    st_reset_timer();
		sei();
	}
}
#endif //TMC2130

bool gcode_M45(bool onlyZ, int8_t verbosity_level)
{
	bool final_result = false;
	#ifdef TMC2130
	FORCE_HIGH_POWER_START;
	#endif // TMC2130
	// Only Z calibration?
	if (!onlyZ)
	{
		setTargetBed(0);
		setTargetHotend(0, 0);
		setTargetHotend(0, 1);
		setTargetHotend(0, 2);
		adjust_bed_reset(); //reset bed level correction
	}

	// Disable the default update procedure of the display. We will do a modal dialog.
	lcd_update_enable(false);
	// Let the planner use the uncorrected coordinates.
	mbl.reset();
	// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
	// the planner will not perform any adjustments in the XY plane. 
	// Wait for the motors to stop and update the current position with the absolute values.
	world2machine_revert_to_uncorrected();
	// Reset the baby step value applied without moving the axes.
	babystep_reset();
	// Mark all axes as in a need for homing.
	memset(axis_known_position, 0, sizeof(axis_known_position));

	// Home in the XY plane.
	//set_destination_to_current();
	setup_for_endstop_move();
	lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
	home_xy();

	enable_endstops(false);
	current_position[X_AXIS] += 5;
	current_position[Y_AXIS] += 5;
	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
	st_synchronize();

	// Let the user move the Z axes up to the end stoppers.
#ifdef TMC2130
	if (calibrate_z_auto())
	{
#else //TMC2130
	if (lcd_calibrate_z_end_stop_manual(onlyZ))
	{
#endif //TMC2130
		refresh_cmd_timeout();
		#ifndef STEEL_SHEET
		if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
		{
			lcd_wait_for_cool_down();
		}
		#endif //STEEL_SHEET
		if(!onlyZ)
		{
			KEEPALIVE_STATE(PAUSED_FOR_USER);
			#ifdef STEEL_SHEET
			bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
			if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
			#endif //STEEL_SHEET
			lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
		    lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
			KEEPALIVE_STATE(IN_HANDLER);
			lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
			lcd_implementation_print_at(0, 2, 1);
			lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
		}
		// Move the print head close to the bed.
		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;

		bool endstops_enabled  = enable_endstops(true);
#ifdef TMC2130
		tmc2130_home_enter(Z_AXIS_MASK);
#endif //TMC2130

		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);

		st_synchronize();
#ifdef TMC2130
		tmc2130_home_exit();
#endif //TMC2130
		enable_endstops(endstops_enabled);

		if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
		{

			int8_t verbosity_level = 0;
			if (code_seen('V'))
			{
				// Just 'V' without a number counts as V1.
				char c = strchr_pointer[1];
				verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
			}

			if (onlyZ)
			{
				clean_up_after_endstop_move();
				// Z only calibration.
				// Load the machine correction matrix
				world2machine_initialize();
				// and correct the current_position to match the transformed coordinate system.
				world2machine_update_current();
				//FIXME
				bool result = sample_mesh_and_store_reference();
				if (result)
				{
					if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
						// Shipped, the nozzle height has been set already. The user can start printing now.
						calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
						final_result = true;
					// babystep_apply();
				}
			}
			else
			{
				// Reset the baby step value and the baby step applied flag.
				calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
				eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
				// Complete XYZ calibration.
				uint8_t point_too_far_mask = 0;
				BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
				clean_up_after_endstop_move();
				// Print head up.
				current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
				st_synchronize();
//#ifndef NEW_XYZCAL
				if (result >= 0)
				{
					#ifdef HEATBED_V2
					sample_z();
					#else //HEATBED_V2
					point_too_far_mask = 0;
					// Second half: The fine adjustment.
					// Let the planner use the uncorrected coordinates.
					mbl.reset();
					world2machine_reset();
					// Home in the XY plane.
					setup_for_endstop_move();
					home_xy();
					result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
					clean_up_after_endstop_move();
					// Print head up.
					current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
					plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
					st_synchronize();
					// if (result >= 0) babystep_apply();					
					#endif //HEATBED_V2
				}
//#endif //NEW_XYZCAL
				lcd_update_enable(true);
				lcd_update(2);

				lcd_bed_calibration_show_result(result, point_too_far_mask);
				if (result >= 0)
				{
					// Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
					calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
					if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
					final_result = true;
				}
			}
#ifdef TMC2130
			tmc2130_home_exit();
#endif
		}
		else
		{
			lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
			final_result = false;
		}
	}
	else
	{
		// Timeouted.
	}
	lcd_update_enable(true);
#ifdef TMC2130
	FORCE_HIGH_POWER_END;
#endif // TMC2130
	return final_result;
}

void gcode_M114()
{
	SERIAL_PROTOCOLPGM("X:");
	SERIAL_PROTOCOL(current_position[X_AXIS]);
	SERIAL_PROTOCOLPGM(" Y:");
	SERIAL_PROTOCOL(current_position[Y_AXIS]);
	SERIAL_PROTOCOLPGM(" Z:");
	SERIAL_PROTOCOL(current_position[Z_AXIS]);
	SERIAL_PROTOCOLPGM(" E:");
	SERIAL_PROTOCOL(current_position[E_AXIS]);

	SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
	SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
	SERIAL_PROTOCOLPGM(" Y:");
	SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
	SERIAL_PROTOCOLPGM(" Z:");
	SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
	SERIAL_PROTOCOLPGM(" E:");
	SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);

	SERIAL_PROTOCOLLN("");
}

void gcode_M701()
{
#ifdef SNMM
	extr_adj(snmm_extruder);//loads current extruder
#else
	enable_z();
	custom_message = true;
	custom_message_type = 2;

	lcd_setstatuspgm(MSG_LOADING_FILAMENT);
	current_position[E_AXIS] += 70;
	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence

	current_position[E_AXIS] += 25;
	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
	st_synchronize();

	tone(BEEPER, 500);
	delay_keep_alive(50);
	noTone(BEEPER);

	if (!farm_mode && loading_flag) {
		bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);

		while (!clean) {
			lcd_update_enable(true);
			lcd_update(2);
			current_position[E_AXIS] += 25;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
			st_synchronize();
			clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);

		}

	}
	lcd_update_enable(true);
	lcd_update(2);
	lcd_setstatuspgm(WELCOME_MSG);
	disable_z();
	loading_flag = false;
	custom_message = false;
	custom_message_type = 0;
#endif

}
/**
 * @brief Get serial number from 32U2 processor
 *
 * Typical format of S/N is:CZPX0917X003XC13518
 *
 * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
 *
 * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
 * reply is transmitted to serial port 1 character by character.
 * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
 * it is interrupted, so less, or no characters are retransmitted, only newline character is send
 * in any case.
 */
static void gcode_PRUSA_SN()
{
    if (farm_mode) {
        selectedSerialPort = 0;
        MSerial.write(";S");
        int numbersRead = 0;
        Timer timeout;
        timeout.start();

        while (numbersRead < 19) {
            while (MSerial.available() > 0) {
                uint8_t serial_char = MSerial.read();
                selectedSerialPort = 1;
                MSerial.write(serial_char);
                numbersRead++;
                selectedSerialPort = 0;
            }
            if (timeout.expired(100)) break;
        }
        selectedSerialPort = 1;
        MSerial.write('\n');
#if 0
        for (int b = 0; b < 3; b++) {
            tone(BEEPER, 110);
            delay(50);
            noTone(BEEPER);
            delay(50);
        }
#endif
    } else {
        MYSERIAL.println("Not in farm mode.");
    }
}

void process_commands()
{
	if (!buflen) return; //empty command
  #ifdef FILAMENT_RUNOUT_SUPPORT
    SET_INPUT(FR_SENS);
  #endif

#ifdef CMDBUFFER_DEBUG
  SERIAL_ECHOPGM("Processing a GCODE command: ");
  SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  SERIAL_ECHOLNPGM("");
  SERIAL_ECHOPGM("In cmdqueue: ");
  SERIAL_ECHO(buflen);
  SERIAL_ECHOLNPGM("");
#endif /* CMDBUFFER_DEBUG */
  
  unsigned long codenum; //throw away variable
  char *starpos = NULL;
#ifdef ENABLE_AUTO_BED_LEVELING
  float x_tmp, y_tmp, z_tmp, real_z;
#endif

  // PRUSA GCODES
  KEEPALIVE_STATE(IN_HANDLER);

#ifdef SNMM
  float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  int8_t SilentMode;
#endif
  
  if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
	  starpos = (strchr(strchr_pointer + 5, '*'));
	  if (starpos != NULL)
		  *(starpos) = '\0';
	  lcd_setstatus(strchr_pointer + 5);
  }

#ifdef TMC2130
	else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
	{
	  if(code_seen("CRASH_DETECTED"))
	  {
		  uint8_t mask = 0;
		  if (code_seen("X")) mask |= X_AXIS_MASK;
		  if (code_seen("Y")) mask |= Y_AXIS_MASK;
		  crashdet_detected(mask);
	  }
	  else if(code_seen("CRASH_RECOVER"))
		  crashdet_recover();
	  else if(code_seen("CRASH_CANCEL"))
		  crashdet_cancel();
	}
	else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
	{
		if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
		{
			uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
			tmc2130_set_wave(E_AXIS, 247, fac);
		}
		else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
		{
			uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
			uint16_t res = tmc2130_get_res(E_AXIS);
			tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
		}
	}
#endif //TMC2130

  else if(code_seen("PRUSA")){
		if (code_seen("Ping")) {  //PRUSA Ping
			if (farm_mode) {
				PingTime = millis();
				//MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
			}	  
		}
		else if (code_seen("PRN")) {
		  MYSERIAL.println(status_number);

        }else if (code_seen("FAN")) {
            MYSERIAL.print("E0:");
            MYSERIAL.print(60*fan_speed[0]);
            MYSERIAL.println(" RPM");
            MYSERIAL.print("PRN0:");
            MYSERIAL.print(60*fan_speed[1]);
            MYSERIAL.println(" RPM");
            
        }else if (code_seen("fn")) {
		  if (farm_mode) {
			  MYSERIAL.println(farm_no);
		  }
		  else {
			  MYSERIAL.println("Not in farm mode.");
		  }
		  
		}
		else if (code_seen("thx")) {
			no_response = false;
		}else if (code_seen("fv")) {
        // get file version
        #ifdef SDSUPPORT
        card.openFile(strchr_pointer + 3,true);
        while (true) {
            uint16_t readByte = card.get();
            MYSERIAL.write(readByte);
            if (readByte=='\n') {
                break;
            }
        }
        card.closefile();

        #endif // SDSUPPORT

    } else if (code_seen("M28")) {
        trace();
        prusa_sd_card_upload = true;
        card.openFile(strchr_pointer+4,false);
	} else if (code_seen("SN")) { 
        gcode_PRUSA_SN();
	} else if(code_seen("Fir")){

      SERIAL_PROTOCOLLN(FW_VERSION);

    } else if(code_seen("Rev")){

      SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );

    } else if(code_seen("Lang")) {
      lcd_force_language_selection();
    } else if(code_seen("Lz")) {
      EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
      
    } else if (code_seen("SERIAL LOW")) {
        MYSERIAL.println("SERIAL LOW");
        MYSERIAL.begin(BAUDRATE);
        return;
    } else if (code_seen("SERIAL HIGH")) {
        MYSERIAL.println("SERIAL HIGH");
        MYSERIAL.begin(1152000);
        return;
    } else if(code_seen("Beat")) {
        // Kick farm link timer
        kicktime = millis();

    } else if(code_seen("FR")) {
        // Factory full reset
        factory_reset(0,true);        
    }
    //else if (code_seen('Cal')) {
		//  lcd_calibration();
	  // }

  }  
  else if (code_seen('^')) {
    // nothing, this is a version line
  } else if(code_seen('G'))
  {
    switch((int)code_value())
    {
    case 0: // G0 -> G1
    case 1: // G1
      if(Stopped == false) {

        #ifdef FILAMENT_RUNOUT_SUPPORT
            
            if(READ(FR_SENS)){

                        feedmultiplyBckp=feedmultiply;
                        float target[4];
                        float lastpos[4];
                        target[X_AXIS]=current_position[X_AXIS];
                        target[Y_AXIS]=current_position[Y_AXIS];
                        target[Z_AXIS]=current_position[Z_AXIS];
                        target[E_AXIS]=current_position[E_AXIS];
                        lastpos[X_AXIS]=current_position[X_AXIS];
                        lastpos[Y_AXIS]=current_position[Y_AXIS];
                        lastpos[Z_AXIS]=current_position[Z_AXIS];
                        lastpos[E_AXIS]=current_position[E_AXIS];
                        //retract by E
                        
                        target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
                        
                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);


                        target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;

                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);

                        target[X_AXIS]= FILAMENTCHANGE_XPOS ;
                        
                        target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
                         
                 
                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);

                        target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
                          

                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);

                        //finish moves
                        st_synchronize();
                        //disable extruder steppers so filament can be removed
                        disable_e0();
                        disable_e1();
                        disable_e2();
                        delay(100);
                        
                        //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
                        uint8_t cnt=0;
                        int counterBeep = 0;
                        lcd_wait_interact();
                        while(!lcd_clicked()){
                          cnt++;
                          manage_heater();
                          manage_inactivity(true);
                          //lcd_update();
                          if(cnt==0)
                          {
                          #if BEEPER > 0
                          
                            if (counterBeep== 500){
                              counterBeep = 0;
                              
                            }
                          
                            
                            SET_OUTPUT(BEEPER);
                            if (counterBeep== 0){
                              WRITE(BEEPER,HIGH);
                            }
                            
                            if (counterBeep== 20){
                              WRITE(BEEPER,LOW);
                            }
                            
                            
                            
                          
                            counterBeep++;
                          #else
                      #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
                              lcd_buzz(1000/6,100);
                      #else
                        lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
                      #endif
                          #endif
                          }
                        }
                        
                        WRITE(BEEPER,LOW);
                        
                        target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); 
                        
                        
                        target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
                        
                 
                        
                        
                        
                        lcd_change_fil_state = 0;
                        lcd_loading_filament();
                        while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
                        
                          lcd_change_fil_state = 0;
                          lcd_alright();
                          switch(lcd_change_fil_state){
                          
                             case 2:
                                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); 
                        
                        
                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
                                      
                                     
                                     lcd_loading_filament();
                                     break;
                             case 3:
                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
                                     lcd_loading_color();
                                     break;
                                          
                             default:
                                     lcd_change_success();
                                     break;
                          }
                          
                        }
                        

                        
                      target[E_AXIS]+= 5;
                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
                        
                      target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
                        

                        //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
                        //plan_set_e_position(current_position[E_AXIS]);
                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
                        
                        
                        target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
                        
                      
                             
                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
                        
                        
                        plan_set_e_position(lastpos[E_AXIS]);
                        
                        feedmultiply=feedmultiplyBckp;
                        
                     
                        
                        char cmd[9];

                        sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
                        enquecommand(cmd);

            }



        #endif


        get_coordinates(); // For X Y Z E F
		if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
			total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
		}
          #ifdef FWRETRACT
            if(autoretract_enabled)
            if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
              float echange=destination[E_AXIS]-current_position[E_AXIS];

              if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
                  current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
                  plan_set_e_position(current_position[E_AXIS]); //AND from the planner
                  retract(!retracted);
                  return;
              }


            }
          #endif //FWRETRACT
        prepare_move();
        //ClearToSend();
      }
      break;
    case 2: // G2  - CW ARC
      if(Stopped == false) {
        get_arc_coordinates();
        prepare_arc_move(true);
      }
      break;
    case 3: // G3  - CCW ARC
      if(Stopped == false) {
        get_arc_coordinates();
        prepare_arc_move(false);
      }
      break;
    case 4: // G4 dwell      
      codenum = 0;
      if(code_seen('P')) codenum = code_value(); // milliseconds to wait
      if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
	  if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
      st_synchronize();
      codenum += millis();  // keep track of when we started waiting
      previous_millis_cmd = millis();
      while(millis() < codenum) {
        manage_heater();
        manage_inactivity();
        lcd_update();
      }
      break;
      #ifdef FWRETRACT
      case 10: // G10 retract
       #if EXTRUDERS > 1
        retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
        retract(true,retracted_swap[active_extruder]);
       #else
        retract(true);
       #endif
      break;
      case 11: // G11 retract_recover
       #if EXTRUDERS > 1
        retract(false,retracted_swap[active_extruder]);
       #else
        retract(false);
       #endif 
      break;
      #endif //FWRETRACT
    case 28: //G28 Home all Axis one at a time
    {
      st_synchronize();

#if 0
      SERIAL_ECHOPGM("G28, initial ");  print_world_coordinates();
      SERIAL_ECHOPGM("G28, initial ");  print_physical_coordinates();
#endif

      // Flag for the display update routine and to disable the print cancelation during homing.
		  homing_flag = true;
      
      // Which axes should be homed?
      bool home_x = code_seen(axis_codes[X_AXIS]);
      bool home_y = code_seen(axis_codes[Y_AXIS]);
      bool home_z = code_seen(axis_codes[Z_AXIS]);
      // calibrate?
      bool calib = code_seen('C');
      // Either all X,Y,Z codes are present, or none of them.
      bool home_all_axes = home_x == home_y && home_x == home_z;
      if (home_all_axes)
        // No X/Y/Z code provided means to home all axes.
        home_x = home_y = home_z = true;

#ifdef ENABLE_AUTO_BED_LEVELING
      plan_bed_level_matrix.set_to_identity();  //Reset the plane ("erase" all leveling data)
#endif //ENABLE_AUTO_BED_LEVELING
            
      // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
      // the planner will not perform any adjustments in the XY plane. 
      // Wait for the motors to stop and update the current position with the absolute values.
      world2machine_revert_to_uncorrected();

      // For mesh bed leveling deactivate the matrix temporarily.
      // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
      // in a single axis only.
      // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
#ifdef MESH_BED_LEVELING
      uint8_t mbl_was_active = mbl.active;
      mbl.active = 0;
      current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
#endif

      // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
      // consumed during the first movements following this statement.
      if (home_z)
        babystep_undo();

      saved_feedrate = feedrate;
      saved_feedmultiply = feedmultiply;
      feedmultiply = 100;
      previous_millis_cmd = millis();

      enable_endstops(true);

      memcpy(destination, current_position, sizeof(destination));
      feedrate = 0.0;

      #if Z_HOME_DIR > 0                      // If homing away from BED do Z first
      if(home_z)
        homeaxis(Z_AXIS);
      #endif

      #ifdef QUICK_HOME
      // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
      if(home_x && home_y)  //first diagonal move
      {
        current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;

        int x_axis_home_dir = home_dir(X_AXIS);

        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
        destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
        feedrate = homing_feedrate[X_AXIS];
        if(homing_feedrate[Y_AXIS]<feedrate)
          feedrate = homing_feedrate[Y_AXIS];
        if (max_length(X_AXIS) > max_length(Y_AXIS)) {
          feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
        } else {
          feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
        }
        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
        st_synchronize();

        axis_is_at_home(X_AXIS);
        axis_is_at_home(Y_AXIS);
        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
        destination[X_AXIS] = current_position[X_AXIS];
        destination[Y_AXIS] = current_position[Y_AXIS];
        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
        feedrate = 0.0;
        st_synchronize();
        endstops_hit_on_purpose();

        current_position[X_AXIS] = destination[X_AXIS];
        current_position[Y_AXIS] = destination[Y_AXIS];
        current_position[Z_AXIS] = destination[Z_AXIS];
      }
      #endif /* QUICK_HOME */

#ifdef TMC2130	 
      if(home_x)
	  {
		if (!calib)
			homeaxis(X_AXIS);
		else
			tmc2130_home_calibrate(X_AXIS);
	  }

      if(home_y)
	  {
		if (!calib)
	        homeaxis(Y_AXIS);
		else
			tmc2130_home_calibrate(Y_AXIS);
	  }
#endif //TMC2130


      if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
        current_position[X_AXIS]=code_value()+add_homing[X_AXIS];

      if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
		    current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];

