//xyzcal.cpp - xyz calibration with image processing #include "Configuration_prusa.h" #ifdef NEW_XYZCAL #include "xyzcal.h" #include #include "stepper.h" #include "temperature.h" #include "sm4.h" #define XYZCAL_PINDA_HYST_MIN 20 //50um #define XYZCAL_PINDA_HYST_MAX 100 //250um #define XYZCAL_PINDA_HYST_DIF 5 //12.5um #define ENABLE_FANCHECK_INTERRUPT() EIMSK |= (1<<7) #define DISABLE_FANCHECK_INTERRUPT() EIMSK &= ~(1<<7) #define _PINDA ((READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)?1:0) static const char endl[2] PROGMEM = "\n"; #define DBG(args...) printf_P(args) //#define DBG(args...) #ifndef _n #define _n PSTR #endif //_n #define _X ((int16_t)count_position[X_AXIS]) #define _Y ((int16_t)count_position[Y_AXIS]) #define _Z ((int16_t)count_position[Z_AXIS]) #define _E ((int16_t)count_position[E_AXIS]) #define _X_ (count_position[X_AXIS]) #define _Y_ (count_position[Y_AXIS]) #define _Z_ (count_position[Z_AXIS]) #define _E_ (count_position[E_AXIS]) #ifndef M_PI const constexpr float M_PI = 3.1415926535897932384626433832795f; #endif const constexpr uint8_t X_PLUS = 0; const constexpr uint8_t X_MINUS = 1; const constexpr uint8_t Y_PLUS = 0; const constexpr uint8_t Y_MINUS = 1; const constexpr uint8_t Z_PLUS = 0; const constexpr uint8_t Z_MINUS = 1; const constexpr uint8_t X_PLUS_MASK = 0; const constexpr uint8_t X_MINUS_MASK = X_AXIS_MASK; const constexpr uint8_t Y_PLUS_MASK = 0; const constexpr uint8_t Y_MINUS_MASK = Y_AXIS_MASK; const constexpr uint8_t Z_PLUS_MASK = 0; const constexpr uint8_t Z_MINUS_MASK = Z_AXIS_MASK; /// Max. jerk in PrusaSlicer, 10000 = 1 mm/s const constexpr uint16_t MAX_DELAY = 10000; const constexpr float MIN_SPEED = 0.01f / (MAX_DELAY * 0.000001f); /// 200 = 50 mm/s const constexpr uint16_t Z_MIN_DELAY = 200; const constexpr uint16_t Z_ACCEL = 1000; /// \returns positive value always #define ABS(a) \ ({ __typeof__ (a) _a = (a); \ _a >= 0 ? _a : (-_a); }) /// \returns maximum of the two #define MAX(a, b) \ ({ __typeof__ (a) _a = (a); \ __typeof__ (b) _b = (b); \ _a >= _b ? _a : _b; }) /// \returns minimum of the two #define MIN(a, b) \ ({ __typeof__ (a) _a = (a); \ __typeof__ (b) _b = (b); \ _a <= _b ? _a : _b; }) /// swap values #define SWAP(a, b) \ ({ __typeof__ (a) c = (a); \ a = (b); \ b = c; }) /// Saturates value /// \returns min if value is less than min /// \returns max if value is more than min /// \returns value otherwise #define CLAMP(value, min, max) \ ({ __typeof__ (value) a_ = (value); \ __typeof__ (min) min_ = (min); \ __typeof__ (max) max_ = (max); \ ( a_ < min_ ? min_ : (a_ <= max_ ? a_ : max_)); }) /// \returns square of the value #define SQR(a) \ ({ __typeof__ (a) a_ = (a); \ (a_ * a_); }) /// position types typedef int16_t pos_i16_t; typedef long pos_i32_t; typedef float pos_mm_t; typedef int16_t usteps_t; uint8_t check_pinda_0(); uint8_t check_pinda_1(); void xyzcal_update_pos(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t de); uint16_t xyzcal_calc_delay(uint16_t nd, uint16_t dd); uint8_t round_to_u8(float f){ return (uint8_t)(f + .5f); } uint16_t round_to_u16(float f){ return (uint16_t)(f + .5f); } int16_t round_to_i16(float f){ return (int16_t)(f + .5f); } /// converts millimeters to integer position pos_i16_t mm_2_pos(pos_mm_t mm){ return (pos_i16_t)(0.5f + mm * 100); } /// converts integer position to millimeters pos_mm_t pos_2_mm(pos_i16_t pos){ return pos * 0.01f; } pos_mm_t pos_2_mm(float pos){ return pos * 0.01f; } void xyzcal_meassure_center(void) { DBG(_n("xyzcal_meassure_center\n")); lcd_puts_at_P(4,3,PSTR("Measure center ")); ////MSG_MEASURE_CENTER c=16 // disable heaters and stop