//! @file #include "Marlin.h" #include "planner.h" #include "temperature.h" #include "ultralcd.h" #include "ConfigurationStore.h" #include "Configuration_prusa.h" #ifdef MESH_BED_LEVELING #include "mesh_bed_leveling.h" #endif #ifdef TMC2130 #include "tmc2130.h" #endif M500_conf cs; //! @brief Write data to EEPROM //! @param pos destination in EEPROM, 0 is start //! @param value value to be written //! @param size size of type pointed by value //! @param name name of variable written, used only for debug input if DEBUG_EEPROM_WRITE defined //! @retval true success //! @retval false failed #ifdef DEBUG_EEPROM_WRITE static bool EEPROM_writeData(uint8_t* pos, uint8_t* value, uint8_t size, const char* name) #else //DEBUG_EEPROM_WRITE static bool EEPROM_writeData(uint8_t* pos, uint8_t* value, uint8_t size, const char*) #endif //DEBUG_EEPROM_WRITE { #ifdef DEBUG_EEPROM_WRITE printf_P(PSTR("EEPROM_WRITE_VAR addr=0x%04x size=0x%02x name=%s\n"), pos, size, name); #endif //DEBUG_EEPROM_WRITE while (size--) { eeprom_update_byte(pos, *value); if (eeprom_read_byte(pos) != *value) { SERIAL_ECHOLNPGM("EEPROM Error"); return false; } pos++; value++; } return true; } #ifdef DEBUG_EEPROM_READ static void EEPROM_readData(uint8_t* pos, uint8_t* value, uint8_t size, const char* name) #else //DEBUG_EEPROM_READ static void EEPROM_readData(uint8_t* pos, uint8_t* value, uint8_t size, const char*) #endif //DEBUG_EEPROM_READ { #ifdef DEBUG_EEPROM_READ printf_P(PSTR("EEPROM_READ_VAR addr=0x%04x size=0x%02x name=%s\n"), pos, size, name); #endif //DEBUG_EEPROM_READ while(size--) { *value = eeprom_read_byte(pos); pos++; value++; } } #define EEPROM_VERSION "V2" #ifdef EEPROM_SETTINGS void Config_StoreSettings() { strcpy(cs.version,"000"); //!< invalidate data first @TODO use erase to save one erase cycle if (EEPROM_writeData(reinterpret_cast(EEPROM_M500_base),reinterpret_cast(&cs),sizeof(cs),0), "cs, invalid version") { strcpy(cs.version,EEPROM_VERSION); //!< validate data if write succeed EEPROM_writeData(reinterpret_cast(EEPROM_M500_base->version), reinterpret_cast(cs.version), sizeof(cs.version), "cs.version valid"); } SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Settings Stored"); } #endif //EEPROM_SETTINGS #ifndef DISABLE_M503 void Config_PrintSettings(uint8_t level) { // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown #ifdef TMC2130 printf_P(PSTR( "%SSteps per unit:\n%S M92 X%.2f Y%.2f Z%.2f E%.2f\n" "%SUStep resolution: \n%S M350 X%d Y%d Z%d E%d\n" "%SMaximum feedrates - normal (mm/s):\n%S M203 X%.2f Y%.2f Z%.2f E%.2f\n" "%SMaximum feedrates - stealth (mm/s):\n%S M203 X%.2f Y%.2f Z%.2f E%.2f\n" "%SMaximum acceleration - normal (mm/s2):\n%S M201 X%lu Y%lu Z%lu E%lu\n" "%SMaximum acceleration - stealth (mm/s2):\n%S M201 X%lu Y%lu Z%lu E%lu\n" "%SAcceleration: P=print, R=retract, T=travel\n%S M204 P%.2f R%.2f T%.2f\n" "%SAdvanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)\n%S M205 S%.2f T%.2f B%.2f X%.2f Y%.2f Z%.2f