      #if Z_HOME_DIR < 0                      // If homing towards BED do Z last
        #ifndef Z_SAFE_HOMING
          if(home_z) {
            #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
              feedrate = max_feedrate[Z_AXIS];
              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
              st_synchronize();
            #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
            #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))  // If Mesh bed leveling, moxve X&Y to safe position for home
      			  if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] )) 
      			  {
                homeaxis(X_AXIS);
                homeaxis(Y_AXIS);
      			  } 
              // 1st mesh bed leveling measurement point, corrected.
              world2machine_initialize();
              world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
              world2machine_reset();
              if (destination[Y_AXIS] < Y_MIN_POS)
                  destination[Y_AXIS] = Y_MIN_POS;
              destination[Z_AXIS] = MESH_HOME_Z_SEARCH;    // Set destination away from bed
              feedrate = homing_feedrate[Z_AXIS]/10;
              current_position[Z_AXIS] = 0;
              enable_endstops(false);
              plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
              st_synchronize();
              current_position[X_AXIS] = destination[X_AXIS];
              current_position[Y_AXIS] = destination[Y_AXIS];
              enable_endstops(true);
              endstops_hit_on_purpose();
              homeaxis(Z_AXIS);
            #else // MESH_BED_LEVELING
              homeaxis(Z_AXIS);
            #endif // MESH_BED_LEVELING
          }
        #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
          if(home_all_axes) {
            destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
            destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
            destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
            feedrate = XY_TRAVEL_SPEED/60;
            current_position[Z_AXIS] = 0;

            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
            plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
            st_synchronize();
            current_position[X_AXIS] = destination[X_AXIS];
            current_position[Y_AXIS] = destination[Y_AXIS];

            homeaxis(Z_AXIS);
          }
                                                // Let's see if X and Y are homed and probe is inside bed area.
          if(home_z) {
            if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {

              current_position[Z_AXIS] = 0;
              plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
              feedrate = max_feedrate[Z_AXIS];
              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
              st_synchronize();

              homeaxis(Z_AXIS);
            } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
                LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
                SERIAL_ECHO_START;
                SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
            } else {
                LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
                SERIAL_ECHO_START;
                SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
            }
          }
        #endif // Z_SAFE_HOMING
      #endif // Z_HOME_DIR < 0

      if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
        current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
      #ifdef ENABLE_AUTO_BED_LEVELING
        if(home_z)
          current_position[Z_AXIS] += zprobe_zoffset;  //Add Z_Probe offset (the distance is negative)
      #endif
      
      // Set the planner and stepper routine positions.
      // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
      // contains the machine coordinates.
      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);

      #ifdef ENDSTOPS_ONLY_FOR_HOMING
        enable_endstops(false);
      #endif

      feedrate = saved_feedrate;
      feedmultiply = saved_feedmultiply;
      previous_millis_cmd = millis();
      endstops_hit_on_purpose();
#ifndef MESH_BED_LEVELING
      // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
      // Offer the user to load the baby step value, which has been adjusted at the previous print session.
      if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
          lcd_adjust_z();
#endif

    // Load the machine correction matrix
    world2machine_initialize();
    // and correct the current_position XY axes to match the transformed coordinate system.
    world2machine_update_current();

#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
	if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
		{
      if (! home_z && mbl_was_active) {
        // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
        mbl.active = true;
        // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
        current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
      }
		}
	else
		{
			st_synchronize();
			homing_flag = false;
			// Push the commands to the front of the message queue in the reverse order!
			// There shall be always enough space reserved for these commands.
			// enquecommand_front_P((PSTR("G80")));
			goto case_G80;
	  }
#endif

	  if (farm_mode) { prusa_statistics(20); };

	  homing_flag = false;
#if 0
      SERIAL_ECHOPGM("G28, final ");  print_world_coordinates();
      SERIAL_ECHOPGM("G28, final ");  print_physical_coordinates();
      SERIAL_ECHOPGM("G28, final ");  print_mesh_bed_leveling_table();
#endif
      break;
    }
#ifdef ENABLE_AUTO_BED_LEVELING
    case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
        {
            #if Z_MIN_PIN == -1
            #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
            #endif

            // Prevent user from running a G29 without first homing in X and Y
            if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
            {
                LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
                SERIAL_ECHO_START;
                SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
                break; // abort G29, since we don't know where we are
            }

            st_synchronize();
            // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
            //vector_3 corrected_position = plan_get_position_mm();
            //corrected_position.debug("position before G29");
            plan_bed_level_matrix.set_to_identity();
            vector_3 uncorrected_position = plan_get_position();
            //uncorrected_position.debug("position durring G29");
            current_position[X_AXIS] = uncorrected_position.x;
            current_position[Y_AXIS] = uncorrected_position.y;
            current_position[Z_AXIS] = uncorrected_position.z;
            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
            setup_for_endstop_move();

            feedrate = homing_feedrate[Z_AXIS];
#ifdef AUTO_BED_LEVELING_GRID
            // probe at the points of a lattice grid

            int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
            int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);


            // solve the plane equation ax + by + d = z
            // A is the matrix with rows [x y 1] for all the probed points
            // B is the vector of the Z positions
            // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
            // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z

            // "A" matrix of the linear system of equations
            double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
            // "B" vector of Z points
            double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];


            int probePointCounter = 0;
            bool zig = true;

            for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
            {
              int xProbe, xInc;
              if (zig)
              {
                xProbe = LEFT_PROBE_BED_POSITION;
                //xEnd = RIGHT_PROBE_BED_POSITION;
                xInc = xGridSpacing;
                zig = false;
              } else // zag
              {
                xProbe = RIGHT_PROBE_BED_POSITION;
                //xEnd = LEFT_PROBE_BED_POSITION;
                xInc = -xGridSpacing;
                zig = true;
              }

              for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
              {
                float z_before;
                if (probePointCounter == 0)
                {
                  // raise before probing
                  z_before = Z_RAISE_BEFORE_PROBING;
                } else
                {
                  // raise extruder
                  z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
                }

                float measured_z = probe_pt(xProbe, yProbe, z_before);

                eqnBVector[probePointCounter] = measured_z;

                eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
                eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
                eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
                probePointCounter++;
                xProbe += xInc;
              }
            }
            clean_up_after_endstop_move();

            // solve lsq problem
            double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);

            SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
            SERIAL_PROTOCOL(plane_equation_coefficients[0]);
            SERIAL_PROTOCOLPGM(" b: ");
            SERIAL_PROTOCOL(plane_equation_coefficients[1]);
            SERIAL_PROTOCOLPGM(" d: ");
            SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);


            set_bed_level_equation_lsq(plane_equation_coefficients);

            free(plane_equation_coefficients);

#else // AUTO_BED_LEVELING_GRID not defined

            // Probe at 3 arbitrary points
            // probe 1
            float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);

            // probe 2
            float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);

            // probe 3
            float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);

            clean_up_after_endstop_move();

            set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);


#endif // AUTO_BED_LEVELING_GRID
            st_synchronize();

            // The following code correct the Z height difference from z-probe position and hotend tip position.
            // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
            // When the bed is uneven, this height must be corrected.
            real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS];  //get the real Z (since the auto bed leveling is already correcting the plane)
            x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
            y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
            z_tmp = current_position[Z_AXIS];

            apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);         //Apply the correction sending the probe offset
            current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS];   //The difference is added to current position and sent to planner.
            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
        }
        break;
#ifndef Z_PROBE_SLED
    case 30: // G30 Single Z Probe
        {
            st_synchronize();
            // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
            setup_for_endstop_move();

            feedrate = homing_feedrate[Z_AXIS];

            run_z_probe();
            SERIAL_PROTOCOLPGM(MSG_BED);
            SERIAL_PROTOCOLPGM(" X: ");
            SERIAL_PROTOCOL(current_position[X_AXIS]);
            SERIAL_PROTOCOLPGM(" Y: ");
            SERIAL_PROTOCOL(current_position[Y_AXIS]);
            SERIAL_PROTOCOLPGM(" Z: ");
            SERIAL_PROTOCOL(current_position[Z_AXIS]);
            SERIAL_PROTOCOLPGM("\n");

            clean_up_after_endstop_move();
        }
        break;
#else
    case 31: // dock the sled
        dock_sled(true);
        break;
    case 32: // undock the sled
        dock_sled(false);
        break;
#endif // Z_PROBE_SLED
#endif // ENABLE_AUTO_BED_LEVELING
            
#ifdef MESH_BED_LEVELING
    case 30: // G30 Single Z Probe
        {
            st_synchronize();
            // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
            setup_for_endstop_move();

            feedrate = homing_feedrate[Z_AXIS];

            find_bed_induction_sensor_point_z(-10.f, 3);
            SERIAL_PROTOCOLRPGM(MSG_BED);
            SERIAL_PROTOCOLPGM(" X: ");
            MYSERIAL.print(current_position[X_AXIS], 5);
            SERIAL_PROTOCOLPGM(" Y: ");
            MYSERIAL.print(current_position[Y_AXIS], 5);
            SERIAL_PROTOCOLPGM(" Z: ");
            MYSERIAL.print(current_position[Z_AXIS], 5);
            SERIAL_PROTOCOLPGM("\n");
            clean_up_after_endstop_move();
        }
        break;
	

	case 75:
	{
		for (int i = 40; i <= 110; i++) {
			MYSERIAL.print(i);
			MYSERIAL.print("  ");
			MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
		}
	}
	break;

	case 76: //PINDA probe temperature calibration
	{
#ifdef PINDA_THERMISTOR
		if (true)
		{
			if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
			{
				// We don't know where we are! HOME!
				// Push the commands to the front of the message queue in the reverse order!
				// There shall be always enough space reserved for these commands.
				repeatcommand_front(); // repeat G76 with all its parameters
				enquecommand_front_P((PSTR("G28 W0")));
				break;
			}
			lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
			bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
			
			if (result)
			{
				current_position[Z_AXIS] = 50;
				current_position[Y_AXIS] += 180;
				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
				st_synchronize();
				lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
				current_position[Y_AXIS] -= 180;
				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
				st_synchronize();
				feedrate = homing_feedrate[Z_AXIS] / 10;
				enable_endstops(true);
				endstops_hit_on_purpose();
				homeaxis(Z_AXIS);
				plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
				enable_endstops(false);
			}
			if ((current_temperature_pinda > 35) && (farm_mode == false)) {
				//waiting for PIDNA probe to cool down in case that we are not in farm mode
				current_position[Z_AXIS] = 100;
				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
				if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
					lcd_temp_cal_show_result(false);
					break;
				}
			}
			lcd_update_enable(true);
			KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
			SERIAL_ECHOLNPGM("PINDA probe calibration start");

			float zero_z;
			int z_shift = 0; //unit: steps
			float start_temp = 5 * (int)(current_temperature_pinda / 5);
			if (start_temp < 35) start_temp = 35;
			if (start_temp < current_temperature_pinda) start_temp += 5;
			SERIAL_ECHOPGM("start temperature: ");
			MYSERIAL.println(start_temp);

//			setTargetHotend(200, 0);
			setTargetBed(70 + (start_temp - 30));

			custom_message = true;
			custom_message_type = 4;
			custom_message_state = 1;
			custom_message = MSG_TEMP_CALIBRATION;
			current_position[X_AXIS] = PINDA_PREHEAT_X;
			current_position[Y_AXIS] = PINDA_PREHEAT_Y;
			current_position[Z_AXIS] = PINDA_PREHEAT_Z;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
			st_synchronize();

			while (current_temperature_pinda < start_temp)
			{
				delay_keep_alive(1000);
				serialecho_temperatures();
			}

			eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process 

			current_position[Z_AXIS] = 5;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);

			current_position[X_AXIS] = pgm_read_float(bed_ref_points);
			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
			st_synchronize();

			bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
			if(find_z_result == false) lcd_temp_cal_show_result(find_z_result);

			zero_z = current_position[Z_AXIS];

			//current_position[Z_AXIS]
			SERIAL_ECHOLNPGM("");
			SERIAL_ECHOPGM("ZERO: ");
			MYSERIAL.print(current_position[Z_AXIS]);
			SERIAL_ECHOLNPGM("");

			int i = -1; for (; i < 5; i++)
			{
				float temp = (40 + i * 5);
				SERIAL_ECHOPGM("Step: ");
				MYSERIAL.print(i + 2);
				SERIAL_ECHOLNPGM("/6 (skipped)");
				SERIAL_ECHOPGM("PINDA temperature: ");
				MYSERIAL.print((40 + i*5));
				SERIAL_ECHOPGM(" Z shift (mm):");
				MYSERIAL.print(0);
				SERIAL_ECHOLNPGM("");
				if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
				if (start_temp <= temp) break;
			}

			for (i++; i < 5; i++)
			{
				float temp = (40 + i * 5);
				SERIAL_ECHOPGM("Step: ");
				MYSERIAL.print(i + 2);
				SERIAL_ECHOLNPGM("/6");
				custom_message_state = i + 2;
				setTargetBed(50 + 10 * (temp - 30) / 5);
//				setTargetHotend(255, 0);
				current_position[X_AXIS] = PINDA_PREHEAT_X;
				current_position[Y_AXIS] = PINDA_PREHEAT_Y;
				current_position[Z_AXIS] = PINDA_PREHEAT_Z;
				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
				st_synchronize();
				while (current_temperature_pinda < temp)
				{
					delay_keep_alive(1000);
					serialecho_temperatures();
				}
				current_position[Z_AXIS] = 5;
				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
				current_position[X_AXIS] = pgm_read_float(bed_ref_points);
				current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
				st_synchronize();
				find_z_result = find_bed_induction_sensor_point_z(-1.f);
				if (find_z_result == false) lcd_temp_cal_show_result(find_z_result);

				z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);

				SERIAL_ECHOLNPGM("");
				SERIAL_ECHOPGM("PINDA temperature: ");
				MYSERIAL.print(current_temperature_pinda);
				SERIAL_ECHOPGM(" Z shift (mm):");
				MYSERIAL.print(current_position[Z_AXIS] - zero_z);
				SERIAL_ECHOLNPGM("");

				EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);

			}
			lcd_temp_cal_show_result(true);

			break;
		}
#endif //PINDA_THERMISTOR

		setTargetBed(PINDA_MIN_T);
		float zero_z;
		int z_shift = 0; //unit: steps
		int t_c; // temperature

		if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
			// We don't know where we are! HOME!
			// Push the commands to the front of the message queue in the reverse order!
			// There shall be always enough space reserved for these commands.
			repeatcommand_front(); // repeat G76 with all its parameters
			enquecommand_front_P((PSTR("G28 W0")));
			break;
		}
		SERIAL_ECHOLNPGM("PINDA probe calibration start");
		custom_message = true;
		custom_message_type = 4;
		custom_message_state = 1;
		custom_message = MSG_TEMP_CALIBRATION;
		current_position[X_AXIS] = PINDA_PREHEAT_X;
		current_position[Y_AXIS] = PINDA_PREHEAT_Y;
		current_position[Z_AXIS] = PINDA_PREHEAT_Z;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
		st_synchronize();
		
		while (abs(degBed() - PINDA_MIN_T) > 1) {
			delay_keep_alive(1000);
			serialecho_temperatures();
		}
		
		//enquecommand_P(PSTR("M190 S50"));
		for (int i = 0; i < PINDA_HEAT_T; i++) {
			delay_keep_alive(1000);
			serialecho_temperatures();
		}
		eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process 

		current_position[Z_AXIS] = 5;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);

		current_position[X_AXIS] = pgm_read_float(bed_ref_points);
		current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
		st_synchronize();
		
		find_bed_induction_sensor_point_z(-1.f);
		zero_z = current_position[Z_AXIS];

		//current_position[Z_AXIS]
		SERIAL_ECHOLNPGM("");
		SERIAL_ECHOPGM("ZERO: ");
		MYSERIAL.print(current_position[Z_AXIS]);
		SERIAL_ECHOLNPGM("");

		for (int i = 0; i<5; i++) {
			SERIAL_ECHOPGM("Step: ");
			MYSERIAL.print(i+2);
			SERIAL_ECHOLNPGM("/6");
			custom_message_state = i + 2;
			t_c = 60 + i * 10;

			setTargetBed(t_c);
			current_position[X_AXIS] = PINDA_PREHEAT_X;
			current_position[Y_AXIS] = PINDA_PREHEAT_Y;
			current_position[Z_AXIS] = PINDA_PREHEAT_Z;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
			st_synchronize();
			while (degBed() < t_c) {
				delay_keep_alive(1000);
				serialecho_temperatures();
			}
			for (int i = 0; i < PINDA_HEAT_T; i++) {
				delay_keep_alive(1000);
				serialecho_temperatures();
			}
			current_position[Z_AXIS] = 5;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
			current_position[X_AXIS] = pgm_read_float(bed_ref_points);
			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
			st_synchronize();
			find_bed_induction_sensor_point_z(-1.f);
			z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);

			SERIAL_ECHOLNPGM("");
			SERIAL_ECHOPGM("Temperature: ");
			MYSERIAL.print(t_c);
			SERIAL_ECHOPGM(" Z shift (mm):");
			MYSERIAL.print(current_position[Z_AXIS] - zero_z);
			SERIAL_ECHOLNPGM("");

			EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
			
		
		}
		custom_message_type = 0;
		custom_message = false;

		eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
		SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
			disable_x();
			disable_y();
			disable_z();
			disable_e0();
			disable_e1();
			disable_e2();
			setTargetBed(0); //set bed target temperature back to 0
		lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
		temp_cal_active = true;
		eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
		lcd_update_enable(true);
		lcd_update(2);		

		

	}
	break;

#ifdef DIS
	case 77:
	{
		//G77 X200 Y150 XP100 YP15 XO10 Y015

		//for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0


		//G77 X232 Y218 XP116 YP109 XO-11 YO0 

		float dimension_x = 40;
		float dimension_y = 40;
		int points_x = 40;
		int points_y = 40;
		float offset_x = 74;
		float offset_y = 33;

		if (code_seen('X')) dimension_x = code_value();
		if (code_seen('Y')) dimension_y = code_value();
		if (code_seen('XP')) points_x = code_value();
		if (code_seen('YP')) points_y = code_value();
		if (code_seen('XO')) offset_x = code_value();
		if (code_seen('YO')) offset_y = code_value();
		
		bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
		
	} break;
	
#endif

	case 79: {
		for (int i = 255; i > 0; i = i - 5) {
			fanSpeed = i;
			//delay_keep_alive(2000);
			for (int j = 0; j < 100; j++) {
				delay_keep_alive(100);

			}
			fan_speed[1];
			MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
		}
	}break;

	/**
	* G80: Mesh-based Z probe, probes a grid and produces a
	*      mesh to compensate for variable bed height
	*
	* The S0 report the points as below
	*
	*  +----> X-axis
	*  |
	*  |
	*  v Y-axis
	*
	*/

	case 80:
#ifdef MK1BP
		break;
#endif //MK1BP
	case_G80:
	{
		mesh_bed_leveling_flag = true;
		int8_t verbosity_level = 0;
		static bool run = false;

		if (code_seen('V')) {
			// Just 'V' without a number counts as V1.
			char c = strchr_pointer[1];
			verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
		}
		// Firstly check if we know where we are
		if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
			// We don't know where we are! HOME!
			// Push the commands to the front of the message queue in the reverse order!
			// There shall be always enough space reserved for these commands.
			if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
				repeatcommand_front(); // repeat G80 with all its parameters
				enquecommand_front_P((PSTR("G28 W0")));
			}
			else {
				mesh_bed_leveling_flag = false;
			}
			break;
		} 
		
		
		bool temp_comp_start = true;
#ifdef PINDA_THERMISTOR
		temp_comp_start = false;
#endif //PINDA_THERMISTOR

		if (temp_comp_start)
		if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
			if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
				temp_compensation_start();
				run = true;
				repeatcommand_front(); // repeat G80 with all its parameters
				enquecommand_front_P((PSTR("G28 W0")));
			}
			else {
				mesh_bed_leveling_flag = false;
			}
			break;
		}
		run = false;
		if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
			mesh_bed_leveling_flag = false;
			break;
		}
		// Save custom message state, set a new custom message state to display: Calibrating point 9.
		bool custom_message_old = custom_message;
		unsigned int custom_message_type_old = custom_message_type;
		unsigned int custom_message_state_old = custom_message_state;
		custom_message = true;
		custom_message_type = 1;
		custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
		lcd_update(1);

		mbl.reset(); //reset mesh bed leveling

					 // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
					 // consumed during the first movements following this statement.
		babystep_undo();

		// Cycle through all points and probe them
		// First move up. During this first movement, the babystepping will be reverted.
		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
		// The move to the first calibration point.
		current_position[X_AXIS] = pgm_read_float(bed_ref_points);
		current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
		bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);

