#include "temperature.h" #include "ultralcd.h" #ifdef ULTRA_LCD #include "Marlin.h" #include "language.h" #include "cardreader.h" #include "temperature.h" #include "stepper.h" #include "ConfigurationStore.h" #include //#include "Configuration.h" #define _STRINGIFY(s) #s int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */ extern int lcd_change_fil_state; int babystepMem[3]; union Data { byte b[2]; int value; }; int8_t ReInitLCD = 0; int8_t SDscrool = 0; int8_t SilentModeMenu = 0; /* Configuration settings */ int plaPreheatHotendTemp; int plaPreheatHPBTemp; int plaPreheatFanSpeed; int absPreheatHotendTemp; int absPreheatHPBTemp; int absPreheatFanSpeed; int ppPreheatHotendTemp = PP_PREHEAT_HOTEND_TEMP; int ppPreheatHPBTemp = PP_PREHEAT_HPB_TEMP; int ppPreheatFanSpeed = PP_PREHEAT_FAN_SPEED; int petPreheatHotendTemp = PET_PREHEAT_HOTEND_TEMP; int petPreheatHPBTemp = PET_PREHEAT_HPB_TEMP; int petPreheatFanSpeed = PET_PREHEAT_FAN_SPEED; int hipsPreheatHotendTemp = HIPS_PREHEAT_HOTEND_TEMP; int hipsPreheatHPBTemp = HIPS_PREHEAT_HPB_TEMP; int hipsPreheatFanSpeed = HIPS_PREHEAT_FAN_SPEED; int flexPreheatHotendTemp = FLEX_PREHEAT_HOTEND_TEMP; int flexPreheatHPBTemp = FLEX_PREHEAT_HPB_TEMP; int flexPreheatFanSpeed = FLEX_PREHEAT_FAN_SPEED; #ifdef FILAMENT_LCD_DISPLAY unsigned long message_millis = 0; #endif #ifdef ULTIPANEL static float manual_feedrate[] = MANUAL_FEEDRATE; #endif // ULTIPANEL /* !Configuration settings */ //Function pointer to menu functions. typedef void (*menuFunc_t)(); uint8_t lcd_status_message_level; char lcd_status_message[LCD_WIDTH+1] = WELCOME_MSG; #ifdef DOGLCD #include "dogm_lcd_implementation.h" #else #include "ultralcd_implementation_hitachi_HD44780.h" #endif /** forward declarations **/ void copy_and_scalePID_i(); void copy_and_scalePID_d(); /* Different menus */ static void lcd_status_screen(); #ifdef ULTIPANEL extern bool powersupply; static void lcd_main_menu(); static void lcd_tune_menu(); static void lcd_prepare_menu(); static void lcd_move_menu(); static void lcd_control_menu(); static void lcd_settings_menu(); static void lcd_control_temperature_menu(); static void lcd_control_temperature_preheat_pla_settings_menu(); static void lcd_control_temperature_preheat_abs_settings_menu(); static void lcd_control_motion_menu(); static void lcd_control_volumetric_menu(); #ifdef DOGLCD static void lcd_set_contrast(); #endif static void lcd_control_retract_menu(); static void lcd_sdcard_menu(); #ifdef DELTA_CALIBRATION_MENU static void lcd_delta_calibrate_menu(); #endif // DELTA_CALIBRATION_MENU static void lcd_quick_feedback();//Cause an LCD refresh, and give the user visual or audible feedback that something has happened /* Different types of actions that can be used in menu items. */ static void menu_action_back(menuFunc_t data); static void menu_action_submenu(menuFunc_t data); static void menu_action_gcode(const char* pgcode); static void menu_action_function(menuFunc_t data); static void menu_action_sdfile(const char* filename, char* longFilename); static void menu_action_sddirectory(const char* filename, char* longFilename); static void menu_action_setting_edit_bool(const char* pstr, bool* ptr); static void menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue); static void menu_action_setting_edit_float3(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float32(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float43(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float5(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float51(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float52(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue); static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float3(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float32(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float43(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float5(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float51(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float52(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue, menuFunc_t callbackFunc); #define ENCODER_FEEDRATE_DEADZONE 10 #if !defined(LCD_I2C_VIKI) #ifndef ENCODER_STEPS_PER_MENU_ITEM #define ENCODER_STEPS_PER_MENU_ITEM 5 #endif #ifndef ENCODER_PULSES_PER_STEP #define ENCODER_PULSES_PER_STEP 1 #endif #else #ifndef ENCODER_STEPS_PER_MENU_ITEM #define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation #endif #ifndef ENCODER_PULSES_PER_STEP #define ENCODER_PULSES_PER_STEP 1 #endif #endif /* Helper macros for menus */ #define START_MENU() do { \ if (encoderPosition > 0x8000) encoderPosition = 0; \ if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM < currentMenuViewOffset) currentMenuViewOffset = encoderPosition / ENCODER_STEPS_PER_MENU_ITEM;\ uint8_t _lineNr = currentMenuViewOffset, _menuItemNr; \ bool wasClicked = LCD_CLICKED;\ for(uint8_t _drawLineNr = 0; _drawLineNr < LCD_HEIGHT; _drawLineNr++, _lineNr++) { \ _menuItemNr = 0; #define MENU_ITEM(type, label, args...) do { \ if (_menuItemNr == _lineNr) { \ if (lcdDrawUpdate) { \ const char* _label_pstr = PSTR(label); \ if ((encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) { \ lcd_implementation_drawmenu_ ## type ## _selected (_drawLineNr, _label_pstr , ## args ); \ }else{\ lcd_implementation_drawmenu_ ## type (_drawLineNr, _label_pstr , ## args ); \ }\ }\ if (wasClicked && (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) {\ lcd_quick_feedback(); \ menu_action_ ## type ( args ); \ return;\ }\ }\ _menuItemNr++;\ } while(0) #define MENU_ITEM_DUMMY() do { _menuItemNr++; } while(0) #define MENU_ITEM_EDIT(type, label, args...) MENU_ITEM(setting_edit_ ## type, label, PSTR(label) , ## args ) #define MENU_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, PSTR(label) , ## args ) #define END_MENU() \ if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM >= _menuItemNr) encoderPosition = _menuItemNr * ENCODER_STEPS_PER_MENU_ITEM - 1; \ if ((uint8_t)(encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) >= currentMenuViewOffset + LCD_HEIGHT) { currentMenuViewOffset = (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) - LCD_HEIGHT + 1; lcdDrawUpdate = 1; _lineNr = currentMenuViewOffset - 1; _drawLineNr = -1; } \ } } while(0) /** Used variables to keep track of the menu */ #ifndef REPRAPWORLD_KEYPAD volatile uint8_t buttons;//Contains the bits of the currently pressed buttons. #else volatile uint8_t buttons_reprapworld_keypad; // to store the reprapworld_keypad shift register values #endif #ifdef LCD_HAS_SLOW_BUTTONS volatile uint8_t slow_buttons;//Contains the bits of the currently pressed buttons. #endif uint8_t currentMenuViewOffset; /* scroll offset in the current menu */ uint32_t blocking_enc; uint8_t lastEncoderBits; uint32_t encoderPosition; #if (SDCARDDETECT > 0) bool lcd_oldcardstatus; #endif #endif //ULTIPANEL menuFunc_t currentMenu = lcd_status_screen; /* function pointer to the currently active menu */ uint32_t lcd_next_update_millis; uint8_t lcd_status_update_delay; bool ignore_click = false; bool wait_for_unclick; uint8_t lcdDrawUpdate = 2; /* Set to none-zero when the LCD needs to draw, decreased after every draw. Set to 2 in LCD routines so the LCD gets at least 1 full redraw (first redraw is partial) */ //prevMenu and prevEncoderPosition are used to store the previous menu location when editing settings. menuFunc_t prevMenu = NULL; uint16_t prevEncoderPosition; //Variables used when editing values. const char* editLabel; void* editValue; int32_t minEditValue, maxEditValue; menuFunc_t callbackFunc; // place-holders for Ki and Kd edits float raw_Ki, raw_Kd; static void lcd_goto_menu(menuFunc_t menu, const uint32_t encoder=0, const bool feedback=true) { if (currentMenu != menu) { currentMenu = menu; encoderPosition = encoder; if (feedback) lcd_quick_feedback(); // For LCD_PROGRESS_BAR re-initialize the custom characters #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) lcd_set_custom_characters(menu == lcd_status_screen); #endif } } /* Main status screen. It's up to the implementation specific part to show what is needed. As this is very display dependent */ static void lcd_status_screen() { if (lcd_status_update_delay) lcd_status_update_delay--; else lcdDrawUpdate = 1; if (lcdDrawUpdate) { ReInitLCD++; if(ReInitLCD == 30){ lcd_implementation_init( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) currentMenu == lcd_status_screen #endif ); ReInitLCD =0 ; }else{ if((ReInitLCD%10) == 0){ //lcd_implementation_nodisplay(); lcd_implementation_init_noclear( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) currentMenu == lcd_status_screen #endif ); } } //lcd_implementation_display(); lcd_implementation_status_screen(); //lcd_implementation_clear(); lcd_status_update_delay = 10; /* redraw the main screen every second. This is easier then trying keep track of all things that change on the screen */ } #ifdef ULTIPANEL bool current_click = LCD_CLICKED; if (ignore_click) { if (wait_for_unclick) { if (!current_click) { ignore_click = wait_for_unclick = false; } else { current_click = false; } } else if (current_click) { lcd_quick_feedback(); wait_for_unclick = true; current_click = false; } } if (current_click) { lcd_goto_menu(lcd_main_menu); lcd_implementation_init( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) currentMenu == lcd_status_screen #endif ); #ifdef FILAMENT_LCD_DISPLAY message_millis = millis(); // get status message to show up for a while #endif } #ifdef ULTIPANEL_FEEDMULTIPLY // Dead zone at 100% feedrate if ((feedmultiply < 100 && (feedmultiply + int(encoderPosition)) > 100) || (feedmultiply > 100 && (feedmultiply + int(encoderPosition)) < 100)) { encoderPosition = 0; feedmultiply = 100; } if (feedmultiply == 100 && int(encoderPosition) > ENCODER_FEEDRATE_DEADZONE) { feedmultiply += int(encoderPosition) - ENCODER_FEEDRATE_DEADZONE; encoderPosition = 0; } else if (feedmultiply == 100 && int(encoderPosition) < -ENCODER_FEEDRATE_DEADZONE) { feedmultiply += int(encoderPosition) + ENCODER_FEEDRATE_DEADZONE; encoderPosition = 0; } else if (feedmultiply != 100) { feedmultiply += int(encoderPosition); encoderPosition = 0; } #endif //ULTIPANEL_FEEDMULTIPLY if (feedmultiply < 10) feedmultiply = 10; else if (feedmultiply > 999) feedmultiply = 999; #endif //ULTIPANEL } #ifdef ULTIPANEL static void lcd_return_to_status() { lcd_implementation_init( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) currentMenu == lcd_status_screen #endif ); lcd_goto_menu(lcd_status_screen, 0, false); } static void lcd_sdcard_pause() { card.pauseSDPrint(); } static void lcd_sdcard_resume() { card.startFileprint(); } float move_menu_scale; static void lcd_move_menu_axis(); static void lcd_sdcard_stop() { card.sdprinting = false; card.closefile(); quickStop(); if(SD_FINISHED_STEPPERRELEASE) { enquecommand_P(PSTR(SD_FINISHED_RELEASECOMMAND)); } autotempShutdown(); cancel_heatup = true; lcd_setstatus(MSG_PRINT_ABORTED); enquecommand_P(PSTR("M84")); } /* Menu implementation */ void lcd_preheat_pla() { setTargetHotend0(plaPreheatHotendTemp); setTargetBed(plaPreheatHPBTemp); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_abs() { setTargetHotend0(absPreheatHotendTemp); setTargetBed(absPreheatHPBTemp); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_pp() { setTargetHotend0(ppPreheatHotendTemp); setTargetBed(ppPreheatHPBTemp); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_pet() { setTargetHotend0(petPreheatHotendTemp); setTargetBed(petPreheatHPBTemp); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_hips() { setTargetHotend0(hipsPreheatHotendTemp); setTargetBed(hipsPreheatHPBTemp); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_flex() { setTargetHotend0(flexPreheatHotendTemp); setTargetBed(flexPreheatHPBTemp); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_cooldown() { setTargetHotend0(0); setTargetHotend1(0); setTargetHotend2(0); setTargetBed(0); fanSpeed = 0; lcd_return_to_status(); } static void lcd_preheat_menu() { START_MENU(); MENU_ITEM(back, MSG_MAIN, lcd_main_menu); MENU_ITEM(function, "ABS - " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP), lcd_preheat_abs); MENU_ITEM(function, "PLA - " STRINGIFY(PLA_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PLA_PREHEAT_HPB_TEMP), lcd_preheat_pla); MENU_ITEM(function, "PET - " STRINGIFY(PET_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PET_PREHEAT_HPB_TEMP), lcd_preheat_pet); MENU_ITEM(function, "HIPS - " STRINGIFY(HIPS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(HIPS_PREHEAT_HPB_TEMP), lcd_preheat_hips); MENU_ITEM(function, "PP - " STRINGIFY(PP_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PP_PREHEAT_HPB_TEMP), lcd_preheat_pp); MENU_ITEM(function, "FLEX - " STRINGIFY(FLEX_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FLEX_PREHEAT_HPB_TEMP), lcd_preheat_flex); MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown); END_MENU(); } static void lcd_support_menu() { START_MENU(); MENU_ITEM(back, MSG_MAIN, lcd_main_menu); MENU_ITEM(back, MSG_FW_VERSION " - " FW_version, lcd_main_menu); MENU_ITEM(back, "prusa3d.com", lcd_main_menu); MENU_ITEM(back, "forum.prusa3d.com", lcd_main_menu); MENU_ITEM(back, "howto.prusa3d.com", lcd_main_menu); MENU_ITEM(back, "Rev: " REVISION, lcd_main_menu); END_MENU(); } void lcd_unLoadFilament() { if(degHotend0() > EXTRUDE_MINTEMP){ enquecommand_P(PSTR(UNLOAD_FILAMENT_0)); enquecommand_P(PSTR(UNLOAD_FILAMENT_1)); }else{ lcd_implementation_clear(); lcd.setCursor(0, 0); lcd.print(MSG_ERROR); lcd.setCursor(0, 2); lcd.print(MSG_PREHEAT_NOZZLE); delay(2000); lcd_implementation_clear(); } lcd_return_to_status(); } void lcd_change_filament(){ lcd_implementation_clear(); lcd.setCursor(0, 1); lcd.print(MSG_CHANGING_FILAMENT); } void lcd_wait_interact(){ lcd_implementation_clear(); lcd.setCursor(0, 1); lcd.print(MSG_INSERT_FILAMENT); lcd.setCursor(0, 2); lcd.print(MSG_PRESS); } void lcd_change_success(){ lcd_implementation_clear(); lcd.setCursor(0, 2); lcd.print(MSG_CHANGE_SUCCESS); } void lcd_loading_color(){ lcd_implementation_clear(); lcd.setCursor(0, 0); lcd.print(MSG_LOADING_COLOR); lcd.setCursor(0, 2); lcd.print(MSG_PLEASE_WAIT); for(int i = 0; i<20; i++){ lcd.setCursor(i, 3); lcd.print("."); for(int j = 0;j<10 ; j++){ manage_heater(); manage_inactivity(true); delay(85); } } } void lcd_loading_filament(){ lcd_implementation_clear(); lcd.setCursor(0, 0); lcd.print(MSG_LOADING_FILAMENT); lcd.setCursor(0, 2); lcd.print(MSG_PLEASE_WAIT); for(int i = 0; i<20; i++){ lcd.setCursor(i, 3); lcd.print("."); for(int j = 0;j<10 ; j++){ manage_heater(); manage_inactivity(true); delay(110); } } } void lcd_alright(){ int enc_dif = 0; int cursor_pos = 1; lcd_implementation_clear(); lcd.setCursor(0, 0); lcd.print(MSG_CORRECTLY); lcd.setCursor(1, 1); lcd.print(MSG_YES); lcd.setCursor(1, 2); lcd.print(MSG_NOT_LOADED); lcd.setCursor(1, 3); lcd.print(MSG_NOT_COLOR); lcd.setCursor(0, 1); lcd.print(">"); enc_dif = encoderDiff; while(lcd_change_fil_state == 0){ manage_heater(); manage_inactivity(true); if( abs((enc_dif - encoderDiff))>4 ){ if ( (abs(enc_dif-encoderDiff)) > 1 ){ if (enc_dif > encoderDiff ){ cursor_pos --; } if (enc_dif < encoderDiff ){ cursor_pos ++; } if(cursor_pos >3){ cursor_pos = 3; } if(cursor_pos <1){ cursor_pos = 1; } lcd.setCursor(0, 1); lcd.print(" "); lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(0, 3); lcd.print(" "); lcd.setCursor(0, cursor_pos); lcd.print(">"); enc_dif = encoderDiff; delay(100); } } if(lcd_clicked()){ lcd_change_fil_state = cursor_pos; delay(500); } }; lcd_implementation_clear(); lcd_return_to_status(); } void lcd_LoadFilament() { if(degHotend0() > EXTRUDE_MINTEMP){ enquecommand_P(PSTR(LOAD_FILAMENT_0)); enquecommand_P(PSTR(LOAD_FILAMENT_1)); enquecommand_P(PSTR(LOAD_FILAMENT_2)); }else{ lcd_implementation_clear(); lcd.setCursor(0, 0); lcd.print(MSG_ERROR); lcd.setCursor(0, 2); lcd.print(MSG_PREHEAT_NOZZLE); delay(2000); lcd_implementation_clear(); } lcd_return_to_status(); } static void _lcd_move(const char *name, int axis, int min, int max) { if (encoderPosition != 0) { refresh_cmd_timeout(); current_position[axis] += float((int)encoderPosition) * move_menu_scale; if (min_software_endstops && current_position[axis] < min) current_position[axis] = min; if (max_software_endstops && current_position[axis] > max) current_position[axis] = max; encoderPosition = 0; #ifdef DELTA calculate_delta(current_position); plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder); #else plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder); #endif lcdDrawUpdate = 1; } if (lcdDrawUpdate) lcd_implementation_drawedit(name, ftostr31(current_position[axis])); if (LCD_CLICKED) lcd_goto_menu(lcd_move_menu_axis); } static void lcd_move_e() { if (encoderPosition != 0) { current_position[E_AXIS] += float((int)encoderPosition) * move_menu_scale; encoderPosition = 0; #ifdef DELTA calculate_delta(current_position); plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[E_AXIS]/60, active_extruder); #else plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[E_AXIS]/60, active_extruder); #endif lcdDrawUpdate = 1; } if (lcdDrawUpdate) { lcd_implementation_drawedit(PSTR("Extruder"), ftostr31(current_position[E_AXIS])); } if (LCD_CLICKED) lcd_goto_menu(lcd_move_menu_axis); } void EEPROM_save_B(int pos, int* value) { union Data data; data.value = *value; eeprom_write_byte((unsigned char*)pos, data.b[0]); eeprom_write_byte((unsigned char*)pos+1, data.b[1]); } void EEPROM_read_B(int pos, int* value) { union Data data; data.b[0] = eeprom_read_byte((unsigned char*)pos); data.b[1] = eeprom_read_byte((unsigned char*)pos+1); *value = data.value; } static void lcd_move_x() { _lcd_move(PSTR("X"), X_AXIS, X_MIN_POS, X_MAX_POS); } static void lcd_move_y() { _lcd_move(PSTR("Y"), Y_AXIS, Y_MIN_POS, Y_MAX_POS); } static void lcd_move_z() { _lcd_move(PSTR("Z"), Z_AXIS, Z_MIN_POS, Z_MAX_POS); } static void _lcd_babystep(int axis, const char *msg) { if (encoderPosition != 0) { babystepsTodo[axis] += (int)encoderPosition; babystepMem[axis] += (int)encoderPosition; encoderPosition = 0; lcdDrawUpdate = 1; } if (lcdDrawUpdate) lcd_implementation_drawedit_2(msg, ftostr51(babystepMem[axis])); if (LCD_CLICKED) lcd_goto_menu(lcd_tune_menu); EEPROM_save_B(4093,&babystepMem[0]); EEPROM_save_B(4091,&babystepMem[1]); EEPROM_save_B(4089,&babystepMem[2]); } static void lcd_babystep_x() { _lcd_babystep(X_AXIS, PSTR(MSG_BABYSTEPPING_X)); } static void lcd_babystep_y() { _lcd_babystep(Y_AXIS, PSTR(MSG_BABYSTEPPING_Y)); } static void lcd_babystep_z() { _lcd_babystep(Z_AXIS, PSTR(MSG_BABYSTEPPING_Z)); } void lcd_adjust_z(){ int enc_dif = 0; int cursor_pos = 1; int fsm = 0; lcd_implementation_clear(); lcd.setCursor(0, 0); lcd.print(MSG_ADJUSTZ); lcd.setCursor(1, 1); lcd.print(MSG_YES); lcd.setCursor(1, 2); lcd.print(MSG_NO); lcd.setCursor(0, 1); lcd.print(">"); enc_dif = encoderDiff; while(fsm == 0){ manage_heater(); manage_inactivity(true); if( abs((enc_dif - encoderDiff))>4 ){ if ( (abs(enc_dif-encoderDiff)) > 1 ){ if (enc_dif > encoderDiff ){ cursor_pos --; } if (enc_dif < encoderDiff ){ cursor_pos ++; } if(cursor_pos >2){ cursor_pos = 2; } if(cursor_pos <1){ cursor_pos = 1; } lcd.setCursor(0, 1); lcd.print(" "); lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(0, cursor_pos); lcd.print(">"); enc_dif = encoderDiff; delay(100); } } if(lcd_clicked()){ fsm = cursor_pos; if(fsm == 1){ EEPROM_read_B(4093,&babystepMem[0]); EEPROM_read_B(4091,&babystepMem[1]); EEPROM_read_B(4089,&babystepMem[2]); babystepsTodo[Z_AXIS] = babystepMem[2]; }else{ babystepMem[0] = 0; babystepMem[1] = 0; babystepMem[2] = 0; EEPROM_save_B(4093,&babystepMem[0]); EEPROM_save_B(4091,&babystepMem[1]); EEPROM_save_B(4089,&babystepMem[2]); } delay(500); } }; lcd_implementation_clear(); lcd_return_to_status(); } void lcd_move_menu_axis() { START_MENU(); MENU_ITEM(back, MSG_SETTINGS, lcd_settings_menu); MENU_ITEM(submenu, MSG_MOVE_X, lcd_move_x); MENU_ITEM(submenu, MSG_MOVE_Y, lcd_move_y); if (move_menu_scale < 