/* -*- c++ -*- */ /* Reprap firmware based on Sprinter and grbl. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* This firmware is a mashup between Sprinter and grbl. (https://github.com/kliment/Sprinter) (https://github.com/simen/grbl/tree) It has preliminary support for Matthew Roberts advance algorithm http://reprap.org/pipermail/reprap-dev/2011-May/003323.html */ #include "Marlin.h" #ifdef ENABLE_AUTO_BED_LEVELING #include "vector_3.h" #ifdef AUTO_BED_LEVELING_GRID #include "qr_solve.h" #endif #endif // ENABLE_AUTO_BED_LEVELING #ifdef MESH_BED_LEVELING #include "mesh_bed_leveling.h" #include "mesh_bed_calibration.h" #endif #include "ultralcd.h" #include "Configuration_prusa.h" #include "planner.h" #include "stepper.h" #include "temperature.h" #include "motion_control.h" #include "cardreader.h" #include "watchdog.h" #include "ConfigurationStore.h" #include "language.h" #include "pins_arduino.h" #include "math.h" #include "util.h" #ifdef BLINKM #include "BlinkM.h" #include "Wire.h" #endif #ifdef ULTRALCD #include "ultralcd.h" #endif #if NUM_SERVOS > 0 #include "Servo.h" #endif #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #include #endif #define VERSION_STRING "1.0.2" #include "ultralcd.h" // Macros for bit masks #define BIT(b) (1<<(b)) #define TEST(n,b) (((n)&BIT(b))!=0) #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b)) // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes //Implemented Codes //------------------- // PRUSA CODES // P F - Returns FW versions // P R - Returns revision of printer // G0 -> G1 // G1 - Coordinated Movement X Y Z E // G2 - CW ARC // G3 - CCW ARC // G4 - Dwell S or P // G10 - retract filament according to settings of M207 // G11 - retract recover filament according to settings of M208 // G28 - Home all Axis // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet. // G30 - Single Z Probe, probes bed at current XY location. // G31 - Dock sled (Z_PROBE_SLED only) // G32 - Undock sled (Z_PROBE_SLED only) // G80 - Automatic mesh bed leveling // G81 - Print bed profile // G90 - Use Absolute Coordinates // G91 - Use Relative Coordinates // G92 - Set current position to coordinates given // M Codes // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled) // M1 - Same as M0 // M17 - Enable/Power all stepper motors // M18 - Disable all stepper motors; same as M84 // M20 - List SD card // M21 - Init SD card // M22 - Release SD card // M23 - Select SD file (M23 filename.g) // M24 - Start/resume SD print // M25 - Pause SD print // M26 - Set SD position in bytes (M26 S12345) // M27 - Report SD print status // M28 - Start SD write (M28 filename.g) // M29 - Stop SD write // M30 - Delete file from SD (M30 filename.g) // M31 - Output time since last M109 or SD card start to serial // M32 - Select file and start SD print (Can be used _while_ printing from SD card files): // syntax "M32 /path/filename#", or "M32 S !filename#" // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include). // The '#' is necessary when calling from within sd files, as it stops buffer prereading // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used. // M80 - Turn on Power Supply // M81 - Turn off Power Supply // M82 - Set E codes absolute (default) // M83 - Set E codes relative while in Absolute Coordinates (G90) mode // M84 - Disable steppers until next move, // or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout. // M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default) // M92 - Set axis_steps_per_unit - same syntax as G92 // M104 - Set extruder target temp // M105 - Read current temp // M106 - Fan on // M107 - Fan off // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling // IF AUTOTEMP is enabled, S B F. Exit autotemp by any M109 without F // M112 - Emergency stop // M114 - Output current position to serial port // M115 - Capabilities string // M117 - display message // M119 - Output Endstop status to serial port // M126 - Solenoid Air Valve Open (BariCUDA support by jmil) // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil) // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil) // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil) // M140 - Set bed target temp // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling // M200 D- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters). // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!! // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk // M206 - set additional homing offset // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec] // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. // M218 - set hotend offset (in mm): T X Y // M220 S- set speed factor override percentage // M221 S- set extrude factor override percentage // M226 P S- Wait until the specified pin reaches the state required // M240 - Trigger a camera to take a photograph // M250 - Set LCD contrast C (value 0..63) // M280 - set servo position absolute. P: servo index, S: angle or microseconds // M300 - Play beep sound S P // M301 - Set PID parameters P I and D // M302 - Allow cold extrudes, or set the