		#ifdef SUPPORT_VERBOSITY
		if (verbosity_level >= 1) {
			clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
		}
		#endif //SUPPORT_VERBOSITY
		//            mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);            
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
		// Wait until the move is finished.
		st_synchronize();

		int mesh_point = 0; //index number of calibration point

		int ix = 0;
		int iy = 0;

		int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
		int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
		int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
		bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
		#ifdef SUPPORT_VERBOSITY
		if (verbosity_level >= 1) {
			has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
		}
		#endif // SUPPORT_VERBOSITY
		setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
		const char *kill_message = NULL;
		while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
			// Get coords of a measuring point.
			ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
			iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
			if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
			float z0 = 0.f;
			if (has_z && mesh_point > 0) {
				uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
				z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
				//#if 0
				#ifdef SUPPORT_VERBOSITY
				if (verbosity_level >= 1) {
					SERIAL_ECHOLNPGM("");
					SERIAL_ECHOPGM("Bed leveling, point: ");
					MYSERIAL.print(mesh_point);
					SERIAL_ECHOPGM(", calibration z: ");
					MYSERIAL.print(z0, 5);
					SERIAL_ECHOLNPGM("");
				}
				#endif // SUPPORT_VERBOSITY
				//#endif
			}

			// Move Z up to MESH_HOME_Z_SEARCH.
			current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
			st_synchronize();

			// Move to XY position of the sensor point.
			current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);



			world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
			#ifdef SUPPORT_VERBOSITY
			if (verbosity_level >= 1) {

				SERIAL_PROTOCOL(mesh_point);
				clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
			}
			#endif // SUPPORT_VERBOSITY

			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
			st_synchronize();

			// Go down until endstop is hit
			const float Z_CALIBRATION_THRESHOLD = 1.f;
			if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  
				kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
				break;
			}
			if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
				kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
				break;
			}
			if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
				kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
				break;
			}
			#ifdef SUPPORT_VERBOSITY
			if (verbosity_level >= 10) {
				SERIAL_ECHOPGM("X: ");
				MYSERIAL.print(current_position[X_AXIS], 5);
				SERIAL_ECHOLNPGM("");
				SERIAL_ECHOPGM("Y: ");
				MYSERIAL.print(current_position[Y_AXIS], 5);
				SERIAL_PROTOCOLPGM("\n");
			}
			#endif // SUPPORT_VERBOSITY
			float offset_z = 0;

#ifdef PINDA_THERMISTOR
			offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
#endif //PINDA_THERMISTOR
//			#ifdef SUPPORT_VERBOSITY
/*			if (verbosity_level >= 1)
			{
				SERIAL_ECHOPGM("mesh bed leveling: ");
				MYSERIAL.print(current_position[Z_AXIS], 5);
				SERIAL_ECHOPGM(" offset: ");
				MYSERIAL.print(offset_z, 5);
				SERIAL_ECHOLNPGM("");
			}*/
//			#endif // SUPPORT_VERBOSITY
			mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;

			custom_message_state--;
			mesh_point++;
			lcd_update(1);
		}
		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
		#ifdef SUPPORT_VERBOSITY
		if (verbosity_level >= 20) {
			SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
			SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
			MYSERIAL.print(current_position[Z_AXIS], 5);
		}
		#endif // SUPPORT_VERBOSITY
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
		st_synchronize();
		if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
			kill(kill_message);
			SERIAL_ECHOLNPGM("killed");
		}
		clean_up_after_endstop_move();
//		SERIAL_ECHOLNPGM("clean up finished ");

		bool apply_temp_comp = true;
#ifdef PINDA_THERMISTOR
		apply_temp_comp = false;
#endif
		if (apply_temp_comp)
		if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
		babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
//		SERIAL_ECHOLNPGM("babystep applied");
		bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
		#ifdef SUPPORT_VERBOSITY
		if (verbosity_level >= 1) {
			eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
		}
		#endif // SUPPORT_VERBOSITY

		for (uint8_t i = 0; i < 4; ++i) {
			unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
			long correction = 0;
			if (code_seen(codes[i]))
				correction = code_value_long();
			else if (eeprom_bed_correction_valid) {
				unsigned char *addr = (i < 2) ?
					((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
					((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
				correction = eeprom_read_int8(addr);
			}
			if (correction == 0)
				continue;
			float offset = float(correction) * 0.001f;
			if (fabs(offset) > 0.101f) {
				SERIAL_ERROR_START;
				SERIAL_ECHOPGM("Excessive bed leveling correction: ");
				SERIAL_ECHO(offset);
				SERIAL_ECHOLNPGM(" microns");
			}
			else {
				switch (i) {
				case 0:
					for (uint8_t row = 0; row < 3; ++row) {
						mbl.z_values[row][1] += 0.5f * offset;
						mbl.z_values[row][0] += offset;
					}
					break;
				case 1:
					for (uint8_t row = 0; row < 3; ++row) {
						mbl.z_values[row][1] += 0.5f * offset;
						mbl.z_values[row][2] += offset;
					}
					break;
				case 2:
					for (uint8_t col = 0; col < 3; ++col) {
						mbl.z_values[1][col] += 0.5f * offset;
						mbl.z_values[0][col] += offset;
					}
					break;
				case 3:
					for (uint8_t col = 0; col < 3; ++col) {
						mbl.z_values[1][col] += 0.5f * offset;
						mbl.z_values[2][col] += offset;
					}
					break;
				}
			}
		}
//		SERIAL_ECHOLNPGM("Bed leveling correction finished");
		mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
//		SERIAL_ECHOLNPGM("Upsample finished");
		mbl.active = 1; //activate mesh bed leveling
//		SERIAL_ECHOLNPGM("Mesh bed leveling activated");
		go_home_with_z_lift();
//		SERIAL_ECHOLNPGM("Go home finished");
		//unretract (after PINDA preheat retraction)
		if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
			current_position[E_AXIS] += DEFAULT_RETRACTION;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
		}
		KEEPALIVE_STATE(NOT_BUSY);
		// Restore custom message state
		custom_message = custom_message_old;
		custom_message_type = custom_message_type_old;
		custom_message_state = custom_message_state_old;
		mesh_bed_leveling_flag = false;
		mesh_bed_run_from_menu = false;
		lcd_update(2);
		
	}
	break;

        /**
         * G81: Print mesh bed leveling status and bed profile if activated
         */
        case 81:
            if (mbl.active) {
                SERIAL_PROTOCOLPGM("Num X,Y: ");
                SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
                SERIAL_PROTOCOLPGM(",");
                SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
                SERIAL_PROTOCOLPGM("\nZ search height: ");
                SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
                SERIAL_PROTOCOLLNPGM("\nMeasured points:");
                for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
                    for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
                        SERIAL_PROTOCOLPGM("  ");
                        SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
                    }
                    SERIAL_PROTOCOLPGM("\n");
                }
            }
            else
                SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
            break;
            
#if 0
        /**
         * G82: Single Z probe at current location
         *
         * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
         *
         */
        case 82:
            SERIAL_PROTOCOLLNPGM("Finding bed ");
            setup_for_endstop_move();
            find_bed_induction_sensor_point_z();
            clean_up_after_endstop_move();
            SERIAL_PROTOCOLPGM("Bed found at: ");
            SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
            SERIAL_PROTOCOLPGM("\n");
            break;

            /**
             * G83: Prusa3D specific: Babystep in Z and store to EEPROM
             */
        case 83:
        {
            int babystepz = code_seen('S') ? code_value() : 0;
            int BabyPosition = code_seen('P') ? code_value() : 0;
            
            if (babystepz != 0) {
                //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
                // Is the axis indexed starting with zero or one?
                if (BabyPosition > 4) {
                    SERIAL_PROTOCOLLNPGM("Index out of bounds");
                }else{
                    // Save it to the eeprom
                    babystepLoadZ = babystepz;
                    EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
                    // adjust the Z
                    babystepsTodoZadd(babystepLoadZ);
                }
            
            }
            
        }
        break;
            /**
             * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
             */
        case 84:
            babystepsTodoZsubtract(babystepLoadZ);
            // babystepLoadZ = 0;
            break;
            
            /**
             * G85: Prusa3D specific: Pick best babystep
             */
        case 85:
            lcd_pick_babystep();
            break;
#endif
            
            /**
             * G86: Prusa3D specific: Disable babystep correction after home.
             * This G-code will be performed at the start of a calibration script.
             */
        case 86:
            calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
            break;
            /**
             * G87: Prusa3D specific: Enable babystep correction after home
             * This G-code will be performed at the end of a calibration script.
             */
        case 87:
			calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
            break;

            /**
             * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
             */
		    case 88:
			      break;


#endif  // ENABLE_MESH_BED_LEVELING
            
            
    case 90: // G90
      relative_mode = false;
      break;
    case 91: // G91
      relative_mode = true;
      break;
    case 92: // G92
      if(!code_seen(axis_codes[E_AXIS]))
        st_synchronize();
      for(int8_t i=0; i < NUM_AXIS; i++) {
        if(code_seen(axis_codes[i])) {
           if(i == E_AXIS) {
             current_position[i] = code_value();
             plan_set_e_position(current_position[E_AXIS]);
           }
           else {
		current_position[i] = code_value()+add_homing[i];
            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
           }
        }
      }
      break;

	case 98: //activate farm mode
		farm_mode = 1;
		PingTime = millis();
		eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
		break;

	case 99: //deactivate farm mode
		farm_mode = 0;
		lcd_printer_connected();
		eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
		lcd_update(2);
		break;
	default:
		printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
    }
  } // end if(code_seen('G'))

  else if(code_seen('M'))
  {
	  int index;
	  for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
	   
	 /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
	  if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
		  printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);

	  } else
    switch((int)code_value())
    {
#ifdef ULTIPANEL

    case 0: // M0 - Unconditional stop - Wait for user button press on LCD
    case 1: // M1 - Conditional stop - Wait for user button press on LCD
    {
      char *src = strchr_pointer + 2;

      codenum = 0;

      bool hasP = false, hasS = false;
      if (code_seen('P')) {
        codenum = code_value(); // milliseconds to wait
        hasP = codenum > 0;
      }
      if (code_seen('S')) {
        codenum = code_value() * 1000; // seconds to wait
        hasS = codenum > 0;
      }
      starpos = strchr(src, '*');
      if (starpos != NULL) *(starpos) = '\0';
      while (*src == ' ') ++src;
      if (!hasP && !hasS && *src != '\0') {
        lcd_setstatus(src);
      } else {
        LCD_MESSAGERPGM(MSG_USERWAIT);
      }

      lcd_ignore_click();				//call lcd_ignore_click aslo for else ???
      st_synchronize();
      previous_millis_cmd = millis();
      if (codenum > 0){
        codenum += millis();  // keep track of when we started waiting
		KEEPALIVE_STATE(PAUSED_FOR_USER);
        while(millis() < codenum && !lcd_clicked()){
          manage_heater();
          manage_inactivity(true);
          lcd_update();
        }
		KEEPALIVE_STATE(IN_HANDLER);
        lcd_ignore_click(false);
      }else{
          if (!lcd_detected())
            break;
		KEEPALIVE_STATE(PAUSED_FOR_USER);
        while(!lcd_clicked()){
          manage_heater();
          manage_inactivity(true);
          lcd_update();
        }
		KEEPALIVE_STATE(IN_HANDLER);
      }
      if (IS_SD_PRINTING)
        LCD_MESSAGERPGM(MSG_RESUMING);
      else
        LCD_MESSAGERPGM(WELCOME_MSG);
    }
    break;
#endif
    case 17:
        LCD_MESSAGERPGM(MSG_NO_MOVE);
        enable_x();
        enable_y();
        enable_z();
        enable_e0();
        enable_e1();
        enable_e2();
      break;

#ifdef SDSUPPORT
    case 20: // M20 - list SD card
      SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
      card.ls();
      SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
      break;
    case 21: // M21 - init SD card

      card.initsd();

      break;
    case 22: //M22 - release SD card
      card.release();

      break;
    case 23: //M23 - Select file
      starpos = (strchr(strchr_pointer + 4,'*'));
      if(starpos!=NULL)
        *(starpos)='\0';
      card.openFile(strchr_pointer + 4,true);
      break;
    case 24: //M24 - Start SD print
	  if (!card.paused)
		failstats_reset_print();
      card.startFileprint();
      starttime=millis();
	  break;
    case 25: //M25 - Pause SD print
      card.pauseSDPrint();
      break;
    case 26: //M26 - Set SD index
      if(card.cardOK && code_seen('S')) {
        card.setIndex(code_value_long());
      }
      break;
    case 27: //M27 - Get SD status
      card.getStatus();
      break;
    case 28: //M28 - Start SD write
      starpos = (strchr(strchr_pointer + 4,'*'));
      if(starpos != NULL){
        char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
        strchr_pointer = strchr(npos,' ') + 1;
        *(starpos) = '\0';
      }
      card.openFile(strchr_pointer+4,false);
      break;
    case 29: //M29 - Stop SD write
      //processed in write to file routine above
      //card,saving = false;
      break;
    case 30: //M30 <filename> Delete File
      if (card.cardOK){
        card.closefile();
        starpos = (strchr(strchr_pointer + 4,'*'));
        if(starpos != NULL){
          char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
          strchr_pointer = strchr(npos,' ') + 1;
          *(starpos) = '\0';
        }
        card.removeFile(strchr_pointer + 4);
      }
      break;
    case 32: //M32 - Select file and start SD print
    {
      if(card.sdprinting) {
        st_synchronize();

      }
      starpos = (strchr(strchr_pointer + 4,'*'));

      char* namestartpos = (strchr(strchr_pointer + 4,'!'));   //find ! to indicate filename string start.
      if(namestartpos==NULL)
      {
        namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
      }
      else
        namestartpos++; //to skip the '!'

      if(starpos!=NULL)
        *(starpos)='\0';

      bool call_procedure=(code_seen('P'));

      if(strchr_pointer>namestartpos)
        call_procedure=false;  //false alert, 'P' found within filename

      if( card.cardOK )
      {
        card.openFile(namestartpos,true,!call_procedure);
        if(code_seen('S'))
          if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
            card.setIndex(code_value_long());
        card.startFileprint();
        if(!call_procedure)
          starttime=millis(); //procedure calls count as normal print time.
      }
    } break;
    case 928: //M928 - Start SD write
      starpos = (strchr(strchr_pointer + 5,'*'));
      if(starpos != NULL){
        char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
        strchr_pointer = strchr(npos,' ') + 1;
        *(starpos) = '\0';
      }
      card.openLogFile(strchr_pointer+5);
      break;

#endif //SDSUPPORT

    case 31: //M31 take time since the start of the SD print or an M109 command
      {
      stoptime=millis();
      char time[30];
      unsigned long t=(stoptime-starttime)/1000;
      int sec,min;
      min=t/60;
      sec=t%60;
      sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
      SERIAL_ECHO_START;
      SERIAL_ECHOLN(time);
      lcd_setstatus(time);
      autotempShutdown();
      }
      break;
#ifndef _DISABLE_M42_M226
    case 42: //M42 -Change pin status via gcode
      if (code_seen('S'))
      {
        int pin_status = code_value();
        int pin_number = LED_PIN;
        if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
          pin_number = code_value();
        for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
        {
          if (sensitive_pins[i] == pin_number)
          {
            pin_number = -1;
            break;
          }
        }
      #if defined(FAN_PIN) && FAN_PIN > -1
        if (pin_number == FAN_PIN)
          fanSpeed = pin_status;
      #endif
        if (pin_number > -1)
        {
          pinMode(pin_number, OUTPUT);
          digitalWrite(pin_number, pin_status);
          analogWrite(pin_number, pin_status);
        }
      }
     break;
#endif //_DISABLE_M42_M226
    case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.

		// Reset the baby step value and the baby step applied flag.
		calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
		eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);

        // Reset the skew and offset in both RAM and EEPROM.
        reset_bed_offset_and_skew();
        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
        // the planner will not perform any adjustments in the XY plane. 
        // Wait for the motors to stop and update the current position with the absolute values.
        world2machine_revert_to_uncorrected();
        break;

    case 45: // M45: Prusa3D: bed skew and offset with manual Z up
    {
		int8_t verbosity_level = 0;
		bool only_Z = code_seen('Z');
		#ifdef SUPPORT_VERBOSITY
		if (code_seen('V'))
		{
			// Just 'V' without a number counts as V1.
			char c = strchr_pointer[1];
			verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
		}
		#endif //SUPPORT_VERBOSITY
		gcode_M45(only_Z, verbosity_level);
    }
	break;

    /*
    case 46:
    {
        // M46: Prusa3D: Show the assigned IP address.
        uint8_t ip[4];
        bool hasIP = card.ToshibaFlashAir_GetIP(ip);
        if (hasIP) {
            SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
            SERIAL_ECHO(int(ip[0]));
            SERIAL_ECHOPGM(".");
            SERIAL_ECHO(int(ip[1]));
            SERIAL_ECHOPGM(".");
            SERIAL_ECHO(int(ip[2]));
            SERIAL_ECHOPGM(".");
            SERIAL_ECHO(int(ip[3]));
            SERIAL_ECHOLNPGM("");
        } else {
            SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");          
        }
        break;
    }
    */

    case 47:
        // M47: Prusa3D: Show end stops dialog on the display.
		KEEPALIVE_STATE(PAUSED_FOR_USER);
        lcd_diag_show_end_stops();
		KEEPALIVE_STATE(IN_HANDLER);
        break;

#if 0
    case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
    {
        // Disable the default update procedure of the display. We will do a modal dialog.
        lcd_update_enable(false);
        // Let the planner use the uncorrected coordinates.
        mbl.reset();
        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
        // the planner will not perform any adjustments in the XY plane. 
        // Wait for the motors to stop and update the current position with the absolute values.
        world2machine_revert_to_uncorrected();
        // Move the print head close to the bed.
        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
        st_synchronize();
        // Home in the XY plane.
        set_destination_to_current();
        setup_for_endstop_move();
        home_xy();
        int8_t verbosity_level = 0;
        if (code_seen('V')) {
            // Just 'V' without a number counts as V1.
            char c = strchr_pointer[1];
            verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
        }
        bool success = scan_bed_induction_points(verbosity_level);
        clean_up_after_endstop_move();
        // Print head up.
        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
        st_synchronize();
        lcd_update_enable(true);
        break;
    }
#endif

// M48 Z-Probe repeatability measurement function.
//
// Usage:   M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
//	
// This function assumes the bed has been homed.  Specificaly, that a G28 command
// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
// Any information generated by a prior G29 Bed leveling command will be lost and need to be
// regenerated.
//
// The number of samples will default to 10 if not specified.  You can use upper or lower case
// letters for any of the options EXCEPT n.  n must be in lower case because Marlin uses a capital
// N for its communication protocol and will get horribly confused if you send it a capital N.
//

#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef Z_PROBE_REPEATABILITY_TEST 

    case 48: // M48 Z-Probe repeatability
        {
            #if Z_MIN_PIN == -1
            #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
            #endif

	double sum=0.0; 
	double mean=0.0; 
	double sigma=0.0;
	double sample_set[50];
	int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
	double X_current, Y_current, Z_current;
	double X_probe_location, Y_probe_location, Z_start_location, ext_position;
	
	if (code_seen('V') || code_seen('v')) {
        	verbose_level = code_value();
		if (verbose_level<0 || verbose_level>4 ) {
			SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
			goto Sigma_Exit;
		}
	}

	if (verbose_level > 0)   {
		SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test.   Version 2.00\n");
		SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
	}

	if (code_seen('n')) {
        	n_samples = code_value();
		if (n_samples<4 || n_samples>50 ) {
			SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
			goto Sigma_Exit;
		}
	}

	X_current = X_probe_location = st_get_position_mm(X_AXIS);
	Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
	Z_current = st_get_position_mm(Z_AXIS);
	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
	ext_position	 = st_get_position_mm(E_AXIS);

	if (code_seen('X') || code_seen('x') ) {
        	X_probe_location = code_value() -  X_PROBE_OFFSET_FROM_EXTRUDER;
		if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
			SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
			goto Sigma_Exit;
		}
	}

	if (code_seen('Y') || code_seen('y') ) {
        	Y_probe_location = code_value() -  Y_PROBE_OFFSET_FROM_EXTRUDER;
		if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
			SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
			goto Sigma_Exit;
		}
	}

	if (code_seen('L') || code_seen('l') ) {
        	n_legs = code_value();
		if ( n_legs==1 ) 
			n_legs = 2;
		if ( n_legs<0 || n_legs>15 ) {
			SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
			goto Sigma_Exit;
		}
	}