motion before we initialize sm4 disable_heater(); st_synchronize(); // disable incompatible interrupts DISABLE_STEPPER_DRIVER_INTERRUPT(); #ifdef WATCHDOG wdt_disable(); #endif //WATCHDOG // setup internal callbacks sm4_stop_cb = 0; sm4_update_pos_cb = xyzcal_update_pos; sm4_calc_delay_cb = xyzcal_calc_delay; } void xyzcal_meassure_leave(void) { DBG(_n("xyzcal_meassure_leave\n")); lcd_set_cursor(4,3); lcd_space(16); // resync planner position from counters (changed by xyzcal_update_pos) planner_reset_position(); // re-enable interrupts #ifdef WATCHDOG wdt_enable(WDTO_4S); #ifdef EMERGENCY_HANDLERS WDTCSR |= (1 << WDIE); #endif //EMERGENCY_HANDLERS #endif //WATCHDOG ENABLE_STEPPER_DRIVER_INTERRUPT(); } uint8_t check_pinda_0() { return _PINDA?0:1; } uint8_t check_pinda_1() { return _PINDA?1:0; } uint8_t xyzcal_dm = 0; void xyzcal_update_pos(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t) { // DBG(_n("xyzcal_update_pos dx=%d dy=%d dz=%d dir=%02x\n"), dx, dy, dz, xyzcal_dm); if (xyzcal_dm&1) count_position[0] -= dx; else count_position[0] += dx; if (xyzcal_dm&2) count_position[1] -= dy; else count_position[1] += dy; if (xyzcal_dm&4) count_position[2] -= dz; else count_position[2] += dz; // DBG(_n(" after xyzcal_update_pos x=%ld y=%ld z=%ld\n"), count_position[0], count_position[1], count_position[2]); } uint16_t xyzcal_sm4_delay = 0; //#define SM4_ACCEL_TEST #ifdef SM4_ACCEL_TEST uint16_t xyzcal_sm4_v0 = 2000; uint16_t xyzcal_sm4_vm = 45000; uint16_t xyzcal_sm4_v = xyzcal_sm4_v0; uint16_t xyzcal_sm4_ac = 2000; uint16_t xyzcal_sm4_ac2 = (uint32_t)xyzcal_sm4_ac * 1024 / 10000; //float xyzcal_sm4_vm = 10000; #endif //SM4_ACCEL_TEST #ifdef SM4_ACCEL_TEST uint16_t xyzcal_calc_delay(uint16_t nd, uint16_t dd) { uint16_t del_us = 0; if (xyzcal_sm4_v & 0xf000) //>=4096 { del_us = (uint16_t)62500 / (uint16_t)(xyzcal_sm4_v >> 4); xyzcal_sm4_v += (xyzcal_sm4_ac2 * del_us + 512) >> 10; if (xyzcal_sm4_v > xyzcal_sm4_vm) xyzcal_sm4_v = xyzcal_sm4_vm; if (del_us > 25) return del_us - 25; } else { del_us = (uint32_t)1000000 / xyzcal_sm4_v; xyzcal_sm4_v += ((uint32_t)xyzcal_sm4_ac2 * del_us + 512) >> 10; if (xyzcal_sm4_v > xyzcal_sm4_vm) xyzcal_sm4_v = xyzcal_sm4_vm; if (del_us > 50) return del_us - 50; } // uint16_t del_us = (uint16_t)(((float)1000000 / xyzcal_sm4_v) + 0.5); // uint16_t del_us = (uint32_t)1000000 / xyzcal_sm4_v; // uint16_t del_us = 100; // uint16_t del_us = (uint16_t)10000 / xyzcal_sm4_v; // v += (ac * del_us + 500) / 1000; // xyzcal_sm4_v += (xyzcal_sm4_ac * del_us) / 1000; // return xyzcal_sm4_delay; // DBG(_n("xyzcal_calc_delay nd=%d dd=%d v=%d del_us=%d\n"), nd, dd, xyzcal_sm4_v, del_us); return 0; } #else //SM4_ACCEL_TEST uint16_t xyzcal_calc_delay(uint16_t, uint16_t) { return xyzcal_sm4_delay; } #endif //SM4_ACCEL_TEST /// Moves printer to absolute position [x,y,z] defined in integer position system /// check_pinda == 0: ordinary move /// check_pinda == 1: stop when PINDA triggered /// check_pinda == -1: stop when PINDA untriggered bool xyzcal_lineXYZ_to(int16_t x, int16_t y, int16_t z, uint16_t delay_us, int8_t check_pinda) { // DBG(_n("xyzcal_lineXYZ_to x=%d y=%d z=%d check=%d\n"), x, y, z, check_pinda); x -= (int16_t)count_position[0]; y -= (int16_t)count_position[1]; z -= (int16_t)count_position[2]; xyzcal_dm = ((x<0)?1:0) | ((y<0)?2:0) | ((z<0)?4:0); sm4_set_dir_bits(xyzcal_dm); sm4_stop_cb = check_pinda?