#include "Marlin.h" #include "Dcodes.h" #include "Configuration.h" #include "language.h" #include "cmdqueue.h" #include #include #define SHOW_TEMP_ADC_VALUES #include "temperature.h" #define DBG(args...) printf_P(args) inline void print_hex_nibble(uint8_t val) { putchar((val > 9)?(val - 10 + 'a'):(val + '0')); } void print_hex_byte(uint8_t val) { print_hex_nibble(val >> 4); print_hex_nibble(val & 15); } // debug range address type (fits all SRAM/PROGMEM/XFLASH memory ranges) #if defined(DEBUG_DCODE6) || defined(DEBUG_DCODES) || defined(XFLASH_DUMP) #include "xflash.h" #include "xflash_layout.h" #define DADDR_SIZE 32 typedef uint32_t daddr_t; // XFLASH requires 24 bits #else #define DADDR_SIZE 16 typedef uint16_t daddr_t; #endif void print_hex_word(daddr_t val) { #if DADDR_SIZE > 16 print_hex_byte((val >> 16) & 0xFF); #endif print_hex_byte((val >> 8) & 0xFF); print_hex_byte(val & 0xFF); } int parse_hex(const char* hex, uint8_t* data, int count) { int parsed = 0; while (*hex) { if (count && (parsed >= count)) break; char c = *(hex++); if (c == ' ') continue; if (c == '\n') break; uint8_t val = 0x00; if ((c >= '0') && (c <= '9')) val |= ((c - '0') << 4); else if ((c >= 'a') && (c <= 'f')) val |= ((c - 'a' + 10) << 4); else return -parsed; c = *(hex++); if ((c >= '0') && (c <= '9')) val |= (c - '0'); else if ((c >= 'a') && (c <= 'f')) val |= (c - 'a' + 10); else return -parsed; data[parsed] = val; parsed++; } return parsed; } enum class dcode_mem_t:uint8_t { sram, eeprom, progmem, xflash }; void print_mem(daddr_t address, daddr_t count, dcode_mem_t type, uint8_t countperline = 16) { #if defined(DEBUG_DCODE6) || defined(DEBUG_DCODES) || defined(XFLASH_DUMP) if(type == dcode_mem_t::xflash) XFLASH_SPI_ENTER(); #endif while (count) { print_hex_word(address); putchar(' '); uint8_t count_line = countperline; while (count && count_line) { uint8_t data = 0; switch (type) { case dcode_mem_t::sram: data = *((uint8_t*)address); break; case dcode_mem_t::eeprom: data = eeprom_read_byte((uint8_t*)address); break; case dcode_mem_t::progmem: break; #if defined(DEBUG_DCODE6) || defined(DEBUG_DCODES) || defined(XFLASH_DUMP) case dcode_mem_t::xflash: xflash_rd_data(address, &data, 1); break; #else case dcode_mem_t::xflash: break; #endif } ++address; putchar(' '); print_hex_byte(data); count_line--; count--; // sporadically call manage_heater, but only when interrupts are enabled (meaning // print_mem is called by D2). Don't do anything otherwise: we are inside a crash // handler where memory & stack needs to be preserved! if((SREG & (1 << SREG_I)) && !((uint16_t)count % 8192)) manage_heater(); } putchar('\n'); } } // TODO: this only handles SRAM/EEPROM 16bit addresses void write_mem(uint16_t address, uint16_t count, const uint8_t* data, const dcode_mem_t type) { for (uint16_t i = 0; i < count; i++) { switch (type) { case dcode_mem_t::sram: *((uint8_t*)address) = data[i]; break; case dcode_mem_t::eeprom: eeprom_write_byte((uint8_t*)address, data[i]); break; case dcode_mem_t::progmem: break; case dcode_mem_t::xflash: break; } ++address; } } void dcode_core(daddr_t addr_start, const daddr_t addr_end, const dcode_mem_t type, uint8_t dcode, const char* type_desc) { KEEPALIVE_STATE(NOT_BUSY); DBG(_N("D%d - Read/Write %S\n"), dcode, type_desc); daddr_t count = -1; // RW the entire space by default if (code_seen('A')) addr_start = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value(); if (code_seen('C')) count = code_value_long(); if (addr_start > addr_end) addr_start = addr_end; if ((addr_start + count) > addr_end || (addr_start + count) < addr_start) count = addr_end - addr_start; if (code_seen('X')) { uint8_t data[16]; count = parse_hex(strchr_pointer + 1, data, 16); write_mem(addr_start, count, data, type); #if DADDR_SIZE > 16 DBG(_N("%lu bytes written to %S at address 0x%04lx\n"), count, type_desc, addr_start); #else DBG(_N("%u bytes written to %S at address 0x%08x\n"), count, type_desc, addr_start); #endif } print_mem(addr_start, count, type); } #if defined DEBUG_DCODE3 || defined DEBUG_DCODES #define EEPROM_SIZE 0x1000 /*! ### D3 - Read/Write EEPROM D3: Read/Write EEPROM This command can be used without any additional parameters. It will read the entire eeprom. #### Usage D3 [ A | C | X ] #### Parameters - `A` - Address (x0000-x0fff) - `C` - Count (1-4096) - `X` - Data (hex) #### Notes - The hex address needs to be lowercase without the 0 before the x - Count is decimal - The hex data needs to be lowercase */ void dcode_3() { dcode_core(0, EEPROM_SIZE, dcode_mem_t::eeprom, 3, _N("EEPROM")); } #endif //DEBUG_DCODE3 #include "ConfigurationStore.h" #include "cmdqueue.h" #include "pat9125.h" #include "adc.h" #include "temperature.h" #include #include "bootapp.h" #if 0 extern float current_temperature_pinda; extern float axis_steps_per_unit[NUM_AXIS]; #define LOG(args...) printf(args) #endif //0 #define LOG(args...) /*! * ### D-1 - Endless Loop D-1: Endless Loop D-1 * */ void dcode__1() { DBG(_N("D-1 - Endless loop\n")); // cli(); while (1); } #ifdef DEBUG_DCODES /*! ### D0 - Reset D0: Reset #### Usage D0 [ B ] #### Parameters - `B` - Bootloader */ void dcode_0() { if (*(strchr_pointer + 1) == 0) return; LOG("D0 - Reset\n"); if (code_seen('B')) //bootloader { softReset(); } else //reset { #ifndef _NO_ASM asm volatile("jmp 0x00000"); #endif //_NO_ASM } } /*! * ### D1 - Clear EEPROM and RESET D1: Clear EEPROM and RESET D1 * */ void dcode_1() { LOG("D1 - Clear EEPROM and RESET\n"); cli(); for (int i = 0; i < 8192; i++) eeprom_write_byte((unsigned char*)i, (unsigned char)0xff); softReset(); } #endif #if defined DEBUG_DCODE2 || defined DEBUG_DCODES /*! ### D2 - Read/Write RAM D3: Read/Write RAM This command can be used without any additional parameters. It will read the entire RAM. #### Usage D2 [ A | C | X ] #### Parameters - `A` - Address (x0000-x21ff) - `C` - Count (1-8704) - `X` - Data #### Notes - The hex address needs to be lowercase without the 0 before the x - Count is decimal - The hex data needs to be lowercase */ void dcode_2() { dcode_core(RAMSTART, RAMEND+1, dcode_mem_t::sram, 2, _N("SRAM")); } #endif #ifdef DEBUG_DCODES /*! ### D4 - Read/Write PIN D4: Read/Write PIN To read the digital value of a pin you need only to define the pin number. #### Usage D4 [ P | F | V ] #### Parameters - `P` - Pin (0-255) - `F` - Function in/out (0/1) - `V` - Value (0/1) */ void dcode_4() { LOG("D4 - Read/Write PIN\n"); if (code_seen('P')) // Pin (0-255) { int pin = (int)code_value(); if ((pin >= 0) && (pin <= 255)) { if (code_seen('F')) // Function in/out (0/1) { int fnc = (int)code_value(); if (fnc == 0) pinMode(pin, INPUT); else if (fnc == 1) pinMode(pin, OUTPUT); } if (code_seen('V')) // Value (0/1) { int val = (int)code_value(); if (val == 0) digitalWrite(pin, LOW); else if (val == 1) digitalWrite(pin, HIGH); } else { int val = (digitalRead(pin) != LOW)?1:0; printf("PIN%d=%d", pin, val); } } } } #endif //DEBUG_DCODES #if defined DEBUG_DCODE5 || defined DEBUG_DCODES /*! ### D5 - Read/Write FLASH D5: Read/Write Flash This command can be used without any additional parameters. It will read the 1kb FLASH. #### Usage D5 [ A | C | X | E ] #### Parameters - `A` - Address (x00000-x3ffff) - `C` - Count (1-8192) - `X` - Data (hex) - `E` - Erase #### Notes - The hex address needs to be lowercase without the 0 before the x - Count is decimal - The hex data needs to be lowercase */ void dcode_5() { puts_P(PSTR("D5 - Read/Write FLASH")); uint32_t address = 0x0000; //default 0x0000 uint16_t count = 0x0400; //default 0x0400 (1kb block) if (code_seen('A')) // Address (0x00000-0x3ffff) address = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value(); if (code_seen('C')) // Count (0x0001-0x2000) count = (int)code_value(); address &= 0x3ffff; if (count > 0x2000) count = 0x2000; if ((address + count) > 0x40000) count = 0x40000 - address; bool bErase = false; bool bCopy = false; if (code_seen('E')) //Erase bErase = true; uint8_t data[16]; if (code_seen('X')) // Data { count = parse_hex(strchr_pointer + 1, data, 16); if (count > 0) bCopy = true; } if (bErase || bCopy) { if (bErase) { printf_P(PSTR("%d bytes of FLASH at address %05x will be erased\n"), count, address); } if (bCopy) { printf_P(PSTR("%d bytes will be written to FLASH at address %05x\n"), count, address); } cli(); boot_app_magic = 0x55aa55aa; boot_app_flags = (bErase?(BOOT_APP_FLG_ERASE):0) | (bCopy?(BOOT_APP_FLG_COPY):0); boot_copy_size = (uint16_t)count; boot_dst_addr = (uint32_t)address; boot_src_addr = (uint32_t)(&data); bootapp_print_vars(); softReset(); } while (count) { print_hex_nibble(address >> 16); print_hex_word(address); putchar(' '); uint8_t countperline = 16; while (count && countperline) { uint8_t data = pgm_read_byte_far((uint8_t*)address++); putchar(' '); print_hex_byte(data); countperline--; count--; } putchar('\n'); } } #endif //DEBUG_DCODE5 #if defined(XFLASH) && (defined DEBUG_DCODE6 || defined DEBUG_DCODES) /*! ### D6 - Read/Write external FLASH D6: Read/Write external Flash This command can be used without any additional parameters. It will read the entire XFLASH. #### Usage D6 [ A | C | X ] #### Parameters - `A` - Address (x0000-x3ffff) - `C` - Count (1-262144) - `X` - Data #### Notes - The hex address needs to be lowercase without the 0 before the x - Count is decimal - The hex data needs to be lowercase - Writing is currently not implemented */ void dcode_6() { dcode_core(0x0, XFLASH_SIZE, dcode_mem_t::xflash, 6, _N("XFLASH")); } #endif #ifdef DEBUG_DCODES /*! ### D7 - Read/Write Bootloader D7: Read/Write Bootloader Reserved */ void dcode_7() { LOG("D7 - Read/Write Bootloader\n"); /* cli(); boot_app_magic = 0x55aa55aa; boot_app_flags = BOOT_APP_FLG_ERASE | BOOT_APP_FLG_COPY | BOOT_APP_FLG_FLASH; boot_copy_size = (uint16_t)0xc00; boot_src_addr = (uint32_t)0x0003e400; boot_dst_addr = (uint32_t)0x0003f400; softReset(); */ } /*! ### D8 - Read/Write PINDA D8: Read/Write PINDA #### Usage D8 [ ? | ! | P | Z ] #### Parameters - `?