10.0) { MENU_ITEM(submenu, MSG_MOVE_Z, lcd_move_z); MENU_ITEM(submenu, MSG_MOVE_E, lcd_move_e); } END_MENU(); } static void lcd_move_menu_1mm() { move_menu_scale = 1.0; lcd_move_menu_axis(); } void EEPROM_save(int pos, uint8_t* value, uint8_t size) { do { eeprom_write_byte((unsigned char*)pos, *value); pos++; value++; }while(--size); } void EEPROM_read(int pos, uint8_t* value, uint8_t size) { do { *value = eeprom_read_byte((unsigned char*)pos); pos++; value++; }while(--size); } static void lcd_silent_mode_set(){ SilentModeMenu = !SilentModeMenu; EEPROM_save(4095,(uint8_t*)&SilentModeMenu,sizeof(SilentModeMenu)); digipot_init(); lcd_goto_menu(lcd_settings_menu, 7); } static void lcd_settings_menu() { EEPROM_read(4095,(uint8_t*)&SilentModeMenu,sizeof(SilentModeMenu)); START_MENU(); MENU_ITEM(back, MSG_MAIN, lcd_main_menu); MENU_ITEM(submenu, MSG_TEMPERATURE, lcd_control_temperature_menu); MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu_1mm); MENU_ITEM(gcode, MSG_HOMEYZ, PSTR("G28 Z")); MENU_ITEM(gcode, MSG_DISABLE_STEPPERS, PSTR("M84")); MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28")); if(SilentModeMenu == 0){ MENU_ITEM(function, MSG_SILENT_MODE_OFF, lcd_silent_mode_set); }else{ MENU_ITEM(function, MSG_SILENT_MODE_ON, lcd_silent_mode_set); } END_MENU(); } static void lcd_main_menu() { SDscrool = 0; START_MENU(); // Majkl superawesome menu MENU_ITEM(back, MSG_WATCH, lcd_status_screen); if (movesplanned() || IS_SD_PRINTING) { MENU_ITEM(submenu, MSG_TUNE, lcd_tune_menu); }else{ MENU_ITEM(submenu, MSG_PREHEAT, lcd_preheat_menu); } #ifdef SDSUPPORT if (card.cardOK) { if (card.isFileOpen()) { if (card.sdprinting) MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause); else MENU_ITEM(function, MSG_RESUME_PRINT, lcd_sdcard_resume); MENU_ITEM(function, MSG_STOP_PRINT, lcd_sdcard_stop); }else{ MENU_ITEM(submenu, MSG_CARD_MENU, lcd_sdcard_menu); #if SDCARDDETECT < 1 MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21")); // SD-card changed by user #endif } }else{ MENU_ITEM(submenu, MSG_NO_CARD, lcd_sdcard_menu); #if SDCARDDETECT < 1 MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface #endif } #endif if (IS_SD_PRINTING) { }else{ MENU_ITEM(function, MSG_LOAD_FILAMENT, lcd_LoadFilament); MENU_ITEM(function, MSG_UNLOAD_FILAMENT, lcd_unLoadFilament); MENU_ITEM(submenu, MSG_SETTINGS, lcd_settings_menu); } MENU_ITEM(submenu, MSG_SUPPORT, lcd_support_menu); END_MENU(); } #ifdef SDSUPPORT static void lcd_autostart_sd() { card.lastnr=0; card.setroot(); card.checkautostart(true); } #endif static void lcd_silent_mode_set_tune(){ SilentModeMenu = !SilentModeMenu; EEPROM_save(4095,(uint8_t*)&SilentModeMenu,sizeof(SilentModeMenu)); digipot_init(); lcd_goto_menu(lcd_tune_menu, 9); } static void lcd_tune_menu() { EEPROM_read(4095,(uint8_t*)&SilentModeMenu,sizeof(SilentModeMenu)); EEPROM_read_B(4093,&babystepMem[0]); EEPROM_read_B(4091,&babystepMem[1]); EEPROM_read_B(4089,&babystepMem[2]); START_MENU(); MENU_ITEM(back, MSG_MAIN, lcd_main_menu); //1 MENU_ITEM_EDIT(int3, MSG_SPEED, &feedmultiply, 10, 999);//2 MENU_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 3);//3 MENU_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 3);//4 MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);//5 MENU_ITEM_EDIT(int3, MSG_FLOW, &extrudemultiply, 10, 999);//6 #ifdef FILAMENTCHANGEENABLE MENU_ITEM(gcode, MSG_FILAMENTCHANGE, PSTR("M600"));//7 #endif MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z);//8 if(SilentModeMenu == 0){ MENU_ITEM(function, MSG_SILENT_MODE_OFF, lcd_silent_mode_set_tune); }else{ MENU_ITEM(function, MSG_SILENT_MODE_ON, lcd_silent_mode_set_tune); } END_MENU(); } static void lcd_move_menu_01mm() { move_menu_scale = 0.1; lcd_move_menu_axis(); } static void lcd_control_temperature_menu() { #ifdef PIDTEMP // set up temp variables - undo the default scaling raw_Ki = unscalePID_i(Ki); raw_Kd = unscalePID_d(Kd); #endif START_MENU(); MENU_ITEM(back, MSG_SETTINGS, lcd_settings_menu); //MENU_ITEM(back, MSG_CONTROL, lcd_control_menu); #if TEMP_SENSOR_0 != 0 MENU_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 3); #endif #if TEMP_SENSOR_1 != 0 MENU_ITEM_EDIT(int3, MSG_NOZZLE1, &target_temperature[1], 0, HEATER_1_MAXTEMP - 3); #endif #if TEMP_SENSOR_2 != 0 MENU_ITEM_EDIT(int3, MSG_NOZZLE2, &target_temperature[2], 0, HEATER_2_MAXTEMP - 3); #endif #if TEMP_SENSOR_BED != 0 MENU_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 3); #endif MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255); #if defined AUTOTEMP && (TEMP_SENSOR_0 != 0) MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &autotemp_enabled); MENU_ITEM_EDIT(float3, MSG_MIN, &autotemp_min, 0, HEATER_0_MAXTEMP - 3); MENU_ITEM_EDIT(float3, MSG_MAX, &autotemp_max, 0, HEATER_0_MAXTEMP - 3); MENU_ITEM_EDIT(float32, MSG_FACTOR, &autotemp_factor, 0.0, 1.0); #endif END_MENU(); } #if SDCARDDETECT == -1 static void lcd_sd_refresh() { card.initsd(); currentMenuViewOffset = 0; } #endif static void lcd_sd_updir() { SDscrool = 0; card.updir(); currentMenuViewOffset = 0; } void lcd_sdcard_menu() { int tempScrool = 0; if (lcdDrawUpdate == 0 && LCD_CLICKED == 0) //delay(100); return; // nothing to do (so don't thrash the SD card) uint16_t fileCnt = card.getnrfilenames(); START_MENU(); MENU_ITEM(back, MSG_MAIN, lcd_main_menu); card.getWorkDirName(); if(card.filename[0]=='/') { #if SDCARDDETECT == -1 MENU_ITEM(function, LCD_STR_REFRESH MSG_REFRESH, lcd_sd_refresh); #endif }else{ MENU_ITEM(function, LCD_STR_FOLDER "..", lcd_sd_updir); } for(uint16_t i=0;i maxEditValue) encoderPosition = maxEditValue; \ if (lcdDrawUpdate) \ lcd_implementation_drawedit(editLabel, _strFunc(((_type)((int32_t)encoderPosition + minEditValue)) / scale)); \ if (LCD_CLICKED) \ { \ *((_type*)editValue) = ((_type)((int32_t)encoderPosition + minEditValue)) / scale; \ lcd_goto_menu(prevMenu, prevEncoderPosition); \ } \ } \ void menu_edit_callback_ ## _name () { \ menu_edit_ ## _name (); \ if (LCD_CLICKED) (*callbackFunc)(); \ } \ static void menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) \ { \ prevMenu = currentMenu; \ prevEncoderPosition = encoderPosition; \ \ lcdDrawUpdate = 2; \ currentMenu = menu_edit_ ## _name; \ \ editLabel = pstr; \ editValue = ptr; \ minEditValue = minValue * scale; \ maxEditValue = maxValue * scale - minEditValue; \ encoderPosition = (*ptr) * scale - minEditValue; \ }\ static void menu_action_setting_edit_callback_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue, menuFunc_t callback) \ { \ prevMenu = currentMenu; \ prevEncoderPosition = encoderPosition; \ \ lcdDrawUpdate = 2; \ currentMenu = menu_edit_callback_ ## _name; \ \ editLabel = pstr; \ editValue = ptr; \ minEditValue = minValue * scale; \ maxEditValue = maxValue * scale - minEditValue; \ encoderPosition = (*ptr) * scale - minEditValue; \ callbackFunc = callback;\ } menu_edit_type(int, int3, itostr3, 1) menu_edit_type(float, float3, ftostr3, 1) menu_edit_type(float, float32, ftostr32, 100) menu_edit_type(float, float43, ftostr43, 1000) menu_edit_type(float, float5, ftostr5, 0.01) menu_edit_type(float, float51, ftostr51, 10) menu_edit_type(float, float52, ftostr52, 100) menu_edit_type(unsigned long, long5, ftostr5, 0.01) /** End of menus **/ static void lcd_quick_feedback() { lcdDrawUpdate = 2; blocking_enc = millis() + 500; lcd_implementation_quick_feedback(); } /** Menu action functions **/ static void menu_action_back(menuFunc_t data) { lcd_goto_menu(data); } static void menu_action_submenu(menuFunc_t data) { lcd_goto_menu(data); } static void menu_action_gcode(const char* pgcode) { enquecommand_P(pgcode); } static void menu_action_function(menuFunc_t data) { (*data)(); } static void menu_action_sdfile(const char* filename, char* longFilename) { char cmd[30]; char* c; sprintf_P(cmd, PSTR("M23 %s"), filename); for(c = &cmd[4]; *c; c++) *c = tolower(*c); enquecommand(cmd); enquecommand_P(PSTR("M24")); lcd_return_to_status(); } static void menu_action_sddirectory(const char* filename, char* longFilename) { card.chdir(filename); encoderPosition = 0; } static void menu_action_setting_edit_bool(const char* pstr, bool* ptr) { *ptr = !(*ptr); } static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callback) { menu_action_setting_edit_bool(pstr, ptr); (*callback)(); } #endif//ULTIPANEL /** LCD API **/ void lcd_init() { lcd_implementation_init(); #ifdef NEWPANEL SET_INPUT(BTN_EN1); SET_INPUT(BTN_EN2); WRITE(BTN_EN1,HIGH); WRITE(BTN_EN2,HIGH); #if BTN_ENC > 0 SET_INPUT(BTN_ENC); WRITE(BTN_ENC,HIGH); #endif #ifdef REPRAPWORLD_KEYPAD pinMode(SHIFT_CLK,OUTPUT); pinMode(SHIFT_LD,OUTPUT); pinMode(SHIFT_OUT,INPUT); WRITE(SHIFT_OUT,HIGH); WRITE(SHIFT_LD,HIGH); #endif #else // Not NEWPANEL #ifdef SR_LCD_2W_NL // Non latching 2 wire shift register pinMode (SR_DATA_PIN, OUTPUT); pinMode (SR_CLK_PIN, OUTPUT); #elif defined(SHIFT_CLK) pinMode(SHIFT_CLK,OUTPUT); pinMode(SHIFT_LD,OUTPUT); pinMode(SHIFT_EN,OUTPUT); pinMode(SHIFT_OUT,INPUT); WRITE(SHIFT_OUT,HIGH); WRITE(SHIFT_LD,HIGH); WRITE(SHIFT_EN,LOW); #else #ifdef ULTIPANEL #error ULTIPANEL requires an encoder #endif #endif // SR_LCD_2W_NL #endif//!NEWPANEL #if defined (SDSUPPORT) && defined(SDCARDDETECT) && (SDCARDDETECT > 0) pinMode(SDCARDDETECT,INPUT); WRITE(SDCARDDETECT, HIGH); lcd_oldcardstatus = IS_SD_INSERTED; #endif//(SDCARDDETECT > 0) #ifdef LCD_HAS_SLOW_BUTTONS slow_buttons = 0; #endif lcd_buttons_update(); #ifdef ULTIPANEL encoderDiff = 0; #endif } void lcd_update() { static unsigned long timeoutToStatus = 0; #ifdef LCD_HAS_SLOW_BUTTONS slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context #endif lcd_buttons_update(); #if (SDCARDDETECT > 0) if((IS_SD_INSERTED != lcd_oldcardstatus && lcd_detected())) { lcdDrawUpdate = 2; lcd_oldcardstatus = IS_SD_INSERTED; lcd_implementation_init( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) currentMenu == lcd_status_screen #endif ); if(lcd_oldcardstatus) { card.initsd(); LCD_MESSAGEPGM(MSG_SD_INSERTED); } else { card.release(); LCD_MESSAGEPGM(MSG_SD_REMOVED); } } #endif//CARDINSERTED if (lcd_next_update_millis < millis()) { #ifdef ULTIPANEL #ifdef REPRAPWORLD_KEYPAD if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) { reprapworld_keypad_move_z_up(); } if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) { reprapworld_keypad_move_z_down(); } if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) { reprapworld_keypad_move_x_left(); } if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) { reprapworld_keypad_move_x_right(); } if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) { reprapworld_keypad_move_y_down(); } if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) { reprapworld_keypad_move_y_up(); } if (REPRAPWORLD_KEYPAD_MOVE_HOME) { reprapworld_keypad_move_home(); } #endif if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP) { lcdDrawUpdate = 1; encoderPosition += encoderDiff / ENCODER_PULSES_PER_STEP; encoderDiff = 0; timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; } if (LCD_CLICKED) timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; #endif//ULTIPANEL #ifdef DOGLCD // Changes due to different driver architecture of the DOGM display blink++; // Variable for fan animation and alive dot u8g.firstPage(); do { u8g.setFont(u8g_font_6x10_marlin); u8g.setPrintPos(125,0); if (blink % 2) u8g.setColorIndex(1); else u8g.setColorIndex(0); // Set color for the alive dot u8g.drawPixel(127,63); // draw alive dot u8g.setColorIndex(1); // black on white (*currentMenu)(); if (!lcdDrawUpdate) break; // Terminate display update, when nothing new to draw. This must be done before the last dogm.next() } while( u8g.nextPage() ); #else (*currentMenu)(); #endif #ifdef LCD_HAS_STATUS_INDICATORS lcd_implementation_update_indicators(); #endif #ifdef ULTIPANEL if(timeoutToStatus < millis() && currentMenu != lcd_status_screen) { lcd_return_to_status(); lcdDrawUpdate = 2; } #endif//ULTIPANEL if (lcdDrawUpdate == 2) lcd_implementation_clear(); if (lcdDrawUpdate) lcdDrawUpdate--; lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL; } } void lcd_ignore_click(bool b) { ignore_click = b; wait_for_unclick = false; } void lcd_finishstatus() { int len = strlen(lcd_status_message); if (len > 0) { while (len < LCD_WIDTH) { lcd_status_message[len++] = ' '; } } lcd_status_message[LCD_WIDTH] = '\0'; #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) #if PROGRESS_MSG_EXPIRE > 0 messageTick = #endif progressBarTick = millis(); #endif lcdDrawUpdate = 2; #ifdef FILAMENT_LCD_DISPLAY message_millis = millis(); //get status message to show up for a while #endif } void lcd_setstatus(const char* message) { if (lcd_status_message_level > 0) return; strncpy(lcd_status_message, message, LCD_WIDTH); lcd_finishstatus(); } void lcd_setstatuspgm(const char* message) { if (lcd_status_message_level > 0) return; strncpy_P(lcd_status_message, message, LCD_WIDTH); lcd_finishstatus(); } void lcd_setalertstatuspgm(const char* message) { lcd_setstatuspgm(message); lcd_status_message_level = 1; #ifdef ULTIPANEL lcd_return_to_status(); #endif//ULTIPANEL } void lcd_reset_alert_level() { lcd_status_message_level = 0; } #ifdef DOGLCD void lcd_setcontrast(uint8_t value) { lcd_contrast = value & 63; u8g.setContrast(lcd_contrast); } #endif #ifdef ULTIPANEL /* Warning: This function is called from interrupt context */ void lcd_buttons_update() { #ifdef NEWPANEL uint8_t newbutton=0; if(READ(BTN_EN1)==0) newbutton|=EN_A; if(READ(BTN_EN2)==0) newbutton|=EN_B; #if BTN_ENC > 0 if((blocking_enc>1; if(READ(SHIFT_OUT)) newbutton_reprapworld_keypad|=(1<<7); WRITE(SHIFT_CLK,HIGH); WRITE(SHIFT_CLK,LOW); } buttons_reprapworld_keypad=~newbutton_reprapworld_keypad; //invert it, because a pressed switch produces a logical 0 #endif #else //read it from the shift register uint8_t newbutton=0; WRITE(SHIFT_LD,LOW); WRITE(SHIFT_LD,HIGH); unsigned char tmp_buttons=0; for(int8_t i=0;i<8;i++) { newbutton = newbutton>>1; if(READ(SHIFT_OUT)) newbutton|=(1<<7); WRITE(SHIFT_CLK,HIGH); WRITE(SHIFT_CLK,LOW); } buttons=~newbutton; //invert it, because a pressed switch produces a logical 0 #endif//!NEWPANEL //manage encoder rotation uint8_t enc=0; if (buttons & EN_A) enc |= B01; if (buttons & EN_B) enc |= B10; if(enc != lastEncoderBits) { switch(enc) { case encrot0: if(lastEncoderBits==encrot3) encoderDiff++; else if(lastEncoderBits==encrot1) encoderDiff--; break; case encrot1: if(lastEncoderBits==encrot0) encoderDiff++; else if(lastEncoderBits==encrot2) encoderDiff--; break; case encrot2: if(lastEncoderBits==encrot1) encoderDiff++; else if(lastEncoderBits==encrot3) encoderDiff--; break; case encrot3: if(lastEncoderBits==encrot2) encoderDiff++; else if(lastEncoderBits==encrot0) encoderDiff--; break; } } lastEncoderBits = enc; } bool lcd_detected(void) { #if (defined(LCD_I2C_TYPE_MCP23017) || defined(LCD_I2C_TYPE_MCP23008)) && defined(DETECT_DEVICE) return lcd.LcdDetected() == 1; #else return true; #endif } void lcd_buzz(long duration, uint16_t freq) { #ifdef LCD_USE_I2C_BUZZER lcd.buzz(duration,freq); #endif } bool lcd_clicked() { return LCD_CLICKED; } #endif//ULTIPANEL /********************************/ /** Float conversion utilities **/ /********************************/ // convert float to string with +123.4 format char conv[8]; char *ftostr3(const float &x) { return itostr3((int)x); } char *itostr2(const uint8_t &x) { //sprintf(conv,"%5.1f",x); int xx=x; conv[0]=(xx/10)%10+'0'; conv[1]=(xx)%10+'0'; conv[2]=0; return conv; } // Convert float to string with 123.4 format, dropping sign char *ftostr31(const float &x) { int xx=x*10; conv[0]=(xx>=0)?'