((check_pinda<0)?check_pinda_0:check_pinda_1):0; xyzcal_sm4_delay = delay_us; // uint32_t u = _micros(); bool ret = sm4_line_xyz_ui(abs(x), abs(y), abs(z)) ? true : false; // u = _micros() - u; return ret; } /// Moves printer to absolute position [x,y,z] defined in millimeters bool xyzcal_lineXYZ_to_float(pos_mm_t x, pos_mm_t y, pos_mm_t z, uint16_t delay_us, int8_t check_pinda){ return xyzcal_lineXYZ_to(mm_2_pos(x), mm_2_pos(y), mm_2_pos(z), delay_us, check_pinda); } bool xyzcal_spiral2(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radius, int16_t rotation, uint16_t delay_us, int8_t check_pinda, uint16_t* pad) { bool ret = false; float r = 0; //radius uint16_t ad = 0; //angle [deg] float ar; //angle [rad] uint8_t dad = 0; //delta angle [deg] uint8_t dad_min = 4; //delta angle min [deg] uint8_t dad_max = 16; //delta angle max [deg] uint8_t k = 720 / (dad_max - dad_min); //delta calculation constant ad = 0; if (pad) ad = *pad % 720; //@size=214 DBG(_n("xyzcal_spiral2 cx=%d cy=%d z0=%d dz=%d radius=%d ad=%d\n"), cx, cy, z0, dz, radius, ad); // lcd_set_cursor(0, 4); // char text[10]; // snprintf(text, 10, "%4d", z0); // lcd_print(text); for (; ad < 720; ad++) { if (radius > 0) { dad = dad_max - (ad / k); r = (float)(((uint32_t)ad) * radius) / 720; } else { dad = dad_max - ((719 - ad) / k); r = (float)(((uint32_t)(719 - ad)) * (-radius)) / 720; } ar = radians(ad + rotation); int x = (int)(cx + (cos(ar) * r)); int y = (int)(cy + (sin(ar) * r)); int z = (int)(z0 - ((float)((int32_t)dz * ad) / 720)); if (xyzcal_lineXYZ_to(x, y, z, delay_us, check_pinda)) { ad += dad + 1; ret = true; break; } ad += dad; } if (pad) *pad = ad; // if(ret){ // lcd_set_cursor(0, 4); // lcd_print(" "); // } return ret; } bool xyzcal_spiral8(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radius, uint16_t delay_us, int8_t check_pinda, uint16_t* pad) { bool ret = false; uint16_t ad = 0; if (pad) ad = *pad; //@size=274 DBG(_n("xyzcal_spiral8 cx=%d cy=%d z0=%d dz=%d radius=%d ad=%d\n"), cx, cy, z0, dz, radius, ad); if (!ret && (ad < 720)) if ((ret = xyzcal_spiral2(cx, cy, z0 - 0*dz, dz, radius, 0, delay_us, check_pinda, &ad)) != 0) ad += 0; if (!ret && (ad < 1440)) if ((ret = xyzcal_spiral2(cx, cy, z0 - 1*dz, dz, -radius, 0, delay_us, check_pinda, &ad)) != 0) ad += 720; if (!ret && (ad < 2160)) if ((ret = xyzcal_spiral2(cx, cy, z0 - 2*dz, dz, radius, 180, delay_us, check_pinda, &ad)) != 0) ad += 1440; if (!ret && (ad < 2880)) if ((ret = xyzcal_spiral2(cx, cy, z0 - 3*dz, dz, -radius, 180, delay_us, check_pinda, &ad)) != 0) ad += 2160; if (pad) *pad = ad; return ret; } #ifdef XYZCAL_MEASSURE_PINDA_HYSTEREZIS int8_t xyzcal_meassure_pinda_hysterezis(int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t samples) { DBG(_n("xyzcal_meassure_pinda_hysterezis\n")); int8_t ret = -1; // PINDA signal error int16_t z = _Z; int16_t sum_up = 0; int16_t sum_dn = 0; int16_t up; int16_t dn; uint8_t sample; xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1); xyzcal_lineXYZ_to(_X, _Y, max_z, delay_us, -1); if (!_PINDA) { for (sample = 0; sample < samples; sample++) { dn = _Z; if (!xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1)) break; dn = dn - _Z; up = _Z; if (!xyzcal_lineXYZ_to(_X, _Y, max_z, delay_us, -1)) break; up = _Z - up; DBG(_n("%d. up=%d dn=%d\n"), sample, up, dn); sum_up += up; sum_dn += dn; if (abs(up - dn) > XYZCAL_PINDA_HYST_DIF) { ret = -2; // difference between up-dn to high break; } } if (sample == samples) { up = sum_up / samples; dn = sum_dn / samples; uint16_t hyst = (up + dn) / 2; if (abs(up - dn) > XYZCAL_PINDA_HYST_DIF) ret = -2; // difference between up-dn to high else if ((hyst < XYZCAL_PINDA_HYST_MIN) || (hyst > XYZCAL_PINDA_HYST_MAX)) ret = -3; // hysterezis out of range else ret = hyst; } } xyzcal_lineXYZ_to(_X, _Y, z, delay_us, 0); return ret; } #endif //XYZCAL_MEASSURE_PINDA_HYSTEREZIS