#include "Marlin.h" #include "planner.h" #include "temperature.h" #include "ultralcd.h" #include "ConfigurationStore.h" #include "Configuration_prusa.h" #ifdef MESH_BED_LEVELING #include "mesh_bed_leveling.h" #endif M500_conf cs; #ifdef DEBUG_EEPROM_WRITE #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value), #value) #else //DEBUG_EEPROM_WRITE #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value), 0) #endif //DEBUG_EEPROM_WRITE void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size, char* name) { #ifdef DEBUG_EEPROM_WRITE printf_P(PSTR("EEPROM_WRITE_VAR addr=0x%04x size=0x%02hhx name=%s\n"), pos, size, name); #endif //DEBUG_EEPROM_WRITE while (size--) { uint8_t * const p = (uint8_t * const)pos; uint8_t v = *value; // EEPROM has only ~100,000 write cycles, // so only write bytes that have changed! if (v != eeprom_read_byte(p)) { eeprom_write_byte(p, v); if (eeprom_read_byte(p) != v) { SERIAL_ECHOLNPGM("EEPROM Error"); return; } } pos++; value++; }; } #ifdef DEBUG_EEPROM_READ #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value), #value) #else //DEBUG_EEPROM_READ #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value), 0) #endif //DEBUG_EEPROM_READ void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size, char* name) { #ifdef DEBUG_EEPROM_READ printf_P(PSTR("EEPROM_READ_VAR addr=0x%04x size=0x%02hhx name=%s\n"), pos, size, name); #endif //DEBUG_EEPROM_READ do { *value = eeprom_read_byte((unsigned char*)pos); pos++; value++; }while(--size); } //====================================================================================== #define EEPROM_OFFSET 20 // IMPORTANT: Whenever there are changes made to the variables stored in EEPROM // in the functions below, also increment the version number. This makes sure that // the default values are used whenever there is a change to the data, to prevent // wrong data being written to the variables. // ALSO: always make sure the variables in the Store and retrieve sections are in the same order. #define EEPROM_VERSION "V2" #ifdef EEPROM_SETTINGS void Config_StoreSettings(uint16_t offset) { int i = offset; strcpy(cs.version,"000"); //!< invalidate data first @TODO use erase to save one erase cycle _EEPROM_writeData(i,reinterpret_cast(&cs),sizeof(cs),0); strcpy(cs.version,EEPROM_VERSION); // // validate data i = offset; EEPROM_WRITE_VAR(i,cs.version); // validate data SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Settings Stored"); } #endif //EEPROM_SETTINGS #ifndef DISABLE_M503 void Config_PrintSettings(uint8_t level) { // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown #ifdef TMC2130 printf_P(PSTR( "%SSteps per unit:\n%S M92 X%.2f Y%.2f Z%.2f E%.2f\n" "%SMaximum feedrates - normal (mm/s):\n%S M203 X%.2f Y%.2f Z%.2f E%.2f\n" "%SMaximum feedrates - stealth (mm/s):\n%S M203 X%.2f Y%.2f Z%.2f E%.2f\n" "%SMaximum acceleration - normal (mm/s2):\n%S M201 X%lu Y%lu Z%lu E%lu\n" "%SMaximum acceleration - stealth (mm/s2):\n%S M201 X%lu Y%lu Z%lu E%lu\n" "%SAcceleration: S=acceleration, T=retract acceleration\n%S M204 S%.2f T%.2f\n" "%SAdvanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)\n%S M205 S%.2f T%.2f B%.2f X%.2f Y%.2f Z%.2f E%.2f\n" "%SHome offset (mm):\n%S M206 X%.2f Y%.2f