#include "Marlin.h" #ifdef TMC2130 #include "tmc2130.h" #include #define TMC2130_GCONF_NORMAL 0x00000000 // spreadCycle #define TMC2130_GCONF_SGSENS 0x00003180 // spreadCycle with stallguard (stall activates DIAG0 and DIAG1 [pushpull]) #define TMC2130_GCONF_SILENT 0x00000004 // stealthChop //externals for debuging extern float current_position[4]; extern void st_get_position_xy(long &x, long &y); extern long st_get_position(uint8_t axis); //chipselect pins uint8_t tmc2130_cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS }; //diag pins uint8_t tmc2130_diag[4] = { X_TMC2130_DIAG, Y_TMC2130_DIAG, Z_TMC2130_DIAG, E0_TMC2130_DIAG }; //mode uint8_t tmc2130_mode = TMC2130_MODE_NORMAL; //holding currents uint8_t tmc2130_current_h[4] = TMC2130_CURRENTS_H; //running currents uint8_t tmc2130_current_r[4] = TMC2130_CURRENTS_R; //axis stalled flags uint8_t tmc2130_axis_stalled[3] = {0, 0, 0}; //pwm_ampl uint8_t tmc2130_pwm_ampl[2] = {TMC2130_PWM_AMPL_X, TMC2130_PWM_AMPL_Y}; //pwm_grad uint8_t tmc2130_pwm_grad[2] = {TMC2130_PWM_GRAD_X, TMC2130_PWM_GRAD_Y}; //pwm_auto uint8_t tmc2130_pwm_auto[2] = {TMC2130_PWM_AUTO_X, TMC2130_PWM_AUTO_Y}; //pwm_freq uint8_t tmc2130_pwm_freq[2] = {TMC2130_PWM_FREQ_X, TMC2130_PWM_FREQ_Y}; uint8_t tmc2131_axis_sg_thr[3] = {TMC2130_SG_THRS_X, TMC2130_SG_THRS_Y, TMC2130_SG_THRS_Z}; uint32_t tmc2131_axis_sg_pos[3] = {0, 0, 0}; uint8_t sg_homing_axes_mask = 0x00; bool skip_debug_msg = false; //TMC2130 registers #define TMC2130_REG_GCONF 0x00 // 17 bits #define TMC2130_REG_GSTAT 0x01 // 3 bits #define TMC2130_REG_IOIN 0x04 // 8+8 bits #define TMC2130_REG_IHOLD_IRUN 0x10 // 5+5+4 bits #define TMC2130_REG_TPOWERDOWN 0x11 // 8 bits #define TMC2130_REG_TSTEP 0x12 // 20 bits #define TMC2130_REG_TPWMTHRS 0x13 // 20 bits #define TMC2130_REG_TCOOLTHRS 0x14 // 20 bits #define TMC2130_REG_THIGH 0x15 // 20 bits #define TMC2130_REG_XDIRECT 0x2d // 32 bits #define TMC2130_REG_VDCMIN 0x33 // 23 bits #define TMC2130_REG_MSLUT0 0x60 // 32 bits #define TMC2130_REG_MSLUT1 0x61 // 32 bits #define TMC2130_REG_MSLUT2 0x62 // 32 bits #define TMC2130_REG_MSLUT3 0x63 // 32 bits #define TMC2130_REG_MSLUT4 0x64 // 32 bits #define TMC2130_REG_MSLUT5 0x65 // 32 bits #define TMC2130_REG_MSLUT6 0x66 // 32 bits #define TMC2130_REG_MSLUT7 0x67 // 32 bits #define TMC2130_REG_MSLUTSEL 0x68 // 32 bits #define TMC2130_REG_MSLUTSTART 0x69 // 8+8 bits #define TMC2130_REG_MSCNT 0x6a // 10 bits #define TMC2130_REG_MSCURACT 0x6b // 9+9 bits #define TMC2130_REG_CHOPCONF 0x6c // 32 bits #define TMC2130_REG_COOLCONF 0x6d // 25 bits #define TMC2130_REG_DCCTRL 0x6e // 24 bits #define TMC2130_REG_DRV_STATUS 0x6f // 32 bits #define TMC2130_REG_PWMCONF 0x70 // 22 bits #define TMC2130_REG_PWM_SCALE 0x71 // 8 bits #define TMC2130_REG_ENCM_CTRL 0x72 // 2 bits #define TMC2130_REG_LOST_STEPS 0x73 // 20 bits uint16_t tmc2130_rd_TSTEP(uint8_t cs); uint16_t tmc2130_rd_MSCNT(uint8_t cs); uint16_t tmc2130_rd_DRV_STATUS(uint8_t