void print_hysteresis(int16_t min_z, int16_t max_z, int16_t step){ int16_t delay_us = 600; int16_t trigger = 0; int16_t untrigger = 0; DBG(_n("Hysteresis\n")); xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 0); for (int16_t z = min_z; z <= max_z; z += step){ xyzcal_lineXYZ_to(_X, _Y, z, delay_us, -1); untrigger = _Z; xyzcal_lineXYZ_to(_X, _Y, z, delay_us, 0); xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1); trigger = _Z; //xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 0); //@size=114 DBG(_n("min, trigger, untrigger, max: [%d %d %d %d]\n"), _Z, trigger, untrigger, z); } } void update_position_1_step(uint8_t axis, uint8_t dir){ if (axis & X_AXIS_MASK) _X_ += dir & X_AXIS_MASK ? -1 : 1; if (axis & Y_AXIS_MASK) _Y_ += dir & Y_AXIS_MASK ? -1 : 1; if (axis & Z_AXIS_MASK) _Z_ += dir & Z_AXIS_MASK ? -1 : 1; } void set_axes_dir(uint8_t axes, uint8_t dir){ if (axes & X_AXIS_MASK) sm4_set_dir(X_AXIS, dir & X_AXIS_MASK); if (axes & Y_AXIS_MASK) sm4_set_dir(Y_AXIS, dir & Y_AXIS_MASK); if (axes & Z_AXIS_MASK) sm4_set_dir(Z_AXIS, dir & Z_AXIS_MASK); } /// Accelerate up to max.speed (defined by @min_delay_us) /// does not update global positions void accelerate_1_step(uint8_t axes, int16_t acc, uint16_t &delay_us, uint16_t min_delay_us){ sm4_do_step(axes); /// keep max speed (avoid extra computation) if (acc > 0 && delay_us == min_delay_us){ delayMicroseconds(delay_us); return; } // v1 = v0 + a * t // 0.01 = length of a step const float t0 = delay_us * 0.000001f; const float v1 = (0.01f / t0 + acc * t0); uint16_t t1; if (v1 <= 0.16f){ ///< slowest speed convertible to uint16_t delay t1 = MAX_DELAY; ///< already too slow so it wants to move back } else { /// don't exceed max.speed t1 = MAX(min_delay_us, round_to_u16(0.01f / v1 * 1000000.f)); } /// make sure delay has changed a bit at least if (t1 == delay_us && acc != 0){ if (acc > 0) t1--; else t1++; } //DBG(_n("%d "), t1); delayMicroseconds(t1); delay_us = t1; } /// Goes defined number of steps while accelerating /// updates global positions void accelerate(uint8_t axes, uint8_t dir, int16_t acc, uint16_t &delay_us, uint16_t min_delay_us, uint16_t steps){ set_axes_dir(axes, dir); while (steps--){ accelerate_1_step(axes, acc, delay_us, min_delay_us); update_position_1_step(axes, dir); } } /// keeps speed and then it decelerates to a complete stop (if possible) /// it goes defined number of steps /// returns after each step /// \returns true if step was done /// does not update global positions bool go_and_stop_1_step(uint8_t axes, int16_t dec, uint16_t &delay_us, uint16_t &steps){ if (steps <= 0 || dec <= 0) return false; /// deceleration distance in steps, s = 1/2 v^2 / a uint16_t s = round_to_u16(100 * 0.5f * SQR(0.01f) / (SQR((float)delay_us) * dec)); if (steps > s){ /// go steady sm4_do_step(axes); delayMicroseconds(delay_us); } else { /// decelerate accelerate_1_step(axes, -dec, delay_us, delay_us); } --steps; return true; } /// \param dir sets direction of movement /// updates global positions void go_and_stop(uint8_t axes, uint8_t dir, int16_t dec, uint16_t &delay_us, uint16_t steps){ set_axes_dir(axes, dir); while (go_and_stop_1_step(axes, dec, delay_us, steps)){ update_position_1_step(axes, dir); } } /// goes all the way to stop /// \returns steps done /// updates global positions void stop_smoothly(uint8_t axes, uint8_t dir, int16_t dec, uint16_t &delay_us){ if (dec <= 0) return; set_axes_dir(axes, dir); while (delay_us < MAX_DELAY){ accelerate_1_step(axes, -dec, delay_us, delay_us); update_position_1_step(axes, dir); } } void go_start_stop(uint8_t axes, uint8_t dir, int16_t acc, uint16_t