//
// Do all the preliminary setup work.   First raise the probe.
//

        st_synchronize();
        plan_bed_level_matrix.set_to_identity();
	plan_buffer_line( X_current, Y_current, Z_start_location,
			ext_position,
    			homing_feedrate[Z_AXIS]/60,
			active_extruder);
        st_synchronize();

//
// Now get everything to the specified probe point So we can safely do a probe to
// get us close to the bed.  If the Z-Axis is far from the bed, we don't want to 
// use that as a starting point for each probe.
//
	if (verbose_level > 2) 
		SERIAL_PROTOCOL("Positioning probe for the test.\n");

	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
			ext_position,
    			homing_feedrate[X_AXIS]/60,
			active_extruder);
        st_synchronize();

	current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
	current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
	current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);

// 
// OK, do the inital probe to get us close to the bed.
// Then retrace the right amount and use that in subsequent probes
//

	setup_for_endstop_move();
	run_z_probe();

	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;

	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
			ext_position,
    			homing_feedrate[X_AXIS]/60,
			active_extruder);
        st_synchronize();
	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);

        for( n=0; n<n_samples; n++) {

		do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location

		if ( n_legs)  {
		double radius=0.0, theta=0.0, x_sweep, y_sweep;
		int rotational_direction, l;

			rotational_direction = (unsigned long) millis() & 0x0001;			// clockwise or counter clockwise
			radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); 			// limit how far out to go 
			theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926));	// turn into radians

//SERIAL_ECHOPAIR("starting radius: ",radius);
//SERIAL_ECHOPAIR("   theta: ",theta);
//SERIAL_ECHOPAIR("   direction: ",rotational_direction);
//SERIAL_PROTOCOLLNPGM("");

			for( l=0; l<n_legs-1; l++) {
				if (rotational_direction==1)
					theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
				else
					theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians

				radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
				if ( radius<0.0 )
					radius = -radius;

				X_current = X_probe_location + cos(theta) * radius;
				Y_current = Y_probe_location + sin(theta) * radius;

				if ( X_current<X_MIN_POS)		// Make sure our X & Y are sane
					 X_current = X_MIN_POS;
				if ( X_current>X_MAX_POS)
					 X_current = X_MAX_POS;

				if ( Y_current<Y_MIN_POS)		// Make sure our X & Y are sane
					 Y_current = Y_MIN_POS;
				if ( Y_current>Y_MAX_POS)
					 Y_current = Y_MAX_POS;

				if (verbose_level>3 ) {
					SERIAL_ECHOPAIR("x: ", X_current);
					SERIAL_ECHOPAIR("y: ", Y_current);
					SERIAL_PROTOCOLLNPGM("");
				}

				do_blocking_move_to( X_current, Y_current, Z_current );
			}
			do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
		}

		setup_for_endstop_move();
                run_z_probe();

		sample_set[n] = current_position[Z_AXIS];

//
// Get the current mean for the data points we have so far
//
		sum=0.0; 
		for( j=0; j<=n; j++) {
			sum = sum + sample_set[j];
		}
		mean = sum / (double (n+1));
//
// Now, use that mean to calculate the standard deviation for the
// data points we have so far
//

		sum=0.0; 
		for( j=0; j<=n; j++) {
			sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
		}
		sigma = sqrt( sum / (double (n+1)) );

		if (verbose_level > 1) {
			SERIAL_PROTOCOL(n+1);
			SERIAL_PROTOCOL(" of ");
			SERIAL_PROTOCOL(n_samples);
			SERIAL_PROTOCOLPGM("   z: ");
			SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
		}

		if (verbose_level > 2) {
			SERIAL_PROTOCOL(" mean: ");
			SERIAL_PROTOCOL_F(mean,6);

			SERIAL_PROTOCOL("   sigma: ");
			SERIAL_PROTOCOL_F(sigma,6);
		}

		if (verbose_level > 0) 
			SERIAL_PROTOCOLPGM("\n");

		plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, 
				  current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
        	st_synchronize();

	}

	delay(1000);

        clean_up_after_endstop_move();

//      enable_endstops(true);

	if (verbose_level > 0) {
		SERIAL_PROTOCOLPGM("Mean: ");
		SERIAL_PROTOCOL_F(mean, 6);
		SERIAL_PROTOCOLPGM("\n");
	}

SERIAL_PROTOCOLPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_PROTOCOLPGM("\n\n");

Sigma_Exit:
        break;
	}
#endif		// Z_PROBE_REPEATABILITY_TEST 
#endif		// ENABLE_AUTO_BED_LEVELING

    case 104: // M104
      if(setTargetedHotend(104)){
        break;
      }
      if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
      setWatch();
      break;
    case 112: //  M112 -Emergency Stop
      kill("", 3);
      break;
    case 140: // M140 set bed temp
      if (code_seen('S')) setTargetBed(code_value());
      break;
    case 105 : // M105
      if(setTargetedHotend(105)){
        break;
        }
      #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
        SERIAL_PROTOCOLPGM("ok T:");
        SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
        SERIAL_PROTOCOLPGM(" /");
        SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
        #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
          SERIAL_PROTOCOLPGM(" B:");
          SERIAL_PROTOCOL_F(degBed(),1);
          SERIAL_PROTOCOLPGM(" /");
          SERIAL_PROTOCOL_F(degTargetBed(),1);
        #endif //TEMP_BED_PIN
        for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
          SERIAL_PROTOCOLPGM(" T");
          SERIAL_PROTOCOL(cur_extruder);
          SERIAL_PROTOCOLPGM(":");
          SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
          SERIAL_PROTOCOLPGM(" /");
          SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
        }
      #else
        SERIAL_ERROR_START;
        SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
      #endif

        SERIAL_PROTOCOLPGM(" @:");
      #ifdef EXTRUDER_WATTS
        SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
        SERIAL_PROTOCOLPGM("W");
      #else
        SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
      #endif

        SERIAL_PROTOCOLPGM(" B@:");
      #ifdef BED_WATTS
        SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
        SERIAL_PROTOCOLPGM("W");
      #else
        SERIAL_PROTOCOL(getHeaterPower(-1));
      #endif

#ifdef PINDA_THERMISTOR
		SERIAL_PROTOCOLPGM(" P:");
		SERIAL_PROTOCOL_F(current_temperature_pinda,1);
#endif //PINDA_THERMISTOR

#ifdef AMBIENT_THERMISTOR
		SERIAL_PROTOCOLPGM(" A:");
		SERIAL_PROTOCOL_F(current_temperature_ambient,1);
#endif //AMBIENT_THERMISTOR


        #ifdef SHOW_TEMP_ADC_VALUES
          {float raw = 0.0;

          #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
            SERIAL_PROTOCOLPGM("    ADC B:");
            SERIAL_PROTOCOL_F(degBed(),1);
            SERIAL_PROTOCOLPGM("C->");
            raw = rawBedTemp();
            SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
            SERIAL_PROTOCOLPGM(" Rb->");
            SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
            SERIAL_PROTOCOLPGM(" Rxb->");
            SERIAL_PROTOCOL_F(raw, 5);
          #endif
          for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
            SERIAL_PROTOCOLPGM("  T");
            SERIAL_PROTOCOL(cur_extruder);
            SERIAL_PROTOCOLPGM(":");
            SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
            SERIAL_PROTOCOLPGM("C->");
            raw = rawHotendTemp(cur_extruder);
            SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
            SERIAL_PROTOCOLPGM(" Rt");
            SERIAL_PROTOCOL(cur_extruder);
            SERIAL_PROTOCOLPGM("->");
            SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
            SERIAL_PROTOCOLPGM(" Rx");
            SERIAL_PROTOCOL(cur_extruder);
            SERIAL_PROTOCOLPGM("->");
            SERIAL_PROTOCOL_F(raw, 5);
          }}
        #endif
		SERIAL_PROTOCOLLN("");
		KEEPALIVE_STATE(NOT_BUSY);
      return;
      break;
    case 109:
    {// M109 - Wait for extruder heater to reach target.
      if(setTargetedHotend(109)){
        break;
      }
      LCD_MESSAGERPGM(MSG_HEATING);
	  heating_status = 1;
	  if (farm_mode) { prusa_statistics(1); };

#ifdef AUTOTEMP
        autotemp_enabled=false;
      #endif
      if (code_seen('S')) {
        setTargetHotend(code_value(), tmp_extruder);
              CooldownNoWait = true;
            } else if (code_seen('R')) {
              setTargetHotend(code_value(), tmp_extruder);
        CooldownNoWait = false;
      }
      #ifdef AUTOTEMP
        if (code_seen('S')) autotemp_min=code_value();
        if (code_seen('B')) autotemp_max=code_value();
        if (code_seen('F'))
        {
          autotemp_factor=code_value();
          autotemp_enabled=true;
        }
      #endif

      setWatch();
      codenum = millis();

      /* See if we are heating up or cooling down */
      target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
	  
	  KEEPALIVE_STATE(NOT_BUSY);

      cancel_heatup = false;

	  wait_for_heater(codenum); //loops until target temperature is reached

        LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
		KEEPALIVE_STATE(IN_HANDLER);
		heating_status = 2;
		if (farm_mode) { prusa_statistics(2); };
        
        //starttime=millis();
        previous_millis_cmd = millis();
      }
      break;
    case 190: // M190 - Wait for bed heater to reach target.
    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
        LCD_MESSAGERPGM(MSG_BED_HEATING);
		heating_status = 3;
		if (farm_mode) { prusa_statistics(1); };
        if (code_seen('S')) 
		{
          setTargetBed(code_value());
          CooldownNoWait = true;
        } 
		else if (code_seen('R')) 
		{
          setTargetBed(code_value());
          CooldownNoWait = false;
        }
        codenum = millis();
        
        cancel_heatup = false;
        target_direction = isHeatingBed(); // true if heating, false if cooling

		KEEPALIVE_STATE(NOT_BUSY);
        while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
        {
          if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
          {
			  if (!farm_mode) {
				  float tt = degHotend(active_extruder);
				  SERIAL_PROTOCOLPGM("T:");
				  SERIAL_PROTOCOL(tt);
				  SERIAL_PROTOCOLPGM(" E:");
				  SERIAL_PROTOCOL((int)active_extruder);
				  SERIAL_PROTOCOLPGM(" B:");
				  SERIAL_PROTOCOL_F(degBed(), 1);
				  SERIAL_PROTOCOLLN("");
			  }
				  codenum = millis();
			  
          }
          manage_heater();
          manage_inactivity();
          lcd_update();
        }
        LCD_MESSAGERPGM(MSG_BED_DONE);
		KEEPALIVE_STATE(IN_HANDLER);
		heating_status = 4;

        previous_millis_cmd = millis();
    #endif
        break;

    #if defined(FAN_PIN) && FAN_PIN > -1
      case 106: //M106 Fan On
        if (code_seen('S')){
           fanSpeed=constrain(code_value(),0,255);
        }
        else {
          fanSpeed=255;
        }
        break;
      case 107: //M107 Fan Off
        fanSpeed = 0;
        break;
    #endif //FAN_PIN

    #if defined(PS_ON_PIN) && PS_ON_PIN > -1
      case 80: // M80 - Turn on Power Supply
        SET_OUTPUT(PS_ON_PIN); //GND
        WRITE(PS_ON_PIN, PS_ON_AWAKE);

        // If you have a switch on suicide pin, this is useful
        // if you want to start another print with suicide feature after
        // a print without suicide...
        #if defined SUICIDE_PIN && SUICIDE_PIN > -1
            SET_OUTPUT(SUICIDE_PIN);
            WRITE(SUICIDE_PIN, HIGH);
        #endif

        #ifdef ULTIPANEL
          powersupply = true;
          LCD_MESSAGERPGM(WELCOME_MSG);
          lcd_update();
        #endif
        break;
      #endif

      case 81: // M81 - Turn off Power Supply
        disable_heater();
        st_synchronize();
        disable_e0();
        disable_e1();
        disable_e2();
        finishAndDisableSteppers();
        fanSpeed = 0;
        delay(1000); // Wait a little before to switch off
      #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
        st_synchronize();
        suicide();
      #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
        SET_OUTPUT(PS_ON_PIN);
        WRITE(PS_ON_PIN, PS_ON_ASLEEP);
      #endif
      #ifdef ULTIPANEL
        powersupply = false;
        LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
        
        /*
        MACHNAME = "Prusa i3"
        MSGOFF = "Vypnuto"
        "Prusai3"" ""vypnuto""."
        
        "Prusa i3"" "MSG_ALL[lang_selected][50]"."
        */
        lcd_update();
      #endif
	  break;

    case 82:
      axis_relative_modes[3] = false;
      break;
    case 83:
      axis_relative_modes[3] = true;
      break;
    case 18: //compatibility
    case 84: // M84
      if(code_seen('S')){
        stepper_inactive_time = code_value() * 1000;
      }
      else
      {
        bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
        if(all_axis)
        {
          st_synchronize();
          disable_e0();
          disable_e1();
          disable_e2();
          finishAndDisableSteppers();
        }
        else
        {
          st_synchronize();
		  if (code_seen('X')) disable_x();
		  if (code_seen('Y')) disable_y();
		  if (code_seen('Z')) disable_z();
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
		  if (code_seen('E')) {
			  disable_e0();
			  disable_e1();
			  disable_e2();
            }
          #endif
        }
      }
	  snmm_filaments_used = 0;
      break;
    case 85: // M85
      if(code_seen('S')) {
        max_inactive_time = code_value() * 1000;
      }
      break;
    case 92: // M92
      for(int8_t i=0; i < NUM_AXIS; i++)
      {
        if(code_seen(axis_codes[i]))
        {
          if(i == 3) { // E
            float value = code_value();
            if(value < 20.0) {
              float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
              max_jerk[E_AXIS] *= factor;
              max_feedrate[i] *= factor;
              axis_steps_per_sqr_second[i] *= factor;
            }
            axis_steps_per_unit[i] = value;
          }
          else {
            axis_steps_per_unit[i] = code_value();
          }
        }
      }
      break;
    case 110:   // M110 - reset line pos
      if (code_seen('N'))
	    gcode_LastN = code_value_long();
    break;
#ifdef HOST_KEEPALIVE_FEATURE
	case 113: // M113 - Get or set Host Keepalive interval
		if (code_seen('S')) {
			host_keepalive_interval = (uint8_t)code_value_short();
//			NOMORE(host_keepalive_interval, 60);
		}
		else {
			SERIAL_ECHO_START;
			SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
			SERIAL_PROTOCOLLN("");
		}
		break;
#endif
    case 115: // M115
      if (code_seen('V')) {
          // Report the Prusa version number.
          SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
      } else if (code_seen('U')) {
          // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
          // pause the print and ask the user to upgrade the firmware.
          show_upgrade_dialog_if_version_newer(++ strchr_pointer);
      } else {
          SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
      }
      break;
/*    case 117: // M117 display message
      starpos = (strchr(strchr_pointer + 5,'*'));
      if(starpos!=NULL)
        *(starpos)='\0';
      lcd_setstatus(strchr_pointer + 5);
      break;*/
    case 114: // M114
		gcode_M114();
      break;
    case 120: // M120
      enable_endstops(false) ;
      break;
    case 121: // M121
      enable_endstops(true) ;
      break;
    case 119: // M119
    SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
    SERIAL_PROTOCOLLN("");
      #if defined(X_MIN_PIN) && X_MIN_PIN > -1
        SERIAL_PROTOCOLRPGM(MSG_X_MIN);
        if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
        }else{
          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
        }
        SERIAL_PROTOCOLLN("");
      #endif
      #if defined(X_MAX_PIN) && X_MAX_PIN > -1
        SERIAL_PROTOCOLRPGM(MSG_X_MAX);
        if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
        }else{
          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
        }
        SERIAL_PROTOCOLLN("");
      #endif
      #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
        SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
        if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
        }else{
          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
        }
        SERIAL_PROTOCOLLN("");
      #endif
      #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
        SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
        if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
        }else{
          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
        }
        SERIAL_PROTOCOLLN("");
      #endif
      #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
        SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
        if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
        }else{
          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
        }
        SERIAL_PROTOCOLLN("");
      #endif
      #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
        SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
        if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
        }else{
          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
        }
        SERIAL_PROTOCOLLN("");
      #endif
      break;
      //TODO: update for all axis, use for loop
    #ifdef BLINKM
    case 150: // M150
      {
        byte red;
        byte grn;
        byte blu;

        if(code_seen('R')) red = code_value();
        if(code_seen('U')) grn = code_value();
        if(code_seen('B')) blu = code_value();

        SendColors(red,grn,blu);
      }
      break;
    #endif //BLINKM
    case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
      {

        tmp_extruder = active_extruder;
        if(code_seen('T')) {
          tmp_extruder = code_value();
		  if(tmp_extruder >= EXTRUDERS) {
            SERIAL_ECHO_START;
            SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
            break;
          }
        }

        float area = .0;
        if(code_seen('D')) {
		  float diameter = (float)code_value();
		  if (diameter == 0.0) {
			// setting any extruder filament size disables volumetric on the assumption that
			// slicers either generate in extruder values as cubic mm or as as filament feeds
			// for all extruders
		    volumetric_enabled = false;
		  } else {
            filament_size[tmp_extruder] = (float)code_value();
			// make sure all extruders have some sane value for the filament size
			filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
            #if EXTRUDERS > 1
			filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
            #if EXTRUDERS > 2
			filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
            #endif
            #endif
			volumetric_enabled = true;
		  }
        } else {
          //reserved for setting filament diameter via UFID or filament measuring device
          break;
        }
		calculate_extruder_multipliers();
      }
      break;
    case 201: // M201
      for(int8_t i=0; i < NUM_AXIS; i++)
      {
        if(code_seen(axis_codes[i]))
        {
          max_acceleration_units_per_sq_second[i] = code_value();
        }
      }
      // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
      reset_acceleration_rates();
      break;
    #if 0 // Not used for Sprinter/grbl gen6
    case 202: // M202
      for(int8_t i=0; i < NUM_AXIS; i++) {
        if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
      }
      break;
    #endif
    case 203: // M203 max feedrate mm/sec
      for(int8_t i=0; i < NUM_AXIS; i++) {
        if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
      }
      break;
    case 204: // M204 acclereration S normal moves T filmanent only moves
      {
        if(code_seen('S')) acceleration = code_value() ;
        if(code_seen('T')) retract_acceleration = code_value() ;
      }
      break;
    case 205: //M205 advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
    {
      if(code_seen('S')) minimumfeedrate = code_value();
      if(code_seen('T')) mintravelfeedrate = code_value();
      if(code_seen('B')) minsegmenttime = code_value() ;
      if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
      if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
      if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
      if(code_seen('E')) max_jerk[E_AXIS] = code_value();
		if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
		if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
    }
    break;
    case 206: // M206 additional homing offset
      for(int8_t i=0; i < 3; i++)
      {
        if(code_seen(axis_codes[i])) add_homing[i] = code_value();
      }
      break;
    #ifdef FWRETRACT
    case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
    {
      if(code_seen('S'))
      {
        retract_length = code_value() ;
      }
      if(code_seen('F'))
      {
        retract_feedrate = code_value()/60 ;
      }
      if(code_seen('Z'))
      {
        retract_zlift = code_value() ;
      }
    }break;
    case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
    {
      if(code_seen('S'))
      {
        retract_recover_length = code_value() ;
      }
      if(code_seen('F'))
      {
        retract_recover_feedrate = code_value()/60 ;
      }
    }break;
    case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
    {
      if(code_seen('S'))
      {
        int t= code_value() ;
        switch(t)
        {
          case 0: 
          {
            autoretract_enabled=false;
            retracted[0]=false;
            #if EXTRUDERS > 1
              retracted[1]=false;
            #endif
            #if EXTRUDERS > 2
              retracted[2]=false;
            #endif
          }break;
          case 1: 
          {
            autoretract_enabled=true;
            retracted[0]=false;
            #if EXTRUDERS > 1
              retracted[1]=false;
            #endif
            #if EXTRUDERS > 2
              retracted[2]=false;
            #endif
          }break;
          default:
            SERIAL_ECHO_START;
            SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
            SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
            SERIAL_ECHOLNPGM("\"(1)");
        }
      }