+':'-'; xx=abs(xx); conv[1]=(xx/1000)%10+'0'; conv[2]=(xx/100)%10+'0'; conv[3]=(xx/10)%10+'0'; conv[4]='.'; conv[5]=(xx)%10+'0'; conv[6]=0; return conv; } // Convert float to string with 123.4 format char *ftostr31ns(const float &x) { int xx=x*10; //conv[0]=(xx>=0)?'+':'-'; xx=abs(xx); conv[0]=(xx/1000)%10+'0'; conv[1]=(xx/100)%10+'0'; conv[2]=(xx/10)%10+'0'; conv[3]='.'; conv[4]=(xx)%10+'0'; conv[5]=0; return conv; } char *ftostr32(const float &x) { long xx=x*100; if (xx >= 0) conv[0]=(xx/10000)%10+'0'; else conv[0]='-'; xx=abs(xx); conv[1]=(xx/1000)%10+'0'; conv[2]=(xx/100)%10+'0'; conv[3]='.'; conv[4]=(xx/10)%10+'0'; conv[5]=(xx)%10+'0'; conv[6]=0; return conv; } // Convert float to string with 1.234 format char *ftostr43(const float &x) { long xx = x * 1000; if (xx >= 0) conv[0] = (xx / 1000) % 10 + '0'; else conv[0] = '-'; xx = abs(xx); conv[1] = '.'; conv[2] = (xx / 100) % 10 + '0'; conv[3] = (xx / 10) % 10 + '0'; conv[4] = (xx) % 10 + '0'; conv[5] = 0; return conv; } //Float to string with 1.23 format char *ftostr12ns(const float &x) { long xx=x*100; xx=abs(xx); conv[0]=(xx/100)%10+'0'; conv[1]='.'; conv[2]=(xx/10)%10+'0'; conv[3]=(xx)%10+'0'; conv[4]=0; return conv; } // convert float to space-padded string with -_23.4_ format char *ftostr32sp(const float &x) { long xx = abs(x * 100); uint8_t dig; if (x < 0) { // negative val = -_0 conv[0] = '-'; dig = (xx / 1000) % 10; conv[1] = dig ? '0' + dig : ' '; } else { // positive val = __0 dig = (xx / 10000) % 10; if (dig) { conv[0] = '0' + dig; conv[1] = '0' + (xx / 1000) % 10; } else { conv[0] = ' '; dig = (xx / 1000) % 10; conv[1] = dig ? '0' + dig : ' '; } } conv[2] = '0' + (xx / 100) % 10; // lsd always dig = xx % 10; if (dig) { // 2 decimal places conv[5] = '0' + dig; conv[4] = '0' + (xx / 10) % 10; conv[3] = '.'; } else { // 1 or 0 decimal place dig = (xx / 10) % 10; if (dig) { conv[4] = '0' + dig; conv[3] = '.'; } else { conv[3] = conv[4] = ' '; } conv[5] = ' '; } conv[6] = '\0'; return conv; } char *itostr31(const int &xx) { conv[0]=(xx>=0)?'+':'-'; conv[1]=(xx/1000)%10+'0'; conv[2]=(xx/100)%10+'0'; conv[3]=(xx/10)%10+'0'; conv[4]='.'; conv[5]=(xx)%10+'0'; conv[6]=0; return conv; } // Convert int to rj string with 123 or -12 format char *itostr3(const int &x) { int xx = x; if (xx < 0) { conv[0]='-'; xx = -xx; } else if (xx >= 100) conv[0]=(xx/100)%10+'0'; else conv[0]=' '; if (xx >= 10) conv[1]=(xx/10)%10+'0'; else conv[1]=' '; conv[2]=(xx)%10+'0'; conv[3]=0; return conv; } // Convert int to lj string with 123 format char *itostr3left(const int &xx) { if (xx >= 100) { conv[0]=(xx/100)%10+'0'; conv[1]=(xx/10)%10+'0'; conv[2]=(xx)%10+'0'; conv[3]=0; } else if (xx >= 10) { conv[0]=(xx/10)%10+'0'; conv[1]=(xx)%10+'0'; conv[2]=0; } else { conv[0]=(xx)%10+'0'; conv[1]=0; } return conv; } // Convert int to rj string with 1234 format char *itostr4(const int &xx) { conv[0] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' '; conv[1] = xx >= 100 ? (xx / 100) % 10 + '0' : ' '; conv[2] = xx >= 10 ? (xx / 10) % 10 + '0' : ' '; conv[3] = xx % 10 + '0'; conv[4] = 0; return conv; } // Convert float to rj string with 12345 format char *ftostr5(const float &x) { long xx = abs(x); conv[0] = xx >= 10000 ? (xx / 10000) % 10 + '0' : ' '; conv[1] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' '; conv[2] = xx >= 100 ? (xx / 100) % 10 + '0' : ' '; conv[3] = xx >= 10 ? (xx / 10) % 10 + '0' : ' '; conv[4] = xx % 10 + '0'; conv[5] = 0; return conv; } // Convert float to string with +1234.5 format char *ftostr51(const float &x) { long xx=x*10; conv[0]=(xx>=0)?'+':'-'; xx=abs(xx); conv[1]=(xx/10000)%10+'0'; conv[2]=(xx/1000)%10+'0'; conv[3]=(xx/100)%10+'0'; conv[4]=(xx/10)%10+'0'; conv[5]='.'; conv[6]=(xx)%10+'0'; conv[7]=0; return conv; } // Convert float to string with +123.45 format char *ftostr52(const float &x) { long xx=x*100; conv[0]=(xx>=0)?'+':'-'; xx=abs(xx); conv[1]=(xx/10000)%10+'0'; conv[2]=(xx/1000)%10+'0'; conv[3]=(xx/100)%10+'0'; conv[4]='.'; conv[5]=(xx/10)%10+'0'; conv[6]=(xx)%10+'0'; conv[7]=0; return conv; } // Callback for after editing PID i value // grab the PID i value out of the temp variable; scale it; then update the PID driver void copy_and_scalePID_i() { #ifdef PIDTEMP Ki = scalePID_i(raw_Ki); updatePID(); #endif } // Callback for after editing PID d value // grab the PID d value out of the temp variable; scale it; then update the PID driver void copy_and_scalePID_d() { #ifdef PIDTEMP Kd = scalePID_d(raw_Kd); updatePID(); #endif } #endif //ULTRA_LCD