` - Read PINDA temperature shift values - `!` - Reset PINDA temperature shift values to default - `P` - Pinda temperature [C] - `Z` - Z Offset [mm] */ void dcode_8() { puts_P(PSTR("D8 - Read/Write PINDA")); uint8_t cal_status = calibration_status_pinda(); float temp_pinda = current_temperature_pinda; float offset_z = temp_compensation_pinda_thermistor_offset(temp_pinda); if ((strchr_pointer[1+1] == '?') || (strchr_pointer[1+1] == 0)) { printf_P(PSTR("cal_status=%d\n"), cal_status?1:0); for (uint8_t i = 0; i < 6; i++) { uint16_t offs = 0; if (i > 0) offs = eeprom_read_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + (i - 1)); float foffs = ((float)offs) / cs.axis_steps_per_unit[Z_AXIS]; offs = 1000 * foffs; printf_P(PSTR("temp_pinda=%dC temp_shift=%dum\n"), 35 + i * 5, offs); } } else if (strchr_pointer[1+1] == '!') { cal_status = 1; eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, cal_status); eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps } else { if (code_seen('P')) // Pinda temperature [C] temp_pinda = code_value(); offset_z = temp_compensation_pinda_thermistor_offset(temp_pinda); if (code_seen('Z')) // Z Offset [mm] { offset_z = code_value(); } } printf_P(PSTR("temp_pinda=%d offset_z=%d.%03d\n"), (int)temp_pinda, (int)offset_z, ((int)(1000 * offset_z) % 1000)); } /*! ### D9 - Read ADC D9: Read ADC #### Usage D9 [ I | V ] #### Parameters - `I` - ADC channel index - `0` - Heater 0 temperature - `1` - Heater 1 temperature - `2` - Bed temperature - `3` - PINDA temperature - `4` - PWR voltage - `5` - Ambient temperature - `6` - BED voltage - `V` Value to be written as simulated */ const char* dcode_9_ADC_name(uint8_t i) { switch (i) { case 0: return PSTR("TEMP_HEATER0"); case 1: return PSTR("TEMP_HEATER1"); case 2: return PSTR("TEMP_BED"); case 3: return PSTR("TEMP_PINDA"); case 4: return PSTR("VOLT_PWR"); case 5: return PSTR("TEMP_AMBIENT"); case 6: return PSTR("VOLT_BED"); } return 0; } uint16_t dcode_9_ADC_val(uint8_t i) { switch (i) { #ifdef SHOW_TEMP_ADC_VALUES case 0: return current_temperature_raw[0]; #endif //SHOW_TEMP_ADC_VALUES case 1: return 0; #ifdef SHOW_TEMP_ADC_VALUES case 2: return current_temperature_bed_raw; #endif //SHOW_TEMP_ADC_VALUES #ifdef PINDA_THERMISTOR case 3: return current_temperature_raw_pinda; #endif //PINDA_THERMISTOR #ifdef VOLT_PWR_PIN case 4: return current_voltage_raw_pwr; #endif //VOLT_PWR_PIN #ifdef AMBIENT_THERMISTOR case 5: return current_temperature_raw_ambient; #endif //AMBIENT_THERMISTOR #ifdef VOLT_BED_PIN case 6: return current_voltage_raw_bed; #endif //VOLT_BED_PIN } return 0; } void dcode_9() { puts_P(PSTR("D9 - Read/Write ADC")); if ((strchr_pointer[1+1] == '?') || (strchr_pointer[1+1] == 0)) { for (uint8_t i = 0; i < ADC_CHAN_CNT; i++) printf_P(PSTR("\tADC%d=%4d\t(%S)\n"), i, dcode_9_ADC_val(i) >> 4, dcode_9_ADC_name(i)); } #if 0 else { uint8_t index = 0xff; if (code_seen('I')) // index (index of used channel, not avr channel index) index = code_value(); if (index < ADC_CHAN_CNT) { if (code_seen('V')) // value to be written as simulated { adc_sim_mask |= (1 << index); adc_values[index] = (((int)code_value()) << 4); printf_P(PSTR("ADC%d=%4d\n"), index, adc_values[index] >> 4); } } } #endif } /*! ### D10 - Set XYZ calibration = OK D10: Set XYZ calibration = OK */ void dcode_10() {//Tell the printer that XYZ calibration went OK LOG("D10 - XYZ calibration = OK\n"); calibration_status_set(CALIBRATION_STATUS_XYZ); } /*! ### D12 - Time D12: Time Writes the current time in the log file. */ void dcode_12() {//Time LOG("D12 - Time\n"); } #ifdef HEATBED_ANALYSIS /*! ### D80 - Bed check D80: Bed check This command will log data to SD card file "mesh.txt". #### Usage D80 [ E | F | G | H | I | J ] #### Parameters - `E` - Dimension X (default 40) - `F` - Dimention Y (default 40) - `G` - Points X (default 40) - `H` - Points Y (default 40) - `I` - Offset X (default 74) - `J` - Offset Y (default 34) */ void dcode_80() { float dimension_x = 40; float dimension_y = 40; int points_x = 40; int points_y = 40; float offset_x = 74; float offset_y = 33; if (code_seen('E')) dimension_x = code_value(); if (code_seen('F')) dimension_y = code_value(); if (code_seen('G')) {points_x = code_value(); } if (code_seen('H')) {points_y = code_value(); } if (code_seen('I')) {offset_x = code_value(); } if (code_seen('J')) {offset_y = code_value(); } printf_P(PSTR("DIM X: %f\n"), dimension_x); printf_P(PSTR("DIM Y: %f\n"), dimension_y); printf_P(PSTR("POINTS X: %d\n"), points_x); printf_P(PSTR("POINTS Y: %d\n"), points_y); printf_P(PSTR("OFFSET X: %f\n"), offset_x); printf_P(PSTR("OFFSET Y: %f\n"), offset_y); bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y); } /*! ### D81 - Bed analysis D80: Bed analysis This command will log data to SD card file "wldsd.txt". #### Usage D81 [ E | F | G | H | I | J ] #### Parameters - `E` - Dimension X (default 40) - `F` - Dimention Y (default 40) - `G` - Points X (default 40) - `H` - Points Y (default 40) - `I` - Offset X (default 74) - `J` - Offset Y (default 34) */ void dcode_81() { float dimension_x = 40; float dimension_y = 40; int points_x = 40; int points_y = 40; float offset_x = 74; float offset_y = 33; if (code_seen('E')) dimension_x = code_value(); if (code_seen('F')) dimension_y = code_value(); if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); } if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); } if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); } if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); } bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y); } #endif //HEATBED_ANALYSIS /*! ### D106 - Print measured fan speed for different pwm values D106: Print measured fan speed for different pwm values */ void dcode_106() { for (int i = 255; i > 0; i = i - 5) { fanSpeed = i; //delay_keep_alive(2000); for (int j = 0; j < 100; j++) { delay_keep_alive(100); } printf_P(_N("%d: %d\n"), i, fan_speed[1]); } } #ifdef TMC2130 #include "planner.h" #include "tmc2130.h" extern void st_synchronize(); /*! ### D2130 - Trinamic stepper controller D2130: Trinamic stepper controller @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well. #### Usage D2130 [ Axis | Command | Subcommand | Value ] #### Parameters - Axis - `X` - X stepper driver - `Y` - Y stepper driver - `Z` - Z stepper driver - `E` - Extruder stepper driver - Commands - `0` - Current off - `1` - Current on - `+` - Single step - `-` - Single step oposite direction - `NNN` - Value sereval steps - `?