    }break;
    #endif // FWRETRACT
    #if EXTRUDERS > 1
    case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
    {
      if(setTargetedHotend(218)){
        break;
      }
      if(code_seen('X'))
      {
        extruder_offset[X_AXIS][tmp_extruder] = code_value();
      }
      if(code_seen('Y'))
      {
        extruder_offset[Y_AXIS][tmp_extruder] = code_value();
      }
      SERIAL_ECHO_START;
      SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
      for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
      {
         SERIAL_ECHO(" ");
         SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
         SERIAL_ECHO(",");
         SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
      }
      SERIAL_ECHOLN("");
    }break;
    #endif
    case 220: // M220 S<factor in percent>- set speed factor override percentage
    {
      if(code_seen('S'))
      {
        feedmultiply = code_value() ;
      }
    }
    break;
    case 221: // M221 S<factor in percent>- set extrude factor override percentage
    {
      if(code_seen('S'))
      {
        int tmp_code = code_value();
        if (code_seen('T'))
        {
          if(setTargetedHotend(221)){
            break;
          }
          extruder_multiply[tmp_extruder] = tmp_code;
        }
        else
        {
          extrudemultiply = tmp_code ;
        }
      }
      calculate_extruder_multipliers();
    }
    break;

#ifndef _DISABLE_M42_M226
	case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
	{
      if(code_seen('P')){
        int pin_number = code_value(); // pin number
        int pin_state = -1; // required pin state - default is inverted

        if(code_seen('S')) pin_state = code_value(); // required pin state

        if(pin_state >= -1 && pin_state <= 1){

          for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
          {
            if (sensitive_pins[i] == pin_number)
            {
              pin_number = -1;
              break;
            }
          }

          if (pin_number > -1)
          {
            int target = LOW;

            st_synchronize();

            pinMode(pin_number, INPUT);

            switch(pin_state){
            case 1:
              target = HIGH;
              break;

            case 0:
              target = LOW;
              break;

            case -1:
              target = !digitalRead(pin_number);
              break;
            }

            while(digitalRead(pin_number) != target){
              manage_heater();
              manage_inactivity();
              lcd_update();
            }
          }
        }
      }
    }
    break;
#endif //_DISABLE_M42_M226

    #if NUM_SERVOS > 0
    case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
      {
        int servo_index = -1;
        int servo_position = 0;
        if (code_seen('P'))
          servo_index = code_value();
        if (code_seen('S')) {
          servo_position = code_value();
          if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
		      servos[servo_index].attach(0);
#endif
            servos[servo_index].write(servo_position);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
              delay(PROBE_SERVO_DEACTIVATION_DELAY);
              servos[servo_index].detach();
#endif
          }
          else {
            SERIAL_ECHO_START;
            SERIAL_ECHO("Servo ");
            SERIAL_ECHO(servo_index);
            SERIAL_ECHOLN(" out of range");
          }
        }
        else if (servo_index >= 0) {
          SERIAL_PROTOCOL(MSG_OK);
          SERIAL_PROTOCOL(" Servo ");
          SERIAL_PROTOCOL(servo_index);
          SERIAL_PROTOCOL(": ");
          SERIAL_PROTOCOL(servos[servo_index].read());
          SERIAL_PROTOCOLLN("");
        }
      }
      break;
    #endif // NUM_SERVOS > 0

    #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
    case 300: // M300
    {
      int beepS = code_seen('S') ? code_value() : 110;
      int beepP = code_seen('P') ? code_value() : 1000;
      if (beepS > 0)
      {
        #if BEEPER > 0
          tone(BEEPER, beepS);
          delay(beepP);
          noTone(BEEPER);
        #elif defined(ULTRALCD)
		  lcd_buzz(beepS, beepP);
		#elif defined(LCD_USE_I2C_BUZZER)
		  lcd_buzz(beepP, beepS);
        #endif
      }
      else
      {
        delay(beepP);
      }
    }
    break;
    #endif // M300

    #ifdef PIDTEMP
    case 301: // M301
      {
        if(code_seen('P')) Kp = code_value();
        if(code_seen('I')) Ki = scalePID_i(code_value());
        if(code_seen('D')) Kd = scalePID_d(code_value());

        #ifdef PID_ADD_EXTRUSION_RATE
        if(code_seen('C')) Kc = code_value();
        #endif

        updatePID();
        SERIAL_PROTOCOLRPGM(MSG_OK);
        SERIAL_PROTOCOL(" p:");
        SERIAL_PROTOCOL(Kp);
        SERIAL_PROTOCOL(" i:");
        SERIAL_PROTOCOL(unscalePID_i(Ki));
        SERIAL_PROTOCOL(" d:");
        SERIAL_PROTOCOL(unscalePID_d(Kd));
        #ifdef PID_ADD_EXTRUSION_RATE
        SERIAL_PROTOCOL(" c:");
        //Kc does not have scaling applied above, or in resetting defaults
        SERIAL_PROTOCOL(Kc);
        #endif
        SERIAL_PROTOCOLLN("");
      }
      break;
    #endif //PIDTEMP
    #ifdef PIDTEMPBED
    case 304: // M304
      {
        if(code_seen('P')) bedKp = code_value();
        if(code_seen('I')) bedKi = scalePID_i(code_value());
        if(code_seen('D')) bedKd = scalePID_d(code_value());

        updatePID();
       	SERIAL_PROTOCOLRPGM(MSG_OK);
        SERIAL_PROTOCOL(" p:");
        SERIAL_PROTOCOL(bedKp);
        SERIAL_PROTOCOL(" i:");
        SERIAL_PROTOCOL(unscalePID_i(bedKi));
        SERIAL_PROTOCOL(" d:");
        SERIAL_PROTOCOL(unscalePID_d(bedKd));
        SERIAL_PROTOCOLLN("");
      }
      break;
    #endif //PIDTEMP
    case 240: // M240  Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
     {
     	#ifdef CHDK
       
         SET_OUTPUT(CHDK);
         WRITE(CHDK, HIGH);
         chdkHigh = millis();
         chdkActive = true;
       
       #else
     	
      	#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
	const uint8_t NUM_PULSES=16;
	const float PULSE_LENGTH=0.01524;
	for(int i=0; i < NUM_PULSES; i++) {
        WRITE(PHOTOGRAPH_PIN, HIGH);
        _delay_ms(PULSE_LENGTH);
        WRITE(PHOTOGRAPH_PIN, LOW);
        _delay_ms(PULSE_LENGTH);
        }
        delay(7.33);
        for(int i=0; i < NUM_PULSES; i++) {
        WRITE(PHOTOGRAPH_PIN, HIGH);
        _delay_ms(PULSE_LENGTH);
        WRITE(PHOTOGRAPH_PIN, LOW);
        _delay_ms(PULSE_LENGTH);
        }
      	#endif
      #endif //chdk end if
     }
    break;
#ifdef DOGLCD
    case 250: // M250  Set LCD contrast value: C<value> (value 0..63)
     {
	  if (code_seen('C')) {
	   lcd_setcontrast( ((int)code_value())&63 );
          }
          SERIAL_PROTOCOLPGM("lcd contrast value: ");
          SERIAL_PROTOCOL(lcd_contrast);
          SERIAL_PROTOCOLLN("");
     }
    break;
#endif
    #ifdef PREVENT_DANGEROUS_EXTRUDE
    case 302: // allow cold extrudes, or set the minimum extrude temperature
    {
	  float temp = .0;
	  if (code_seen('S')) temp=code_value();
      set_extrude_min_temp(temp);
    }
    break;
	#endif
    case 303: // M303 PID autotune
    {
      float temp = 150.0;
      int e=0;
      int c=5;
      if (code_seen('E')) e=code_value();
        if (e<0)
          temp=70;
      if (code_seen('S')) temp=code_value();
      if (code_seen('C')) c=code_value();
      PID_autotune(temp, e, c);
    }
    break;
    case 400: // M400 finish all moves
    {
      st_synchronize();
    }
    break;

    case 500: // M500 Store settings in EEPROM
    {
        Config_StoreSettings(EEPROM_OFFSET);
    }
    break;
    case 501: // M501 Read settings from EEPROM
    {
        Config_RetrieveSettings(EEPROM_OFFSET);
    }
    break;
    case 502: // M502 Revert to default settings
    {
        Config_ResetDefault();
    }
    break;
    case 503: // M503 print settings currently in memory
    {
        Config_PrintSettings();
    }
    break;
    case 509: //M509 Force language selection
    {
        lcd_force_language_selection();
        SERIAL_ECHO_START;
        SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
    }
    break;
    #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
    case 540:
    {
        if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
    }
    break;
    #endif

    #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
    case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
    {
      float value;
      if (code_seen('Z'))
      {
        value = code_value();
        if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
        {
          zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
          SERIAL_ECHO_START;
          SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
          SERIAL_PROTOCOLLN("");
        }
        else
        {
          SERIAL_ECHO_START;
          SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
          SERIAL_ECHORPGM(MSG_Z_MIN);
          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
          SERIAL_ECHORPGM(MSG_Z_MAX);
          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
          SERIAL_PROTOCOLLN("");
        }
      }
      else
      {
          SERIAL_ECHO_START;
          SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
          SERIAL_ECHO(-zprobe_zoffset);
          SERIAL_PROTOCOLLN("");
      }
      break;
    }
    #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET

    #ifdef FILAMENTCHANGEENABLE
    case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
    {
#ifdef PAT9125
		bool old_fsensor_enabled = fsensor_enabled;
		fsensor_enabled = false; //temporary solution for unexpected restarting
#endif //PAT9125

		st_synchronize();
		float target[4];
		float lastpos[4];

        if (farm_mode)
            
        {
            
            prusa_statistics(22);
            
        }
        
        feedmultiplyBckp=feedmultiply;
        int8_t TooLowZ = 0;

		float HotendTempBckp = degTargetHotend(active_extruder);
		int fanSpeedBckp = fanSpeed;
        target[X_AXIS]=current_position[X_AXIS];
        target[Y_AXIS]=current_position[Y_AXIS];
        target[Z_AXIS]=current_position[Z_AXIS];
        target[E_AXIS]=current_position[E_AXIS];
        lastpos[X_AXIS]=current_position[X_AXIS];
        lastpos[Y_AXIS]=current_position[Y_AXIS];
        lastpos[Z_AXIS]=current_position[Z_AXIS];
        lastpos[E_AXIS]=current_position[E_AXIS];

        //Restract extruder
        if(code_seen('E'))
        {
          target[E_AXIS]+= code_value();
        }
        else
        {
          #ifdef FILAMENTCHANGE_FIRSTRETRACT
            target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
          #endif
        }
        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);

        //Lift Z
        if(code_seen('Z'))
        {
          target[Z_AXIS]+= code_value();
        }
        else
        {
          #ifdef FILAMENTCHANGE_ZADD
            target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
            if(target[Z_AXIS] < 10){
              target[Z_AXIS]+= 10 ;
              TooLowZ = 1;
            }else{
              TooLowZ = 0;
            }
          #endif
     
          
        }
        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);

        //Move XY to side
        if(code_seen('X'))
        {
          target[X_AXIS]+= code_value();
        }
        else
        {
          #ifdef FILAMENTCHANGE_XPOS
            target[X_AXIS]= FILAMENTCHANGE_XPOS ;
          #endif
        }
        if(code_seen('Y'))
        {
          target[Y_AXIS]= code_value();
        }
        else
        {
          #ifdef FILAMENTCHANGE_YPOS
            target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
          #endif
        }
        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
		st_synchronize();
		KEEPALIVE_STATE(PAUSED_FOR_USER);

		uint8_t cnt = 0;
		int counterBeep = 0;	
		fanSpeed = 0;
		unsigned long waiting_start_time = millis();
		uint8_t wait_for_user_state = 0;
		lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
		while (!(wait_for_user_state == 0 && lcd_clicked())){

			//cnt++;
			manage_heater();
			manage_inactivity(true);

			/*#ifdef SNMM
			target[E_AXIS] += 0.002;
			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);

			#endif // SNMM*/

			//if (cnt == 0)
			{
#if BEEPER > 0
				if (counterBeep == 500) {
					counterBeep = 0;
				}
				SET_OUTPUT(BEEPER);
				if (counterBeep == 0) {
					WRITE(BEEPER, HIGH);
				}
				if (counterBeep == 20) {
					WRITE(BEEPER, LOW);
				}
				
				counterBeep++;
#else
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
				lcd_buzz(1000 / 6, 100);
#else
				lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#endif
#endif
			}
			
			switch (wait_for_user_state) {
			case 0: 
				delay_keep_alive(4);

				if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
					lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
					wait_for_user_state = 1;
					setTargetHotend(0, 0);
					setTargetHotend(0, 1);
					setTargetHotend(0, 2);
					st_synchronize();
					disable_e0();
					disable_e1();
					disable_e2();
				}
				break;
			case 1:
				delay_keep_alive(4);
		
				if (lcd_clicked()) {
					setTargetHotend(HotendTempBckp, active_extruder);
					lcd_wait_for_heater();

					wait_for_user_state = 2;
				}
				break;
			case 2:

				if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
					lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
					waiting_start_time = millis();
					wait_for_user_state = 0;
				}
				else {
					counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
					lcd.setCursor(1, 4);
					lcd.print(ftostr3(degHotend(active_extruder)));
				}
				break;

			}

		}
		WRITE(BEEPER, LOW);
		
		lcd_change_fil_state = 0;
		

		// Unload filament
			lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
			KEEPALIVE_STATE(IN_HANDLER);
			custom_message = true;
			lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);

			if (code_seen('L'))
			{
				target[E_AXIS] += code_value();
			}
			else
			{
#ifdef SNMM

#else
#ifdef FILAMENTCHANGE_FINALRETRACT
				target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
#endif
#endif // SNMM
			}

#ifdef SNMM
			target[E_AXIS] += 12;
			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
			target[E_AXIS] += 6;
			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
			target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
			st_synchronize();
			target[E_AXIS] += (FIL_COOLING);
			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
			target[E_AXIS] += (FIL_COOLING*-1);
			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
			target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
			st_synchronize();

#else
			//		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
			//plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
            
            target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
            st_synchronize();
#ifdef TMC2130
            uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
            tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
#else 

			st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
			float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
			float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;

#endif //TMC2130

            target[E_AXIS] -= 45;
            plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
            st_synchronize();
            target[E_AXIS] -= 15;
            plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
            st_synchronize();
            target[E_AXIS] -= 20;
            plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
            st_synchronize();

#ifdef TMC2130            
            tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
#else
			uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
			if(silentMode) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
			else st_current_set(2, tmp_motor_loud[2]);		
#endif //TMC2130

#endif // SNMM


			//finish moves
			st_synchronize();

			lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
			
			//disable extruder steppers so filament can be removed
			disable_e0();
			disable_e1();
			disable_e2();
			delay(100);
			 
			
			WRITE(BEEPER, HIGH);
			counterBeep = 0;
			while(!lcd_clicked() && (counterBeep < 50)) {
				if(counterBeep > 5) WRITE(BEEPER, LOW);
				delay_keep_alive(100);
				counterBeep++;
			}
			WRITE(BEEPER, LOW);

			KEEPALIVE_STATE(PAUSED_FOR_USER);
			lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
			if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
			//lcd_return_to_status();
			lcd_update_enable(true);
		
        //Wait for user to insert filament
        lcd_wait_interact();
		//load_filament_time = millis();
		KEEPALIVE_STATE(PAUSED_FOR_USER);

#ifdef PAT9125
		if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
#endif //PAT9125
//		  printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
        while(!lcd_clicked())
		{
          manage_heater();
          manage_inactivity(true);
#ifdef PAT9125
		  if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
		  {
			tone(BEEPER, 1000);
			delay_keep_alive(50);
			noTone(BEEPER);
			  break;
		  }
#endif //PAT9125
/*#ifdef SNMM
		  target[E_AXIS] += 0.002;
		  plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);

#endif // SNMM*/

        }
#ifdef PAT9125
		if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
#endif //PAT9125
		//WRITE(BEEPER, LOW);
		KEEPALIVE_STATE(IN_HANDLER);


#ifdef SNMM
		display_loading();
		KEEPALIVE_STATE(PAUSED_FOR_USER);
		do {
			target[E_AXIS] += 0.002;
			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
			delay_keep_alive(2);
		} while (!lcd_clicked());
		KEEPALIVE_STATE(IN_HANDLER);
		/*if (millis() - load_filament_time > 2) {
			load_filament_time = millis();
			target[E_AXIS] += 0.001;
			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
		}*/

        //Filament inserted     
		//Feed the filament to the end of nozzle quickly   		
		st_synchronize();
		target[E_AXIS] += bowden_length[snmm_extruder];
		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
		target[E_AXIS] += FIL_LOAD_LENGTH - 60;
		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
		target[E_AXIS] += 40;
		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
		target[E_AXIS] += 10;
		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
#else
		target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
#endif // SNMM
        
        //Extrude some filament
        target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); 
        
        //Wait for user to check the state
        lcd_change_fil_state = 0;
        lcd_loading_filament();

		tone(BEEPER, 500);
		delay_keep_alive(50);
		noTone(BEEPER);

		while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
          lcd_change_fil_state = 0;
		  KEEPALIVE_STATE(PAUSED_FOR_USER);
          lcd_alright();
		  KEEPALIVE_STATE(IN_HANDLER);
          switch(lcd_change_fil_state){
            
             // Filament failed to load so load it again
             case 2:
#ifdef SNMM
				 display_loading();
				 do {
					 target[E_AXIS] += 0.002;
					 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
					 delay_keep_alive(2);
				 } while (!lcd_clicked());

				 st_synchronize();
				 target[E_AXIS] += bowden_length[snmm_extruder];
				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
				 target[E_AXIS] += FIL_LOAD_LENGTH - 60;
				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
				 target[E_AXIS] += 40;
				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
				 target[E_AXIS] += 10;
				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);

#else
                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); 
#endif                
                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); 

                     lcd_loading_filament();

                     break;

             // Filament loaded properly but color is not clear
             case 3:
                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
                     lcd_loading_color();
                     break;
                 
             // Everything good             
             default:
                     lcd_change_success();
					 lcd_update_enable(true);
                     break;
          }
          
        }
        

      //Not let's go back to print
		fanSpeed = fanSpeedBckp;

      //Feed a little of filament to stabilize pressure
      target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
        
      //Retract
      target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
        

        
      //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
      
      //Move XY back
      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
      
      //Move Z back
      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
        
        
      target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
        
      //Unretract       
      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
        
      //Set E position to original  
      plan_set_e_position(lastpos[E_AXIS]);
       
      //Recover feed rate 
      feedmultiply=feedmultiplyBckp;
      char cmd[9];
      sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
      enquecommand(cmd);
      
	  lcd_setstatuspgm(WELCOME_MSG);
	  custom_message = false;
	  custom_message_type = 0;

#ifdef PAT9125
      fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting

	  if (fsensor_M600)
	  {
		cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
		st_synchronize();
		while (!is_buffer_empty())
		{
			process_commands();
		    cmdqueue_pop_front();
		}
		fsensor_enable();
		fsensor_restore_print_and_continue();
	  }

#endif //PAT9125
        
    }
    break;
    #endif //FILAMENTCHANGEENABLE
	case 601: {
		if(lcd_commands_type == 0)  lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
	}
	break;

	case 602: {
		if(lcd_commands_type == 0)	lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
	}
	break;

#ifdef PINDA_THERMISTOR
	case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
	{
		int setTargetPinda = 0;

		if (code_seen('S')) {
			setTargetPinda = code_value();
		}
		else {
			break;
		}

		LCD_MESSAGERPGM(MSG_PLEASE_WAIT);

		SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
		SERIAL_PROTOCOL(setTargetPinda);
		SERIAL_PROTOCOLLN("");

		codenum = millis();
		cancel_heatup = false;