Z%.2f\n" ), echomagic, echomagic, cs.axis_steps_per_unit[X_AXIS], cs.axis_steps_per_unit[Y_AXIS], cs.axis_steps_per_unit[Z_AXIS], cs.axis_steps_per_unit[E_AXIS], echomagic, echomagic, cs.max_feedrate_normal[X_AXIS], cs.max_feedrate_normal[Y_AXIS], cs.max_feedrate_normal[Z_AXIS], cs.max_feedrate_normal[E_AXIS], echomagic, echomagic, max_feedrate_silent[X_AXIS], max_feedrate_silent[Y_AXIS], max_feedrate_silent[Z_AXIS], max_feedrate_silent[E_AXIS], echomagic, echomagic, cs.max_acceleration_units_per_sq_second_normal[X_AXIS], cs.max_acceleration_units_per_sq_second_normal[Y_AXIS], cs.max_acceleration_units_per_sq_second_normal[Z_AXIS], cs.max_acceleration_units_per_sq_second_normal[E_AXIS], echomagic, echomagic, max_acceleration_units_per_sq_second_silent[X_AXIS], max_acceleration_units_per_sq_second_silent[Y_AXIS], max_acceleration_units_per_sq_second_silent[Z_AXIS], max_acceleration_units_per_sq_second_silent[E_AXIS], echomagic, echomagic, cs.acceleration, cs.retract_acceleration, echomagic, echomagic, cs.minimumfeedrate, cs.mintravelfeedrate, cs.minsegmenttime, cs.max_jerk[X_AXIS], cs.max_jerk[Y_AXIS], cs.max_jerk[Z_AXIS], cs.max_jerk[E_AXIS], echomagic, echomagic, cs.add_homing[X_AXIS], cs.add_homing[Y_AXIS], cs.add_homing[Z_AXIS] #else //TMC2130 printf_P(PSTR( "%SSteps per unit:\n%S M92 X%.2f Y%.2f Z%.2f E%.2f\n" "%SMaximum feedrates (mm/s):\n%S M203 X%.2f Y%.2f Z%.2f E%.2f\n" "%SMaximum acceleration (mm/s2):\n%S M201 X%lu Y%lu Z%lu E%lu\n" "%SAcceleration: S=acceleration, T=retract acceleration\n%S M204 S%.2f T%.2f\n" "%SAdvanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)\n%S M205 S%.2f T%.2f B%.2f X%.2f Y%.2f Z%.2f E%.2f\n" "%SHome offset (mm):\n%S M206 X%.2f Y%.2f Z%.2f\n" ), echomagic, echomagic, cs.axis_steps_per_unit[X_AXIS], cs.axis_steps_per_unit[Y_AXIS], cs.axis_steps_per_unit[Z_AXIS], cs.axis_steps_per_unit[E_AXIS], echomagic, echomagic, max_feedrate[X_AXIS], max_feedrate[Y_AXIS], max_feedrate[Z_AXIS], max_feedrate[E_AXIS], echomagic, echomagic, max_acceleration_units_per_sq_second[X_AXIS], max_acceleration_units_per_sq_second[Y_AXIS], max_acceleration_units_per_sq_second[Z_AXIS], max_acceleration_units_per_sq_second[E_AXIS], echomagic, echomagic, cs.acceleration, cs.retract_acceleration, echomagic, echomagic, cs.minimumfeedrate, cs.mintravelfeedrate, cs.minsegmenttime, cs.max_jerk[X_AXIS], cs.max_jerk[Y_AXIS], cs.max_jerk[Z_AXIS], cs.max_jerk[E_AXIS], echomagic, echomagic, cs.add_homing[X_AXIS], cs.add_homing[Y_AXIS], cs.add_homing[Z_AXIS] #endif //TMC2130 ); #ifdef PIDTEMP printf_P(PSTR("%SPID settings:\n%S M301 P%.2f I%.2f D%.2f\n"), echomagic, echomagic, Kp, unscalePID_i(Ki), unscalePID_d(Kd)); #endif #ifdef PIDTEMPBED printf_P(PSTR("%SPID heatbed settings:\n%S M304 P%.2f I%.2f D%.2f\n"), echomagic, echomagic, bedKp, unscalePID_i(bedKi), unscalePID_d(bedKd)); #endif #ifdef FWRETRACT printf_P(PSTR( "%SRetract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)\n%S M207 S%.2f F%.2f Z%.2f\n" "%SRecover: S=Extra length (mm) F:Speed (mm/m)\n%S M208 S%.2f F%.2f\n" "%SAuto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries\n%S M209 S%d\n" ), echomagic, echomagic, retract_length, retract_feedrate*60, retract_zlift, echomagic, echomagic, retract_recover_length, retract_recover_feedrate*60, echomagic, echomagic, (autoretract_enabled ? 1 : 0) ); #if EXTRUDERS > 1 printf_P(PSTR("%SMulti-extruder settings:\n%S Swap retract length (mm): %.2f\n%S Swap rec. addl. length (mm): %.2f\n"), echomagic, echomagic, retract_length_swap, echomagic, retract_recover_length_swap); #endif if (volumetric_enabled) { printf_P(PSTR("%SFilament settings:\n%S M200 D%.2f\n"), echomagic, echomagic, filament_size[0]); #if EXTRUDERS > 1 printf_P(PSTR("%S M200 T1 D%.2f\n"), echomagic, echomagic, filament_size[1]); #if EXTRUDERS > 2 printf_P(PSTR("%S M200 T1 D%.2f\n"), echomagic, echomagic, filament_size[2]); #endif #endif } else { printf_P(PSTR("%SFilament settings: Disabled\n"), echomagic); } #endif if (level >= 10) { #ifdef LIN_ADVANCE printf_P(PSTR("%SLinear advance settings:\n M900 K%.2f E/D = %.2f\n"), echomagic, extruder_advance_k, advance_ed_ratio); #endif //LIN_ADVANCE } } #endif #ifdef EEPROM_SETTINGS static_assert (EXTRUDERS == 1, "ConfigurationStore