min_delay_us, uint16_t steps){ if (steps == 0) return; uint16_t current_delay_us = MAX_DELAY; const uint16_t half = steps / 2; accelerate(axes, dir, acc, current_delay_us, min_delay_us, half); go_and_stop(axes, dir, -acc, current_delay_us, steps - half); } /// moves X, Y, Z one after each other /// starts and ends at 0 speed void go_manhattan(int16_t x, int16_t y, int16_t z, int16_t acc, uint16_t min_delay_us){ int32_t length; // DBG(_n("x %d -> %d, "), x, _X); length = x - _X; go_start_stop(X_AXIS_MASK, length < 0 ? X_MINUS_MASK : X_PLUS_MASK, acc, min_delay_us, ABS(length)); // DBG(_n("y %d -> %d, "), y, _Y); length = y - _Y; go_start_stop(Y_AXIS_MASK, length < 0 ? Y_MINUS_MASK : Y_PLUS_MASK, acc, min_delay_us, ABS(length)); // DBG(_n("z %d -> %d\n"), z, _Z); length = z - _Z; go_start_stop(Z_AXIS_MASK, length < 0 ? Z_MINUS_MASK : Z_PLUS_MASK, acc, min_delay_us, ABS(length)); // DBG(_n("\n")); } void xyzcal_scan_pixels_32x32_Zhop(int16_t cx, int16_t cy, int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t *pixels){ if (!pixels) return; int16_t z_trig; uint16_t line_buffer[32]; uint16_t current_delay_us = MAX_DELAY; ///< defines current speed int16_t start_z; uint16_t steps_to_go; DBG(_n("Scan countdown: ")); for (uint8_t r = 0; r < 32; r++){ ///< Y axis for (uint8_t d = 0; d < 2; ++d){ go_manhattan((d & 1) ? (cx + 992) : (cx - 992), cy - 992 + r * 64, _Z, Z_ACCEL, Z_MIN_DELAY); xyzcal_lineXYZ_to((d & 1) ? (cx + 992) : (cx - 992), cy - 992 + r * 64, _Z, delay_us, 0); sm4_set_dir(X_AXIS, d); //@size=242 DBG(_n("%d\n"), 64 - (r * 2 + d)); ///< to keep OctoPrint connection alive lcd_set_cursor(4,3); lcd_printf_P(PSTR("Countdown: %d "),64 - (r * 2 + d)); ////MSG_COUNTDOWN c=12 for (uint8_t c = 0; c < 32; c++){ ///< X axis /// move to the next point and move Z up diagonally (if needed) current_delay_us = MAX_DELAY; const int16_t end_x = ((d & 1) ? 1 : -1) * (64 * (16 - c) - 32) + cx; const int16_t length_x = ABS(end_x - _X); const int16_t half_x = length_x / 2; /// don't go up if PINDA not triggered (optimization) const bool up = _PINDA; const uint8_t axes = up ? X_AXIS_MASK | Z_AXIS_MASK : X_AXIS_MASK; const uint8_t dir = Z_PLUS_MASK | (d & 1 ? X_MINUS_MASK : X_PLUS_MASK); accelerate(axes, dir, Z_ACCEL, current_delay_us, Z_MIN_DELAY, half_x); go_and_stop(axes, dir, Z_ACCEL, current_delay_us, length_x - half_x); z_trig = min_z; /// move up to un-trigger (surpress hysteresis) sm4_set_dir(Z_AXIS, Z_PLUS); /// speed up from stop, go half the way current_delay_us = MAX_DELAY; for (start_z = _Z; _Z < (max_z + start_z) / 2; ++_Z_){ if (!_PINDA){ break; } accelerate_1_step(Z_AXIS_MASK, Z_ACCEL, current_delay_us, Z_MIN_DELAY); } if (_PINDA){ steps_to_go = MAX(0, max_z - _Z); while (_PINDA && _Z < max_z){ go_and_stop_1_step(Z_AXIS_MASK, Z_ACCEL, current_delay_us, steps_to_go); ++_Z_; } } stop_smoothly(Z_AXIS_MASK, Z_PLUS_MASK, Z_ACCEL, current_delay_us); /// move down to trigger sm4_set_dir(Z_AXIS, Z_MINUS); /// speed up current_delay_us = MAX_DELAY; for (start_z = _Z; _Z > (min_z + start_z) / 2; --_Z_){ if (_PINDA){ z_trig = _Z; break; } accelerate_1_step(Z_AXIS_MASK, Z_ACCEL, current_delay_us, Z_MIN_DELAY); } /// slow down if (!_PINDA){ steps_to_go = MAX(0, _Z - min_z); while (!