E%.2f\n" "%SHome offset (mm):\n%S M206 X%.2f Y%.2f Z%.2f\n" ), echomagic, echomagic, cs.axis_steps_per_unit[X_AXIS], cs.axis_steps_per_unit[Y_AXIS], cs.axis_steps_per_unit[Z_AXIS], cs.axis_steps_per_unit[E_AXIS], echomagic, echomagic, cs.axis_ustep_resolution[X_AXIS], cs.axis_ustep_resolution[Y_AXIS], cs.axis_ustep_resolution[Z_AXIS], cs.axis_ustep_resolution[E_AXIS], echomagic, echomagic, cs.max_feedrate_normal[X_AXIS], cs.max_feedrate_normal[Y_AXIS], cs.max_feedrate_normal[Z_AXIS], cs.max_feedrate_normal[E_AXIS], echomagic, echomagic, cs.max_feedrate_silent[X_AXIS], cs.max_feedrate_silent[Y_AXIS], cs.max_feedrate_silent[Z_AXIS], cs.max_feedrate_silent[E_AXIS], echomagic, echomagic, cs.max_acceleration_units_per_sq_second_normal[X_AXIS], cs.max_acceleration_units_per_sq_second_normal[Y_AXIS], cs.max_acceleration_units_per_sq_second_normal[Z_AXIS], cs.max_acceleration_units_per_sq_second_normal[E_AXIS], echomagic, echomagic, cs.max_acceleration_units_per_sq_second_silent[X_AXIS], cs.max_acceleration_units_per_sq_second_silent[Y_AXIS], cs.max_acceleration_units_per_sq_second_silent[Z_AXIS], cs.max_acceleration_units_per_sq_second_silent[E_AXIS], echomagic, echomagic, cs.acceleration, cs.retract_acceleration, cs.travel_acceleration, echomagic, echomagic, cs.minimumfeedrate, cs.mintravelfeedrate, cs.minsegmenttime, cs.max_jerk[X_AXIS], cs.max_jerk[Y_AXIS], cs.max_jerk[Z_AXIS], cs.max_jerk[E_AXIS], echomagic, echomagic, cs.add_homing[X_AXIS], cs.add_homing[Y_AXIS], cs.add_homing[Z_AXIS] #else //TMC2130 printf_P(PSTR( "%SSteps per unit:\n%S M92 X%.2f Y%.2f Z%.2f E%.2f\n" "%SMaximum feedrates (mm/s):\n%S M203 X%.2f Y%.2f Z%.2f E%.2f\n" "%SMaximum acceleration (mm/s2):\n%S M201 X%lu Y%lu Z%lu E%lu\n" "%SAcceleration: P=print, R=retract, T=travel\n%S M204 P%.2f R%.2f T%.2f\n" "%SAdvanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)\n%S M205 S%.2f T%.2f B%.2f X%.2f Y%.2f Z%.2f E%.2f\n" "%SHome offset (mm):\n%S M206 X%.2f Y%.2f Z%.2f\n" ), echomagic, echomagic, cs.axis_steps_per_unit[X_AXIS], cs.axis_steps_per_unit[Y_AXIS], cs.axis_steps_per_unit[Z_AXIS], cs.axis_steps_per_unit[E_AXIS], echomagic, echomagic, max_feedrate[X_AXIS], max_feedrate[Y_AXIS], max_feedrate[Z_AXIS], max_feedrate[E_AXIS], echomagic, echomagic, max_acceleration_units_per_sq_second[X_AXIS], max_acceleration_units_per_sq_second[Y_AXIS], max_acceleration_units_per_sq_second[Z_AXIS], max_acceleration_units_per_sq_second[E_AXIS], echomagic, echomagic, cs.acceleration, cs.retract_acceleration, cs.travel_acceleration, echomagic, echomagic, cs.minimumfeedrate, cs.mintravelfeedrate, cs.minsegmenttime, cs.max_jerk[X_AXIS], cs.max_jerk[Y_AXIS], cs.max_jerk[Z_AXIS], cs.max_jerk[E_AXIS], echomagic, echomagic, cs.add_homing[X_AXIS], cs.add_homing[Y_AXIS], cs.add_homing[Z_AXIS] #endif //TMC2130 ); #ifdef PIDTEMP printf_P(PSTR("%SPID settings:\n%S M301 P%.2f I%.2f D%.2f\n"), echomagic, echomagic, cs.Kp, unscalePID_i(cs.Ki), unscalePID_d(cs.Kd)); #endif #ifdef