#include "Marlin.h" #ifdef PAT9125 #include "fsensor.h" #include "pat9125.h" #include "stepper.h" #include "planner.h" #include "fastio.h" #include "cmdqueue.h" #define FSENSOR_ERR_MAX 5 //filament sensor max error count #define FSENSOR_INT_PIN 63 //filament sensor interrupt pin PK1 #define FSENSOR_INT_PIN_MSK 0x02 //filament sensor interrupt pin mask (bit1) #define FSENSOR_CHUNK_LEN 280 //filament sensor chunk length in steps extern void stop_and_save_print_to_ram(float z_move, float e_move); extern void restore_print_from_ram_and_continue(float e_move); extern int8_t FSensorStateMenu; void fsensor_stop_and_save_print() { stop_and_save_print_to_ram(0, 0); //XYZE - no change } void fsensor_restore_print_and_continue() { restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change } //uint8_t fsensor_int_pin = FSENSOR_INT_PIN; uint8_t fsensor_int_pin_old = 0; int16_t fsensor_chunk_len = FSENSOR_CHUNK_LEN; bool fsensor_enabled = true; bool fsensor_not_responding = false; //bool fsensor_ignore_error = true; bool fsensor_M600 = false; uint8_t fsensor_err_cnt = 0; int16_t fsensor_st_cnt = 0; uint8_t fsensor_log = 1; //autoload enable/disable flag bool fsensor_autoload_enabled = false; uint16_t fsensor_autoload_y = 0; uint8_t fsensor_autoload_c = 0; uint32_t fsensor_autoload_last_millis = 0; uint8_t fsensor_autoload_sum = 0; void fsensor_block() { fsensor_enabled = false; } void fsensor_unblock() { fsensor_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FSENSOR) == 0x01); } bool fsensor_enable() { // puts_P(PSTR("fsensor_enable\n")); int pat9125 = pat9125_init(); printf_P(PSTR("PAT9125_init:%d\n"), pat9125); if (pat9125) fsensor_not_responding = false; else fsensor_not_responding = true; fsensor_enabled = pat9125?true:false; // fsensor_ignore_error = true; fsensor_M600 = false; fsensor_err_cnt = 0; eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled?0x01:0x00); FSensorStateMenu = fsensor_enabled?1:0; // printf_P(PSTR("fsensor_enable - end %d\n"), fsensor_enabled?1:0); return fsensor_enabled; } void fsensor_disable() { // puts_P(PSTR("fsensor_disable\n")); fsensor_enabled = false; eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00); FSensorStateMenu = 0; } void fautoload_set(bool State) { filament_autoload_enabled = State; eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, filament_autoload_enabled); } void pciSetup(byte pin) { *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group } void fsensor_setup_interrupt() { // uint8_t fsensor_int_pin = FSENSOR_INT_PIN; // uint8_t fsensor_int_pcmsk = digitalPinToPCMSKbit(pin); // uint8_t fsensor_int_pcicr = digitalPinToPCICRbit(pin); pinMode(FSENSOR_INT_PIN, OUTPUT); digitalWrite(FSENSOR_INT_PIN, LOW); fsensor_int_pin_old = 0; pciSetup(FSENSOR_INT_PIN); } void fsensor_autoload_check_start(void) { // puts_P(PSTR("fsensor_autoload_check_start\n")); if (!pat9125_update_y()) //update sensor { puts_P(PSTR("pat9125 not responding (3).\n")); fsensor_disable(); fsensor_not_responding = true; fsensor_autoload_enabled = false; return; } fsensor_autoload_y = pat9125_y; //save current y value fsensor_autoload_c = 0; //reset number of changes counter fsensor_autoload_sum = 0; fsensor_autoload_last_millis = millis(); fsensor_autoload_enabled = true; fsensor_err_cnt = 0; } void fsensor_autoload_check_stop(void) { // puts_P(PSTR("fsensor_autoload_check_stop\n")); fsensor_autoload_sum = 0; fsensor_autoload_enabled = false; fsensor_err_cnt = 0; } bool fsensor_check_autoload(void) { uint8_t fsensor_autoload_c_old = fsensor_autoload_c; if ((millis() - fsensor_autoload_last_millis) < 25) return false; fsensor_autoload_last_millis = millis(); if (!pat9125_update_y()) { puts_P(PSTR("pat9125 not responding (2).