_PINDA && _Z > min_z){ go_and_stop_1_step(Z_AXIS_MASK, Z_ACCEL, current_delay_us, steps_to_go); --_Z_; } z_trig = _Z; } /// slow down to stop but not lower than min_z while (_Z > min_z && current_delay_us < MAX_DELAY){ accelerate_1_step(Z_AXIS_MASK, -Z_ACCEL, current_delay_us, Z_MIN_DELAY); --_Z_; } if (d == 0){ line_buffer[c] = (uint16_t)(z_trig - min_z); } else { /// !!! data reversed in X // DBG(_n("%04x"), ((uint32_t)line_buffer[31 - c] + (z_trig - min_z)) / 2); /// save average of both directions (filters effect of hysteresis) pixels[(uint16_t)r * 32 + (31 - c)] = (uint8_t)MIN((uint32_t)255, ((uint32_t)line_buffer[31 - c] + (z_trig - min_z)) / 2); } } } } DBG(endl); } /// Returns rate of match /// max match = 132, min match = 0 uint8_t xyzcal_match_pattern_12x12_in_32x32(uint16_t* pattern, uint8_t* pixels, uint8_t c, uint8_t r){ uint8_t thr = 16; uint8_t match = 0; for (uint8_t i = 0; i < 12; ++i){ for (uint8_t j = 0; j < 12; ++j){ /// skip corners (3 pixels in each) if (((i == 0) || (i == 11)) && ((j < 2) || (j >= 10))) continue; if (((j == 0) || (j == 11)) && ((i < 2) || (i >= 10))) continue; const uint16_t idx = (c + j) + 32 * ((uint16_t)r + i); const bool high_pix = pixels[idx] > thr; const bool high_pat = pattern[i] & (1 << j); if (high_pix == high_pat) match++; } } return match; } /// Searches for best match of pattern by shifting it /// Returns rate of match and the best location /// max match = 132, min match = 0 uint8_t xyzcal_find_pattern_12x12_in_32x32(uint8_t* pixels, uint16_t* pattern, uint8_t* pc, uint8_t* pr){ if (!pixels || !pattern || !pc || !pr) return -1; uint8_t max_c = 0; uint8_t max_r = 0; uint8_t max_match = 0; // DBG(_n("Matching:\n")); /// pixel precision for (uint8_t r = 0; r < (32 - 12); ++r){ for (uint8_t c = 0; c < (32 - 12); ++c){ const uint8_t match = xyzcal_match_pattern_12x12_in_32x32(pattern, pixels, c, r); if (max_match < match){ max_c = c; max_r = r; max_match = match; } // DBG(_n("%d "), match); } // DBG(_n("\n")); } //@size=278 DBG(_n("Pattern center [%f %f], match %f%%\n"), max_c + 5.5f, max_r + 5.5f, max_match / 1.32f); *pc = max_c; *pr = max_r; return max_match; } const uint16_t xyzcal_point_pattern_10[12] PROGMEM = {0x000, 0x0f0, 0x1f8, 0x3fc, 0x7fe, 0x7fe, 0x7fe, 0x7fe, 0x3fc, 0x1f8, 0x0f0, 0x000}; const uint16_t xyzcal_point_pattern_08[12] PROGMEM = {0x000, 0x000, 0x0f0, 0x1f8, 0x3fc, 0x3fc, 0x3fc, 0x3fc, 0x1f8, 0x0f0, 0x000, 0x000}; bool xyzcal_searchZ(void) { //@size=118 DBG(_n("xyzcal_searchZ x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]); int16_t x0 = _X; int16_t y0 = _Y; int16_t z = _Z; // int16_t min_z = -6000; // int16_t dz = 100; while (z > -2300) { //-6mm + 0.25mm uint16_t ad = 0; if (xyzcal_spiral8(x0, y0, z, 100, 900, 320, 1, &ad)) { //dz=100 radius=900 delay=400 //@size=82 DBG(_n(" ON-SIGNAL at x=%d y=%d z=%d ad=%d\n"), _X, _Y, _Z, ad); /// return to starting XY position /// magic constant, lowers min_z after searchZ to obtain more dense data in scan const pos_i16_t lower_z = 72; xyzcal_lineXYZ_to(x0, y0, _Z - lower_z, 200, 0); return true; } z -= 400; } //@size=138 DBG(_n("xyzcal_searchZ no signal\n x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]); return false; } /// returns value of any location within data /// uses bilinear interpolation float get_value(uint8_t * matrix_32x32, float c, float r){ if (c <= 0 || r <= 0 || c >= 31 || r >= 31) return 0; /// calculate weights of nearby points const float wc1 = c - floor(c); const float wr1 = r - floor(r); const float wc0 = 1 - wc1; const float wr0 = 1 - wr1; const float w00 = wc0 * wr0; const float w01 = wc0 * wr1; const float w10 = wc1 * wr0; const float w11 = wc1 * wr1; const uint16_t c0 = c; const uint16_t c1 = c0 + 1; const uint16_t r0 = r; const uint16_t r1 = r0 + 1; const uint16_t idx00 = c0 + 32 * r0; const uint16_t idx01 = c0 + 32 * r1; const uint16_t idx10 = c1 + 32 * r0; const uint16_t idx11 = c1 + 32 * r1; /// bilinear resampling return w00 * matrix_32x32[idx00] + w01 * matrix_32x32[idx01] + w10 * matrix_32x32[idx10] + w11 * matrix_32x32[idx11]; } const constexpr float m_infinity = -1000.f; /// replaces the highest number by m_infinity void remove_highest(float *points, const uint8_t num_points){ if (num_points <= 0) return; float max = points[0]; uint8_t max_i = 0; for (uint8_t i = 0; i < num_points; ++i){ if (max < points[i]){ max = points[i]; max_i = i; } } points[max_i] = m_infinity; } /// return the highest number in the list float highest(float *points, const uint8_t num_points){ if (num_points <= 0) return 0; float max = points[0]; for (uint8_t i = 0; i < num_points; ++i){ if (max < points[i]){ max = points[i]; } } return max; } /// slow bubble sort but short void sort(float *points, const uint8_t num_points){ /// one direction bubble sort for (uint8_t i = 0; i < num_points; ++i){ for (uint8_t j = 0; j < num_points - i - 1; ++j){ if (points[j] > points[j + 1]) SWAP(points[j], points[j + 1]); } } // DBG(_n("Sorted: ")); // for (uint8_t i = 0; i < num_points; ++i) // DBG(_n("%f "), points[i]); // DBG(_n("\n")); } /// sort array and returns median value /// don't send empty array or nullptr float median(float *points, const uint8_t num_points){ sort(points, num_points); return points[num_points / 2]; } float __attribute__ ((noinline)) CLAMP_median(float *shifts, uint8_t blocks, float norm){ const constexpr float max_change = 0.5f; ///< avoids too fast changes (avoid oscillation) return CLAMP( median(shifts, blocks) * norm, -max_change, max_change); } /// Searches for circle iteratively /// Uses points on the perimeter. If point is high it pushes circle out of the center (shift or change of radius), /// otherwise to the center. /// Algorithm is stopped after fixed number of iterations. Move is limited to 0.5 px per iteration. void dynamic_circle(uint8_t *matrix_32x32, float &x, float &y, float &r, uint8_t iterations){ /// circle of 10.5 diameter has 33 in circumference, don't go much above const constexpr uint8_t num_points = 33; const float pi_2_div_num_points = 2 * M_PI / num_points; const constexpr uint8_t target_z = 32; ///< target z height of the circle const uint8_t blocks = num_points; float shifts_x[blocks]; float shifts_y[blocks]; float shifts_r[blocks]; // DBG(_n(" [%f, %f][%f] start circle\n"), x, y, r); for (int8_t i = iterations; i > 0; --i){ //@size=128B // DBG(_n(" [%f, %f][%f] circle\n"), x, y, r); /// read points on the circle for (uint8_t p = 0; p < num_points; ++p){ const float angle = p * pi_2_div_num_points; const float height = get_value(matrix_32x32, r * cos(angle) + x, r * sin(angle) + y) - target_z; // DBG(_n("%f "), point); shifts_x[p] = cos(angle) * height; shifts_y[p] = sin(angle) * height; shifts_r[p] = height; } // DBG(_n(" points\n")); const float reducer = 32.f; ///< reduces speed of convergency to avoid oscillation const float norm = 1.f / reducer; // x += CLAMP(median(shifts_x, blocks) * norm, -max_change, max_change); // y += CLAMP(median(shifts_y, blocks) * norm, -max_change, max_change); // r += CLAMP(median(shifts_r, blocks) * norm * .5f, -max_change, max_change); //104B down x += CLAMP_median(shifts_x, blocks, norm); y += CLAMP_median(shifts_y, blocks, norm); r += CLAMP_median(shifts_r, blocks, norm * .5f); r = MAX(2, r); } //@size=118 DBG(_n(" [%f, %f][%f] final circle\n"), x, y, r); } /// Prints matrix in hex to debug output (serial line) void print_image(const uint8_t *matrix_32x32){ for (uint8_t y = 0; y < 32; ++y){ const uint16_t idx_y = y * 32; for (uint8_t x = 0; x < 32; ++x){ DBG(_n("%02x"), matrix_32x32[idx_y + x]); } DBG(endl); } DBG(endl); } /// Takes two patterns and searches them in matrix32 /// \returns best match uint8_t find_patterns(uint8_t *matrix32, uint16_t *pattern08, uint16_t *pattern10, uint8_t &col, uint8_t &row){ uint8_t c08 = 0; uint8_t r08 = 0; uint8_t match08 = 0; uint8_t c10 = 0; uint8_t r10 = 0; uint8_t match10 = 0; match08 = xyzcal_find_pattern_12x12_in_32x32(matrix32, pattern08, &c08, &r08); match10 = xyzcal_find_pattern_12x12_in_32x32(matrix32, pattern10, &c10, &r10); if (match08 > match10){ col = c08; row = r08; return match08; } col = c10; row = r10; return match10; } /// Scan should include normal data. /// If it's too extreme (00, FF) it could be caused by biased sensor. /// \return true if data looks normal bool check_scan(uint8_t *matrix32){ /// magic constants that define normality const int16_t threshold_total = 900; const int threshold_extreme = 50; int16_t mins = 0; int16_t maxs = 0; for (int16_t i = 0; i < 32*32;++i){ if (matrix32[i] == 0) { ++mins; } else if (matrix32[i] == 0xFF){ ++maxs; } } const int16_t rest = 1024 - mins - maxs; if (mins + maxs > threshold_total && mins > threshold_extreme && maxs > threshold_extreme && mins > rest && maxs > rest) return false; return true; } /// scans area around the current head location and /// searches for the center of the calibration pin BedSkewOffsetDetectionResultType xyzcal_scan_and_process(){ //@size=44 // DBG(_n("sizeof(block_buffer)=%d\n"), sizeof(block_t)*BLOCK_BUFFER_SIZE); BedSkewOffsetDetectionResultType ret = BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND; int16_t x = _X; int16_t y = _Y; const int16_t z = _Z; uint8_t *matrix32 = (uint8_t *)block_buffer; uint16_t *pattern08 = (uint16_t *)(matrix32 + 32 * 32); uint16_t *pattern10 = (uint16_t *)(pattern08 + 12); for (uint8_t i = 0; i < 12; i++){ pattern08[i] = pgm_read_word((uint16_t*)(xyzcal_point_pattern_08 + i)); pattern10[i] = pgm_read_word((uint16_t*)(xyzcal_point_pattern_10 + i)); } xyzcal_scan_pixels_32x32_Zhop(x, y, z, 2400, 200, matrix32); print_image(matrix32); if (!check_scan(matrix32)) return BED_SKEW_OFFSET_DETECTION_POINT_SCAN_FAILED; /// SEARCH FOR BINARY CIRCLE uint8_t uc = 0; uint8_t ur = 0; /// max match = 132, 1/2 good = 66, 2/3 good = 88 if (find_patterns(matrix32, pattern08, pattern10, uc, ur) >= 88){ /// find precise circle /// move to the center of the pattern (+5.5) float xf = uc + 5.5f; float yf = ur + 5.5f; float radius = 4.5f; ///< default radius constexpr const uint8_t iterations = 20; dynamic_circle(matrix32, xf, yf, radius, iterations); if (fabs(xf - (uc + 5.5f)) > 3 || fabs(yf - (ur + 5.5f)) > 3 || fabs(radius - 5) > 3){ //@size=88 DBG(_n(" [%f %f][%f] mm divergence\n"), xf - (uc + 5.5f), yf - (ur + 5.5f), radius - 5); /// dynamic algorithm diverged, use original position instead xf = uc + 5.5f; yf = ur + 5.5f; } /// move to the center of area and convert to position xf = (float)x + (xf - 15.5f) * 64; yf = (float)y + (yf - 15.5f) * 64; //@size=114 DBG(_n(" [%f %f] mm pattern center\n"), pos_2_mm(xf), pos_2_mm(yf)); x = round_to_i16(xf); y = round_to_i16(yf); xyzcal_lineXYZ_to(x, y, z, 200, 0); ret = BED_SKEW_OFFSET_DETECTION_POINT_FOUND; } /// wipe buffer for (uint16_t i = 0; i < sizeof(block_t)*BLOCK_BUFFER_SIZE; i++) matrix32[i] = 0; return ret; } BedSkewOffsetDetectionResultType xyzcal_find_bed_induction_sensor_point_xy(void) { // DBG(_n("xyzcal_find_bed_induction_sensor_point_xy x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]); BedSkewOffsetDetectionResultType ret = BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND; xyzcal_meassure_center(); if (xyzcal_searchZ()) ret = xyzcal_scan_and_process(); xyzcal_meassure_leave(); return ret; } #endif //NEW_XYZCAL