#include "temperature.h" #include "ultralcd.h" #ifdef ULTRA_LCD #include "Marlin.h" #include "language.h" #include "cardreader.h" #include "temperature.h" #include "stepper.h" #include "ConfigurationStore.h" #include #include "util.h" //#include "Configuration.h" #define _STRINGIFY(s) #s int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */ extern int lcd_change_fil_state; int babystepMem[3]; float babystepMemMM[3]; union Data { byte b[2]; int value; }; int8_t ReInitLCD = 0; int8_t SDscrool = 0; int8_t SilentModeMenu = 0; int lcd_commands_type=0; int lcd_commands_step=0; bool isPrintPaused = false; bool farm_mode = false; int farm_no = 0; int farm_timer = 30; int farm_status = 0; bool menuExiting = false; /* Configuration settings */ int plaPreheatHotendTemp; int plaPreheatHPBTemp; int plaPreheatFanSpeed; int absPreheatHotendTemp; int absPreheatHPBTemp; int absPreheatFanSpeed; int ppPreheatHotendTemp = PP_PREHEAT_HOTEND_TEMP; int ppPreheatHPBTemp = PP_PREHEAT_HPB_TEMP; int ppPreheatFanSpeed = PP_PREHEAT_FAN_SPEED; int petPreheatHotendTemp = PET_PREHEAT_HOTEND_TEMP; int petPreheatHPBTemp = PET_PREHEAT_HPB_TEMP; int petPreheatFanSpeed = PET_PREHEAT_FAN_SPEED; int hipsPreheatHotendTemp = HIPS_PREHEAT_HOTEND_TEMP; int hipsPreheatHPBTemp = HIPS_PREHEAT_HPB_TEMP; int hipsPreheatFanSpeed = HIPS_PREHEAT_FAN_SPEED; int flexPreheatHotendTemp = FLEX_PREHEAT_HOTEND_TEMP; int flexPreheatHPBTemp = FLEX_PREHEAT_HPB_TEMP; int flexPreheatFanSpeed = FLEX_PREHEAT_FAN_SPEED; #ifdef FILAMENT_LCD_DISPLAY unsigned long message_millis = 0; #endif #ifdef ULTIPANEL static float manual_feedrate[] = MANUAL_FEEDRATE; #endif // ULTIPANEL /* !Configuration settings */ //Function pointer to menu functions. typedef void (*menuFunc_t)(); uint8_t lcd_status_message_level; char lcd_status_message[LCD_WIDTH + 1] = ""; //////WELCOME! unsigned char firstrun = 1; #ifdef DOGLCD #include "dogm_lcd_implementation.h" #else #include "ultralcd_implementation_hitachi_HD44780.h" #endif /** forward declarations **/ void copy_and_scalePID_i(); void copy_and_scalePID_d(); /* Different menus */ static void lcd_status_screen(); #ifdef ULTIPANEL extern bool powersupply; static void lcd_main_menu(); static void lcd_tune_menu(); static void lcd_prepare_menu(); static void lcd_move_menu(); static void lcd_control_menu(); static void lcd_settings_menu(); static void lcd_language_menu(); static void lcd_control_temperature_menu(); static void lcd_control_temperature_preheat_pla_settings_menu(); static void lcd_control_temperature_preheat_abs_settings_menu(); static void lcd_control_motion_menu(); static void lcd_control_volumetric_menu(); static void prusa_stat_printerstatus(int _status); static void prusa_stat_temperatures(); static void prusa_stat_printinfo(); static void lcd_farm_no(); #ifdef DOGLCD static void lcd_set_contrast(); #endif static void lcd_control_retract_menu(); static void lcd_sdcard_menu(); #ifdef DELTA_CALIBRATION_MENU static void lcd_delta_calibrate_menu(); #endif // DELTA_CALIBRATION_MENU static void lcd_quick_feedback();//Cause an LCD refresh, and give the user visual or audible feedback that something has happened /* Different types of actions that can be used in menu items. */ static void menu_action_back(menuFunc_t data); #define menu_action_back_RAM menu_action_back static void menu_action_submenu(menuFunc_t data); static void menu_action_gcode(const char* pgcode); static void menu_action_function(menuFunc_t data); static void menu_action_setlang(unsigned char lang); static void menu_action_sdfile(const char* filename, char* longFilename); static void menu_action_sddirectory(const char* filename, char* longFilename); static void menu_action_setting_edit_bool(const char* pstr, bool* ptr); static void menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue); static void menu_action_setting_edit_float3(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float32(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float43(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float5(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float51(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float52(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue); static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float3(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float32(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float43(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float5(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float51(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float52(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue, menuFunc_t callbackFunc); #define ENCODER_FEEDRATE_DEADZONE 10 #if !defined(LCD_I2C_VIKI) #ifndef ENCODER_STEPS_PER_MENU_ITEM #define ENCODER_STEPS_PER_MENU_ITEM 5 #endif #ifndef ENCODER_PULSES_PER_STEP #define ENCODER_PULSES_PER_STEP 1 #endif #else #ifndef ENCODER_STEPS_PER_MENU_ITEM #define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation #endif #ifndef ENCODER_PULSES_PER_STEP #define ENCODER_PULSES_PER_STEP 1 #endif #endif /* Helper macros for menus */ #define START_MENU() do { \ if (encoderPosition > 0x8000) encoderPosition = 0; \ if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM < currentMenuViewOffset) currentMenuViewOffset = encoderPosition / ENCODER_STEPS_PER_MENU_ITEM;\ uint8_t _lineNr = currentMenuViewOffset, _menuItemNr; \ bool wasClicked = LCD_CLICKED;\ for(uint8_t _drawLineNr = 0; _drawLineNr < LCD_HEIGHT; _drawLineNr++, _lineNr++) { \ _menuItemNr = 0; #define MENU_ITEM(type, label, args...) do { \ if (_menuItemNr == _lineNr) { \ if (lcdDrawUpdate) { \ const char* _label_pstr = (label); \ if ((encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) { \ lcd_implementation_drawmenu_ ## type ## _selected (_drawLineNr, _label_pstr , ## args ); \ }else{\ lcd_implementation_drawmenu_ ## type (_drawLineNr, _label_pstr , ## args ); \ }\ }\ if (wasClicked && (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) {\ lcd_quick_feedback(); \ menu_action_ ## type ( args ); \ return;\ }\ }\ _menuItemNr++;\ } while(0) #define MENU_ITEM_DUMMY() do { _menuItemNr++; } while(0) #define MENU_ITEM_EDIT(type, label, args...) MENU_ITEM(setting_edit_ ## type, label, (label) , ## args ) #define MENU_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, (label) , ## args ) #define END_MENU() \ if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM >= _menuItemNr) encoderPosition = _menuItemNr * ENCODER_STEPS_PER_MENU_ITEM - 1; \ if ((uint8_t)(encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) >= currentMenuViewOffset + LCD_HEIGHT) { currentMenuViewOffset = (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) - LCD_HEIGHT + 1; lcdDrawUpdate = 1; _lineNr = currentMenuViewOffset - 1; _drawLineNr = -1; } \ } } while(0) /** Used variables to keep track of the menu */ #ifndef REPRAPWORLD_KEYPAD volatile uint8_t buttons;//Contains the bits of the currently pressed buttons. #else volatile uint8_t buttons_reprapworld_keypad; // to store the reprapworld_keypad shift register values #endif #ifdef LCD_HAS_SLOW_BUTTONS volatile uint8_t slow_buttons;//Contains the bits of the currently pressed buttons. #endif uint8_t currentMenuViewOffset; /* scroll offset in the current menu */ uint32_t blocking_enc; uint8_t lastEncoderBits; uint32_t encoderPosition; #if (SDCARDDETECT > 0) bool lcd_oldcardstatus; #endif #endif //ULTIPANEL menuFunc_t currentMenu = lcd_status_screen; /* function pointer to the currently active menu */ uint32_t lcd_next_update_millis; uint8_t lcd_status_update_delay; bool ignore_click = false; bool wait_for_unclick; uint8_t lcdDrawUpdate = 2; /* Set to none-zero when the LCD needs to draw, decreased after every draw. Set to 2 in LCD routines so the LCD gets at least 1 full redraw (first redraw is partial) */ //prevMenu and prevEncoderPosition are used to store the previous menu location when editing settings. menuFunc_t prevMenu = NULL; uint16_t prevEncoderPosition; //Variables used when editing values. const char* editLabel; void* editValue; int32_t minEditValue, maxEditValue; menuFunc_t callbackFunc; // place-holders for Ki and Kd edits float raw_Ki, raw_Kd; static void lcd_goto_menu(menuFunc_t menu, const uint32_t encoder = 0, const bool feedback = true) { if (currentMenu != menu) { currentMenu = menu; encoderPosition = encoder; if (feedback) lcd_quick_feedback(); // For LCD_PROGRESS_BAR re-initialize the custom characters #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) lcd_set_custom_characters(menu == lcd_status_screen); #endif } } /* Main status screen. It's up to the implementation specific part to show what is needed. As this is very display dependent */ /* extern char langbuffer[]; void lcd_printPGM(const char *s1) { strncpy_P(langbuffer,s1,LCD_WIDTH); lcd.print(langbuffer); } */ unsigned char langsel; void set_language_from_EEPROM() { unsigned char eep = eeprom_read_byte((unsigned char*)EEPROM_LANG); if (eep < LANG_NUM) { lang_selected = eep; langsel = 0; } else { lang_selected = 1; langsel = 1; } } void lcd_mylang(); static void lcd_status_screen() { if (firstrun == 1) { firstrun = 0; set_language_from_EEPROM(); strncpy_P(lcd_status_message, WELCOME_MSG, LCD_WIDTH); if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255) { eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); } if (langsel) { //strncpy_P(lcd_status_message, PSTR(">>>>>>>>>>>> PRESS v"), LCD_WIDTH); lcd_mylang(); } } if (lcd_status_update_delay) lcd_status_update_delay--; else lcdDrawUpdate = 1; if (lcdDrawUpdate) { ReInitLCD++; if (ReInitLCD == 30) { lcd_implementation_init( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) currentMenu == lcd_status_screen #endif ); ReInitLCD = 0 ; } else { if ((ReInitLCD % 10) == 0) { //lcd_implementation_nodisplay(); lcd_implementation_init_noclear( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) currentMenu == lcd_status_screen #endif ); } } //lcd_implementation_display(); lcd_implementation_status_screen(); //lcd_implementation_clear(); if (farm_mode) { farm_timer--; if (farm_timer < 1) { farm_timer = 90; prusa_statistics(0); } switch (farm_timer) { case 45: prusa_statistics(21); break; case 10: if (IS_SD_PRINTING) { prusa_statistics(20); } break; } } lcd_status_update_delay = 10; /* redraw the main screen every second. This is easier then trying keep track of all things that change on the screen */ if (lcd_commands_type != 0) { lcd_commands(); } } #ifdef ULTIPANEL bool current_click = LCD_CLICKED; if (ignore_click) { if (wait_for_unclick) { if (!current_click) { ignore_click = wait_for_unclick = false; } else { current_click = false; } } else if (current_click) { lcd_quick_feedback(); wait_for_unclick = true; current_click = false; } } //if (--langsel ==0) {langsel=1;current_click=true;} if (current_click) { lcd_goto_menu(lcd_main_menu); lcd_implementation_init( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) currentMenu == lcd_status_screen #endif ); #ifdef FILAMENT_LCD_DISPLAY message_millis = millis(); // get status message to show up for a while #endif } #ifdef ULTIPANEL_FEEDMULTIPLY // Dead zone at 100% feedrate if ((feedmultiply < 100 && (feedmultiply + int(encoderPosition)) > 100) || (feedmultiply > 100 && (feedmultiply + int(encoderPosition)) < 100)) { encoderPosition = 0; feedmultiply = 100; } if (feedmultiply == 100 && int(encoderPosition) > ENCODER_FEEDRATE_DEADZONE) { feedmultiply += int(encoderPosition) - ENCODER_FEEDRATE_DEADZONE; encoderPosition = 0; } else if (feedmultiply == 100 && int(encoderPosition) < -ENCODER_FEEDRATE_DEADZONE) { feedmultiply += int(encoderPosition) + ENCODER_FEEDRATE_DEADZONE; encoderPosition = 0; } else if (feedmultiply != 100) { feedmultiply += int(encoderPosition); encoderPosition = 0; } #endif //ULTIPANEL_FEEDMULTIPLY if (feedmultiply < 10) feedmultiply = 10; else if (feedmultiply > 999) feedmultiply = 999; #endif //ULTIPANEL } #ifdef ULTIPANEL void lcd_commands() { if (lcd_commands_type == 1) //// load filament sequence { if (lcd_commands_step == 0) { lcd_commands_step = 5; custom_message = true; } if (lcd_commands_step == 1 && !blocks_queued()) { lcd_commands_step = 0; lcd_commands_type = 0; lcd_setstatuspgm(WELCOME_MSG); disable_z(); custom_message = false; custom_message_type = 0; } if (lcd_commands_step == 2 && !blocks_queued()) { lcd_setstatuspgm(MSG_LOADING_FILAMENT); enquecommand_P(PSTR(LOAD_FILAMENT_2)); lcd_commands_step = 1; } if (lcd_commands_step == 3 && !blocks_queued()) { enquecommand_P(PSTR(LOAD_FILAMENT_1)); lcd_commands_step = 2; } if (lcd_commands_step == 4 && !blocks_queued()) { lcd_setstatuspgm(MSG_INSERT_FILAMENT); enquecommand_P(PSTR(LOAD_FILAMENT_0)); lcd_commands_step = 3; } if (lcd_commands_step == 5 && !blocks_queued()) { lcd_setstatuspgm(MSG_PLEASE_WAIT); enable_z(); custom_message = true; custom_message_type = 2; lcd_commands_step = 4; } } if (lcd_commands_type == 2) /// stop print { if (lcd_commands_step == 0) { lcd_commands_step = 6; custom_message = true; } if (lcd_commands_step == 1 && !blocks_queued()) { lcd_commands_step = 0; lcd_commands_type = 0; lcd_setstatuspgm(WELCOME_MSG); custom_message = false; } if (lcd_commands_step == 2 && !blocks_queued()) { setTargetBed(0); setTargetHotend(0, 0); setTargetHotend(0, 1); setTargetHotend(0, 2); manage_heater(); lcd_setstatuspgm(WELCOME_MSG); cancel_heatup = false; lcd_commands_step = 1; } if (lcd_commands_step == 3 && !blocks_queued()) { enquecommand_P(PSTR("M84")); autotempShutdown(); lcd_commands_step = 2; } if (lcd_commands_step == 4 && !blocks_queued()) { enquecommand_P(PSTR("G90")); enquecommand_P(PSTR("M83")); #ifdef X_CANCEL_POS enquecommand_P(PSTR("G1 X" STRINGIFY(X_CANCEL_POS) " Y" STRINGIFY(Y_CANCEL_POS) " E0 F7000")); #else enquecommand_P(PSTR("G1 X50 Y" STRINGIFY(Y_MAX_POS) " E0 F7000")); #endif lcd_ignore_click(false); lcd_commands_step = 3; } if (lcd_commands_step == 5 && !blocks_queued()) { lcd_setstatuspgm(MSG_PRINT_ABORTED); enquecommand_P(PSTR("G91")); enquecommand_P(PSTR("G1 Z15 F1500")); lcd_commands_step = 4; } if (lcd_commands_step == 6 && !blocks_queued()) { lcd_setstatuspgm(MSG_PRINT_ABORTED); cancel_heatup = true; setTargetBed(0); setTargetHotend(0, 0); setTargetHotend(0, 1); setTargetHotend(0, 2); manage_heater(); lcd_commands_step = 5; } } if (lcd_commands_type == 3) { lcd_commands_type = 0; } if (lcd_commands_type == 4) /// farm mode confirm { if (lcd_commands_step == 0) { lcd_commands_step = 6; custom_message = true; } if (lcd_commands_step == 1 && !blocks_queued()) { lcd_confirm_print(); lcd_commands_step = 0; lcd_commands_type = 0; } if (lcd_commands_step == 2 && !blocks_queued()) { lcd_commands_step = 1; } if (lcd_commands_step == 3 && !blocks_queued()) { lcd_commands_step = 2; } if (lcd_commands_step == 4 && !blocks_queued()) { enquecommand_P(PSTR("G90")); enquecommand_P(PSTR("G1 X" STRINGIFY(X_CANCEL_POS) " Y" STRINGIFY(Y_CANCEL_POS) " E0 F7000")); lcd_commands_step = 3; } if (lcd_commands_step == 5 && !blocks_queued()) { lcd_commands_step = 4; } if (lcd_commands_step == 6 && !blocks_queued()) { enquecommand_P(PSTR("G91")); enquecommand_P(PSTR("G1 Z15 F1500")); st_synchronize(); lcd_commands_step = 5; } } } static void lcd_return_to_status() { lcd_implementation_init( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) currentMenu == lcd_status_screen #endif ); lcd_goto_menu(lcd_status_screen, 0, false); } static void lcd_sdcard_pause() { card.pauseSDPrint(); isPrintPaused = true; lcdDrawUpdate = 3; } static void lcd_sdcard_resume() { card.startFileprint(); isPrintPaused = false; lcdDrawUpdate = 3; } float move_menu_scale; static void lcd_move_menu_axis(); /* Menu implementation */ void lcd_preheat_pla() { setTargetHotend0(plaPreheatHotendTemp); setTargetBed(plaPreheatHPBTemp); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_abs() { setTargetHotend0(absPreheatHotendTemp); setTargetBed(absPreheatHPBTemp); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_pp() { setTargetHotend0(ppPreheatHotendTemp); setTargetBed(ppPreheatHPBTemp); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_pet() { setTargetHotend0(petPreheatHotendTemp); setTargetBed(petPreheatHPBTemp); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_hips() { setTargetHotend0(hipsPreheatHotendTemp); setTargetBed(hipsPreheatHPBTemp); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_flex() { setTargetHotend0(flexPreheatHotendTemp); setTargetBed(flexPreheatHPBTemp); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_cooldown() { setTargetHotend0(0); setTargetHotend1(0); setTargetHotend2(0); setTargetBed(0); fanSpeed = 0; lcd_return_to_status(); } static void lcd_preheat_menu() { START_MENU(); MENU_ITEM(back, MSG_MAIN, lcd_main_menu); MENU_ITEM(function, PSTR("ABS - " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP)), lcd_preheat_abs); MENU_ITEM(function, PSTR("PLA - " STRINGIFY(PLA_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PLA_PREHEAT_HPB_TEMP)), lcd_preheat_pla); MENU_ITEM(function, PSTR("PET - " STRINGIFY(PET_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PET_PREHEAT_HPB_TEMP)), lcd_preheat_pet); MENU_ITEM(function, PSTR("HIPS - " STRINGIFY(HIPS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(HIPS_PREHEAT_HPB_TEMP)), lcd_preheat_hips); MENU_ITEM(function, PSTR("PP - " STRINGIFY(PP_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PP_PREHEAT_HPB_TEMP)), lcd_preheat_pp); MENU_ITEM(function, PSTR("FLEX - " STRINGIFY(FLEX_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FLEX_PREHEAT_HPB_TEMP)), lcd_preheat_flex); MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown); END_MENU(); } static void lcd_support_menu() { START_MENU(); MENU_ITEM(back, MSG_MAIN, lcd_main_menu); // Ideally this block would be optimized out by the compiler. const uint8_t fw_string_len = strlen_P(FW_VERSION_STR_P()); if (fw_string_len < 6) { MENU_ITEM(back, PSTR(MSG_FW_VERSION " - " FW_version), lcd_main_menu); } else { MENU_ITEM(back, PSTR("FW - " FW_version), lcd_main_menu); } MENU_ITEM(back, MSG_PRUSA3D, lcd_main_menu); MENU_ITEM(back, MSG_PRUSA3D_FORUM, lcd_main_menu); MENU_ITEM(back, MSG_PRUSA3D_HOWTO, lcd_main_menu); MENU_ITEM(back, PSTR("------------"), lcd_main_menu); MENU_ITEM(back, PSTR(FILAMENT_SIZE), lcd_main_menu); MENU_ITEM(back, PSTR(ELECTRONICS),lcd_main_menu); MENU_ITEM(back, PSTR(NOZZLE_TYPE),lcd_main_menu); MENU_ITEM(back, PSTR("------------"), lcd_main_menu); MENU_ITEM(back, PSTR("Date: "), lcd_main_menu); MENU_ITEM(back, PSTR(__DATE__), lcd_main_menu); // Show the FlashAir IP address, if the card is available. uint8_t ip[4]; bool hasIP = card.ToshibaFlashAir_GetIP(ip); if (hasIP) { MENU_ITEM(back, PSTR("FlashAir IP Addr:"), lcd_main_menu); char buf[30]; sprintf_P(buf, PSTR("%d.%d.%d.