PIDTEMPBED printf_P(PSTR("%SPID heatbed settings:\n%S M304 P%.2f I%.2f D%.2f\n"), echomagic, echomagic, cs.bedKp, unscalePID_i(cs.bedKi), unscalePID_d(cs.bedKd)); #endif #ifdef FWRETRACT printf_P(PSTR( "%SRetract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)\n%S M207 S%.2f F%.2f Z%.2f\n" "%SRecover: S=Extra length (mm) F:Speed (mm/m)\n%S M208 S%.2f F%.2f\n" "%SAuto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries\n%S M209 S%d\n" ), echomagic, echomagic, cs.retract_length, cs.retract_feedrate*60, cs.retract_zlift, echomagic, echomagic, cs.retract_recover_length, cs.retract_recover_feedrate*60, echomagic, echomagic, (cs.autoretract_enabled ? 1 : 0) ); #if EXTRUDERS > 1 printf_P(PSTR("%SMulti-extruder settings:\n%S Swap retract length (mm): %.2f\n%S Swap rec. addl. length (mm): %.2f\n"), echomagic, echomagic, retract_length_swap, echomagic, retract_recover_length_swap); #endif if (cs.volumetric_enabled) { printf_P(PSTR("%SFilament settings:\n%S M200 D%.2f\n"), echomagic, echomagic, cs.filament_size[0]); #if EXTRUDERS > 1 printf_P(PSTR("%S M200 T1 D%.2f\n"), echomagic, echomagic, cs.filament_size[1]); #if EXTRUDERS > 2 printf_P(PSTR("%S M200 T1 D%.2f\n"), echomagic, echomagic, cs.filament_size[2]); #endif #endif } else { printf_P(PSTR("%SFilament settings: Disabled\n"), echomagic); } #endif if (level >= 10) { #ifdef LIN_ADVANCE printf_P(PSTR("%SLinear advance settings:%S M900 K%.2f\n"), echomagic, echomagic, extruder_advance_K); #endif //LIN_ADVANCE } // Arc Interpolation Settings printf_P(PSTR( "%SArc Settings: P=Arc segment length max (mm) S=Arc segment length Min (mm), N=Num Segments Per Correction, R=Min arc segments, F=Arc segments per second.\n%S M214 P%.2f S%.2f N%d R%d F%d\n"), echomagic, echomagic, cs.mm_per_arc_segment, cs.min_mm_per_arc_segment, cs.n_arc_correction, cs.min_arc_segments, cs.arc_segments_per_sec); } #endif #ifdef EEPROM_SETTINGS static_assert (EXTRUDERS == 1, "ConfigurationStore M500_conf not implemented for more extruders, fix filament_size array size."); static_assert (NUM_AXIS == 4, "ConfigurationStore M500_conf not implemented for more axis." "Fix axis_steps_per_unit max_feedrate_normal max_acceleration_units_per_sq_second_normal max_jerk max_feedrate_silent" " max_acceleration_units_per_sq_second_silent array size."); #ifdef ENABLE_AUTO_BED_LEVELING static_assert (false, "zprobe_zoffset was not initialized in printers in field to -(Z_PROBE_OFFSET_FROM_EXTRUDER), so it contains" "0.0, if this is not acceptable, increment EEPROM_VERSION to force use default_conf"); #endif static_assert (sizeof(M500_conf) == 209, "sizeof(M500_conf) has changed, ensure that EEPROM_VERSION has been incremented, " "or if you added members in the end of struct, ensure that historically uninitialized values will be initialized." "If this is caused by change to more then 8bit processor, decide whether make this struct packed to save EEPROM," "leave as it is to keep fast code, or reorder struct