cs); void tmc2130_wr_CHOPCONF(uint8_t cs, uint8_t toff = 3, uint8_t hstrt = 4, uint8_t hend = 1, uint8_t fd3 = 0, uint8_t disfdcc = 0, uint8_t rndtf = 0, uint8_t chm = 0, uint8_t tbl = 2, uint8_t vsense = 0, uint8_t vhighfs = 0, uint8_t vhighchm = 0, uint8_t sync = 0, uint8_t mres = 0b0100, uint8_t intpol = 1, uint8_t dedge = 0, uint8_t diss2g = 0); void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel); void tmc2130_wr_TPWMTHRS(uint8_t cs, uint32_t val32); void tmc2130_wr_THIGH(uint8_t cs, uint32_t val32); uint8_t tmc2130_axis_by_cs(uint8_t cs); uint8_t tmc2130_mres(uint16_t microstep_resolution); uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval); uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval); uint8_t tmc2130_txrx(uint8_t cs, uint8_t addr, uint32_t wval, uint32_t* rval); void tmc2130_init() { MYSERIAL.print("tmc2130_init mode="); MYSERIAL.println(tmc2130_mode, DEC); WRITE(X_TMC2130_CS, HIGH); WRITE(Y_TMC2130_CS, HIGH); WRITE(Z_TMC2130_CS, HIGH); WRITE(E0_TMC2130_CS, HIGH); SET_OUTPUT(X_TMC2130_CS); SET_OUTPUT(Y_TMC2130_CS); SET_OUTPUT(Z_TMC2130_CS); SET_OUTPUT(E0_TMC2130_CS); SET_INPUT(X_TMC2130_DIAG); SET_INPUT(Y_TMC2130_DIAG); SET_INPUT(Z_TMC2130_DIAG); SET_INPUT(E0_TMC2130_DIAG); SPI.begin(); for (int i = 0; i < 2; i++) // X Y axes { uint8_t mres = tmc2130_mres(TMC2130_USTEPS_XY); if (tmc2130_current_r[i] <= 31) { tmc2130_wr_CHOPCONF(tmc2130_cs[i], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0); tmc2130_wr(tmc2130_cs[i], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[i] & 0x1f) << 8) | (tmc2130_current_h[i] & 0x1f)); } else { tmc2130_wr_CHOPCONF(tmc2130_cs[i], 3, 5, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0); tmc2130_wr(tmc2130_cs[i], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((tmc2130_current_r[i] >> 1) & 0x1f) << 8) | ((tmc2130_current_h[i] >> 1) & 0x1f)); } // tmc2130_wr_CHOPCONF(tmc2130_cs[i], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0); // tmc2130_wr(tmc2130_cs[i], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[i] & 0x1f) << 8) | (tmc2130_current_h[i] & 0x1f)); tmc2130_wr(tmc2130_cs[i], TMC2130_REG_TPOWERDOWN, 0x00000000); tmc2130_wr(tmc2130_cs[i], TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS); tmc2130_wr(tmc2130_cs[i], TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:TMC2130_TCOOLTHRS); tmc2130_wr_PWMCONF(tmc2130_cs[i], tmc2130_pwm_ampl[i], tmc2130_pwm_grad[i], tmc2130_pwm_freq[i], tmc2130_pwm_auto[i], 0, 0); tmc2130_wr_TPWMTHRS(tmc2130_cs[i], TMC2130_TPWMTHRS); //tmc2130_wr_THIGH(tmc2130_cs[i], TMC2130_THIGH); } for (int i = 2; i < 3; i++) // Z axis { uint8_t mres = tmc2130_mres(TMC2130_USTEPS_Z); if (tmc2130_current_r[i] <= 31) { tmc2130_wr_CHOPCONF(tmc2130_cs[i], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_Z, 0, 0); tmc2130_wr(tmc2130_cs[i], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[i] & 0x1f) << 8) | (tmc2130_current_h[i] & 0x1f)); } else { tmc2130_wr_CHOPCONF(tmc2130_cs[i], 