%d"), ip[0], ip[1], ip[2], ip[3]); MENU_ITEM(back_RAM, buf, lcd_main_menu); } END_MENU(); } void lcd_unLoadFilament() { if (degHotend0() > EXTRUDE_MINTEMP) { enquecommand_P(PSTR(UNLOAD_FILAMENT_0)); enquecommand_P(PSTR(UNLOAD_FILAMENT_1)); } else { lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(MSG_ERROR); lcd.setCursor(0, 2); lcd_printPGM(MSG_PREHEAT_NOZZLE); delay(2000); lcd_implementation_clear(); } lcd_return_to_status(); } void lcd_change_filament() { lcd_implementation_clear(); lcd.setCursor(0, 1); lcd_printPGM(MSG_CHANGING_FILAMENT); } void lcd_wait_interact() { lcd_implementation_clear(); lcd.setCursor(0, 1); lcd_printPGM(MSG_INSERT_FILAMENT); lcd.setCursor(0, 2); lcd_printPGM(MSG_PRESS); } void lcd_change_success() { lcd_implementation_clear(); lcd.setCursor(0, 2); lcd_printPGM(MSG_CHANGE_SUCCESS); } void lcd_loading_color() { lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(MSG_LOADING_COLOR); lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT); for (int i = 0; i < 20; i++) { lcd.setCursor(i, 3); lcd.print("."); for (int j = 0; j < 10 ; j++) { manage_heater(); manage_inactivity(true); delay(85); } } } void lcd_loading_filament() { lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(MSG_LOADING_FILAMENT); lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT); for (int i = 0; i < 20; i++) { lcd.setCursor(i, 3); lcd.print("."); for (int j = 0; j < 10 ; j++) { manage_heater(); manage_inactivity(true); delay(110); } } } void lcd_alright() { int enc_dif = 0; int cursor_pos = 1; lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(MSG_CORRECTLY); lcd.setCursor(1, 1); lcd_printPGM(MSG_YES); lcd.setCursor(1, 2); lcd_printPGM(MSG_NOT_LOADED); lcd.setCursor(1, 3); lcd_printPGM(MSG_NOT_COLOR); lcd.setCursor(0, 1); lcd.print(">"); enc_dif = encoderDiff; while (lcd_change_fil_state == 0) { manage_heater(); manage_inactivity(true); if ( abs((enc_dif - encoderDiff)) > 4 ) { if ( (abs(enc_dif - encoderDiff)) > 1 ) { if (enc_dif > encoderDiff ) { cursor_pos --; } if (enc_dif < encoderDiff ) { cursor_pos ++; } if (cursor_pos > 3) { cursor_pos = 3; } if (cursor_pos < 1) { cursor_pos = 1; } lcd.setCursor(0, 1); lcd.print(" "); lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(0, 3); lcd.print(" "); lcd.setCursor(0, cursor_pos); lcd.print(">"); enc_dif = encoderDiff; delay(100); } } if (lcd_clicked()) { lcd_change_fil_state = cursor_pos; delay(500); } }; lcd_implementation_clear(); lcd_return_to_status(); } void lcd_LoadFilament() { if (degHotend0() > EXTRUDE_MINTEMP) { custom_message = true; lcd_commands_type = 1; SERIAL_ECHOLN("Loading filament"); // commands() will handle the rest } else { lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(MSG_ERROR); lcd.setCursor(0, 2); lcd_printPGM(MSG_PREHEAT_NOZZLE); delay(2000); lcd_implementation_clear(); } lcd_return_to_status(); } static void lcd_menu_statistics() { if (IS_SD_PRINTING) { int _met = total_filament_used / 100000; int _cm = (total_filament_used - (_met * 100000))/10; int _t = (millis() - starttime) / 1000; int _h = _t / 3600; int _m = (_t - (_h * 3600)) / 60; int _s = _t - ((_h * 3600) + (_m * 60)); lcd.setCursor(0, 0); lcd_printPGM(MSG_STATS_FILAMENTUSED); lcd.setCursor(6, 1); lcd.print(itostr3(_met)); lcd.print("m "); lcd.print(ftostr32ns(_cm)); lcd.print("cm"); lcd.setCursor(0, 2); lcd_printPGM(MSG_STATS_PRINTTIME); lcd.setCursor(8, 3); lcd.print(itostr2(_h)); lcd.print("h "); lcd.print(itostr2(_m)); lcd.print("m "); lcd.print(itostr2(_s)); lcd.print("s"); if (lcd_clicked()) { lcd_quick_feedback(); lcd_return_to_status(); } } else { unsigned long _filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); unsigned long _time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); uint8_t _days, _hours, _minutes; float _filament_m = (float)_filament; int _filament_km = (_filament >= 100000) ? _filament / 100000 : 0; if (_filament_km > 0) _filament_m = _filament - (_filament_km * 100000); _days = _time / 1440; _hours = (_time - (_days * 1440)) / 60; _minutes = _time - ((_days * 1440) + (_hours * 60)); lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(MSG_STATS_TOTALFILAMENT); lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)), 1); lcd.print(ftostr32ns(_filament_m)); if (_filament_km > 0) { lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)) - 3, 1); lcd.print("km"); lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)) - 8, 1); lcd.print(itostr4(_filament_km)); } lcd.setCursor(18, 1); lcd.print("m"); lcd.setCursor(0, 2); lcd_printPGM(MSG_STATS_TOTALPRINTTIME);; lcd.setCursor(18, 3); lcd.print("m"); lcd.setCursor(14, 3); lcd.print(itostr3(_minutes)); lcd.setCursor(14, 3); lcd.print(":"); lcd.setCursor(12, 3); lcd.print("h"); lcd.setCursor(9, 3); lcd.print(itostr3(_hours)); lcd.setCursor(9, 3); lcd.print(":"); lcd.setCursor(7, 3); lcd.print("d"); lcd.setCursor(4, 3); lcd.print(itostr3(_days)); while (!lcd_clicked()) { manage_heater(); manage_inactivity(true); delay(100); } lcd_quick_feedback(); lcd_return_to_status(); } } static void _lcd_move(const char *name, int axis, int min, int max) { if (encoderPosition != 0) { refresh_cmd_timeout(); current_position[axis] += float((int)encoderPosition) * move_menu_scale; if (min_software_endstops && current_position[axis] < min) current_position[axis] = min; if (max_software_endstops && current_position[axis] > max) current_position[axis] = max; encoderPosition = 0; world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis] / 60, active_extruder); lcdDrawUpdate = 1; } if (lcdDrawUpdate) lcd_implementation_drawedit(name, ftostr31(current_position[axis])); if (LCD_CLICKED) lcd_goto_menu(lcd_move_menu_axis); } static void lcd_move_e() { if (encoderPosition != 0) { current_position[E_AXIS] += float((int)encoderPosition) * move_menu_scale; encoderPosition = 0; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[E_AXIS] / 60, active_extruder); lcdDrawUpdate = 1; } if (lcdDrawUpdate) { lcd_implementation_drawedit(PSTR("Extruder"), ftostr31(current_position[E_AXIS])); } if (LCD_CLICKED) lcd_goto_menu(lcd_move_menu_axis); } // Save a single axis babystep value. void EEPROM_save_B(int pos, int* value) { union Data data; data.value = *value; eeprom_update_byte((unsigned char*)pos, data.b[0]); eeprom_update_byte((unsigned char*)pos + 1, data.b[1]); } // Read a single axis babystep value. void EEPROM_read_B(int pos, int* value) { union Data data; data.b[0] = eeprom_read_byte((unsigned char*)pos); data.b[1] = eeprom_read_byte((unsigned char*)pos + 1); *value = data.value; } static void lcd_move_x() { _lcd_move(PSTR("X"), X_AXIS, X_MIN_POS, X_MAX_POS); } static void lcd_move_y() { _lcd_move(PSTR("Y"), Y_AXIS, Y_MIN_POS, Y_MAX_POS); } static void lcd_move_z() { _lcd_move(PSTR("Z"), Z_AXIS, Z_MIN_POS, Z_MAX_POS); } static void _lcd_babystep(int axis, const char *msg) { if (encoderPosition != 0) { CRITICAL_SECTION_START babystepsTodo[axis] += (int)encoderPosition; CRITICAL_SECTION_END babystepMem[axis] += (int)encoderPosition; babystepMemMM[axis] = babystepMem[axis]/axis_steps_per_unit[Z_AXIS]; delay(50); encoderPosition = 0; lcdDrawUpdate = 1; } if (lcdDrawUpdate) lcd_implementation_drawedit_2(msg, ftostr13ns(babystepMemMM[axis])); if (LCD_CLICKED || menuExiting) { // Only update the EEPROM when leaving the menu. EEPROM_save_B( (axis == 0) ? EEPROM_BABYSTEP_X : ((axis == 1) ? EEPROM_BABYSTEP_Y : EEPROM_BABYSTEP_Z), &babystepMem[axis]); } if (LCD_CLICKED) lcd_goto_menu(lcd_main_menu); } static void lcd_babystep_x() { _lcd_babystep(X_AXIS, (MSG_BABYSTEPPING_X)); } static void lcd_babystep_y() { _lcd_babystep(Y_AXIS, (MSG_BABYSTEPPING_Y)); } static void lcd_babystep_z() { _lcd_babystep(Z_AXIS, (MSG_BABYSTEPPING_Z)); } void lcd_adjust_z() { int enc_dif = 0; int cursor_pos = 1; int fsm = 0; lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(MSG_ADJUSTZ); lcd.setCursor(1, 1); lcd_printPGM(MSG_YES); lcd.setCursor(1, 2); lcd_printPGM(MSG_NO); lcd.setCursor(0, 1); lcd.print(">"); enc_dif = encoderDiff; while (fsm == 0) { manage_heater(); manage_inactivity(true); if ( abs((enc_dif - encoderDiff)) > 4 ) { if ( (abs(enc_dif - encoderDiff)) > 1 ) { if (enc_dif > encoderDiff ) { cursor_pos --; } if (enc_dif < encoderDiff ) { cursor_pos ++; } if (cursor_pos > 2) { cursor_pos = 2; } if (cursor_pos < 1) { cursor_pos = 1; } lcd.setCursor(0, 1); lcd.print(" "); lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(0, cursor_pos); lcd.print(">"); enc_dif = encoderDiff; delay(100); } } if (lcd_clicked()) { fsm = cursor_pos; if (fsm == 1) { EEPROM_read_B(EEPROM_BABYSTEP_X, &babystepMem[0]); EEPROM_read_B(EEPROM_BABYSTEP_Y, &babystepMem[1]); EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystepMem[2]); CRITICAL_SECTION_START babystepsTodo[Z_AXIS] = babystepMem[2]; CRITICAL_SECTION_END } else { babystepMem[0] = 0; babystepMem[1] = 0; babystepMem[2] = 0; EEPROM_save_B(EEPROM_BABYSTEP_X, &babystepMem[0]); EEPROM_save_B(EEPROM_BABYSTEP_Y, &babystepMem[1]); EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystepMem[2]); } delay(500); } }; lcd_implementation_clear(); lcd_return_to_status(); } // Lets the user move the Z carriage up to the end stoppers. // When done, it sets the current Z to Z_MAX_POS and returns true. // Otherwise the Z calibration is not changed and false is returned. bool lcd_calibrate_z_end_stop_manual() { bool clean_nozzle_asked = false; // Don't know where we are. Let's claim we are Z=0, so the soft end stops will not be triggered when moving up. current_position[Z_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); // Until confirmed by the confirmation dialog. for (;;) { unsigned long previous_millis_cmd = millis(); lcd_display_message_fullscreen_P(MSG_MOVE_CARRIAGE_TO_THE_TOP); // Until the user finishes the z up movement. encoderDiff = 0; encoderPosition = 0; for (;;) { if (millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS) goto canceled; manage_heater(); manage_inactivity(true); if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP) { delay(50); previous_millis_cmd = millis(); encoderPosition += abs(encoderDiff / ENCODER_PULSES_PER_STEP); encoderDiff = 0; // Only move up, whatever the user does. current_position[Z_AXIS] += fabs(encoderPosition); encoderPosition = 0; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[Z_AXIS] / 60, active_extruder); // Wait for the motors to stop. st_synchronize(); // Claim we are at Z=0, so the soft end stop will not trigger. current_position[Z_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } if (lcd_clicked()) { // Wait until the Z up movement is finished. st_synchronize(); while (lcd_clicked()) ; delay(10); while (lcd_clicked()) ; break; } } if (! clean_nozzle_asked) { lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN); clean_nozzle_asked = true; } // Let the user confirm, that the Z carriage is at the top end stoppers. int8_t result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CONFIRM_CARRIAGE_AT_THE_TOP); if (result == -1) goto canceled; else if (result == 1) goto calibrated; // otherwise perform another round of the Z up dialog. } calibrated: // Let the machine think the Z axis is a bit higher than it is, so it will not home into the bed // during the search for the induction points. current_position[Z_AXIS] = Z_MAX_POS-3.f; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); return true; canceled: return false; } static inline bool pgm_is_whitespace(const char *c) { return pgm_read_byte(c) == ' ' || pgm_read_byte(c) == '\t' || pgm_read_byte(c) == '\r' || pgm_read_byte(c) == '\n'; } void lcd_display_message_fullscreen_P(const char *msg) { // Disable update of the screen by the usual lcd_update() routine. lcd_update_enable(false); lcd_implementation_clear(); lcd.setCursor(0, 0); for (int8_t row = 0; row < 4; ++ row) { while (pgm_is_whitespace(msg)) ++ msg; if (pgm_read_byte(msg) == 0) // End of the message. break; lcd.setCursor(0, row); const char *msgend2 = msg + min(strlen_P(msg), 20); const char *msgend = msgend2; if (pgm_read_byte(msgend) != 0 && ! pgm_is_whitespace(msgend)) { // Splitting a word. Find the start of the current word. while (msgend > msg && ! pgm_is_whitespace(msgend - 1)) -- msgend; if (msgend == msg) // Found a single long word, which cannot be split. Just cut it. msgend = msgend2; } for (; msg < msgend; ++ msg) { char c = char(pgm_read_byte(msg)); if (c == '~') c = ' '; lcd.print(c); } } } void lcd_show_fullscreen_message_and_wait_P(const char *msg) { lcd_display_message_fullscreen_P(msg); // Until confirmed by a button click. for (;;) { delay_keep_alive(50); if (lcd_clicked()) { while (lcd_clicked()) ; delay(10); while (lcd_clicked()) ; break; } } } void lcd_wait_for_click() { for (;;) { manage_heater(); manage_inactivity(true); if (lcd_clicked()) { while (lcd_clicked()) ; delay(10); while (lcd_clicked()) ; return; } } } int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting) { lcd_display_message_fullscreen_P(msg); lcd.setCursor(1, 2); lcd_printPGM(MSG_YES); lcd.setCursor(0, 3); lcd_printPGM(PSTR(">")); lcd_printPGM(MSG_NO); bool yes = false; // Wait for user confirmation or a timeout. unsigned long previous_millis_cmd = millis(); int8_t enc_dif = encoderDiff; for (;;) { if (allow_timeouting && millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS) return -1; manage_heater(); manage_inactivity(true); if (abs((enc_dif - encoderDiff)) > 4) { if (abs(enc_dif - encoderDiff) > 1) { lcd.setCursor(0, 2); if (enc_dif > encoderDiff && yes) { lcd_printPGM((PSTR(" "))); lcd.setCursor(0, 3); lcd_printPGM((PSTR(">"))); yes = false; } else if (enc_dif < encoderDiff && ! yes) { lcd_printPGM((PSTR(">"))); lcd.setCursor(0, 3); lcd_printPGM((PSTR(" "))); yes = true; } enc_dif = encoderDiff; } } if (lcd_clicked()) { while (lcd_clicked()) ; delay(10); while (lcd_clicked()) ; return yes; } } } void lcd_bed_calibration_show_result(BedSkewOffsetDetectionResultType result, uint8_t point_too_far_mask) { const char *msg = NULL; if (result == BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND) { lcd_show_fullscreen_message_and_wait_P(MSG_BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND); } else if (result == BED_SKEW_OFFSET_DETECTION_FITTING_FAILED) { if (point_too_far_mask == 0) msg = MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED; else if (point_too_far_mask == 2 || point_too_far_mask == 7) // Only the center point or all the three front points. msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_BOTH_FAR; else if (point_too_far_mask & 1 == 0) // The right and maybe the center point out of reach. msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_RIGHT_FAR; else // The left and maybe the center point out of reach. msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_LEFT_FAR; lcd_show_fullscreen_message_and_wait_P(msg); } else { if (point_too_far_mask != 0) { if (point_too_far_mask == 2 || point_too_far_mask == 7) // Only the center point or all the three front points. msg = MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_BOTH_FAR; else if (point_too_far_mask & 1 == 0) // The right and maybe the center point out of reach. msg = MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_RIGHT_FAR; else // The left and maybe the center point out of reach. msg = MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_LEFT_FAR; lcd_show_fullscreen_message_and_wait_P(msg); } if (point_too_far_mask == 0 || result > 0) { switch (result) { default: // should not happen msg = MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED; break; case BED_SKEW_OFFSET_DETECTION_PERFECT: msg = MSG_BED_SKEW_OFFSET_DETECTION_PERFECT; break; case BED_SKEW_OFFSET_DETECTION_SKEW_MILD: msg = MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD; break; case BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME: msg = MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME; break; } lcd_show_fullscreen_message_and_wait_P(msg); } } } static void lcd_show_end_stops() { lcd.setCursor(0, 0); lcd_printPGM((PSTR("End stops diag"))); lcd.setCursor(0, 1); lcd_printPGM((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("X1")) : (PSTR("X0"))); lcd.setCursor(0, 2); lcd_printPGM((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("Y1")) : (PSTR("Y0"))); lcd.setCursor(0, 3); lcd_printPGM((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("Z1")) : (PSTR("Z0"))); } static void menu_show_end_stops() { lcd_show_end_stops(); if (LCD_CLICKED) lcd_goto_menu(lcd_settings_menu); } // Lets the user move the Z carriage up to the end stoppers. // When done, it sets the current Z to Z_MAX_POS and returns true. // Otherwise the Z calibration is not changed and false is returned. void lcd_diag_show_end_stops() { int enc_dif = encoderDiff; lcd_implementation_clear(); for (;;) { manage_heater(); manage_inactivity(true); lcd_show_end_stops(); if (lcd_clicked()) { while (lcd_clicked()) ; delay(10); while (lcd_clicked()) ; break; } } lcd_implementation_clear(); lcd_return_to_status(); } void prusa_statistics(int _message) { switch (_message) { case 0: // default message if (IS_SD_PRINTING) { SERIAL_ECHO("{"); prusa_stat_printerstatus(4); prusa_stat_printinfo(); SERIAL_ECHOLN("}"); } else { SERIAL_ECHO("{"); prusa_stat_printerstatus(1); SERIAL_ECHOLN("}"); } break; case 1: // 1 heating farm_status = 2; SERIAL_ECHO("{"); prusa_stat_printerstatus(2); SERIAL_ECHOLN("}"); farm_timer = 1; break; case 2: // heating done farm_status = 3; SERIAL_ECHO("{"); prusa_stat_printerstatus(3); SERIAL_ECHOLN("}"); farm_timer = 1; if (IS_SD_PRINTING) { farm_status = 4; SERIAL_ECHO("{"); prusa_stat_printerstatus(4); SERIAL_ECHOLN("}"); } else { SERIAL_ECHO("{"); prusa_stat_printerstatus(3); SERIAL_ECHOLN("}");; } farm_timer = 1; break; case 3: // filament change break; case 4: // print succesfull SERIAL_ECHOLN("{[RES:1]}"); farm_timer = 2; break; case 5: // print not succesfull SERIAL_ECHOLN("{[RES:0]}"); farm_timer = 2; break; case 6: // print done SERIAL_ECHOLN("{[PRN:8]}"); farm_timer = 2; break; case 7: // print done - stopped SERIAL_ECHOLN("{[PRN:9]}"); farm_timer = 2; break; case 8: // printer started SERIAL_ECHO("{[PRN:0][PFN:"); SERIAL_ECHO(farm_no); SERIAL_ECHOLN("]}"); farm_timer = 2; break; case 20: // echo farm no SERIAL_ECHO("{[PFN:"); SERIAL_ECHO(farm_no); SERIAL_ECHOLN("]}"); farm_timer = 5; break; case 21: // temperatures SERIAL_ECHO("{"); prusa_stat_temperatures(); SERIAL_ECHOLN("}"); break; case 99: // heartbeat SERIAL_ECHOLN("{[PRN:99]}"); break; } } static void prusa_stat_printerstatus(int _status) { SERIAL_ECHO("[PRN:"); SERIAL_ECHO(_status); SERIAL_ECHO("]"); } static void prusa_stat_temperatures() { SERIAL_ECHO("[ST0:"); SERIAL_ECHO(target_temperature[0]); SERIAL_ECHO("][STB:"); SERIAL_ECHO(target_temperature_bed); SERIAL_ECHO("][AT0:"); SERIAL_ECHO(current_temperature[0]); SERIAL_ECHO("][ATB:"); SERIAL_ECHO(current_temperature_bed); SERIAL_ECHO("]"); } static void prusa_stat_printinfo() { SERIAL_ECHO("[TFU:"); SERIAL_ECHO(total_filament_used); SERIAL_ECHO("][PCD:"); SERIAL_ECHO(itostr3(card.percentDone())); SERIAL_ECHO("][FEM:"); SERIAL_ECHO(itostr3(feedmultiply)); SERIAL_ECHO("][FNM:"); SERIAL_ECHO(longFilenameOLD); SERIAL_ECHO("][TIM:"); if (starttime != 0) { SERIAL_ECHO(millis() / 1000 - starttime / 1000); } else { SERIAL_ECHO(0); } SERIAL_ECHO("][FWR:"); SERIAL_ECHO(FW_version); SERIAL_ECHO("]"); } void lcd_pick_babystep(){ int enc_dif = 0; int cursor_pos = 1; int fsm = 0; lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(MSG_PICK_Z); lcd.setCursor(3, 2); lcd.print("1"); lcd.setCursor(3, 3); lcd.print("2"); lcd.setCursor(12, 2); lcd.print("3"); lcd.setCursor(12, 3); lcd.print("4"); lcd.setCursor(1, 2); lcd.print(">"); enc_dif = encoderDiff; while (fsm == 0) { manage_heater(); manage_inactivity(true); if ( abs((enc_dif - encoderDiff)) > 4 ) { if ( (abs(enc_dif - encoderDiff)) > 1 ) { if (enc_dif > encoderDiff ) { cursor_pos --; } if (enc_dif < encoderDiff ) { cursor_pos ++; } if (cursor_pos > 4) { cursor_pos = 4; } if (cursor_pos < 1) { cursor_pos = 1; } lcd.setCursor(1, 2); lcd.print(" "); lcd.setCursor(1, 3); lcd.print(" "); lcd.setCursor(10, 2); lcd.print(" "); lcd.setCursor(10, 3); lcd.print(" "); if (cursor_pos < 3) { lcd.setCursor(1, cursor_pos+1); lcd.print(">"); }else{ lcd.setCursor(10, cursor_pos-1); lcd.print(">"); } enc_dif = encoderDiff; delay(100); } } if (lcd_clicked()) { fsm = cursor_pos; EEPROM_read_B(EEPROM_BABYSTEP_Z0+((fsm-1)*2),&babystepMem[2]); EEPROM_save_B(EEPROM_BABYSTEP_Z,&babystepMem[2]); eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01); delay(500); } }; lcd_implementation_clear(); lcd_return_to_status(); } void lcd_move_menu_axis() { START_MENU(); MENU_ITEM(back, MSG_SETTINGS, lcd_settings_menu); MENU_ITEM(submenu, MSG_MOVE_X, lcd_move_x); MENU_ITEM(submenu, MSG_MOVE_Y, lcd_move_y); if (move_menu_scale < 10.0) { if (!isPrintPaused) { MENU_ITEM(submenu, MSG_MOVE_Z, lcd_move_z); } MENU_ITEM(submenu, MSG_MOVE_E, lcd_move_e); } END_MENU(); } static void lcd_move_menu_1mm() { move_menu_scale = 1.0; lcd_move_menu_axis(); } void EEPROM_save(int pos, uint8_t* value, uint8_t size) { do { eeprom_write_byte((unsigned char*)pos, *value); pos++; value++; } while (--size); } void EEPROM_read(int pos, uint8_t* value, uint8_t size) { do { *value = eeprom_read_byte((unsigned char*)pos); pos++; value++; } while (--size); } static void lcd_silent_mode_set() { SilentModeMenu = !SilentModeMenu; EEPROM_save(EEPROM_SILENT, (uint8_t*)&SilentModeMenu, sizeof(SilentModeMenu)); digipot_init(); lcd_goto_menu(lcd_settings_menu, 7); } static void lcd_set_lang(unsigned char lang) { lang_selected = lang; firstrun = 1; eeprom_write_byte((unsigned char *)EEPROM_LANG, lang);/*langsel=0;*/if (langsel == 1)langsel = 2; } void lcd_force_language_selection() { eeprom_write_byte((unsigned char *)EEPROM_LANG, 255); } static void lcd_language_menu() { START_MENU(); if (!langsel) { MENU_ITEM(back, MSG_SETTINGS, lcd_settings_menu); } if (langsel == 2) { MENU_ITEM(back, MSG_WATCH, lcd_status_screen); } for (int i=0;i2) first = cursor-2; if (cursor==LANG_NUM) first = LANG_NUM-3; lcd.setCursor(0, 1); lcd.print(" "); lcd.setCursor(1, 1); lcd_printPGM(MSG_ALL[first][LANGUAGE_NAME]); lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(1, 2); lcd_printPGM(MSG_ALL[first+1][LANGUAGE_NAME]); lcd.setCursor(0, 3); lcd.print(" "); lcd.setCursor(1, 3); lcd_printPGM(MSG_ALL[first+2][LANGUAGE_NAME]); if (cursor==1) lcd.setCursor(0, 1); if (cursor>1 && cursor"); if (cursor2) { lcd.setCursor(19,1); lcd.print("^"); } } */ void lcd_mylang_drawmenu(int cursor) { int first = 0; if (cursor>3) first = cursor-3; if (cursor==LANG_NUM && LANG_NUM>4) first = LANG_NUM-4; if (cursor==LANG_NUM && LANG_NUM==4) first = LANG_NUM-4; lcd.setCursor(0, 0); lcd.print(" "); lcd.setCursor(1, 0); lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+0)); lcd.setCursor(0, 1); lcd.print(" "); lcd.setCursor(1, 1); lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+1)); lcd.setCursor(0, 2); lcd.print(" "); if (LANG_NUM > 2){ lcd.setCursor(1, 2); lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+2)); } lcd.setCursor(0, 3); lcd.print(" "); if (LANG_NUM>3) { lcd.setCursor(1, 3); lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+3)); } if (cursor==1) lcd.setCursor(0, 0); if (cursor==2) lcd.setCursor(0, 1); if (cursor>2) lcd.setCursor(0, 2); if (cursor==LANG_NUM && LANG_NUM>3) lcd.setCursor(0, 3); lcd.print(">"); if (cursor4) { lcd.setCursor(19,3); lcd.print("\x01"); } if (cursor>3 && LANG_NUM>4) { lcd.setCursor(19,0); lcd.print("^"); } } void lcd_set_custom_characters_arrows(); void lcd_set_custom_characters_degree(); void lcd_mylang_drawcursor(int cursor) { if (cursor==1) lcd.setCursor(0, 1); if (cursor>1 && cursor"); } void lcd_mylang() { int enc_dif = 0; int cursor_pos = 1; lang_selected=255; int hlaska=1; int counter=0; lcd_set_custom_characters_arrows(); lcd_implementation_clear(); //lcd_mylang_top(hlaska); lcd_mylang_drawmenu(cursor_pos); enc_dif = encoderDiff; while ( (lang_selected == 255) && (MYSERIAL.available() < 2) ) { manage_heater(); manage_inactivity(true); if ( abs((enc_dif - encoderDiff)) > 4 ) { //if ( (abs(enc_dif - encoderDiff)) > 1 ) { if (enc_dif > encoderDiff ) { cursor_pos --; } if (enc_dif < encoderDiff ) { cursor_pos ++; } if (cursor_pos > LANG_NUM) { cursor_pos = LANG_NUM; } if (cursor_pos < 1) { cursor_pos = 1; } lcd_mylang_drawmenu(cursor_pos); enc_dif = encoderDiff; delay(100); //} } else delay(20); if (lcd_clicked()) { lcd_set_lang(cursor_pos-1); delay(500); } /* if (++counter == 80) { hlaska++; if(hlaska>LANG_NUM) hlaska=1; lcd_mylang_top(hlaska); lcd_mylang_drawcursor(cursor_pos); counter=0; } */ }; if(MYSERIAL.available() > 1){ lang_selected = 0; firstrun = 0; } lcd_set_custom_characters_degree(); lcd_implementation_clear(); lcd_return_to_status(); } static void lcd_farm_no() { int enc_dif = 0; int _farmno = farm_no; int _ret = 0; lcd_implementation_clear(); lcd.setCursor(0, 0); lcd.print("Farm no"); do { if (abs((enc_dif - encoderDiff)) > 2) { if (enc_dif > encoderDiff) { _farmno--; } if (enc_dif < encoderDiff) { _farmno++; } enc_dif = 0; encoderDiff = 0; } if (_farmno > 254) { _farmno = 1; } if (_farmno < 1) { _farmno = 254; } lcd.setCursor(0, 2); lcd.print(_farmno); lcd.print(" "); delay(100); if (lcd_clicked()) { _ret = 1; farm_no = _farmno; EEPROM_save_B(EEPROM_FARM_MODE, &farm_no); prusa_statistics(20); lcd_return_to_status(); } manage_heater(); } while (_ret == 0); } void lcd_confirm_print() { int enc_dif = 0; int cursor_pos = 1; int _ret = 0; int _t = 0; lcd_implementation_clear(); lcd.setCursor(0, 0); lcd.print("Print ok ?"); do { if (abs((enc_dif - encoderDiff)) > 2) { if (enc_dif > encoderDiff) { cursor_pos--; } if (enc_dif < encoderDiff) { cursor_pos++; } } if (cursor_pos > 2) { cursor_pos = 2; } if (cursor_pos < 1) { cursor_pos = 1; } lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(0, 3); lcd.print(" "); lcd.setCursor(2, 2); lcd_printPGM(MSG_YES); lcd.setCursor(2, 3); lcd_printPGM(MSG_NO); lcd.setCursor(0, 1 + cursor_pos); lcd.print(">"); delay(100); _t = _t + 1; if (_t>100) { prusa_statistics(99); _t = 0; } if (lcd_clicked()) { if (cursor_pos == 1) { _ret = 1; prusa_statistics(20); prusa_statistics(4); } if (cursor_pos == 2) { _ret = 2; prusa_statistics(20); prusa_statistics(5); } } manage_heater(); manage_inactivity(); } while (_ret == 0); } static void lcd_main_menu() { SDscrool = 0; /* if (langsel == 1) { lcd_goto_menu(lcd_language_menu); } */ START_MENU(); // Majkl superawesome menu MENU_ITEM(back, MSG_WATCH, lcd_status_screen); if ( ( IS_SD_PRINTING || is_usb_printing ) && (current_position[Z_AXIS] < 0.5) ) { EEPROM_read_B(EEPROM_BABYSTEP_X, &babystepMem[0]); EEPROM_read_B(EEPROM_BABYSTEP_Y, &babystepMem[1]); EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystepMem[2]); MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z);//8 } if ( moves_planned() || IS_SD_PRINTING || is_usb_printing ) { MENU_ITEM(submenu, MSG_TUNE, lcd_tune_menu); } else { MENU_ITEM(submenu, MSG_PREHEAT, lcd_preheat_menu); } #ifdef SDSUPPORT if (card.cardOK) { if (card.isFileOpen()) { if (card.sdprinting) { MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause); } else { MENU_ITEM(function, MSG_RESUME_PRINT, lcd_sdcard_resume); } MENU_ITEM(submenu, MSG_STOP_PRINT, lcd_sdcard_stop); } else { if (!is_usb_printing) { MENU_ITEM(submenu, MSG_CARD_MENU, lcd_sdcard_menu); } #if SDCARDDETECT < 1 MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21")); // SD-card changed by user #endif } } else { MENU_ITEM(submenu, MSG_NO_CARD, lcd_sdcard_menu); #if SDCARDDETECT < 1 MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface #endif } #endif if (IS_SD_PRINTING || is_usb_printing) { } else { MENU_ITEM(function, MSG_LOAD_FILAMENT, lcd_LoadFilament); MENU_ITEM(function, MSG_UNLOAD_FILAMENT, lcd_unLoadFilament); MENU_ITEM(submenu, MSG_SETTINGS, lcd_settings_menu); } if (!is_usb_printing) { MENU_ITEM(submenu, MSG_STATISTICS, lcd_menu_statistics); } MENU_ITEM(submenu, MSG_SUPPORT, lcd_support_menu); END_MENU(); } #ifdef SDSUPPORT static void lcd_autostart_sd() { card.lastnr = 0; card.setroot(); card.checkautostart(true); } #endif static void lcd_silent_mode_set_tune() { SilentModeMenu = !SilentModeMenu; EEPROM_save(EEPROM_SILENT, (uint8_t*)&SilentModeMenu, sizeof(SilentModeMenu)); digipot_init(); lcd_goto_menu(lcd_tune_menu, 9); } static void lcd_tune_menu() { EEPROM_read(EEPROM_SILENT, (uint8_t*)&SilentModeMenu, sizeof(SilentModeMenu)); START_MENU(); MENU_ITEM(back, MSG_MAIN, lcd_main_menu); //1 MENU_ITEM_EDIT(int3, MSG_SPEED, &feedmultiply, 10, 999);//2 MENU_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 10);//3 MENU_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 10);//4 MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);//5 MENU_ITEM_EDIT(int3, MSG_FLOW, &extrudemultiply, 10, 999);//6 #ifdef FILAMENTCHANGEENABLE MENU_ITEM(gcode, MSG_FILAMENTCHANGE, PSTR("M600"));//7 #endif if (SilentModeMenu == 0) { MENU_ITEM(function, MSG_SILENT_MODE_OFF, lcd_silent_mode_set_tune); } else { MENU_ITEM(function, MSG_SILENT_MODE_ON, lcd_silent_mode_set_tune); } END_MENU(); } static void lcd_move_menu_01mm() { move_menu_scale = 0.1; lcd_move_menu_axis(); } static void lcd_control_temperature_menu() { #ifdef PIDTEMP // set up temp variables - undo the default scaling raw_Ki = unscalePID_i(Ki); raw_Kd = unscalePID_d(Kd); #endif START_MENU(); MENU_ITEM(back, MSG_SETTINGS, lcd_settings_menu); //MENU_ITEM(back, MSG_CONTROL, lcd_control_menu); #if TEMP_SENSOR_0 != 0 