		KEEPALIVE_STATE(NOT_BUSY);

		while ((!cancel_heatup) && current_temperature_pinda < setTargetPinda) {
			if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
			{
				SERIAL_PROTOCOLPGM("P:");
				SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
				SERIAL_PROTOCOLPGM("/");
				SERIAL_PROTOCOL(setTargetPinda);
				SERIAL_PROTOCOLLN("");
				codenum = millis();
			}
			manage_heater();
			manage_inactivity();
			lcd_update();
		}
		LCD_MESSAGERPGM(MSG_OK);

		break;
	}
	case 861: // M861 - Set/Read PINDA temperature compensation offsets
		if (code_seen('?')) { // ? - Print out current EEPRO offset values
			uint8_t cal_status = calibration_status_pinda();
			cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
			SERIAL_PROTOCOLLN("index, temp, ustep, um");
			for (uint8_t i = 0; i < 6; i++)
			{
				uint16_t usteps = 0;
				if (i > 0) usteps = eeprom_read_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + (i - 1));
				float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
				i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
				SERIAL_PROTOCOLPGM(", ");
				SERIAL_PROTOCOL(35 + (i * 5));
				SERIAL_PROTOCOLPGM(", ");
				SERIAL_PROTOCOL(usteps);
				SERIAL_PROTOCOLPGM(", ");
				SERIAL_PROTOCOL(mm * 1000);
				SERIAL_PROTOCOLLN("");
			}
		}
		else if (code_seen('!')) { // ! - Set factory default values
			eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
			eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C -  20um -   8usteps
			eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C -  60um -  24usteps
			eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um -  48usteps
			eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um -  80usteps
			eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
			SERIAL_PROTOCOLLN("factory restored");
		}
		else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
			eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
			eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 0);
			eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 0);
			eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 0);
			eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 0);
			eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 0);
			SERIAL_PROTOCOLLN("zerorized");
		}
		else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
			uint16_t usteps = code_value();
			if (code_seen('I')) {
				byte index = code_value();
				if ((index >= 0) && (index < 5)) {
					eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + index, usteps);
					SERIAL_PROTOCOLLN("OK");
					SERIAL_PROTOCOLLN("index, temp, ustep, um");
					for (uint8_t i = 0; i < 6; i++)
					{
						uint16_t usteps = 0;
						if (i > 0) usteps = eeprom_read_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + (i - 1));
						float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
						i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
						SERIAL_PROTOCOLPGM(", ");
						SERIAL_PROTOCOL(35 + (i * 5));
						SERIAL_PROTOCOLPGM(", ");
						SERIAL_PROTOCOL(usteps);
						SERIAL_PROTOCOLPGM(", ");
						SERIAL_PROTOCOL(mm * 1000);
						SERIAL_PROTOCOLLN("");
					}
				}
			}
		}
		else {
			SERIAL_PROTOCOLPGM("no valid command");
		}
		break;

#endif //PINDA_THERMISTOR

#ifdef LIN_ADVANCE
    case 900: // M900: Set LIN_ADVANCE options.
        gcode_M900();
    break;
#endif

    case 907: // M907 Set digital trimpot motor current using axis codes.
    {
      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
        if(code_seen('B')) st_current_set(4,code_value());
        if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
      #endif
      #ifdef MOTOR_CURRENT_PWM_XY_PIN
        if(code_seen('X')) st_current_set(0, code_value());
      #endif
      #ifdef MOTOR_CURRENT_PWM_Z_PIN
        if(code_seen('Z')) st_current_set(1, code_value());
      #endif
      #ifdef MOTOR_CURRENT_PWM_E_PIN
        if(code_seen('E')) st_current_set(2, code_value());
      #endif
    }
    break;
    case 908: // M908 Control digital trimpot directly.
    {
      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
        uint8_t channel,current;
        if(code_seen('P')) channel=code_value();
        if(code_seen('S')) current=code_value();
        digitalPotWrite(channel, current);
      #endif
    }
    break;

#ifdef TMC2130

	case 910: // M910 TMC2130 init
    {
		tmc2130_init();
    }
    break;

	case 911: // M911 Set TMC2130 holding currents
    {
		if (code_seen('X')) tmc2130_set_current_h(0, code_value());
		if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
        if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
        if (code_seen('E')) tmc2130_set_current_h(3, code_value());
    }
    break;

	case 912: // M912 Set TMC2130 running currents
    {
		if (code_seen('X')) tmc2130_set_current_r(0, code_value());
		if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
        if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
        if (code_seen('E')) tmc2130_set_current_r(3, code_value());
    }
    break;

	case 913: // M913 Print TMC2130 currents
    {
		tmc2130_print_currents();
    }
    break;

	case 914: // M914 Set normal mode
    {
		tmc2130_mode = TMC2130_MODE_NORMAL;
		tmc2130_init();
    }
    break;

	case 915: // M915 Set silent mode
    {
		tmc2130_mode = TMC2130_MODE_SILENT;
		tmc2130_init();
    }
    break;

	case 916: // M916 Set sg_thrs
    {
		if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
		if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
		if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
		if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
		MYSERIAL.print("tmc2130_sg_thr[X]=");
		MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
		MYSERIAL.print("tmc2130_sg_thr[Y]=");
		MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
		MYSERIAL.print("tmc2130_sg_thr[Z]=");
		MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
		MYSERIAL.print("tmc2130_sg_thr[E]=");
		MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
    }
    break;

	case 917: // M917 Set TMC2130 pwm_ampl
    {
		if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
		if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
        if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
        if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
    }
    break;

	case 918: // M918 Set TMC2130 pwm_grad
    {
		if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
		if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
        if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
        if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
    }
    break;

#endif //TMC2130

    case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
    {
	#ifdef TMC2130
		if(code_seen('E'))
		{
			uint16_t res_new = code_value();
			if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
			{
				st_synchronize();
				uint8_t axis = E_AXIS;
				uint16_t res = tmc2130_get_res(axis);
				tmc2130_set_res(axis, res_new);
				if (res_new > res)
				{
					uint16_t fac = (res_new / res);
					axis_steps_per_unit[axis] *= fac;
					position[E_AXIS] *= fac;
				}
				else
				{
					uint16_t fac = (res / res_new);
					axis_steps_per_unit[axis] /= fac;
					position[E_AXIS] /= fac;
				}
			}
		}
	#else //TMC2130
      #if defined(X_MS1_PIN) && X_MS1_PIN > -1
        if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
        if(code_seen('B')) microstep_mode(4,code_value());
        microstep_readings();
      #endif
	#endif //TMC2130
    }
    break;
    case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
    {
      #if defined(X_MS1_PIN) && X_MS1_PIN > -1
      if(code_seen('S')) switch((int)code_value())
      {
        case 1:
          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
          if(code_seen('B')) microstep_ms(4,code_value(),-1);
          break;
        case 2:
          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
          if(code_seen('B')) microstep_ms(4,-1,code_value());
          break;
      }
      microstep_readings();
      #endif
    }
    break;
	case 701: //M701: load filament
	{
		gcode_M701();
	}
	break;
	case 702:
	{
#ifdef SNMM
		if (code_seen('U')) {
			extr_unload_used(); //unload all filaments which were used in current print
		}
		else if (code_seen('C')) {
			extr_unload(); //unload just current filament 
		}
		else {
			extr_unload_all(); //unload all filaments
		}
#else
#ifdef PAT9125
		bool old_fsensor_enabled = fsensor_enabled;
		fsensor_enabled = false;
#endif //PAT9125
		custom_message = true;
		custom_message_type = 2;
		lcd_setstatuspgm(MSG_UNLOADING_FILAMENT); 

//		extr_unload2();
		
		current_position[E_AXIS] -= 45;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
        st_synchronize();
        current_position[E_AXIS] -= 15;
        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
        st_synchronize();
        current_position[E_AXIS] -= 20;
        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
		st_synchronize();

		lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);

		//disable extruder steppers so filament can be removed
		disable_e0();
		disable_e1();
		disable_e2();
		delay(100);


		WRITE(BEEPER, HIGH);
		uint8_t counterBeep = 0;
		while (!lcd_clicked() && (counterBeep < 50)) {
			if (counterBeep > 5) WRITE(BEEPER, LOW);
			delay_keep_alive(100);
			counterBeep++;
		}
		WRITE(BEEPER, LOW);
		st_synchronize();	
		while (lcd_clicked()) delay_keep_alive(100);

		lcd_update_enable(true);
	
		lcd_setstatuspgm(WELCOME_MSG);
		custom_message = false;
		custom_message_type = 0;
#ifdef PAT9125
		fsensor_enabled = old_fsensor_enabled;
#endif //PAT9125
#endif	
	}
	break;

    case 999: // M999: Restart after being stopped
      Stopped = false;
      lcd_reset_alert_level();
      gcode_LastN = Stopped_gcode_LastN;
      FlushSerialRequestResend();
    break;
	default: 
		printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
    }
	
  } // end if(code_seen('M')) (end of M codes)

  else if(code_seen('T'))
  {
	  int index;
	  st_synchronize();
	  for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
	   
	  if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
		  SERIAL_ECHOLNPGM("Invalid T code.");
	  }
	  else {
		  if (*(strchr_pointer + index) == '?') {
			  tmp_extruder = choose_extruder_menu();
		  }
		  else {
			  tmp_extruder = code_value();
		  }
		  snmm_filaments_used |= (1 << tmp_extruder); //for stop print
#ifdef SNMM
          
    #ifdef LIN_ADVANCE
          if (snmm_extruder != tmp_extruder)
            clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
    #endif
          
		  snmm_extruder = tmp_extruder;

		  
		  delay(100);

		  disable_e0();
		  disable_e1();
		  disable_e2();

		  pinMode(E_MUX0_PIN, OUTPUT);
		  pinMode(E_MUX1_PIN, OUTPUT);
		  pinMode(E_MUX2_PIN, OUTPUT);

		  delay(100);
		  SERIAL_ECHO_START;
		  SERIAL_ECHO("T:");
		  SERIAL_ECHOLN((int)tmp_extruder);
		  switch (tmp_extruder) {
		  case 1:
			  WRITE(E_MUX0_PIN, HIGH);
			  WRITE(E_MUX1_PIN, LOW);
			  WRITE(E_MUX2_PIN, LOW);

			  break;
		  case 2:
			  WRITE(E_MUX0_PIN, LOW);
			  WRITE(E_MUX1_PIN, HIGH);
			  WRITE(E_MUX2_PIN, LOW);

			  break;
		  case 3:
			  WRITE(E_MUX0_PIN, HIGH);
			  WRITE(E_MUX1_PIN, HIGH);
			  WRITE(E_MUX2_PIN, LOW);

			  break;
		  default:
			  WRITE(E_MUX0_PIN, LOW);
			  WRITE(E_MUX1_PIN, LOW);
			  WRITE(E_MUX2_PIN, LOW);

			  break;
		  }
		  delay(100);

#else
		  if (tmp_extruder >= EXTRUDERS) {
			  SERIAL_ECHO_START;
			  SERIAL_ECHOPGM("T");
			  SERIAL_PROTOCOLLN((int)tmp_extruder);
			  SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
		  }
		  else {
			  boolean make_move = false;
			  if (code_seen('F')) {
				  make_move = true;
				  next_feedrate = code_value();
				  if (next_feedrate > 0.0) {
					  feedrate = next_feedrate;
				  }
			  }
#if EXTRUDERS > 1
			  if (tmp_extruder != active_extruder) {
				  // Save current position to return to after applying extruder offset
				  memcpy(destination, current_position, sizeof(destination));
				  // Offset extruder (only by XY)
				  int i;
				  for (i = 0; i < 2; i++) {
					  current_position[i] = current_position[i] -
						  extruder_offset[i][active_extruder] +
						  extruder_offset[i][tmp_extruder];
				  }
				  // Set the new active extruder and position
				  active_extruder = tmp_extruder;
				  plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
				  // Move to the old position if 'F' was in the parameters
				  if (make_move && Stopped == false) {
					  prepare_move();
				  }
			  }
#endif
			  SERIAL_ECHO_START;
			  SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
			  SERIAL_PROTOCOLLN((int)active_extruder);
		  }

#endif
	  }
  } // end if(code_seen('T')) (end of T codes)

#ifdef DEBUG_DCODES
  else if (code_seen('D')) // D codes (debug)
  {
    switch((int)code_value())
    {
	case -1: // D-1 - Endless loop
		dcode__1(); break;
	case 0: // D0 - Reset
		dcode_0(); break;
	case 1: // D1 - Clear EEPROM
		dcode_1(); break;
	case 2: // D2 - Read/Write RAM
		dcode_2(); break;
	case 3: // D3 - Read/Write EEPROM
		dcode_3(); break;
	case 4: // D4 - Read/Write PIN
		dcode_4(); break;
	case 5: // D5 - Read/Write FLASH
//		dcode_5(); break;
		break;
	case 6: // D6 - Read/Write external FLASH
		dcode_6(); break;
	case 7: // D7 - Read/Write Bootloader
		dcode_7(); break;
	case 8: // D8 - Read/Write PINDA
		dcode_8(); break;
	case 9: // D9 - Read/Write ADC
		dcode_9(); break;

	case 10: // D10 - XYZ calibration = OK
		dcode_10(); break;
    

#ifdef TMC2130
	case 2130: // D9125 - TMC2130
		dcode_2130(); break;
#endif //TMC2130

#ifdef PAT9125
	case 9125: // D9125 - PAT9125
		dcode_9125(); break;
#endif //PAT9125

	}
  }
#endif //DEBUG_DCODES

  else
  {
    SERIAL_ECHO_START;
    SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
    SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
    SERIAL_ECHOLNPGM("\"(2)");
  }
  KEEPALIVE_STATE(NOT_BUSY);
  ClearToSend();
}

void FlushSerialRequestResend()
{
  //char cmdbuffer[bufindr][100]="Resend:";
  MYSERIAL.flush();
  SERIAL_PROTOCOLRPGM(MSG_RESEND);
  SERIAL_PROTOCOLLN(gcode_LastN + 1);
  previous_millis_cmd = millis();
  SERIAL_PROTOCOLLNRPGM(MSG_OK);
}

// Confirm the execution of a command, if sent from a serial line.
// Execution of a command from a SD card will not be confirmed.
void ClearToSend()
{
    previous_millis_cmd = millis();
    if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
        SERIAL_PROTOCOLLNRPGM(MSG_OK);
}

#if MOTHERBOARD == 200 || MOTHERBOARD == 203
void update_currents() {
	float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
	float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
	float tmp_motor[3];
	
	//SERIAL_ECHOLNPGM("Currents updated: ");

	if (destination[Z_AXIS] < Z_SILENT) {
		//SERIAL_ECHOLNPGM("LOW");
		for (uint8_t i = 0; i < 3; i++) {
			st_current_set(i, current_low[i]);		
			/*MYSERIAL.print(int(i));
			SERIAL_ECHOPGM(": ");
			MYSERIAL.println(current_low[i]);*/
		}		
	}
	else if (destination[Z_AXIS] > Z_HIGH_POWER) {
		//SERIAL_ECHOLNPGM("HIGH");
		for (uint8_t i = 0; i < 3; i++) {
			st_current_set(i, current_high[i]);
			/*MYSERIAL.print(int(i));
			SERIAL_ECHOPGM(": ");
			MYSERIAL.println(current_high[i]);*/
		}		
	}
	else {
		for (uint8_t i = 0; i < 3; i++) {
			float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
			tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
			st_current_set(i, tmp_motor[i]);			
			/*MYSERIAL.print(int(i));
			SERIAL_ECHOPGM(": ");
			MYSERIAL.println(tmp_motor[i]);*/
		}
	}
}
#endif //MOTHERBOARD == 200 || MOTHERBOARD == 203

void get_coordinates()
{
  bool seen[4]={false,false,false,false};
  for(int8_t i=0; i < NUM_AXIS; i++) {
    if(code_seen(axis_codes[i]))
    {
      bool relative = axis_relative_modes[i] || relative_mode;
      destination[i] = (float)code_value();
      if (i == E_AXIS) {
        float emult = extruder_multiplier[active_extruder];
        if (emult != 1.) {
          if (! relative) {
            destination[i] -= current_position[i];
            relative = true;
          }
          destination[i] *= emult;
        }
      }
      if (relative)
        destination[i] += current_position[i];
      seen[i]=true;
#if MOTHERBOARD == 200 || MOTHERBOARD == 203
	  if (i == Z_AXIS && SilentModeMenu == 2) update_currents();
#endif //MOTHERBOARD == 200 || MOTHERBOARD == 203
    }
    else destination[i] = current_position[i]; //Are these else lines really needed?
  }
  if(code_seen('F')) {
    next_feedrate = code_value();
#ifdef MAX_SILENT_FEEDRATE
	if (tmc2130_mode == TMC2130_MODE_SILENT)
		if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
#endif //MAX_SILENT_FEEDRATE
    if(next_feedrate > 0.0) feedrate = next_feedrate;
	if (!seen[0] && !seen[1] && !seen[2] && seen[3])
	{
//		float e_max_speed = 
//		printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
	}
  }
}

void get_arc_coordinates()
{
#ifdef SF_ARC_FIX
   bool relative_mode_backup = relative_mode;
   relative_mode = true;
#endif
   get_coordinates();
#ifdef SF_ARC_FIX
   relative_mode=relative_mode_backup;
#endif

   if(code_seen('I')) {
     offset[0] = code_value();
   }
   else {
     offset[0] = 0.0;
   }
   if(code_seen('J')) {
     offset[1] = code_value();
   }
   else {
     offset[1] = 0.0;
   }
}

void clamp_to_software_endstops(float target[3])
{
#ifdef DEBUG_DISABLE_SWLIMITS
	return;
#endif //DEBUG_DISABLE_SWLIMITS
    world2machine_clamp(target[0], target[1]);

    // Clamp the Z coordinate.
    if (min_software_endstops) {
        float negative_z_offset = 0;
        #ifdef ENABLE_AUTO_BED_LEVELING
            if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
            if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
        #endif
        if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
    }
    if (max_software_endstops) {
        if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
    }
}

#ifdef MESH_BED_LEVELING
    void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
        float dx = x - current_position[X_AXIS];
        float dy = y - current_position[Y_AXIS];
        float dz = z - current_position[Z_AXIS];
        int n_segments = 0;
		
        if (mbl.active) {
            float len = abs(dx) + abs(dy);
            if (len > 0)
                // Split to 3cm segments or shorter.
                n_segments = int(ceil(len / 30.f));
        }
        
        if (n_segments > 1) {
            float de = e - current_position[E_AXIS];
            for (int i = 1; i < n_segments; ++ i) {
                float t = float(i) / float(n_segments);
                plan_buffer_line(
                                 current_position[X_AXIS] + t * dx,
                                 current_position[Y_AXIS] + t * dy,
                                 current_position[Z_AXIS] + t * dz,
                                 current_position[E_AXIS] + t * de,
                                 feed_rate, extruder);
            }
        }
        // The rest of the path.
        plan_buffer_line(x, y, z, e, feed_rate, extruder);
        current_position[X_AXIS] = x;
        current_position[Y_AXIS] = y;
        current_position[Z_AXIS] = z;
        current_position[E_AXIS] = e;
    }
#endif  // MESH_BED_LEVELING
    
void prepare_move()
{
  clamp_to_software_endstops(destination);
  previous_millis_cmd = millis();

  // Do not use feedmultiply for E or Z only moves
  if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
      plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  }
  else {
#ifdef MESH_BED_LEVELING
    mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
#else
     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
#endif
  }

  for(int8_t i=0; i < NUM_AXIS; i++) {
    current_position[i] = destination[i];
  }
}

void prepare_arc_move(char isclockwise) {
  float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc

  // Trace the arc
  mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);

  // As far as the parser is concerned, the position is now == target. In reality the
  // motion control system might still be processing the action and the real tool position
  // in any intermediate location.
  for(int8_t i=0; i < NUM_AXIS; i++) {
    current_position[i] = destination[i];
  }
  previous_millis_cmd = millis();
}

#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1

#if defined(FAN_PIN)
  #if CONTROLLERFAN_PIN == FAN_PIN
    #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  #endif
#endif

unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
unsigned long lastMotorCheck = 0;

void controllerFan()
{
  if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  {
    lastMotorCheck = millis();

    if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
    #if EXTRUDERS > 2
       || !READ(E2_ENABLE_PIN)
    #endif
    #if EXTRUDER > 1
      #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
       || !READ(X2_ENABLE_PIN)
      #endif
       || !READ(E1_ENABLE_PIN)
    #endif
       || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
    {
      lastMotor = millis(); //... set time to NOW so the fan will turn on
    }

    if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
    {
        digitalWrite(CONTROLLERFAN_PIN, 0);
        analogWrite(CONTROLLERFAN_PIN, 0);
    }
    else
    {
        // allows digital or PWM fan output to be used (see M42 handling)
        digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
        analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
    }
  }
}
#endif