\n")); fsensor_disable(); fsensor_not_responding = true; return false; //update sensor } int16_t dy = fsensor_autoload_y - pat9125_y; if (dy) //? y value is different { if (dy < 0) //? delta-y value is positive (inserting) { fsensor_autoload_sum -= dy; fsensor_autoload_c += 3; //increment change counter by 3 } else if (fsensor_autoload_c > 1) fsensor_autoload_c -= 2; //decrement change counter by 2 fsensor_autoload_y = pat9125_y; //save current value } else if (fsensor_autoload_c > 0) fsensor_autoload_c--; if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0; // if (fsensor_autoload_c != fsensor_autoload_c_old) // printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum); if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30)) return true; return false; } ISR(PCINT2_vect) { // puts("PCINT2\n"); if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return; fsensor_int_pin_old = PINK; static bool _lock = false; if (_lock) return; _lock = true; // return; int st_cnt = fsensor_st_cnt; fsensor_st_cnt = 0; sei(); /* *digitalPinToPCMSK(fsensor_int_pin) &= ~bit(digitalPinToPCMSKbit(fsensor_int_pin)); digitalWrite(fsensor_int_pin, HIGH); *digitalPinToPCMSK(fsensor_int_pin) |= bit(digitalPinToPCMSKbit(fsensor_int_pin));*/ if (!pat9125_update_y()) { //#ifdef DEBUG_FSENSOR_LOG puts_P(PSTR("pat9125 not responding (1).\n")); //#endif //DEBUG_FSENSOR_LOG fsensor_disable(); fsensor_not_responding = true; } if (st_cnt != 0) { #ifdef DEBUG_FSENSOR_LOG if (fsensor_log) { MYSERIAL.print("cnt="); MYSERIAL.print(st_cnt, DEC); MYSERIAL.print(" dy="); MYSERIAL.print(pat9125_y, DEC); } #endif //DEBUG_FSENSOR_LOG if (st_cnt != 0) { if( (pat9125_y == 0) || ((pat9125_y > 0) && (st_cnt < 0)) || ((pat9125_y < 0) && (st_cnt > 0))) { //invalid movement if (st_cnt > 0) //only positive movements fsensor_err_cnt++; #ifdef DEBUG_FSENSOR_LOG if (fsensor_log) { MYSERIAL.print("\tNG ! err="); MYSERIAL.println(fsensor_err_cnt, DEC); } #endif //DEBUG_FSENSOR_LOG } else { //propper movement if (fsensor_err_cnt > 0) fsensor_err_cnt--; // fsensor_err_cnt = 0; #ifdef DEBUG_FSENSOR_LOG if (fsensor_log) { MYSERIAL.print("\tOK err="); MYSERIAL.println(fsensor_err_cnt, DEC); } #endif //DEBUG_FSENSOR_LOG } } else { //no movement #ifdef DEBUG_FSENSOR_LOG if (fsensor_log) MYSERIAL.println("\tOK 0"); #endif //DEBUG_FSENSOR_LOG } } pat9125_y = 0; _lock = false; return; } void fsensor_st_block_begin(block_t* bl) { if (!fsensor_enabled) return; if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) || ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8))) { if (_READ(63)) _WRITE(63, LOW); else _WRITE(63, HIGH); } // PINK |= FSENSOR_INT_PIN_MSK; //toggle pin // _WRITE(fsensor_int_pin, LOW); } void fsensor_st_block_chunk(block_t* bl, int cnt) { if (!fsensor_enabled) return; fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt; if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len)) { if (_READ(63)) _WRITE(63, LOW); else _WRITE(63, HIGH); } // PINK |= FSENSOR_INT_PIN_MSK; //toggle pin // _WRITE(fsensor_int_pin, LOW); } void fsensor_update() { if (!fsensor_enabled) return; if (fsensor_err_cnt > FSENSOR_ERR_MAX) { fsensor_stop_and_save_print(); fsensor_err_cnt = 0; enquecommand_front_P((PSTR("G1 E-3 F200"))); process_commands(); cmdqueue_pop_front(); st_synchronize(); enquecommand_front_P((PSTR("G1 E3 F200"))); process_commands(); cmdqueue_pop_front(); st_synchronize(); if (fsensor_err_cnt == 0) { fsensor_restore_print_and_continue(); } else { eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1); eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1); enquecommand_front_P((PSTR("M600"))); fsensor_M600 = true; fsensor_enabled = false; } } } #endif //PAT9125