` - Read register - Subcommands for read register - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration' - `step` - Step - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers' - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers' - `wave` - Microstep linearity compensation curve - `!` - Set register - Subcommands for set register - `mres` - Micro step resolution - `step` - Step - `wave` - Microstep linearity compensation curve - Values for set register - `0, 180 --> 250` - Off - `0.9 --> 1.25` - Valid values (recommended is 1.1) - `@` - Home calibrate axis Examples: D2130E?wave Print extruder microstep linearity compensation curve D2130E!wave0 Disable extruder linearity compensation curve, (sine curve is used) D2130E!wave220 (sin(x))^1.1 extruder microstep compensation curve used Notes: For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf * */ void dcode_2130() { puts_P(PSTR("D2130 - TMC2130")); uint8_t axis = 0xff; switch (strchr_pointer[1+4]) { case 'X': axis = X_AXIS; break; case 'Y': axis = Y_AXIS; break; case 'Z': axis = Z_AXIS; break; case 'E': axis = E_AXIS; break; } if (axis != 0xff) { char ch_axis = strchr_pointer[1+4]; if (strchr_pointer[1+5] == '0') { tmc2130_set_pwr(axis, 0); } else if (strchr_pointer[1+5] == '1') { tmc2130_set_pwr(axis, 1); } else if (strchr_pointer[1+5] == '+') { if (strchr_pointer[1+6] == 0) { tmc2130_set_dir(axis, 0); tmc2130_do_step(axis); } else { uint8_t steps = atoi(strchr_pointer + 1 + 6); tmc2130_do_steps(axis, steps, 0, 1000); } } else if (strchr_pointer[1+5] == '-') { if (strchr_pointer[1+6] == 0) { tmc2130_set_dir(axis, 1); tmc2130_do_step(axis); } else { uint8_t steps = atoi(strchr_pointer + 1 + 6); tmc2130_do_steps(axis, steps, 1, 1000); } } else if (strchr_pointer[1+5] == '?') { if (strcmp(strchr_pointer + 7, "mres") == 0) printf_P(PSTR("%c mres=%d\n"), ch_axis, tmc2130_mres[axis]); else if (strcmp(strchr_pointer + 7, "step") == 0) printf_P(PSTR("%c step=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis) >> tmc2130_mres[axis]); else if (strcmp(strchr_pointer + 7, "mscnt") == 0) printf_P(PSTR("%c MSCNT=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis)); else if (strcmp(strchr_pointer + 7, "mscuract") == 0) { uint32_t val = tmc2130_rd_MSCURACT(axis); int curA = (val & 0xff); int curB = ((val >> 16) & 0xff); if ((val << 7) & 0x8000) curA -= 256; if ((val >> 9) & 0x8000) curB -= 256; printf_P(PSTR("%c MSCURACT=0x%08lx A=%d B=%d\n"), ch_axis, val, curA, curB); } else if (strcmp(strchr_pointer + 7, "wave") == 0) { tmc2130_get_wave(axis, 0, stdout); } } else if (strchr_pointer[1+5] == '!') { if (strncmp(strchr_pointer + 7, "step", 4) == 0) { uint8_t step = atoi(strchr_pointer + 11); uint16_t res = tmc2130_get_res(axis); tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res); } else if (strncmp(strchr_pointer + 7, "mres", 4) == 0) { uint8_t mres = strchr_pointer[11] - '0'; if (mres <= 8) { st_synchronize(); uint16_t res = tmc2130_get_res(axis); uint16_t res_new = tmc2130_mres2usteps(mres); tmc2130_set_res(axis, res_new); if (res_new > res) cs.axis_steps_per_unit[axis] *= (res_new / res); else cs.axis_steps_per_unit[axis] /= (res / res_new); } } else if (strncmp(strchr_pointer + 7, "wave", 4) == 0) { uint8_t fac1000 = atoi(strchr_pointer + 11) & 0xffff; if (fac1000 < TMC2130_WAVE_FAC1000_MIN) fac1000 = 0; if (fac1000 > TMC2130_WAVE_FAC1000_MAX) fac1000 = TMC2130_WAVE_FAC1000_MAX; tmc2130_set_wave(axis, 247, fac1000); tmc2130_wave_fac[axis] = fac1000; } } else if (strchr_pointer[1+5] == '@') { tmc2130_home_calibrate(axis); } } } #endif //TMC2130 #ifdef PAT9125 /*! ### D9125 - PAT9125 filament sensor D9125: PAT9125 filament sensor #### Usage D9125 [ ? | ! | R | X | Y | L ] #### Parameters - `?