#ifdef TEMP_STAT_LEDS
static bool blue_led = false;
static bool red_led = false;
static uint32_t stat_update = 0;

void handle_status_leds(void) {
  float max_temp = 0.0;
  if(millis() > stat_update) {
    stat_update += 500; // Update every 0.5s
    for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
       max_temp = max(max_temp, degHotend(cur_extruder));
       max_temp = max(max_temp, degTargetHotend(cur_extruder));
    }
    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
      max_temp = max(max_temp, degTargetBed());
      max_temp = max(max_temp, degBed());
    #endif
    if((max_temp > 55.0) && (red_led == false)) {
      digitalWrite(STAT_LED_RED, 1);
      digitalWrite(STAT_LED_BLUE, 0);
      red_led = true;
      blue_led = false;
    }
    if((max_temp < 54.0) && (blue_led == false)) {
      digitalWrite(STAT_LED_RED, 0);
      digitalWrite(STAT_LED_BLUE, 1);
      red_led = false;
      blue_led = true;
    }
  }
}
#endif

#ifdef SAFETYTIMER
/**
 * @brief Turn off heating after 15 minutes of inactivity
 */
static void handleSafetyTimer()
{
#if (EXTRUDERS > 1)
#error Implemented only for one extruder.
#endif //(EXTRUDERS > 1)
    static Timer safetyTimer;
    if (IS_SD_PRINTING || is_usb_printing || (custom_message_type == 4) || (lcd_commands_type == LCD_COMMAND_V2_CAL) ||
            (!degTargetBed() && !degTargetHotend(0)))
    {
        safetyTimer.stop();
    }
    else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
    {
        safetyTimer.start();
    }
    else if (safetyTimer.expired(900000ul))
    {
        setTargetBed(0);
        setTargetHotend(0, 0);
    }
}
#endif //SAFETYTIMER

void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
{
#ifdef PAT9125
	if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
	{
		if (fsensor_autoload_enabled)
		{
			if (fsensor_check_autoload())
			{
                
                if (degHotend0() > EXTRUDE_MINTEMP)
                {
                    fsensor_autoload_check_stop();
                    tone(BEEPER, 1000);
                    delay_keep_alive(50);
                    noTone(BEEPER);
                    loading_flag = true;
                    enquecommand_front_P((PSTR("M701")));
                }
                else
                {
                    lcd_update_enable(false);
                    lcd_implementation_clear();
                    lcd.setCursor(0, 0);
                    lcd_printPGM(MSG_ERROR);
                    lcd.setCursor(0, 2);
                    lcd_printPGM(MSG_PREHEAT_NOZZLE);
                    delay(2000);
                    lcd_implementation_clear();
                    lcd_update_enable(true);
                }
                
			}
		}
		else
			fsensor_autoload_check_start();
	}
	else
		if (fsensor_autoload_enabled)
			fsensor_autoload_check_stop();
#endif //PAT9125

#ifdef SAFETYTIMER
	handleSafetyTimer();
#endif //SAFETYTIMER


#ifdef SAFETYTIMER
	handleSafetyTimer();
#endif //SAFETYTIMER

#if defined(KILL_PIN) && KILL_PIN > -1
	static int killCount = 0;   // make the inactivity button a bit less responsive
   const int KILL_DELAY = 10000;
#endif
	
    if(buflen < (BUFSIZE-1)){
        get_command();
    }

  if( (millis() - previous_millis_cmd) >  max_inactive_time )
    if(max_inactive_time)
      kill("", 4);
  if(stepper_inactive_time)  {
    if( (millis() - previous_millis_cmd) >  stepper_inactive_time )
    {
      if(blocks_queued() == false && ignore_stepper_queue == false) {
        disable_x();
//        SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
        disable_y();
        disable_z();
        disable_e0();
        disable_e1();
        disable_e2();
      }
    }
  }
  
  #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
    if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
    {
      chdkActive = false;
      WRITE(CHDK, LOW);
    }
  #endif
  
  #if defined(KILL_PIN) && KILL_PIN > -1
    
    // Check if the kill button was pressed and wait just in case it was an accidental
    // key kill key press
    // -------------------------------------------------------------------------------
    if( 0 == READ(KILL_PIN) )
    {
       killCount++;
    }
    else if (killCount > 0)
    {
       killCount--;
    }
    // Exceeded threshold and we can confirm that it was not accidental
    // KILL the machine
    // ----------------------------------------------------------------
    if ( killCount >= KILL_DELAY)
    {
       kill("", 5);
    }
  #endif
    
  #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
    controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  #endif
  #ifdef EXTRUDER_RUNOUT_PREVENT
    if( (millis() - previous_millis_cmd) >  EXTRUDER_RUNOUT_SECONDS*1000 )
    if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
    {
     bool oldstatus=READ(E0_ENABLE_PIN);
     enable_e0();
     float oldepos=current_position[E_AXIS];
     float oldedes=destination[E_AXIS];
     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
                      destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
                      EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
     current_position[E_AXIS]=oldepos;
     destination[E_AXIS]=oldedes;
     plan_set_e_position(oldepos);
     previous_millis_cmd=millis();
     st_synchronize();
     WRITE(E0_ENABLE_PIN,oldstatus);
    }
  #endif
  #ifdef TEMP_STAT_LEDS
      handle_status_leds();
  #endif
  check_axes_activity();
}

void kill(const char *full_screen_message, unsigned char id)
{
	SERIAL_ECHOPGM("KILL: ");
	MYSERIAL.println(int(id));
	//return;
  cli(); // Stop interrupts
  disable_heater();

  disable_x();
//  SERIAL_ECHOLNPGM("kill - disable Y");
  disable_y();
  disable_z();
  disable_e0();
  disable_e1();
  disable_e2();

#if defined(PS_ON_PIN) && PS_ON_PIN > -1
  pinMode(PS_ON_PIN,INPUT);
#endif
  SERIAL_ERROR_START;
  SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  if (full_screen_message != NULL) {
      SERIAL_ERRORLNRPGM(full_screen_message);
      lcd_display_message_fullscreen_P(full_screen_message);
  } else {
      LCD_ALERTMESSAGERPGM(MSG_KILLED);
  }

  // FMC small patch to update the LCD before ending
  sei();   // enable interrupts
  for ( int i=5; i--; lcd_update())
  {
     delay(200);	
  }
  cli();   // disable interrupts
  suicide();
  while(1)
  {
#ifdef WATCHDOG
    wdt_reset();
#endif //WATCHDOG
	  /* Intentionally left empty */
	
  } // Wait for reset
}

void Stop()
{
  disable_heater();
  if(Stopped == false) {
    Stopped = true;
    Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
    SERIAL_ERROR_START;
    SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
    LCD_MESSAGERPGM(MSG_STOPPED);
  }
}

bool IsStopped() { return Stopped; };

#ifdef FAST_PWM_FAN
void setPwmFrequency(uint8_t pin, int val)
{
  val &= 0x07;
  switch(digitalPinToTimer(pin))
  {

    #if defined(TCCR0A)
    case TIMER0A:
    case TIMER0B:
//         TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
//         TCCR0B |= val;
         break;
    #endif

    #if defined(TCCR1A)
    case TIMER1A:
    case TIMER1B:
//         TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
//         TCCR1B |= val;
         break;
    #endif

    #if defined(TCCR2)
    case TIMER2:
    case TIMER2:
         TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
         TCCR2 |= val;
         break;
    #endif

    #if defined(TCCR2A)
    case TIMER2A:
    case TIMER2B:
         TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
         TCCR2B |= val;
         break;
    #endif

    #if defined(TCCR3A)
    case TIMER3A:
    case TIMER3B:
    case TIMER3C:
         TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
         TCCR3B |= val;
         break;
    #endif

    #if defined(TCCR4A)
    case TIMER4A:
    case TIMER4B:
    case TIMER4C:
         TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
         TCCR4B |= val;
         break;
   #endif

    #if defined(TCCR5A)
    case TIMER5A:
    case TIMER5B:
    case TIMER5C:
         TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
         TCCR5B |= val;
         break;
   #endif

  }
}
#endif //FAST_PWM_FAN

bool setTargetedHotend(int code){
  tmp_extruder = active_extruder;
  if(code_seen('T')) {
    tmp_extruder = code_value();
    if(tmp_extruder >= EXTRUDERS) {
      SERIAL_ECHO_START;
      switch(code){
        case 104:
          SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
          break;
        case 105:
          SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
          break;
        case 109:
          SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
          break;
        case 218:
          SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
          break;
        case 221:
          SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
          break;
      }
      SERIAL_PROTOCOLLN((int)tmp_extruder);
      return true;
    }
  }
  return false;
}

void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
{
	if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
	{
		eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
		eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
	}

	unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
	unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min

	eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
	eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));

	total_filament_used = 0;

}

float calculate_extruder_multiplier(float diameter) {
  float out = 1.f;
  if (volumetric_enabled && diameter > 0.f) {
    float area = M_PI * diameter * diameter * 0.25;
    out = 1.f / area;
  }
  if (extrudemultiply != 100)
    out *= float(extrudemultiply) * 0.01f;
  return out;
}

void calculate_extruder_multipliers() {
	extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
#if EXTRUDERS > 1
	extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
#if EXTRUDERS > 2
	extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
#endif
#endif
}

void delay_keep_alive(unsigned int ms)
{
    for (;;) {
        manage_heater();
        // Manage inactivity, but don't disable steppers on timeout.
        manage_inactivity(true);
        lcd_update();
        if (ms == 0)
            break;
        else if (ms >= 50) {
            delay(50);
            ms -= 50;
        } else {
            delay(ms);
            ms = 0;
        }
    }
}

void wait_for_heater(long codenum) {

#ifdef TEMP_RESIDENCY_TIME
	long residencyStart;
	residencyStart = -1;
	/* continue to loop until we have reached the target temp
	_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
	while ((!cancel_heatup) && ((residencyStart == -1) ||
		(residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
#else
	while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
#endif //TEMP_RESIDENCY_TIME
		if ((millis() - codenum) > 1000UL)
		{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
			if (!farm_mode) {
				SERIAL_PROTOCOLPGM("T:");
				SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
				SERIAL_PROTOCOLPGM(" E:");
				SERIAL_PROTOCOL((int)tmp_extruder);

#ifdef TEMP_RESIDENCY_TIME
				SERIAL_PROTOCOLPGM(" W:");
				if (residencyStart > -1)
				{
					codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
					SERIAL_PROTOCOLLN(codenum);
				}
				else
				{
					SERIAL_PROTOCOLLN("?");
				}
			}
#else
				SERIAL_PROTOCOLLN("");
#endif
				codenum = millis();
		}
			manage_heater();
			manage_inactivity();
			lcd_update();
#ifdef TEMP_RESIDENCY_TIME
			/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
			or when current temp falls outside the hysteresis after target temp was reached */
			if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
				(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
				(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
			{
				residencyStart = millis();
			}
#endif //TEMP_RESIDENCY_TIME
	}
}

void check_babystep() {
	int babystep_z;
	EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
	if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
		babystep_z = 0; //if babystep value is out of min max range, set it to 0
		SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
		EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
		lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
		lcd_update_enable(true);		
	}	
}
#ifdef DIS
void d_setup()
{	
	pinMode(D_DATACLOCK, INPUT_PULLUP);
	pinMode(D_DATA, INPUT_PULLUP);
	pinMode(D_REQUIRE, OUTPUT);
	digitalWrite(D_REQUIRE, HIGH);
}


float d_ReadData()
{
	int digit[13];
	String mergeOutput;
	float output;

	digitalWrite(D_REQUIRE, HIGH);
	for (int i = 0; i<13; i++)
	{
		for (int j = 0; j < 4; j++)
		{
			while (digitalRead(D_DATACLOCK) == LOW) {}
			while (digitalRead(D_DATACLOCK) == HIGH) {}
			bitWrite(digit[i], j, digitalRead(D_DATA));
		}
	}

	digitalWrite(D_REQUIRE, LOW);
	mergeOutput = "";
	output = 0;
	for (int r = 5; r <= 10; r++) //Merge digits
	{
		mergeOutput += digit[r];
	}
	output = mergeOutput.toFloat();

	if (digit[4] == 8) //Handle sign
	{
		output *= -1;
	}

	for (int i = digit[11]; i > 0; i--) //Handle floating point
	{
		output /= 10;
	}

	return output;

}

void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
	int t1 = 0;
	int t_delay = 0;
	int digit[13];
	int m;
	char str[3];
	//String mergeOutput;
	char mergeOutput[15];
	float output;

	int mesh_point = 0; //index number of calibration point
	float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
	float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);

	float mesh_home_z_search = 4;
	float row[x_points_num];
	int ix = 0;
	int iy = 0;

	char* filename_wldsd = "wldsd.txt";
	char data_wldsd[70];
	char numb_wldsd[10];

	d_setup();

	if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
		// We don't know where we are! HOME!
		// Push the commands to the front of the message queue in the reverse order!
		// There shall be always enough space reserved for these commands.
		repeatcommand_front(); // repeat G80 with all its parameters
		
		enquecommand_front_P((PSTR("G28 W0")));
		enquecommand_front_P((PSTR("G1 Z5")));
		return;
	}
	bool custom_message_old = custom_message;
	unsigned int custom_message_type_old = custom_message_type;
	unsigned int custom_message_state_old = custom_message_state;
	custom_message = true;
	custom_message_type = 1;
	custom_message_state = (x_points_num * y_points_num) + 10;
	lcd_update(1);

	mbl.reset();
	babystep_undo();

	card.openFile(filename_wldsd, false);

	current_position[Z_AXIS] = mesh_home_z_search;
	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);

	int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
	int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
	int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;

	setup_for_endstop_move(false);

	SERIAL_PROTOCOLPGM("Num X,Y: ");
	SERIAL_PROTOCOL(x_points_num);
	SERIAL_PROTOCOLPGM(",");
	SERIAL_PROTOCOL(y_points_num);
	SERIAL_PROTOCOLPGM("\nZ search height: ");
	SERIAL_PROTOCOL(mesh_home_z_search);
	SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
	SERIAL_PROTOCOL(x_dimension);
	SERIAL_PROTOCOLPGM(",");
	SERIAL_PROTOCOL(y_dimension);
	SERIAL_PROTOCOLLNPGM("\nMeasured points:");

	while (mesh_point != x_points_num * y_points_num) {
		ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
		iy = mesh_point / x_points_num;
		if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
		float z0 = 0.f;
		current_position[Z_AXIS] = mesh_home_z_search;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
		st_synchronize();


		current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
		current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;

		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
		st_synchronize();

		if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  
			break;
			card.closefile();
		}


		//memset(numb_wldsd, 0, sizeof(numb_wldsd));
		//dtostrf(d_ReadData(), 8, 5, numb_wldsd);
		//strcat(data_wldsd, numb_wldsd);


		
		//MYSERIAL.println(data_wldsd);
		//delay(1000);
		//delay(3000);
		//t1 = millis();
		
		//while (digitalRead(D_DATACLOCK) == LOW) {}
		//while (digitalRead(D_DATACLOCK) == HIGH) {}
		memset(digit, 0, sizeof(digit));
		//cli();
		digitalWrite(D_REQUIRE, LOW);	
		
		for (int i = 0; i<13; i++)
		{
			//t1 = millis();
			for (int j = 0; j < 4; j++)
			{
				while (digitalRead(D_DATACLOCK) == LOW) {}				
				while (digitalRead(D_DATACLOCK) == HIGH) {}
				bitWrite(digit[i], j, digitalRead(D_DATA));
			}
			//t_delay = (millis() - t1);
			//SERIAL_PROTOCOLPGM(" ");
			//SERIAL_PROTOCOL_F(t_delay, 5);
			//SERIAL_PROTOCOLPGM(" ");
		}
		//sei();
		digitalWrite(D_REQUIRE, HIGH);
		mergeOutput[0] = '\0';
		output = 0;
		for (int r = 5; r <= 10; r++) //Merge digits
		{			
			sprintf(str, "%d", digit[r]);
			strcat(mergeOutput, str);
		}
		
		output = atof(mergeOutput);

		if (digit[4] == 8) //Handle sign
		{
			output *= -1;
		}

		for (int i = digit[11]; i > 0; i--) //Handle floating point
		{
			output *= 0.1;
		}
		

		//output = d_ReadData();

		//row[ix] = current_position[Z_AXIS];

		memset(data_wldsd, 0, sizeof(data_wldsd));

		for (int i = 0; i <3; i++) {
			memset(numb_wldsd, 0, sizeof(numb_wldsd));
			dtostrf(current_position[i], 8, 5, numb_wldsd);
			strcat(data_wldsd, numb_wldsd);
			strcat(data_wldsd, ";");

		}
		memset(numb_wldsd, 0, sizeof(numb_wldsd));
		dtostrf(output, 8, 5, numb_wldsd);
		strcat(data_wldsd, numb_wldsd);
		//strcat(data_wldsd, ";");
		card.write_command(data_wldsd);

		
		//row[ix] = d_ReadData();
		
		row[ix] = output; // current_position[Z_AXIS];

		if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
			for (int i = 0; i < x_points_num; i++) {
				SERIAL_PROTOCOLPGM(" ");
				SERIAL_PROTOCOL_F(row[i], 5);


			}
			SERIAL_PROTOCOLPGM("\n");
		}
		custom_message_state--;
		mesh_point++;
		lcd_update(1);

	}
	card.closefile();

}
#endif

void temp_compensation_start() {
	
	custom_message = true;
	custom_message_type = 5;
	custom_message_state = PINDA_HEAT_T + 1;
	lcd_update(2);
	if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
		current_position[E_AXIS] -= DEFAULT_RETRACTION;
	}
	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
	
	current_position[X_AXIS] = PINDA_PREHEAT_X;
	current_position[Y_AXIS] = PINDA_PREHEAT_Y;
	current_position[Z_AXIS] = PINDA_PREHEAT_Z;
	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
	st_synchronize();
	while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);

	for (int i = 0; i < PINDA_HEAT_T; i++) {
		delay_keep_alive(1000);
		custom_message_state = PINDA_HEAT_T - i;
		if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
		else lcd_update(1);
	}	
	custom_message_type = 0;
	custom_message_state = 0;
	custom_message = false;
}

void temp_compensation_apply() {
	int i_add;
	int compensation_value;
	int z_shift = 0;
	float z_shift_mm;

	if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
		if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
			i_add = (target_temperature_bed - 60) / 10;
			EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
			z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
		}else {
			//interpolation
			z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
		}
		SERIAL_PROTOCOLPGM("\n");
		SERIAL_PROTOCOLPGM("Z shift applied:");
		MYSERIAL.print(z_shift_mm);
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
		st_synchronize();
		plan_set_z_position(current_position[Z_AXIS]);
	}
	else {		
		//we have no temp compensation data
	}
}

float temp_comp_interpolation(float inp_temperature) {

	//cubic spline interpolation

	int n, i, j, k;
	float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
	int shift[10];
	int temp_C[10];

	n = 6; //number of measured points

	shift[0] = 0;
	for (i = 0; i < n; i++) {
		if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
		temp_C[i] = 50 + i * 10; //temperature in C
#ifdef PINDA_THERMISTOR
		temp_C[i] = 35 + i * 5; //temperature in C
#else
		temp_C[i] = 50 + i * 10; //temperature in C
#endif
		x[i] = (float)temp_C[i];
		f[i] = (float)shift[i];
	}
	if (inp_temperature < x[0]) return 0;


	for (i = n - 1; i>0; i--) {
		F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
		h[i - 1] = x[i] - x[i - 1];
	}
	//*********** formation of h, s , f matrix **************
	for (i = 1; i<n - 1; i++) {
		m[i][i] = 2 * (h[i - 1] + h[i]);
		if (i != 1) {
			m[i][i - 1] = h[i - 1];
			m[i - 1][i] = h[i - 1];
		}
		m[i][n - 1] = 6 * (F[i + 1] - F[i]);
	}
	//*********** forward elimination **************
	for (i = 1; i<n - 2; i++) {
		temp = (m[i + 1][i] / m[i][i]);
		for (j = 1; j <= n - 1; j++)
			m[i + 1][j] -= temp*m[i][j];
	}
	//*********** backward substitution *********
	for (i = n - 2; i>0; i--) {
		sum = 0;
		for (j = i; j <= n - 2; j++)
			sum += m[i][j] * s[j];
		s[i] = (m[i][n - 1] - sum) / m[i][i];
	}

		for (i = 0; i<n - 1; i++)
			if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
				a = (s[i + 1] - s[i]) / (6 * h[i]);
				b = s[i] / 2;
				c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
				d = f[i];
				sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
			}

		return sum;