3, 5, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, mres, TMC2130_INTPOL_Z, 0, 0); tmc2130_wr(tmc2130_cs[i], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((tmc2130_current_r[i] >> 1) & 0x1f) << 8) | ((tmc2130_current_h[i] >> 1) & 0x1f)); } tmc2130_wr(tmc2130_cs[i], TMC2130_REG_TPOWERDOWN, 0x00000000); tmc2130_wr(tmc2130_cs[i], TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); } for (int i = 3; i < 4; i++) // E axis { uint8_t mres = tmc2130_mres(TMC2130_USTEPS_E); tmc2130_wr_CHOPCONF(tmc2130_cs[i], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_E, 0, 0); tmc2130_wr(tmc2130_cs[i], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[i] & 0x1f) << 8) | (tmc2130_current_h[i] & 0x1f)); tmc2130_wr(tmc2130_cs[i], TMC2130_REG_TPOWERDOWN, 0x00000000); tmc2130_wr(tmc2130_cs[i], TMC2130_REG_GCONF, 0x00000000); } } void tmc2130_update_sg_axis(uint8_t axis) { if (!tmc2130_axis_stalled[axis]) { uint8_t cs = tmc2130_cs[axis]; uint16_t tstep = tmc2130_rd_TSTEP(cs); if (tstep < TMC2130_TCOOLTHRS) { long pos = st_get_position(axis); if (abs(pos - tmc2131_axis_sg_pos[axis]) > TMC2130_SG_DELTA) { uint16_t sg = tmc2130_rd_DRV_STATUS(cs) & 0x3ff; if (sg == 0) tmc2130_axis_stalled[axis] = true; } } } } bool tmc2130_update_sg() { #ifdef TMC2130_SG_HOMING_SW_XY if (sg_homing_axes_mask & X_AXIS_MASK) tmc2130_update_sg_axis(X_AXIS); if (sg_homing_axes_mask & Y_AXIS_MASK) tmc2130_update_sg_axis(Y_AXIS); #endif //TMC2130_SG_HOMING_SW_XY #ifdef TMC2130_SG_HOMING_SW_Z if (sg_homing_axes_mask & Z_AXIS_MASK) tmc2130_update_sg_axis(Z_AXIS); #endif //TMC2130_SG_HOMING_SW_Z #if (defined(TMC2130_SG_HOMING) && defined(TMC2130_SG_HOMING_SW_XY)) if (sg_homing_axes_mask == 0) return false; #ifdef TMC2130_DEBUG MYSERIAL.print("tmc2130_update_sg mask=0x"); MYSERIAL.print((int)sg_homing_axes_mask, 16); MYSERIAL.print(" stalledX="); MYSERIAL.print((int)tmc2130_axis_stalled[0]); MYSERIAL.print(" stalledY="); MYSERIAL.println((int)tmc2130_axis_stalled[1]); #endif //TMC2130_DEBUG for (uint8_t axis = X_AXIS; axis <= Y_AXIS; axis++) //only X and Y axes { uint8_t mask = (X_AXIS_MASK << axis); if (sg_homing_axes_mask & mask) { if (!tmc2130_axis_stalled[axis]) { uint8_t cs = tmc2130_cs[axis]; uint16_t tstep = tmc2130_rd_TSTEP(cs); if (tstep < TMC2130_TCOOLTHRS) { long pos = st_get_position(axis); if (abs(pos - tmc2131_axis_sg_pos[axis]) > TMC2130_SG_DELTA) { uint16_t sg = tmc2130_rd_DRV_STATUS(cs) & 0x3ff; if (sg == 0) { tmc2130_axis_stalled[axis] = true; #ifdef TMC2130_DEBUG MYSERIAL.print("tmc2130_update_sg AXIS STALLED "); MYSERIAL.println((int)axis); #endif //TMC2130_DEBUG } } } } } } return true; #endif return false; } void tmc2130_home_enter(uint8_t axes_mask) { #ifdef TMC2130_DEBUG MYSERIAL.print("tmc2130_home_enter mask=0x"); MYSERIAL.println((int)axes_mask, 16); #endif //TMC2130_DEBUG #ifdef TMC2130_SG_HOMING for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes { uint8_t mask = (X_AXIS_MASK << axis); uint8_t cs = tmc2130_cs[axis]; if (axes_mask & mask) { sg_homing_axes_mask |= mask; tmc2131_axis_sg_pos[axis] = st_get_position(axis); tmc2130_axis_stalled[axis] = false; //Configuration to spreadCycle tmc2130_wr(cs, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL); tmc2130_wr(cs, TMC2130_REG_COOLCONF, ((unsigned long)tmc2131_axis_sg_thr[axis]) << 16); tmc2130_wr(cs, TMC2130_REG_TCOOLTHRS, TMC2130_TCOOLTHRS); #ifndef TMC2130_SG_HOMING_SW_XY if (mask & (X_AXIS_MASK | Y_AXIS_MASK)) tmc2130_wr(cs, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); //stallguard output DIAG1, DIAG1 = pushpull #endif //TMC2130_SG_HOMING_SW_XY } } #endif //TMC2130_SG_HOMING } void tmc2130_home_exit() { #ifdef TMC2130_DEBUG MYSERIAL.print("tmc2130_home_exit mask=0x"); MYSERIAL.println((int)sg_homing_axes_mask, 16); #endif //TMC2130_DEBUG #ifdef TMC2130_SG_HOMING if (sg_homing_axes_mask) { for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes { uint8_t mask = (X_AXIS_MASK << axis); if (sg_homing_axes_mask & mask & (X_AXIS_MASK | Y_AXIS_MASK)) { if (tmc2130_mode == TMC2130_MODE_SILENT) tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); // Configuration back to stealthChop else #ifdef TMC2130_SG_HOMING_SW_XY tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL); #else //TMC2130_SG_HOMING_SW_XY tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); #endif //TMC2130_SG_HOMING_SW_XY } tmc2130_axis_stalled[axis] = false; } sg_homing_axes_mask = 0x00; } #endif } void tmc2130_home_restart(uint8_t axis) { tmc2131_axis_sg_pos[axis] = st_get_position(axis); tmc2130_axis_stalled[axis] = false; } void tmc2130_check_overtemp() { const static char TMC_OVERTEMP_MSG[] PROGMEM = "TMC DRIVER OVERTEMP "; static uint32_t checktime = 0; if (millis() - checktime > 1000 ) { for (int i = 0; i < 4; i++) { uint32_t drv_status = 0; skip_debug_msg = true; tmc2130_rd(tmc2130_cs[i], TMC2130_REG_DRV_STATUS, &drv_status); if (drv_status & ((uint32_t)1 << 26)) { // BIT 26 - over temp prewarning ~120C (+-20C) SERIAL_ERRORRPGM(TMC_OVERTEMP_MSG); SERIAL_ECHOLN(i); for (int j = 0; j < 4; j++) tmc2130_wr(tmc2130_cs[j], TMC2130_REG_CHOPCONF, 0x00010000); kill(TMC_OVERTEMP_MSG); } } checktime = millis(); } } void tmc2130_set_current_h(uint8_t axis, uint8_t current) { MYSERIAL.print("tmc2130_set_current_h "); MYSERIAL.print((int)axis); MYSERIAL.print(" "); MYSERIAL.println((int)current); tmc2130_current_h[axis] = current; tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f)); } void tmc2130_set_current_r(uint8_t axis, uint8_t current) { MYSERIAL.print("tmc2130_set_current_r "); MYSERIAL.print((int)axis); MYSERIAL.print(" "); MYSERIAL.println((int)current); tmc2130_current_r[axis] = current; tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f)); } void