/* planner.h - buffers movement commands and manages the acceleration profile plan Part of Grbl Copyright (c) 2009-2011 Simen Svale Skogsrud Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ // This module is to be considered a sub-module of stepper.c. Please don't include // this file from any other module. #ifndef planner_h #define planner_h #include "Marlin.h" #ifdef ENABLE_AUTO_BED_LEVELING #include "vector_3.h" #endif // ENABLE_AUTO_BED_LEVELING enum BlockFlag { // Planner flag to recalculate trapezoids on entry junction. // This flag has an optimization purpose only. BLOCK_FLAG_RECALCULATE = 1, // Planner flag for nominal speed always reached. That means, the segment is long enough, that the nominal speed // may be reached if accelerating from a safe speed (in the regard of jerking from zero speed). BLOCK_FLAG_NOMINAL_LENGTH = 2, // If set, the machine will start from a halt at the start of this block, // respecting the maximum allowed jerk. BLOCK_FLAG_START_FROM_FULL_HALT = 4, // If set, the stepper interrupt expects, that the number of steps to tick will be lower // than 32767, therefore the DDA algorithm may run with 16bit resolution only. // In addition, the stepper routine will not do any end stop checking for higher performance. BLOCK_FLAG_DDA_LOWRES = 8, }; union dda_isteps_t { int32_t wide; struct { int16_t lo; int16_t hi; }; }; union dda_usteps_t { uint32_t wide; struct { uint16_t lo; uint16_t hi; }; }; // This struct is used when buffering the setup for each linear movement "nominal" values are as specified in // the source g-code and may never actually be reached if acceleration management is active. typedef struct { // Fields used by the bresenham algorithm for tracing the line // steps_x.y,z, step_event_count, acceleration_rate, direction_bits and active_extruder are set by plan_buffer_line(). dda_isteps_t steps_x, steps_y, steps_z, steps_e; // Step count along each axis dda_usteps_t step_event_count; // The number of step events required to complete this block long acceleration_rate; // The acceleration rate used for acceleration calculation unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h) unsigned char active_extruder; // Selects the active extruder // accelerate_until and decelerate_after are set by calculate_trapezoid_for_block() and they need to be synchronized with the stepper interrupt controller. long accelerate_until; // The index of the step event on which to stop acceleration long decelerate_after; // The index of the step event on which to start decelerating // Fields used by the motion planner to manage acceleration // float speed_x, speed_y, speed_z, speed_e; // Nominal mm/sec for each axis // The nominal speed for this block in mm/sec. // This speed may or may not be reached due to the jerk and acceleration limits. float nominal_speed; // Entry speed at previous-current junction in mm/sec, respecting the acceleration and jerk limits. // The entry speed limit of the current block equals the exit speed of the preceding block. float entry_speed; // Maximum allowable junction entry speed in mm/sec. This value is also a maximum exit speed of the previous block. float max_entry_speed; // The total travel of this block in mm float millimeters; // acceleration mm/sec^2 float acceleration; // Bit flags defined by the BlockFlag enum. uint8_t flag; // Settings for the trapezoid generator (runs inside an interrupt handler). // Changing the following values in the planner needs to be synchronized with the interrupt handler by disabling the interrupts. //FIXME nominal_rate, initial_rate and final_rate are limited to uint16_t by MultiU24X24toH16 in the stepper interrupt anyway! unsigned long nominal_rate; // The nominal step rate for this block in step_events/sec unsigned long initial_rate; // The jerk-adjusted step rate at start of block unsigned long final_rate; // The minimal rate at exit unsigned long acceleration_st; // acceleration steps/sec^2 //FIXME does it have to be unsigned long? Probably uint8_t would be just fine. unsigned long fan_speed; volatile char busy; // Pre-calculated division for the calculate_trapezoid_for_block() routine to run faster. float speed_factor; #ifdef LIN_ADVANCE bool use_advance_lead; unsigned long abs_adv_steps_multiplier8; // Factorised