` - Print values - `!` - Print values - `R` - Resolution. Not active in code - `X` - X values - `Y` - Y values - `L` - Activate filament sensor log */ void dcode_9125() { LOG("D9125 - PAT9125\n"); if ((strchr_pointer[1+4] == '?') || (strchr_pointer[1+4] == 0)) { // printf("res_x=%d res_y=%d x=%d y=%d b=%d s=%d\n", pat9125_xres, pat9125_yres, pat9125_x, pat9125_y, pat9125_b, pat9125_s); printf("x=%d y=%d b=%d s=%d\n", pat9125_x, pat9125_y, pat9125_b, pat9125_s); return; } if (strchr_pointer[1+4] == '!') { pat9125_update(); printf("x=%d y=%d b=%d s=%d\n", pat9125_x, pat9125_y, pat9125_b, pat9125_s); return; } /* if (code_seen('R')) { unsigned char res = (int)code_value(); LOG("pat9125_init(xres=yres=%d)=%d\n", res, pat9125_init(res, res)); } */ if (code_seen('X')) { pat9125_x = (int)code_value(); LOG("pat9125_x=%d\n", pat9125_x); } if (code_seen('Y')) { pat9125_y = (int)code_value(); LOG("pat9125_y=%d\n", pat9125_y); } #ifdef DEBUG_FSENSOR_LOG if (code_seen('L')) { fsensor_log = (int)code_value(); LOG("fsensor_log=%d\n", fsensor_log); } #endif //DEBUG_FSENSOR_LOG } #endif //PAT9125 #endif //DEBUG_DCODES #ifdef XFLASH_DUMP #include "xflash_dump.h" void dcode_20() { if(code_seen('E')) xfdump_full_dump_and_reset(); else { unsigned long ts = _millis(); xfdump_dump(); ts = _millis() - ts; DBG(_N("dump completed in %lums\n"), ts); } } void dcode_21() { if(!xfdump_check_state()) DBG(_N("no dump available\n")); else { KEEPALIVE_STATE(NOT_BUSY); DBG(_N("D21 - read crash dump\n")); print_mem(DUMP_OFFSET, sizeof(dump_t), dcode_mem_t::xflash); } } void dcode_22() { if(!xfdump_check_state()) DBG(_N("no dump available\n")); else { xfdump_reset(); DBG(_N("dump cleared\n")); } } #endif #ifdef EMERGENCY_SERIAL_DUMP #include "asm.h" #include "xflash_dump.h" bool emergency_serial_dump = false; void dcode_23() { if(code_seen('E')) serial_dump_and_reset(dump_crash_reason::manual); else { emergency_serial_dump = !code_seen('R'); SERIAL_ECHOPGM("serial dump "); SERIAL_ECHOLNRPGM(emergency_serial_dump? _N("enabled"): _N("disabled")); } } void __attribute__((noinline)) serial_dump_and_reset(dump_crash_reason reason) { uint16_t sp; uint32_t pc; // we're being called from a live state, so shut off interrupts ... cli(); // sample SP/PC sp = SP; pc = GETPC(); // extend WDT long enough to allow writing the entire stream wdt_enable(WDTO_8S); // ... and heaters WRITE(FAN_PIN, HIGH); disable_heater(); // this function can also be called from within a corrupted state, so not use // printf family of functions that use the heap or grow the stack. SERIAL_ECHOLNPGM("D23 - emergency serial dump"); SERIAL_ECHOPGM("error: "); MYSERIAL.print((uint8_t)reason, DEC); SERIAL_ECHOPGM(" 0x"); MYSERIAL.print(pc, HEX); SERIAL_ECHOPGM(" 0x"); MYSERIAL.println(sp, HEX); print_mem(0, RAMEND+1, dcode_mem_t::sram); SERIAL_ECHOLNRPGM(MSG_OK); // reset soon softReset(); } #endif