}

#ifdef PINDA_THERMISTOR
float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
{
	if (!temp_cal_active) return 0;
	if (!calibration_status_pinda()) return 0;
	return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
}
#endif //PINDA_THERMISTOR

void long_pause() //long pause print
{
	st_synchronize();
	
	//save currently set parameters to global variables
	saved_feedmultiply = feedmultiply; 
	HotendTempBckp = degTargetHotend(active_extruder);
	fanSpeedBckp = fanSpeed;
	start_pause_print = millis();
		

	//save position
	pause_lastpos[X_AXIS] = current_position[X_AXIS];
	pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
	pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
	pause_lastpos[E_AXIS] = current_position[E_AXIS];

	//retract
	current_position[E_AXIS] -= DEFAULT_RETRACTION;
	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);

	//lift z
	current_position[Z_AXIS] += Z_PAUSE_LIFT;
	if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);

	//set nozzle target temperature to 0
	setTargetHotend(0, 0);
	setTargetHotend(0, 1);
	setTargetHotend(0, 2);

	//Move XY to side
	current_position[X_AXIS] = X_PAUSE_POS;
	current_position[Y_AXIS] = Y_PAUSE_POS;
	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);

	// Turn off the print fan
	fanSpeed = 0;

	st_synchronize();
}

void serialecho_temperatures() {
	float tt = degHotend(active_extruder);
	SERIAL_PROTOCOLPGM("T:");
	SERIAL_PROTOCOL(tt);
	SERIAL_PROTOCOLPGM(" E:");
	SERIAL_PROTOCOL((int)active_extruder);
	SERIAL_PROTOCOLPGM(" B:");
	SERIAL_PROTOCOL_F(degBed(), 1);
	SERIAL_PROTOCOLLN("");
}

extern uint32_t sdpos_atomic;

#ifdef UVLO_SUPPORT

void uvlo_() 
{
	unsigned long time_start = millis();
	bool sd_print = card.sdprinting;
    // Conserve power as soon as possible.
    disable_x();
    disable_y();
    disable_e0();
    
#ifdef TMC2130
	tmc2130_set_current_h(Z_AXIS, 20);
	tmc2130_set_current_r(Z_AXIS, 20);
	tmc2130_set_current_h(E_AXIS, 20);
	tmc2130_set_current_r(E_AXIS, 20);
#endif //TMC2130


    // Indicate that the interrupt has been triggered.
	//	SERIAL_ECHOLNPGM("UVLO");

    // Read out the current Z motor microstep counter. This will be later used
    // for reaching the zero full step before powering off.
    uint16_t z_microsteps = 0;
#ifdef TMC2130
	z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
#endif //TMC2130

    // Calculate the file position, from which to resume this print.
    long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
    {
      uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
      sd_position -= sdlen_planner;
      uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
      sd_position -= sdlen_cmdqueue;
      if (sd_position < 0) sd_position = 0;
    }

    // Backup the feedrate in mm/min.
    int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;

    // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
    // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
    // are in action.
    planner_abort_hard();

    // Store the current extruder position.
    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
	eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);

    // Clean the input command queue.
    cmdqueue_reset();
    card.sdprinting = false;
//    card.closefile();

    // Enable stepper driver interrupt to move Z axis.
    // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
    //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
    // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
		sei();
		plan_buffer_line(
      current_position[X_AXIS], 
      current_position[Y_AXIS], 
      current_position[Z_AXIS], 
      current_position[E_AXIS] - DEFAULT_RETRACTION,
      95, active_extruder);
    
        st_synchronize();
        disable_e0();
    
		plan_buffer_line(
      current_position[X_AXIS], 
      current_position[Y_AXIS], 
      current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS], 
      current_position[E_AXIS] - DEFAULT_RETRACTION,
      40, active_extruder);
    
    st_synchronize();
    disable_e0();
    
    plan_buffer_line(
                     current_position[X_AXIS],
                     current_position[Y_AXIS],
                     current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
                     current_position[E_AXIS] - DEFAULT_RETRACTION,
                     40, active_extruder);
    st_synchronize();
    disable_e0();
    disable_z();
    
    // Move Z up to the next 0th full step.
    // Write the file position.
    eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
    // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
    for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
      uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
      uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
      // Scale the z value to 1u resolution.
      int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
      eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
    }
    // Read out the current Z motor microstep counter. This will be later used
    // for reaching the zero full step before powering off.
    eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
    // Store the current position.
    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
    // Store the current feed rate, temperatures and fan speed.
    EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
    eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
    eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
    eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
    // Finaly store the "power outage" flag.
	if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);

    st_synchronize();
    SERIAL_ECHOPGM("stps");
    MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));

    disable_z();
    
    // Increment power failure counter
	eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
	eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
    
		SERIAL_ECHOLNPGM("UVLO - end");
		MYSERIAL.println(millis() - time_start);
    
#if 0
    // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
    current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
    st_synchronize();
#endif
    

		cli();
    volatile unsigned int ppcount = 0;
    SET_OUTPUT(BEEPER);
    WRITE(BEEPER, HIGH);
    for(ppcount = 0; ppcount < 2000; ppcount ++){
        asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
    }
    WRITE(BEEPER, LOW);
    while(1){
#if 1
        WRITE(BEEPER, LOW);
        for(ppcount = 0; ppcount < 8000; ppcount ++){
             asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
        }
#endif
        
    };
}
#endif //UVLO_SUPPORT

#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))

void setup_fan_interrupt() {
//INT7
	DDRE &= ~(1 << 7); //input pin
	PORTE &= ~(1 << 7); //no internal pull-up

	//start with sensing rising edge
	EICRB &= ~(1 << 6);
	EICRB |= (1 << 7);

	//enable INT7 interrupt
	EIMSK |= (1 << 7);
}

// The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
// and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
ISR(INT7_vect) {
	//measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher

	if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
	if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
		t_fan_rising_edge = millis_nc();
	}
	else { //interrupt was triggered by falling edge
		if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
			fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
		}
	}	
	EICRB ^= (1 << 6); //change edge
}

#endif

#ifdef UVLO_SUPPORT
void setup_uvlo_interrupt() {
	DDRE &= ~(1 << 4); //input pin
	PORTE &= ~(1 << 4); //no internal pull-up

						//sensing falling edge
	EICRB |= (1 << 0);
	EICRB &= ~(1 << 1);

	//enable INT4 interrupt
	EIMSK |= (1 << 4);
}

ISR(INT4_vect) {
	EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once 
	SERIAL_ECHOLNPGM("INT4");
	if (IS_SD_PRINTING) uvlo_();
}

void recover_print(uint8_t automatic) {
	char cmd[30];
	lcd_update_enable(true);
	lcd_update(2);
	lcd_setstatuspgm(MSG_RECOVERING_PRINT);

  recover_machine_state_after_power_panic();

    // Set the target bed and nozzle temperatures. 
    sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]); 
    enquecommand(cmd); 
    sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed); 
    enquecommand(cmd);

  // Lift the print head, so one may remove the excess priming material.
  if (current_position[Z_AXIS] < 25)
    enquecommand_P(PSTR("G1 Z25 F800"));
  // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
	enquecommand_P(PSTR("G28 X Y"));
  // Set the target bed and nozzle temperatures and wait.
	sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
	enquecommand(cmd);
	sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
	enquecommand(cmd);
	enquecommand_P(PSTR("M83")); //E axis relative mode
	//enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
    // If not automatically recoreverd (long power loss), extrude extra filament to stabilize 
    if(automatic == 0){ 
        enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure 
    } 
	enquecommand_P(PSTR("G1 E"  STRINGIFY(-DEFAULT_RETRACTION)" F480"));

  // Mark the power panic status as inactive.
	eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
	/*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
		delay_keep_alive(1000);
	}*/
	SERIAL_ECHOPGM("After waiting for temp:");
	SERIAL_ECHOPGM("Current position X_AXIS:");
	MYSERIAL.println(current_position[X_AXIS]);
	SERIAL_ECHOPGM("Current position Y_AXIS:");
	MYSERIAL.println(current_position[Y_AXIS]);

  // Restart the print.
	restore_print_from_eeprom();

	SERIAL_ECHOPGM("current_position[Z_AXIS]:");
	MYSERIAL.print(current_position[Z_AXIS]);
	SERIAL_ECHOPGM("current_position[E_AXIS]:");
	MYSERIAL.print(current_position[E_AXIS]);
}

void recover_machine_state_after_power_panic()
{
  char cmd[30];
  // 1) Recover the logical cordinates at the time of the power panic.
  // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  // Recover the logical coordinate of the Z axis at the time of the power panic.
  // The current position after power panic is moved to the next closest 0th full step.
  current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) + 
    UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
	  current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
	  sprintf_P(cmd, PSTR("G92 E"));
	  dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
	  enquecommand(cmd);
  }

  memcpy(destination, current_position, sizeof(destination));

  SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  print_world_coordinates();

  // 2) Initialize the logical to physical coordinate system transformation.
  world2machine_initialize();

  // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  mbl.active = false;
  for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
    uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
    uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
    // Scale the z value to 10u resolution.
    int16_t v;
    eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
    if (v != 0)
      mbl.active = true;
    mbl.z_values[iy][ix] = float(v) * 0.001f;
  }
  if (mbl.active)
    mbl.upsample_3x3();
//  SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
//  print_mesh_bed_leveling_table();

  // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  babystep_load();

  // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);

  // 6) Power up the motors, mark their positions as known.
  //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  axis_known_position[X_AXIS] = true; enable_x();
  axis_known_position[Y_AXIS] = true; enable_y();
  axis_known_position[Z_AXIS] = true; enable_z();

  SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  print_physical_coordinates();

  // 7) Recover the target temperatures.
  target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
}

void restore_print_from_eeprom() {
	float x_rec, y_rec, z_pos;
	int feedrate_rec;
	uint8_t fan_speed_rec;
	char cmd[30];
	char* c;
	char filename[13];
	uint8_t depth = 0;
	char dir_name[9];

	fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
	EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
	SERIAL_ECHOPGM("Feedrate:");
	MYSERIAL.println(feedrate_rec);

	depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
	
	MYSERIAL.println(int(depth));
	for (int i = 0; i < depth; i++) {
		for (int j = 0; j < 8; j++) {
			dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
			
		}
		dir_name[8] = '\0';
		MYSERIAL.println(dir_name);
		card.chdir(dir_name);
	}

	for (int i = 0; i < 8; i++) {
		filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
		
	}
	filename[8] = '\0';

	MYSERIAL.print(filename);
	strcat_P(filename, PSTR(".gco"));
	sprintf_P(cmd, PSTR("M23 %s"), filename);
	for (c = &cmd[4]; *c; c++)
		 *c = tolower(*c);
	enquecommand(cmd);
	uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
	SERIAL_ECHOPGM("Position read from eeprom:");
	MYSERIAL.println(position);

  // E axis relative mode.
	enquecommand_P(PSTR("M83"));
  // Move to the XY print position in logical coordinates, where the print has been killed.
	strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
	strcat_P(cmd, PSTR(" Y"));   strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
	strcat_P(cmd, PSTR(" F2000"));
	enquecommand(cmd);
  // Move the Z axis down to the print, in logical coordinates.
	strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
	enquecommand(cmd);
  // Unretract.
	enquecommand_P(PSTR("G1 E"  STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  // Set the feedrate saved at the power panic.
	sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
	enquecommand(cmd);
	if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
	{
	  float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
	  enquecommand_P(PSTR("M82")); //E axis abslute mode
	}
  // Set the fan speed saved at the power panic.
	strcpy_P(cmd, PSTR("M106 S"));
	strcat(cmd, itostr3(int(fan_speed_rec)));
	enquecommand(cmd);

  // Set a position in the file.
  sprintf_P(cmd, PSTR("M26 S%lu"), position);
  enquecommand(cmd);
  // Start SD print.
  enquecommand_P(PSTR("M24")); 
}
#endif //UVLO_SUPPORT


////////////////////////////////////////////////////////////////////////////////
// new save/restore printing

//extern uint32_t sdpos_atomic;

bool saved_printing = false;
uint32_t saved_sdpos = 0;
float saved_pos[4] = {0, 0, 0, 0};
// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
float saved_feedrate2 = 0;
uint8_t saved_active_extruder = 0;
bool saved_extruder_under_pressure = false;

void stop_and_save_print_to_ram(float z_move, float e_move)
{
	if (saved_printing) return;
	cli();
  unsigned char nplanner_blocks = number_of_blocks();
	saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
	uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
	saved_sdpos -= sdlen_planner;
	uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
	saved_sdpos -= sdlen_cmdqueue;

#if 0
  SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);

  {
    card.setIndex(saved_sdpos);
    SERIAL_ECHOLNPGM("Content of planner buffer: ");
    for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
      MYSERIAL.print(char(card.get()));
    SERIAL_ECHOLNPGM("Content of command buffer: ");
    for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
      MYSERIAL.print(char(card.get()));
    SERIAL_ECHOLNPGM("End of command buffer");
  }

  {
    // Print the content of the planner buffer, line by line:
    card.setIndex(saved_sdpos);
    int8_t iline = 0;
    for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
      SERIAL_ECHOPGM("Planner line (from file): ");
      MYSERIAL.print(int(iline), DEC);
      SERIAL_ECHOPGM(", length: ");
      MYSERIAL.print(block_buffer[idx].sdlen, DEC);
      SERIAL_ECHOPGM(", steps: (");
      MYSERIAL.print(block_buffer[idx].steps_x, DEC);
      SERIAL_ECHOPGM(",");
      MYSERIAL.print(block_buffer[idx].steps_y, DEC);
      SERIAL_ECHOPGM(",");
      MYSERIAL.print(block_buffer[idx].steps_z, DEC);
      SERIAL_ECHOPGM(",");
      MYSERIAL.print(block_buffer[idx].steps_e, DEC);
      SERIAL_ECHOPGM("), events: ");
      MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
      for (int len = block_buffer[idx].sdlen; len > 0; -- len)
        MYSERIAL.print(char(card.get()));
    }
  }
  {
    // Print the content of the command buffer, line by line:
    int8_t iline = 0;
    union {
        struct {
            char lo;
            char hi;
        } lohi;
        uint16_t value;
    } sdlen_single;
    int _bufindr = bufindr;
    for (int _buflen  = buflen; _buflen > 0; ++ iline) {
        if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
            sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
            sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
        }
        SERIAL_ECHOPGM("Buffer line (from buffer): ");
        MYSERIAL.print(int(iline), DEC);
        SERIAL_ECHOPGM(", type: ");
        MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
        SERIAL_ECHOPGM(", len: ");
        MYSERIAL.println(sdlen_single.value, DEC);
        // Print the content of the buffer line.
        MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);

        SERIAL_ECHOPGM("Buffer line (from file): ");
        MYSERIAL.print(int(iline), DEC);
        MYSERIAL.println(int(iline), DEC);
        for (; sdlen_single.value > 0; -- sdlen_single.value)
          MYSERIAL.print(char(card.get()));

        if (-- _buflen == 0)
          break;
        // First skip the current command ID and iterate up to the end of the string.
        for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
        // Second, skip the end of string null character and iterate until a nonzero command ID is found.
        for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
        // If the end of the buffer was empty,
        if (_bufindr == sizeof(cmdbuffer)) {
            // skip to the start and find the nonzero command.
            for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
        }
    }
  }
#endif

#if 0
  saved_feedrate2 = feedrate; //save feedrate
#else
  // Try to deduce the feedrate from the first block of the planner.
  // Speed is in mm/min.
  saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
#endif

	planner_abort_hard(); //abort printing
	memcpy(saved_pos, current_position, sizeof(saved_pos));
	saved_active_extruder = active_extruder; //save active_extruder

	saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused

	cmdqueue_reset(); //empty cmdqueue
	card.sdprinting = false;
//	card.closefile();
	saved_printing = true;
  // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  st_reset_timer();
	sei();
	if ((z_move != 0) || (e_move != 0)) { // extruder or z move
#if 1
    // Rather than calling plan_buffer_line directly, push the move into the command queue, 
    char buf[48];
    strcpy_P(buf, PSTR("G1 Z"));
    dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
    strcat_P(buf, PSTR(" E"));
    // Relative extrusion
    dtostrf(e_move, 6, 3, buf + strlen(buf));
    strcat_P(buf, PSTR(" F"));
    dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
    // At this point the command queue is empty.
    enquecommand(buf, false);
    // If this call is invoked from the main Arduino loop() function, let the caller know that the command
    // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
    repeatcommand_front();
#else
		plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
    st_synchronize(); //wait moving
    memcpy(current_position, saved_pos, sizeof(saved_pos));
    memcpy(destination, current_position, sizeof(destination));
#endif
  }
}

void restore_print_from_ram_and_continue(float e_move)
{
	if (!saved_printing) return;
//	for (int axis = X_AXIS; axis <= E_AXIS; axis++)
//	    current_position[axis] = st_get_position_mm(axis);
	active_extruder = saved_active_extruder; //restore active_extruder
	feedrate = saved_feedrate2; //restore feedrate
	float e = saved_pos[E_AXIS] - e_move;
	plan_set_e_position(e);
	plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
    st_synchronize();
  memcpy(current_position, saved_pos, sizeof(saved_pos));
  memcpy(destination, current_position, sizeof(destination));
	card.setIndex(saved_sdpos);
  sdpos_atomic = saved_sdpos;
	card.sdprinting = true;
	saved_printing = false;
	printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
}

void print_world_coordinates()
{
  SERIAL_ECHOPGM("world coordinates: (");
  MYSERIAL.print(current_position[X_AXIS], 3);
  SERIAL_ECHOPGM(", ");
  MYSERIAL.print(current_position[Y_AXIS], 3);
  SERIAL_ECHOPGM(", ");
  MYSERIAL.print(current_position[Z_AXIS], 3);
  SERIAL_ECHOLNPGM(")");
}

void print_physical_coordinates()
{
  SERIAL_ECHOPGM("physical coordinates: (");
  MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  SERIAL_ECHOPGM(", ");
  MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  SERIAL_ECHOPGM(", ");
  MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  SERIAL_ECHOLNPGM(")");
}

void print_mesh_bed_leveling_table()
{
  SERIAL_ECHOPGM("mesh bed leveling: ");
  for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
    for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
      MYSERIAL.print(mbl.z_values[y][x], 3);
      SERIAL_ECHOPGM(" ");
    }
  SERIAL_ECHOLNPGM("");
}


#define FIL_LOAD_LENGTH 60

void extr_unload2() { //unloads filament
//	float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
//	float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
//	int8_t SilentMode;
	uint8_t snmm_extruder = 0;
	if (degHotend0() > EXTRUDE_MINTEMP) {
		lcd_implementation_clear();
		lcd_display_message_fullscreen_P(PSTR(""));
		max_feedrate[E_AXIS] = 50;
		lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
//		lcd.print(" ");
//		lcd.print(snmm_extruder + 1);
		lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
		if (current_position[Z_AXIS] < 15) {
			current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
		}
		
		current_position[E_AXIS] += 10; //extrusion
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
//		st_current_set(2, E_MOTOR_HIGH_CURRENT);
		if (current_temperature[0] < 230) { //PLA & all other filaments
			current_position[E_AXIS] += 5.4;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
			current_position[E_AXIS] += 3.2;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
			current_position[E_AXIS] += 3;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
		}
		else { //ABS
			current_position[E_AXIS] += 3.1;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
			current_position[E_AXIS] += 3.1;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
			current_position[E_AXIS] += 4;
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
			/*current_position[X_AXIS] += 23; //delay
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
			current_position[X_AXIS] -= 23; //delay
			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
			delay_keep_alive(4700);
		}
	
		max_feedrate[E_AXIS] = 80;
		current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
		current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
		st_synchronize();
		//st_current_init();
//		if (SilentMode == 1) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
//		else st_current_set(2, tmp_motor_loud[2]);
		lcd_update_enable(true);
//		lcd_return_to_status();
		max_feedrate[E_AXIS] = 50;
	}
	else {

		lcd_implementation_clear();
		lcd.setCursor(0, 0);
		lcd_printPGM(MSG_ERROR);
		lcd.setCursor(0, 2);
		lcd_printPGM(MSG_PREHEAT_NOZZLE);

		delay(2000);
		lcd_implementation_clear();
	}
//	lcd_return_to_status();
}