MENU_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 10); #endif #if TEMP_SENSOR_1 != 0 MENU_ITEM_EDIT(int3, MSG_NOZZLE1, &target_temperature[1], 0, HEATER_1_MAXTEMP - 10); #endif #if TEMP_SENSOR_2 != 0 MENU_ITEM_EDIT(int3, MSG_NOZZLE2, &target_temperature[2], 0, HEATER_2_MAXTEMP - 10); #endif #if TEMP_SENSOR_BED != 0 MENU_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 3); #endif MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255); #if defined AUTOTEMP && (TEMP_SENSOR_0 != 0) MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &autotemp_enabled); MENU_ITEM_EDIT(float3, MSG_MIN, &autotemp_min, 0, HEATER_0_MAXTEMP - 10); MENU_ITEM_EDIT(float3, MSG_MAX, &autotemp_max, 0, HEATER_0_MAXTEMP - 10); MENU_ITEM_EDIT(float32, MSG_FACTOR, &autotemp_factor, 0.0, 1.0); #endif END_MENU(); } #if SDCARDDETECT == -1 static void lcd_sd_refresh() { card.initsd(); currentMenuViewOffset = 0; } #endif static void lcd_sd_updir() { SDscrool = 0; card.updir(); currentMenuViewOffset = 0; } void lcd_sdcard_stop() { lcd.setCursor(0, 0); lcd_printPGM(MSG_STOP_PRINT); lcd.setCursor(2, 2); lcd_printPGM(MSG_NO); lcd.setCursor(2, 3); lcd_printPGM(MSG_YES); lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(0, 3); lcd.print(" "); if ((int32_t)encoderPosition > 2) { encoderPosition = 2; } if ((int32_t)encoderPosition < 1) { encoderPosition = 1; } lcd.setCursor(0, 1 + encoderPosition); lcd.print(">"); if (lcd_clicked()) { if ((int32_t)encoderPosition == 1) { lcd_return_to_status(); } if ((int32_t)encoderPosition == 2) { cancel_heatup = true; quickStop(); lcd_setstatuspgm(MSG_PRINT_ABORTED); card.sdprinting = false; card.closefile(); stoptime = millis(); unsigned long t = (stoptime - starttime) / 1000; save_statistics(total_filament_used, t); lcd_return_to_status(); lcd_ignore_click(true); lcd_commands_type = 2; } } } void lcd_sdcard_menu() { int tempScrool = 0; if (lcdDrawUpdate == 0 && LCD_CLICKED == 0) //delay(100); return; // nothing to do (so don't thrash the SD card) uint16_t fileCnt = card.getnrfilenames(); START_MENU(); MENU_ITEM(back, MSG_MAIN, lcd_main_menu); card.getWorkDirName(); if (card.filename[0] == '/') { #if SDCARDDETECT == -1 MENU_ITEM(function, MSG_REFRESH, lcd_sd_refresh); #endif } else { MENU_ITEM(function, PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir); } for (uint16_t i = 0; i < fileCnt; i++) { if (_menuItemNr == _lineNr) { #ifndef SDCARD_RATHERRECENTFIRST card.getfilename(i); #else card.getfilename(fileCnt - 1 - i); #endif if (card.filenameIsDir) { MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename); } else { MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, card.longFilename); } } else { MENU_ITEM_DUMMY(); } } END_MENU(); } #define menu_edit_type(_type, _name, _strFunc, scale) \ void menu_edit_ ## _name () \ { \ if ((int32_t)encoderPosition < 0) encoderPosition = 0; \ if ((int32_t)encoderPosition > maxEditValue) encoderPosition = maxEditValue; \ if (lcdDrawUpdate) \ lcd_implementation_drawedit(editLabel, _strFunc(((_type)((int32_t)encoderPosition + minEditValue)) / scale)); \ if (LCD_CLICKED) \ { \ *((_type*)editValue) = ((_type)((int32_t)encoderPosition + minEditValue)) / scale; \ lcd_goto_menu(prevMenu, prevEncoderPosition); \ } \ } \ void menu_edit_callback_ ## _name () { \ menu_edit_ ## _name (); \ if (LCD_CLICKED) (*callbackFunc)(); \ } \ static void menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) \ { \ prevMenu = currentMenu; \ prevEncoderPosition = encoderPosition; \ \ lcdDrawUpdate = 2; \ currentMenu = menu_edit_ ## _name; \ \ editLabel = pstr; \ editValue = ptr; \ minEditValue = minValue * scale; \ maxEditValue = maxValue * scale - minEditValue; \ encoderPosition = (*ptr) * scale - minEditValue; \ }\ static void menu_action_setting_edit_callback_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue, menuFunc_t callback) \ { \ prevMenu = currentMenu; \ prevEncoderPosition = encoderPosition; \ \ lcdDrawUpdate = 2; \ currentMenu = menu_edit_callback_ ## _name; \ \ editLabel = pstr; \ editValue = ptr; \ minEditValue = minValue * scale; \ maxEditValue = maxValue * scale - minEditValue; \ encoderPosition = (*ptr) * scale - minEditValue; \ callbackFunc = callback;\ } menu_edit_type(int, int3, itostr3, 1) menu_edit_type(float, float3, ftostr3, 1) menu_edit_type(float, float32, ftostr32, 100) menu_edit_type(float, float43, ftostr43, 1000) menu_edit_type(float, float5, ftostr5, 0.01) menu_edit_type(float, float51, ftostr51, 10) menu_edit_type(float, float52, ftostr52, 100) menu_edit_type(unsigned long, long5, ftostr5, 0.01) static void lcd_selftest() { int _progress = 0; bool _result = false; _progress = lcd_selftest_screen(-1, _progress, 4, true, 2000); _progress = lcd_selftest_screen(0, _progress, 3, true, 2000); _result = lcd_selfcheck_endstops(); if (_result) { _progress = lcd_selftest_screen(1, _progress, 3, true, 1000); _result = lcd_selfcheck_check_heater(false); } if (_result) { _progress = lcd_selftest_screen(2, _progress, 3, true, 2000); _result = lcd_selfcheck_axis(0, X_MAX_POS); } if (_result) { _progress = lcd_selftest_screen(3, _progress, 3, true, 1500); _result = lcd_selfcheck_axis(1, Y_MAX_POS); } if (_result) { current_position[X_AXIS] = current_position[X_AXIS] - 3; current_position[Y_AXIS] = current_position[Y_AXIS] - 14; _progress = lcd_selftest_screen(4, _progress, 3, true, 1500); _result = lcd_selfcheck_axis(2, Z_MAX_POS); } if (_result) { _progress = lcd_selftest_screen(5, _progress, 3, true, 2000); _result = lcd_selfcheck_check_heater(true); } if (_result) { _progress = lcd_selftest_screen(6, _progress, 3, true, 5000); } else { _progress = lcd_selftest_screen(7, _progress, 3, true, 5000); } lcd_implementation_clear(); lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL; if (_result) { LCD_ALERTMESSAGERPGM(MSG_SELFTEST_OK); } else { LCD_ALERTMESSAGERPGM(MSG_SELFTEST_FAILED); } } static bool lcd_selfcheck_endstops() { bool _result = true; if (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1 || READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1 || READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) { current_position[0] = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? current_position[0] = current_position[0] + 10 : current_position[0]; current_position[1] = (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? current_position[1] = current_position[1] + 10 : current_position[1]; current_position[2] = (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? current_position[2] = current_position[2] + 10 : current_position[2]; } plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[0] / 60, active_extruder); delay(500); if (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1 || READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1 || READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) { _result = false; String _error = String((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? "X" : "") + String((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? "Y" : "") + String((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? "Z" : ""); lcd_selftest_error(3, _error.c_str(), ""); } manage_heater(); manage_inactivity(); return _result; } static bool lcd_selfcheck_axis(int _axis, int _travel) { bool _stepdone = false; bool _stepresult = false; int _progress = 0; int _travel_done = 0; int _err_endstop = 0; int _lcd_refresh = 0; _travel = _travel + (_travel / 10); do { if (_axis == 2) { current_position[_axis] = current_position[_axis] - 1; } else { current_position[_axis] = current_position[_axis] - 3; } plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); if (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1 || READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1 || READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) { if (_axis == 0) { _stepresult = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? true : false; _err_endstop = (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? 1 : 2; disable_x(); } if (_axis == 1) { _stepresult = (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? true : false; _err_endstop = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? 0 : 2; disable_y(); } if (_axis == 2) { _stepresult = (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? true : false; _err_endstop = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? 0 : 1; disable_z(); } _stepdone = true; } if (_lcd_refresh < 6) { _lcd_refresh++; } else { _progress = lcd_selftest_screen(2 + _axis, _progress, 3, false, 0); _lcd_refresh = 0; } manage_heater(); manage_inactivity(); delay(100); (_travel_done <= _travel) ? _travel_done++ : _stepdone = true; } while (!_stepdone); current_position[_axis] = current_position[_axis] + 15; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); if (!_stepresult) { const char *_error_1; const char *_error_2; if (_axis == X_AXIS) _error_1 = "X"; if (_axis == Y_AXIS) _error_1 = "Y"; if (_axis == Z_AXIS) _error_1 = "Z"; if (_err_endstop == 0) _error_2 = "X"; if (_err_endstop == 1) _error_2 = "Y"; if (_err_endstop == 2) _error_2 = "Z"; if (_travel_done >= _travel) { lcd_selftest_error(5, _error_1, _error_2); } else { lcd_selftest_error(4, _error_1, _error_2); } } return _stepresult; } static bool lcd_selfcheck_check_heater(bool _isbed) { int _counter = 0; int _progress = 0; bool _stepresult = false; bool _docycle = true; int _checked_snapshot = (_isbed) ? degBed() : degHotend(0); int _opposite_snapshot = (_isbed) ? degHotend(0) : degBed(); int _cycles = (_isbed) ? 120 : 30; target_temperature[0] = (_isbed) ? 0 : 100; target_temperature_bed = (_isbed) ? 