by 2^8 to avoid float #endif uint16_t sdlen; } block_t; #ifdef LIN_ADVANCE extern float extruder_advance_k, advance_ed_ratio; #endif #ifdef ENABLE_AUTO_BED_LEVELING // this holds the required transform to compensate for bed level extern matrix_3x3 plan_bed_level_matrix; #endif // #ifdef ENABLE_AUTO_BED_LEVELING // Initialize the motion plan subsystem void plan_init(); // Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in // millimaters. Feed rate specifies the speed of the motion. #ifdef ENABLE_AUTO_BED_LEVELING void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder); // Get the position applying the bed level matrix if enabled vector_3 plan_get_position(); #else void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder); //void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder); #endif // ENABLE_AUTO_BED_LEVELING // Set position. Used for G92 instructions. //#ifdef ENABLE_AUTO_BED_LEVELING void plan_set_position(float x, float y, float z, const float &e); //#else //void plan_set_position(const float &x, const float &y, const float &z, const float &e); //#endif // ENABLE_AUTO_BED_LEVELING void plan_set_z_position(const float &z); void plan_set_e_position(const float &e); void check_axes_activity(); extern unsigned long minsegmenttime; extern float max_feedrate[NUM_AXIS]; // set the max speeds extern float axis_steps_per_unit[NUM_AXIS]; extern unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software extern float minimumfeedrate; extern float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX extern float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX // Jerk is a maximum immediate velocity change. extern float max_jerk[NUM_AXIS]; extern float mintravelfeedrate; extern unsigned long axis_steps_per_sqr_second[NUM_AXIS]; #ifdef AUTOTEMP extern bool autotemp_enabled; extern float autotemp_max; extern float autotemp_min; extern float autotemp_factor; #endif extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions // Index of the next block to be pushed into the planner queue. extern volatile unsigned char block_buffer_head; // Index of the first block in the planner queue. // This is the block, which is being currently processed by the stepper routine, // or which is first to be processed by the stepper routine. extern volatile unsigned char block_buffer_tail; // Called when the current block is no longer needed. Discards the block and makes the memory // available for new blocks. FORCE_INLINE void plan_discard_current_block() { if (block_buffer_head != block_buffer_tail) { block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1); } } // Gets the current block. This is the block to be exectuted by the stepper routine. // Mark this block as busy, so its velocities and acceperations will be no more recalculated // by the planner routine. // Returns NULL if buffer empty FORCE_INLINE block_t *plan_get_current_block() { if (block_buffer_head == block_buffer_tail) { return(NULL); } block_t *block = &block_buffer[block_buffer_tail]; block->busy = true; return(block); } // Returns true if the buffer has a queued block, false otherwise FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); } //return the nr of buffered moves FORCE_INLINE uint8_t moves_planned() { return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1); } FORCE_INLINE bool planner_queue_full() { unsigned char next_block_index = block_buffer_head; if (++ next_block_index == BLOCK_BUFFER_SIZE) next_block_index = 0; return block_buffer_tail == next_block_index; } // Abort the stepper routine, clean up the block queue, // wait for the steppers to stop, // update planner's current position and the current_position of the front end. extern void planner_abort_hard(); #ifdef PREVENT_DANGEROUS_EXTRUDE void set_extrude_min_temp(float temp); #endif void reset_acceleration_rates(); #endif unsigned char number_of_blocks(); // #define PLANNER_DIAGNOSTICS #ifdef PLANNER_DIAGNOSTICS // Diagnostic functions to display planner buffer underflow on the display. extern uint8_t planner_queue_min(); // Diagnostic function: Reset the minimum planner segments. extern void planner_queue_min_reset(); #endif /* PLANNER_DIAGNOSTICS */ extern void planner_add_sd_length(uint16_t sdlen); extern uint16_t planner_calc_sd_length();