tmc2130_print_currents() { MYSERIAL.println("tmc2130_print_currents"); MYSERIAL.println("\tH\rR"); MYSERIAL.print("X\t"); MYSERIAL.print((int)tmc2130_current_h[0]); MYSERIAL.print("\t"); MYSERIAL.println((int)tmc2130_current_r[0]); MYSERIAL.print("Y\t"); MYSERIAL.print((int)tmc2130_current_h[1]); MYSERIAL.print("\t"); MYSERIAL.println((int)tmc2130_current_r[1]); MYSERIAL.print("Z\t"); MYSERIAL.print((int)tmc2130_current_h[2]); MYSERIAL.print("\t"); MYSERIAL.println((int)tmc2130_current_r[2]); MYSERIAL.print("E\t"); MYSERIAL.print((int)tmc2130_current_h[3]); MYSERIAL.print("\t"); MYSERIAL.println((int)tmc2130_current_r[3]); } void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl) { MYSERIAL.print("tmc2130_set_pwm_ampl "); MYSERIAL.print((int)axis); MYSERIAL.print(" "); MYSERIAL.println((int)pwm_ampl); tmc2130_pwm_ampl[axis] = pwm_ampl; if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT)) tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0); } void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad) { MYSERIAL.print("tmc2130_set_pwm_grad "); MYSERIAL.print((int)axis); MYSERIAL.print(" "); MYSERIAL.println((int)pwm_grad); tmc2130_pwm_grad[axis] = pwm_grad; if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT)) tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0); } uint16_t tmc2130_rd_TSTEP(uint8_t cs) { uint32_t val32 = 0; tmc2130_rd(cs, TMC2130_REG_TSTEP, &val32); if (val32 & 0x000f0000) return 0xffff; return val32 & 0xffff; } uint16_t tmc2130_rd_MSCNT(uint8_t cs) { uint32_t val32 = 0; tmc2130_rd(cs, TMC2130_REG_MSCNT, &val32); return val32 & 0x3ff; } uint16_t tmc2130_rd_DRV_STATUS(uint8_t cs) { uint32_t val32 = 0; tmc2130_rd(cs, TMC2130_REG_DRV_STATUS, &val32); return val32; } void tmc2130_wr_CHOPCONF(uint8_t cs, uint8_t toff, uint8_t hstrt, uint8_t hend, uint8_t fd3, uint8_t disfdcc, uint8_t rndtf, uint8_t chm, uint8_t tbl, uint8_t vsense, uint8_t vhighfs, uint8_t vhighchm, uint8_t sync, uint8_t mres, uint8_t intpol, uint8_t dedge, uint8_t diss2g) { uint32_t val = 0; val |= (uint32_t)(toff & 15); val |= (uint32_t)(hstrt & 7) << 4; val |= (uint32_t)(hend & 15) << 7; val |= (uint32_t)(fd3 & 1) << 11; val |= (uint32_t)(disfdcc & 1) << 12; val |= (uint32_t)(rndtf & 1) << 13; val |= (uint32_t)(chm & 1) << 14; val |= (uint32_t)(tbl & 3) << 15; val |= (uint32_t)(vsense & 1) << 17; val |= (uint32_t)(vhighfs & 1) << 18; val |= (uint32_t)(vhighchm & 1) << 19; val |= (uint32_t)(sync & 15) << 20; val |= (uint32_t)(mres & 15) << 24; val |= (uint32_t)(intpol & 1) << 28; val |= (uint32_t)(dedge & 1) << 29; val |= (uint32_t)(diss2g & 1) << 30; tmc2130_wr(cs, TMC2130_REG_CHOPCONF, val); } //void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl) void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel) { uint32_t val = 0; val |= (uint32_t)(pwm_ampl & 255); val |= (uint32_t)(pwm_grad & 255) << 8; val |= (uint32_t)(pwm_freq & 3) << 16; val |= (uint32_t)(pwm_auto & 1) << 18; val |= (uint32_t)(pwm_symm & 1) << 19; val |= (uint32_t)(freewheel & 3) << 20; tmc2130_wr(cs, TMC2130_REG_PWMCONF, val); // tmc2130_wr(cs, TMC2130_REG_PWMCONF, ((uint32_t)(PWMautoScale+PWMfreq) << 