100 : 0; manage_heater(); manage_inactivity(); do { _counter++; (_counter < _cycles) ? _docycle = true : _docycle = false; manage_heater(); manage_inactivity(); _progress = (_isbed) ? lcd_selftest_screen(5, _progress, 2, false, 400) : lcd_selftest_screen(1, _progress, 2, false, 400); } while (_docycle); target_temperature[0] = 0; target_temperature_bed = 0; manage_heater(); int _checked_result = (_isbed) ? degBed() - _checked_snapshot : degHotend(0) - _checked_snapshot; int _opposite_result = (_isbed) ? degHotend(0) - _opposite_snapshot : degBed() - _opposite_snapshot; if (_opposite_result < (_isbed) ? 10 : 3) { if (_checked_result >= (_isbed) ? 3 : 10) { _stepresult = true; } else { lcd_selftest_error(1, "", ""); } } else { lcd_selftest_error(2, "", ""); } manage_heater(); manage_inactivity(); return _stepresult; } static void lcd_selftest_error(int _error_no, const char *_error_1, const char *_error_2) { lcd_implementation_quick_feedback(); target_temperature[0] = 0; target_temperature_bed = 0; manage_heater(); manage_inactivity(); lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(MSG_SELFTEST_ERROR); lcd.setCursor(0, 1); lcd_printPGM(MSG_SELFTEST_PLEASECHECK); switch (_error_no) { case 1: lcd.setCursor(0, 2); lcd_printPGM(MSG_SELFTEST_HEATERTHERMISTOR); lcd.setCursor(0, 3); lcd_printPGM(MSG_SELFTEST_NOTCONNECTED); break; case 2: lcd.setCursor(0, 2); lcd_printPGM(MSG_SELFTEST_BEDHEATER); lcd.setCursor(0, 3); lcd_printPGM(MSG_SELFTEST_WIRINGERROR); break; case 3: lcd.setCursor(0, 2); lcd_printPGM(MSG_SELFTEST_ENDSTOPS); lcd.setCursor(0, 3); lcd_printPGM(MSG_SELFTEST_WIRINGERROR); lcd.setCursor(17, 3); lcd.print(_error_1); break; case 4: lcd.setCursor(0, 2); lcd_printPGM(MSG_SELFTEST_MOTOR); lcd.setCursor(18, 2); lcd.print(_error_1); lcd.setCursor(0, 3); lcd_printPGM(MSG_SELFTEST_ENDSTOP); lcd.setCursor(18, 3); lcd.print(_error_2); break; case 5: lcd.setCursor(0, 2); lcd_printPGM(MSG_SELFTEST_ENDSTOP_NOTHIT); lcd.setCursor(0, 3); lcd_printPGM(MSG_SELFTEST_MOTOR); lcd.setCursor(18, 3); lcd.print(_error_1); break; } delay(1000); lcd_implementation_quick_feedback(); do { delay(100); manage_heater(); manage_inactivity(); } while (!lcd_clicked()); LCD_ALERTMESSAGERPGM(MSG_SELFTEST_FAILED); lcd_return_to_status(); } static int lcd_selftest_screen(int _step, int _progress, int _progress_scale, bool _clear, int _delay) { lcd_next_update_millis = millis() + (LCD_UPDATE_INTERVAL * 10000); int _step_block = 0; const char *_indicator = (_progress > _progress_scale) ? "-" : "|"; if (_clear) lcd_implementation_clear(); lcd.setCursor(0, 0); if (_step == -1) lcd_printPGM(MSG_SELFTEST_START); if (_step == 0) lcd_printPGM(MSG_SELFTEST_CHECK_ENDSTOPS); if (_step == 1) lcd_printPGM(MSG_SELFTEST_CHECK_HOTEND); if (_step == 2) lcd_printPGM(MSG_SELFTEST_CHECK_X); if (_step == 3) lcd_printPGM(MSG_SELFTEST_CHECK_Y); if (_step == 4) lcd_printPGM(MSG_SELFTEST_CHECK_Z); if (_step == 5) lcd_printPGM(MSG_SELFTEST_CHECK_BED); if (_step == 6) lcd_printPGM(MSG_SELFTEST_CHECK_ALLCORRECT); if (_step == 7) lcd_printPGM(MSG_SELFTEST_FAILED); lcd.setCursor(0, 1); lcd.print("--------------------"); _step_block = 1; lcd_selftest_screen_step(3, 9, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Hotend", _indicator); _step_block = 2; lcd_selftest_screen_step(2, 2, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "X", _indicator); _step_block = 3; lcd_selftest_screen_step(2, 8, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Y", _indicator); _step_block = 4; lcd_selftest_screen_step(2, 14, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Z", _indicator); _step_block = 5; lcd_selftest_screen_step(3, 0, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Bed", _indicator); if (_delay > 0) delay(_delay); _progress++; return (_progress > _progress_scale * 2) ? 0 : _progress; } static void lcd_selftest_screen_step(int _row, int _col, int _state, const char *_name, const char *_indicator) { lcd.setCursor(_col, _row); switch (_state) { case 1: lcd.print(_name); lcd.setCursor(_col + strlen(_name), _row); lcd.print(":"); lcd.setCursor(_col + strlen(_name) + 1, _row); lcd.print(_indicator); break; case 2: lcd.print(_name); lcd.setCursor(_col + strlen(_name), _row); lcd.print(":"); lcd.setCursor(_col + strlen(_name) + 1, _row); lcd.print("OK"); break; default: lcd.print(_name); } } /** End of menus **/ static void lcd_quick_feedback() { lcdDrawUpdate = 2; blocking_enc = millis() + 500; lcd_implementation_quick_feedback(); } /** Menu action functions **/ static void menu_action_back(menuFunc_t data) { lcd_goto_menu(data); } static void menu_action_submenu(menuFunc_t data) { lcd_goto_menu(data); } static void menu_action_gcode(const char* pgcode) { enquecommand_P(pgcode); } static void menu_action_setlang(unsigned char lang) { lcd_set_lang(lang); } static void menu_action_function(menuFunc_t data) { (*data)(); } static void menu_action_sdfile(const char* filename, char* longFilename) { char cmd[30]; char* c; sprintf_P(cmd, PSTR("M23 %s"), filename); for (c = &cmd[4]; *c; c++) *c = tolower(*c); enquecommand(cmd); enquecommand_P(PSTR("M24")); lcd_return_to_status(); } static void menu_action_sddirectory(const char* filename, char* longFilename) { card.chdir(filename); encoderPosition = 0; } static void menu_action_setting_edit_bool(const char* pstr, bool* ptr) { *ptr = !(*ptr); } static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callback) { menu_action_setting_edit_bool(pstr, ptr); (*callback)(); } #endif//ULTIPANEL /** LCD API **/ void lcd_init() { lcd_implementation_init(); #ifdef NEWPANEL SET_INPUT(BTN_EN1); SET_INPUT(BTN_EN2); WRITE(BTN_EN1, HIGH); WRITE(BTN_EN2, HIGH); #if BTN_ENC > 0 SET_INPUT(BTN_ENC); WRITE(BTN_ENC, HIGH); #endif #ifdef REPRAPWORLD_KEYPAD pinMode(SHIFT_CLK, OUTPUT); pinMode(SHIFT_LD, OUTPUT); pinMode(SHIFT_OUT, INPUT); WRITE(SHIFT_OUT, HIGH); WRITE(SHIFT_LD, HIGH); #endif #else // Not NEWPANEL #ifdef SR_LCD_2W_NL // Non latching 2 wire shift register pinMode (SR_DATA_PIN, OUTPUT); pinMode (SR_CLK_PIN, OUTPUT); #elif defined(SHIFT_CLK) pinMode(SHIFT_CLK, OUTPUT); pinMode(SHIFT_LD, OUTPUT); pinMode(SHIFT_EN, OUTPUT); pinMode(SHIFT_OUT, INPUT); WRITE(SHIFT_OUT, HIGH); WRITE(SHIFT_LD, HIGH); WRITE(SHIFT_EN, LOW); #else #ifdef ULTIPANEL #error ULTIPANEL requires an encoder #endif #endif // SR_LCD_2W_NL #endif//!NEWPANEL #if defined (SDSUPPORT) && defined(SDCARDDETECT) && (SDCARDDETECT > 0) pinMode(SDCARDDETECT, INPUT); WRITE(SDCARDDETECT, HIGH); lcd_oldcardstatus = IS_SD_INSERTED; #endif//(SDCARDDETECT > 0) #ifdef LCD_HAS_SLOW_BUTTONS slow_buttons = 0; #endif lcd_buttons_update(); #ifdef ULTIPANEL encoderDiff = 0; #endif } //#include static volatile bool lcd_update_enabled = true; void lcd_update_enable(bool enabled) { lcd_update_enabled = enabled; } void lcd_update() { static unsigned long timeoutToStatus = 0; if (! lcd_update_enabled) return; #ifdef LCD_HAS_SLOW_BUTTONS slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context #endif lcd_buttons_update(); #if (SDCARDDETECT > 0) if ((IS_SD_INSERTED != lcd_oldcardstatus && lcd_detected())) { lcdDrawUpdate = 2; lcd_oldcardstatus = IS_SD_INSERTED; lcd_implementation_init( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) currentMenu == lcd_status_screen #endif ); if (lcd_oldcardstatus) { card.initsd(); LCD_MESSAGERPGM(MSG_SD_INSERTED); } else { card.release(); LCD_MESSAGERPGM(MSG_SD_REMOVED); } } #endif//CARDINSERTED if (lcd_next_update_millis < millis()) { #ifdef ULTIPANEL #ifdef REPRAPWORLD_KEYPAD if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) { reprapworld_keypad_move_z_up(); } if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) { reprapworld_keypad_move_z_down(); } if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) { reprapworld_keypad_move_x_left(); } if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) { reprapworld_keypad_move_x_right(); } if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) { reprapworld_keypad_move_y_down(); } if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) { reprapworld_keypad_move_y_up(); } if (REPRAPWORLD_KEYPAD_MOVE_HOME) { reprapworld_keypad_move_home(); } #endif if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP) { lcdDrawUpdate = 1; encoderPosition += encoderDiff / ENCODER_PULSES_PER_STEP; encoderDiff = 0; timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; } if (LCD_CLICKED) timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; #endif//ULTIPANEL #ifdef DOGLCD // Changes due to different driver architecture of the DOGM display blink++; // Variable for fan animation and alive dot u8g.firstPage(); do { u8g.setFont(u8g_font_6x10_marlin); u8g.setPrintPos(125, 0); if (blink % 2) u8g.setColorIndex(1); else u8g.setColorIndex(0); // Set color for the alive dot u8g.drawPixel(127, 63); // draw alive dot u8g.setColorIndex(1); // black on white (*currentMenu)(); if (!lcdDrawUpdate) break; // Terminate display update, when nothing new to draw. This must be done before the last dogm.next() } while (u8g.nextPage()); #else (*currentMenu)(); #endif #ifdef LCD_HAS_STATUS_INDICATORS lcd_implementation_update_indicators(); #endif #ifdef ULTIPANEL if (timeoutToStatus < millis() && currentMenu != lcd_status_screen) { // Exiting a menu. Let's call the menu function the last time with menuExiting flag set to true // to give it a chance to save its state. // This is useful for example, when the babystep value has to be written into EEPROM. if (currentMenu != NULL) { menuExiting = true; (*currentMenu)(); menuExiting = false; } lcd_return_to_status(); lcdDrawUpdate = 2; } #endif//ULTIPANEL if (lcdDrawUpdate == 2) lcd_implementation_clear(); if (lcdDrawUpdate) lcdDrawUpdate--; lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL; } } void lcd_ignore_click(bool b) { ignore_click = b; wait_for_unclick = false; } void lcd_finishstatus() { int len = strlen(lcd_status_message); if (len > 0) { while (len < LCD_WIDTH) { lcd_status_message[len++] = ' '; } } lcd_status_message[LCD_WIDTH] = '\0'; #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) #if PROGRESS_MSG_EXPIRE > 0 messageTick = #endif progressBarTick = millis(); #endif lcdDrawUpdate = 2; #ifdef FILAMENT_LCD_DISPLAY message_millis = millis(); //get status message to show up for a while #endif } void lcd_setstatus(const char* message) { if (lcd_status_message_level > 0) return; strncpy(lcd_status_message, message, LCD_WIDTH); lcd_finishstatus(); } void lcd_setstatuspgm(const char* message) { if (lcd_status_message_level > 0) return; strncpy_P(lcd_status_message, message, LCD_WIDTH); lcd_finishstatus(); } void lcd_setalertstatuspgm(const char* message) { lcd_setstatuspgm(message); lcd_status_message_level = 1; #ifdef ULTIPANEL lcd_return_to_status(); #endif//ULTIPANEL } void lcd_reset_alert_level() { lcd_status_message_level = 0; } #ifdef DOGLCD void lcd_setcontrast(uint8_t value) { lcd_contrast = value & 63; u8g.setContrast(lcd_contrast); } #endif #ifdef ULTIPANEL /* Warning: This function is called from interrupt context */ void lcd_buttons_update() { #ifdef NEWPANEL uint8_t newbutton = 0; if (READ(BTN_EN1) == 0) newbutton |= EN_A; if (READ(BTN_EN2) == 0) newbutton |= EN_B; #if BTN_ENC > 0 if ((blocking_enc < millis()) && (READ(BTN_ENC) == 0)) newbutton |= EN_C; #endif buttons = newbutton; #ifdef LCD_HAS_SLOW_BUTTONS buttons |= slow_buttons; #endif #ifdef REPRAPWORLD_KEYPAD // for the reprapworld_keypad uint8_t newbutton_reprapworld_keypad = 0; WRITE(SHIFT_LD, LOW); WRITE(SHIFT_LD, HIGH); for (int8_t i = 0; i < 8; i++) { newbutton_reprapworld_keypad = newbutton_reprapworld_keypad >> 1; if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= (1 << 7); WRITE(SHIFT_CLK, HIGH); WRITE(SHIFT_CLK, LOW); } buttons_reprapworld_keypad = ~newbutton_reprapworld_keypad; //invert it, because a pressed switch produces a logical 0 #endif #else //read it from the shift register uint8_t newbutton = 0; WRITE(SHIFT_LD, LOW); WRITE(SHIFT_LD, HIGH); unsigned char tmp_buttons = 0; for (int8_t i = 0; i < 8; i++) { newbutton = newbutton >> 1; if (READ(SHIFT_OUT)) newbutton |= (1 << 7); WRITE(SHIFT_CLK, HIGH); WRITE(SHIFT_CLK, LOW); } buttons = ~newbutton; //invert it, because a pressed switch produces a logical 0 #endif//!NEWPANEL //manage encoder rotation uint8_t enc = 0; if (buttons & EN_A) enc |= B01; if (buttons & EN_B) enc |= B10; if (enc != lastEncoderBits) { switch (enc) { case encrot0: if (lastEncoderBits == encrot3) encoderDiff++; else if (lastEncoderBits == encrot1) encoderDiff--; break; case encrot1: if (lastEncoderBits == encrot0) encoderDiff++; else if (lastEncoderBits == encrot2) encoderDiff--; break; case encrot2: if (lastEncoderBits == encrot1) encoderDiff++; else if (lastEncoderBits == encrot3) encoderDiff--; break; case encrot3: if (lastEncoderBits == encrot2) encoderDiff++; else if (lastEncoderBits == encrot0) encoderDiff--; break; } } lastEncoderBits = enc; } bool lcd_detected(void) { #if (defined(LCD_I2C_TYPE_MCP23017) || defined(LCD_I2C_TYPE_MCP23008)) && defined(DETECT_DEVICE) return lcd.LcdDetected() == 1; #else return true; #endif } void lcd_buzz(long duration, uint16_t freq) { #ifdef LCD_USE_I2C_BUZZER lcd.buzz(duration, freq); #endif } bool lcd_clicked() { return LCD_CLICKED; } #endif//ULTIPANEL /********************************/ /** Float conversion utilities **/ /********************************/ // convert float to string with +123.4 format char conv[8]; char *ftostr3(const float &x) { return itostr3((int)x); } char *itostr2(const uint8_t &x) { //sprintf(conv,"%5.1f",x); int xx = x; conv[0] = (xx / 10) % 10 + '0'; conv[1] = (xx) % 10 + '0'; conv[2] = 0; return conv; } // Convert float to string with 123.4 format, dropping sign char *ftostr31(const float &x) { int xx = x * 10; conv[0] = (xx >= 0) ? '+' : '-'; xx = abs(xx); conv[1] = (xx / 1000) % 10 + '0'; conv[2] = (xx / 100) % 10 + '0'; conv[3] = (xx / 10) % 10 + '0'; conv[4] = '.'; conv[5] = (xx) % 10 + '0'; conv[6] = 0; return conv; } // Convert float to string with 123.4 format char *ftostr31ns(const float &x) { int xx = x * 10; //conv[0]=(xx>=0)?'+':'-'; xx = abs(xx); conv[0] = (xx / 1000) % 10 + '0'; conv[1] = (xx / 100) % 10 + '0'; conv[2] = (xx / 10) % 10 + '0'; conv[3] = '.'; conv[4] = (xx) % 10 + '0'; conv[5] = 0; return conv; } char *ftostr32(const float &x) { long xx = x * 100; if (xx >= 0) conv[0] = (xx / 10000) % 10 + '0'; else conv[0] = '-'; xx = abs(xx); conv[1] = (xx / 1000) % 10 + '0'; conv[2] = (xx / 100) % 10 + '0'; conv[3] = '.'; conv[4] = (xx / 10) % 10 + '0'; conv[5] = (xx) % 10 + '0'; conv[6] = 0; return conv; } //// Convert float to rj string with 123.45 format char *ftostr32ns(const float &x) { long xx = abs(x); conv[0] = xx >= 10000 ? (xx / 10000) % 10 + '0' : ' '; conv[1] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' '; conv[2] = xx >= 100 ? (xx / 100) % 10 + '0' : '0'; conv[3] = '.'; conv[4] = (xx / 10) % 10 + '0'; conv[5] = xx % 10 + '0'; return conv; } // Convert float to string with 1.234 format char *ftostr43(const float &x) { long xx = x * 1000; if (xx >= 0) conv[0] = (xx / 1000) % 10 + '0'; else conv[0] = '-'; xx = abs(xx); conv[1] = '.'; conv[2] = (xx / 100) % 10 + '0'; conv[3] = (xx / 10) % 10 + '0'; conv[4] = (xx) % 10 + '0'; conv[5] = 0; return conv; } //Float to string with 1.23 format char *ftostr12ns(const float &x) { long xx = x * 100; xx = abs(xx); conv[0] = (xx / 100) % 10 + '0'; conv[1] = '.'; conv[2] = (xx / 10) % 10 + '0'; conv[3] = (xx) % 10 + '0'; conv[4] = 0; return conv; } //Float to string with 1.234 format char *ftostr13ns(const float &x) { long xx = x * 1000; if (xx >= 0) conv[0] = ' '; else conv[0] = '-'; xx = abs(xx); conv[1] = (xx / 1000) % 10 + '0'; conv[2] = '.'; conv[3] = (xx / 100) % 10 + '0'; conv[4] = (xx / 10) % 10 + '0'; conv[5] = (xx) % 10 + '0'; conv[6] = 0; return conv; } // convert float to space-padded string with -_23.4_ format char *ftostr32sp(const float &x) { long xx = abs(x * 100); uint8_t dig; if (x < 0) { // negative val = -_0 conv[0] = '-'; dig = (xx / 1000) % 10; conv[1] = dig ? '0' + dig : ' '; } else { // positive val = __0 dig = (xx / 10000) % 10; if (dig) { conv[0] = '0' + dig; conv[1] = '0' + (xx / 1000) % 10; } else { conv[0] = ' '; dig = (xx / 1000) % 10; conv[1] = dig ? '0' + dig : ' '; } } conv[2] = '0' + (xx / 100) % 10; // lsd always dig = xx % 10; if (dig) { // 2 decimal places conv[5] = '0' + dig; conv[4] = '0' + (xx / 10) % 10; conv[3] = '.'; } else { // 1 or 0 decimal place dig = (xx / 10) % 10; if (dig) { conv[4] = '0' + dig; conv[3] = '.'; } else { conv[3] = conv[4] = ' '; } conv[5] = ' '; } conv[6] = '\0'; return conv; } char *itostr31(const int &xx) { conv[0] = (xx >= 0) ? '+' : '-'; conv[1] = (xx / 1000) % 10 + '0'; conv[2] = (xx / 100) % 10 + '0'; conv[3] = (xx / 10) % 10 + '0'; conv[4] = '.'; conv[5] = (xx) % 10 + '0'; conv[6] = 0; return conv; } // Convert int to rj string with 123 or -12 format char *itostr3(const int &x) { int xx = x; if (xx < 0) { conv[0] = '-'; xx = -xx; } else if (xx >= 100) conv[0] = (xx / 100) % 10 + '0'; else conv[0] = ' '; if (xx >= 10) conv[1] = (xx / 10) % 10 + '0'; else conv[1] = ' '; conv[2] = (xx) % 10 + '0'; conv[3] = 0; return conv; } // Convert int to lj string with 123 format char *itostr3left(const int &xx) { if (xx >= 100) { conv[0] = (xx / 100) % 10 + '0'; conv[1] = (xx / 10) % 10 + '0'; conv[2] = (xx) % 10 + '0'; conv[3] = 0; } else if (xx >= 10) { conv[0] = (xx / 10) % 10 + '0'; conv[1] = (xx) % 10 + '0'; conv[2] = 0; } else { conv[0] = (xx) % 10 + '0'; conv[1] = 0; } return conv; } // Convert int to rj string with 1234 format char *itostr4(const int &xx) { conv[0] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' '; conv[1] = xx >= 100 ? (xx / 100) % 10 + '0' : ' '; conv[2] = xx >= 10 ? (xx / 10) % 10 + '0' : ' '; conv[3] = xx % 10 + '0'; conv[4] = 0; return conv; } // Convert float to rj string with 12345 format char *ftostr5(const float &x) { long xx = abs(x); conv[0] = xx >= 10000 ? (xx / 10000) % 10 + '0' : ' '; conv[1] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' '; conv[2] = xx >= 100 ? (xx / 100) % 10 + '0' : ' '; conv[3] = xx >= 10 ? (xx / 10) % 10 + '0' : ' '; conv[4] = xx % 10 + '0'; conv[5] = 0; return conv; } // Convert float to string with +1234.5 format char *ftostr51(const float &x) { long xx = x * 10; conv[0] = (xx >= 0) ? '+' : '-'; xx = abs(xx); conv[1] = (xx / 10000) % 10 + '0'; conv[2] = (xx / 1000) % 10 + '0'; conv[3] = (xx / 100) % 10 + '0'; conv[4] = (xx / 10) % 10 + '0'; conv[5] = '.'; conv[6] = (xx) % 10 + '0'; conv[7] = 0; return conv; } // Convert float to string with +123.45 format char *ftostr52(const float &x) { long xx = x * 100; conv[0] = (xx >= 0) ? '+' : '-'; xx = abs(xx); conv[1] = (xx / 10000) % 10 + '0'; conv[2] = (xx / 1000) % 10 + '0'; conv[3] = (xx / 100) % 10 + '0'; conv[4] = '.'; conv[5] = (xx / 10) % 10 + '0'; conv[6] = (xx) % 10 + '0'; conv[7] = 0; return conv; } // Callback for after editing PID i value // grab the PID i value out of the temp variable; scale it; then update the PID driver void copy_and_scalePID_i() { #ifdef PIDTEMP Ki = scalePID_i(raw_Ki); updatePID(); #endif } // Callback for after editing PID d value // grab the PID d value out of the temp variable; scale it; then update the PID driver void copy_and_scalePID_d() { #ifdef PIDTEMP Kd = scalePID_d(raw_Kd); updatePID(); #endif } #endif //ULTRA_LCD