members to pack more tightly."); static const M500_conf default_conf PROGMEM = { EEPROM_VERSION, DEFAULT_AXIS_STEPS_PER_UNIT, DEFAULT_MAX_FEEDRATE, DEFAULT_MAX_ACCELERATION, DEFAULT_ACCELERATION, DEFAULT_RETRACT_ACCELERATION, DEFAULT_MINIMUMFEEDRATE, DEFAULT_MINTRAVELFEEDRATE, DEFAULT_MINSEGMENTTIME, {DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK, DEFAULT_EJERK}, {0,0,0}, -(Z_PROBE_OFFSET_FROM_EXTRUDER), DEFAULT_Kp, DEFAULT_Ki*PID_dT, DEFAULT_Kd/PID_dT, DEFAULT_bedKp, DEFAULT_bedKi*PID_dT, DEFAULT_bedKd/PID_dT, 0, false, RETRACT_LENGTH, RETRACT_FEEDRATE, RETRACT_ZLIFT, RETRACT_RECOVER_LENGTH, RETRACT_RECOVER_FEEDRATE, false, {DEFAULT_NOMINAL_FILAMENT_DIA, #if EXTRUDERS > 1 DEFAULT_NOMINAL_FILAMENT_DIA, #if EXTRUDERS > 2 DEFAULT_NOMINAL_FILAMENT_DIA, #endif #endif }, DEFAULT_MAX_FEEDRATE_SILENT, DEFAULT_MAX_ACCELERATION_SILENT, #ifdef TMC2130 { TMC2130_USTEPS_XY, TMC2130_USTEPS_XY, TMC2130_USTEPS_Z, TMC2130_USTEPS_E }, #else // TMC2130 {16,16,16,16}, #endif DEFAULT_TRAVEL_ACCELERATION, DEFAULT_MM_PER_ARC_SEGMENT, DEFAULT_MIN_MM_PER_ARC_SEGMENT, DEFAULT_N_ARC_CORRECTION, DEFAULT_MIN_ARC_SEGMENTS, DEFAULT_ARC_SEGMENTS_PER_SEC }; static bool is_uninitialized(void* addr, uint8_t len) { while(len--) { if(reinterpret_cast(addr)[len] != 0xff) return false; } return true; } //! @brief Read M500 configuration //! @retval true Succeeded. Stored settings retrieved or default settings retrieved in case EEPROM has been erased. //! @retval false Failed. Default settings has been retrieved, because of older version or corrupted data. bool Config_RetrieveSettings() { bool previous_settings_retrieved = true; char ver[4]=EEPROM_VERSION; EEPROM_readData(reinterpret_cast(EEPROM_M500_base->version), reinterpret_cast(cs.version), sizeof(cs.version), "cs.version"); //read stored version // SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << cs.version << "]"); if (strncmp(ver,cs.version,3) == 0) // version number match { EEPROM_readData(reinterpret_cast(EEPROM_M500_base), reinterpret_cast(&cs), sizeof(cs), "cs"); calculate_extruder_multipliers(); //if max_feedrate_silent and max_acceleration_units_per_sq_second_silent were never stored to eeprom, use default values: for (uint8_t i = 0; i < (sizeof(cs.max_feedrate_silent)/sizeof(cs.max_feedrate_silent[0])); ++i) { const uint32_t erased = 0xffffffff; if (is_uninitialized(&(cs.max_feedrate_silent[i]), sizeof(float))) { memcpy_P(&cs.max_feedrate_silent[i],&default_conf.max_feedrate_silent[i], sizeof(cs.max_feedrate_silent[i])); } if (erased == cs.max_acceleration_units_per_sq_second_silent[i]) { memcpy_P(&cs.max_acceleration_units_per_sq_second_silent[i],&default_conf.max_acceleration_units_per_sq_second_silent[i],sizeof(cs.max_acceleration_units_per_sq_second_silent[i])); } } // Initialize arc interpolation settings if they are not already (Not sure about this bit, please review) if (is_uninitialized(cs.mm_per_arc_segment, sizeof(float))) cs.mm_per_arc_segment = DEFAULT_MM_PER_ARC_SEGMENT; if (is_uninitialized(cs.min_mm_per_arc_segment, sizeof(float))) cs.min_mm_per_arc_segment = DEFAULT_MIN_MM_PER_ARC_SEGMENT; if (is_uninitialized(cs.n_arc_correction), sizeof(uint8_t)) cs.n_arc_correction = DEFAULT_N_ARC_CORRECTION; if (is_uninitialized(cs.min_arc_segments, sizeof(uint16_t))) cs.min_arc_segments = DEFAULT_MIN_ARC_SEGMENTS; if (is_uninitialized(cs.arc_segments_per_sec, sizeof(uint16_t))) cs.arc_segments_per_sec = DEFAULT_ARC_SEGMENTS_PER_SEC; #ifdef TMC2130 for (uint8_t j = X_AXIS; j <= Y_AXIS; j++) { if (cs.max_feedrate_normal[j] > NORMAL_MAX_FEEDRATE_XY) cs.max_feedrate_normal[j] = NORMAL_MAX_FEEDRATE_XY; if (cs.max_feedrate_silent[j] > SILENT_MAX_FEEDRATE_XY) cs.max_feedrate_silent[j] = SILENT_MAX_FEEDRATE_XY; if (cs.max_acceleration_units_per_sq_second_normal[j] > NORMAL_MAX_ACCEL_XY) cs.max_acceleration_units_per_sq_second_normal[j] = NORMAL_MAX_ACCEL_XY; if (cs.max_acceleration_units_per_sq_second_silent[j] > SILENT_MAX_ACCEL_XY) cs.max_acceleration_units_per_sq_second_silent[j] = SILENT_MAX_ACCEL_XY; } if(cs.axis_ustep_resolution[X_AXIS] == 0xff){ cs.axis_ustep_resolution[X_AXIS] = TMC2130_USTEPS_XY; } if(cs.axis_ustep_resolution[Y_AXIS] == 0xff){ cs.axis_ustep_resolution[Y_AXIS] = TMC2130_USTEPS_XY; } if(cs.axis_ustep_resolution[Z_AXIS] == 0xff){ cs.axis_ustep_resolution[Z_AXIS] = TMC2130_USTEPS_Z; } if(cs.axis_ustep_resolution[E_AXIS] == 0xff){ cs.axis_ustep_resolution[E_AXIS] = TMC2130_USTEPS_E; } tmc2130_set_res(X_AXIS, cs.axis_ustep_resolution[X_AXIS]); tmc2130_set_res(Y_AXIS, cs.axis_ustep_resolution[Y_AXIS]); tmc2130_set_res(Z_AXIS, cs.axis_ustep_resolution[Z_AXIS]); tmc2130_set_res(E_AXIS, cs.axis_ustep_resolution[E_AXIS]); #endif //TMC2130 if(is_uninitialized(&cs.travel_acceleration, sizeof(cs.travel_acceleration))) cs.travel_acceleration = cs.acceleration; reset_acceleration_rates(); // Call updatePID (similar to when we have processed M301) updatePID(); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Stored settings retrieved"); } else { Config_ResetDefault(); //Return false to inform user that eeprom version was changed and firmware is using default hardcoded settings now. //In case that storing to eeprom was not used yet, do not inform user that hardcoded settings are used. if (eeprom_read_byte(reinterpret_cast(&(EEPROM_M500_base->version[0]))) != 0xFF || eeprom_read_byte(reinterpret_cast(&(EEPROM_M500_base->version[1]))) != 0xFF || eeprom_read_byte(reinterpret_cast(&(EEPROM_M500_base->version[2]))) != 0xFF) { previous_settings_retrieved = false; } } #ifdef EEPROM_CHITCHAT Config_PrintSettings(); #endif return previous_settings_retrieved; } #endif void Config_ResetDefault() { memcpy_P(&cs,&default_conf, sizeof(cs)); // steps per sq second need to be updated to agree with the units per sq second reset_acceleration_rates(); #ifdef PIDTEMP updatePID(); #endif//PIDTEMP calculate_extruder_multipliers(); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded"); }