16) | ((uint32_t)PWMgrad << 8) | PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq } void tmc2130_wr_TPWMTHRS(uint8_t cs, uint32_t val32) { tmc2130_wr(cs, TMC2130_REG_TPWMTHRS, val32); } void tmc2130_wr_THIGH(uint8_t cs, uint32_t val32) { tmc2130_wr(cs, TMC2130_REG_THIGH, val32); } #if defined(TMC2130_DEBUG_RD) || defined(TMC2130_DEBUG_WR) uint8_t tmc2130_axis_by_cs(uint8_t cs) { switch (cs) { case X_TMC2130_CS: return 0; case Y_TMC2130_CS: return 1; case Z_TMC2130_CS: return 2; case E0_TMC2130_CS: return 3; } return -1; } #endif //TMC2130_DEBUG uint8_t tmc2130_mres(uint16_t microstep_resolution) { if (microstep_resolution == 256) return 0b0000; if (microstep_resolution == 128) return 0b0001; if (microstep_resolution == 64) return 0b0010; if (microstep_resolution == 32) return 0b0011; if (microstep_resolution == 16) return 0b0100; if (microstep_resolution == 8) return 0b0101; if (microstep_resolution == 4) return 0b0110; if (microstep_resolution == 2) return 0b0111; if (microstep_resolution == 1) return 0b1000; return 0; } uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval) { uint8_t stat = tmc2130_txrx(cs, addr | 0x80, wval, 0); #ifdef TMC2130_DEBUG_WR MYSERIAL.print("tmc2130_wr("); MYSERIAL.print((unsigned char)tmc2130_axis_by_cs(cs), DEC); MYSERIAL.print(", 0x"); MYSERIAL.print((unsigned char)addr, HEX); MYSERIAL.print(", 0x"); MYSERIAL.print((unsigned long)wval, HEX); MYSERIAL.print(")=0x"); MYSERIAL.println((unsigned char)stat, HEX); #endif //TMC2130_DEBUG_WR return stat; } uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval) { uint32_t val32 = 0; uint8_t stat = tmc2130_txrx(cs, addr, 0x00000000, &val32); if (rval != 0) *rval = val32; #ifdef TMC2130_DEBUG_RD if (!skip_debug_msg) { MYSERIAL.print("tmc2130_rd("); MYSERIAL.print((unsigned char)tmc2130_axis_by_cs(cs), DEC); MYSERIAL.print(", 0x"); MYSERIAL.print((unsigned char)addr, HEX); MYSERIAL.print(", 0x"); MYSERIAL.print((unsigned long)val32, HEX); MYSERIAL.print(")=0x"); MYSERIAL.println((unsigned char)stat, HEX); } skip_debug_msg = false; #endif //TMC2130_DEBUG_RD return stat; } uint8_t tmc2130_txrx(uint8_t cs, uint8_t addr, uint32_t wval, uint32_t* rval) { //datagram1 - request SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(cs, LOW); SPI.transfer(addr); // address SPI.transfer((wval >> 24) & 0xff); // MSB SPI.transfer((wval >> 16) & 0xff); SPI.transfer((wval >> 8) & 0xff); SPI.transfer(wval & 0xff); // LSB digitalWrite(cs, HIGH); SPI.endTransaction(); //datagram2 - response SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(cs, LOW); uint8_t stat = SPI.transfer(0); // status uint32_t val32 = 0; val32 = SPI.transfer(0); // MSB val32 = (val32 << 8) | SPI.transfer(0); val32 = (val32 << 8) | SPI.transfer(0); val32 = (val32 << 8) | SPI.transfer(0); // LSB digitalWrite(cs, HIGH); SPI.endTransaction(); if (rval != 0) *rval = val32; return stat; } #endif //TMC2130