M500_conf not implemented for more extruders."); static_assert (NUM_AXIS == 4, "ConfigurationStore M500_conf not implemented for more axis."); #ifdef ENABLE_AUTO_BED_LEVELING static_assert (false, "zprobe_zoffset was not initialized in printers in field to -(Z_PROBE_OFFSET_FROM_EXTRUDER), so it contains" "0.0, if this is not acceptable, increment EEPROM_VERSION to force use default_conf"); #endif static const M500_conf default_conf PROGMEM = { EEPROM_VERSION, DEFAULT_AXIS_STEPS_PER_UNIT, DEFAULT_MAX_FEEDRATE, DEFAULT_MAX_ACCELERATION, DEFAULT_ACCELERATION, DEFAULT_RETRACT_ACCELERATION, DEFAULT_MINIMUMFEEDRATE, DEFAULT_MINTRAVELFEEDRATE, DEFAULT_MINSEGMENTTIME, {DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK, DEFAULT_EJERK}, {0,0,0}, -(Z_PROBE_OFFSET_FROM_EXTRUDER), DEFAULT_Kp, DEFAULT_Ki*PID_dT, DEFAULT_Kd/PID_dT, DEFAULT_bedKp, DEFAULT_bedKi*PID_dT, DEFAULT_bedKd/PID_dT, 0, false, RETRACT_LENGTH, RETRACT_FEEDRATE, RETRACT_ZLIFT, RETRACT_RECOVER_LENGTH, RETRACT_RECOVER_FEEDRATE, false, {DEFAULT_NOMINAL_FILAMENT_DIA}, DEFAULT_MAX_FEEDRATE_SILENT, DEFAULT_MAX_ACCELERATION_SILENT, }; static_assert (sizeof(M500_conf) == 188, "sizeof(M500_conf) has changed, ensure that version has been incremented, " "or if you added members in the end of struct, ensure that historically uninitialized values will be initialized"); //! //! @retval true Stored or default settings retrieved //! @retval false default settings retrieved, eeprom was erased. bool Config_RetrieveSettings(uint16_t offset) { int i=offset; bool previous_settings_retrieved = true; char ver[4]=EEPROM_VERSION; EEPROM_READ_VAR(i,cs.version); //read stored version // SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << cs.version << "]"); if (strncmp(ver,cs.version,3) == 0) // version number match { i=offset; EEPROM_READ_VAR(i,cs); if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK; if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK; calculate_extruder_multipliers(); #ifdef TMC2130 for (uint8_t j = X_AXIS; j <= Y_AXIS; j++) { if (cs.max_feedrate_normal[j] > NORMAL_MAX_FEEDRATE_XY) cs.max_feedrate_normal[j] = NORMAL_MAX_FEEDRATE_XY; if (max_feedrate_silent[j] > SILENT_MAX_FEEDRATE_XY) max_feedrate_silent[j] = SILENT_MAX_FEEDRATE_XY; if (cs.max_acceleration_units_per_sq_second_normal[j] > NORMAL_MAX_ACCEL_XY) cs.max_acceleration_units_per_sq_second_normal[j] = NORMAL_MAX_ACCEL_XY; if (max_acceleration_units_per_sq_second_silent[j] > SILENT_MAX_ACCEL_XY) max_acceleration_units_per_sq_second_silent[j] = SILENT_MAX_ACCEL_XY; } #endif //TMC2130 reset_acceleration_rates(); // Call updatePID (similar to when we have processed M301) updatePID(); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Stored settings retrieved"); } else { Config_ResetDefault(); //Return false to inform user that eeprom version was changed and firmware is using default hardcoded settings now. //In case that storing to eeprom was not used yet, do not inform user that hardcoded settings are used. if (eeprom_read_byte((uint8_t *)offset) != 0xFF || eeprom_read_byte((uint8_t *)offset + 1) != 0xFF || eeprom_read_byte((uint8_t *)offset + 2) != 0xFF) { previous_settings_retrieved = false; } } #ifdef EEPROM_CHITCHAT Config_PrintSettings(); #endif return previous_settings_retrieved; } #endif void Config_ResetDefault() { memcpy_P(&cs,&default_conf, sizeof(cs)); // steps per sq second need to be updated to agree with the units per sq second reset_acceleration_rates(); #ifdef PIDTEMP updatePID(); #ifdef PID_ADD_EXTRUSION_RATE Kc = DEFAULT_Kc; //this is not stored by Config_StoreSettings #endif//PID_ADD_EXTRUSION_RATE #endif//PIDTEMP calculate_extruder_multipliers(); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded"); }