minimum extrude S. // M303 - PID relay autotune S sets the target temperature. (default target temperature = 150C) // M304 - Set bed PID parameters P I and D // M400 - Finish all moves // M401 - Lower z-probe if present // M402 - Raise z-probe if present // M404 - N Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters // M405 - Turn on Filament Sensor extrusion control. Optional D to set delay in centimeters between sensor and extruder // M406 - Turn off Filament Sensor extrusion control // M407 - Displays measured filament diameter // M500 - stores parameters in EEPROM // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. // M503 - print the current settings (from memory not from EEPROM) // M509 - force language selection on next restart // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] // M605 - Set dual x-carriage movement mode: S [ X R ] // M907 - Set digital trimpot motor current using axis codes. // M908 - Control digital trimpot directly. // M350 - Set microstepping mode. // M351 - Toggle MS1 MS2 pins directly. // M928 - Start SD logging (M928 filename.g) - ended by M29 // M999 - Restart after being stopped by error //Stepper Movement Variables //=========================================================================== //=============================imported variables============================ //=========================================================================== //=========================================================================== //=============================public variables============================= //=========================================================================== #ifdef SDSUPPORT CardReader card; #endif union Data { byte b[2]; int value; }; #define BABYSTEP_LOADZ_BY_PLANNER // Number of baby steps applied int babystepLoadZ = 0; float homing_feedrate[] = HOMING_FEEDRATE; // Currently only the extruder axis may be switched to a relative mode. // Other axes are always absolute or relative based on the common relative_mode flag. bool axis_relative_modes[] = AXIS_RELATIVE_MODES; int feedmultiply=100; //100->1 200->2 int saved_feedmultiply; int extrudemultiply=100; //100->1 200->2 int extruder_multiply[EXTRUDERS] = {100 #if EXTRUDERS > 1 , 100 #if EXTRUDERS > 2 , 100 #endif #endif }; bool is_usb_printing = false; unsigned int usb_printing_counter; int lcd_change_fil_state = 0; int feedmultiplyBckp = 100; unsigned char lang_selected = 0; unsigned long total_filament_used; unsigned int heating_status; unsigned int heating_status_counter; bool custom_message; unsigned int custom_message_type; unsigned int custom_message_state; bool volumetric_enabled = false; float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA #if EXTRUDERS > 1 , DEFAULT_NOMINAL_FILAMENT_DIA #if EXTRUDERS > 2 , DEFAULT_NOMINAL_FILAMENT_DIA #endif #endif }; float volumetric_multiplier[EXTRUDERS] = {1.0 #if EXTRUDERS > 1 , 1.0 #if EXTRUDERS > 2 , 1.0 #endif #endif }; float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 }; float add_homing[3]={0,0,0}; float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; bool axis_known_position[3] = {false, false, false}; float zprobe_zoffset; // Extruder offset #if EXTRUDERS > 1 #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = { #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y) EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y #endif }; #endif uint8_t active_extruder = 0; int fanSpeed=0; #ifdef FWRETRACT bool autoretract_enabled=false; bool retracted[EXTRUDERS]={false #if EXTRUDERS > 1 , false #if EXTRUDERS > 2 , false #endif #endif }; bool retracted_swap[EXTRUDERS]={false #if EXTRUDERS > 1 , false #if EXTRUDERS > 2 , false #endif #endif }; float retract_length = RETRACT_LENGTH; float retract_length_swap = RETRACT_LENGTH_SWAP; float retract_feedrate = RETRACT_FEEDRATE; float retract_zlift = RETRACT_ZLIFT; float retract_recover_length = RETRACT_RECOVER_LENGTH; float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; #endif #ifdef ULTIPANEL #ifdef PS_DEFAULT_OFF bool powersupply = false; #else bool powersupply = true; #endif #endif bool cancel_heatup = false ; #ifdef FILAMENT_SENSOR //Variables for Filament Sensor input float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404 bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100 int delay_index1=0; //index into ring buffer int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized float delay_dist=0; //delay distance counter int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting #endif const char errormagic[] PROGMEM = "Error:"; const char echomagic[] PROGMEM = "echo:"; //=========================================================================== //=============================Private Variables============================= //=========================================================================== const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0}; static float delta[3] = {0.0, 0.0, 0.0}; // For tracing an arc static float offset[3] = {0.0, 0.0, 0.0}; static bool home_all_axis = true; static float feedrate = 1500.0, next_feedrate, saved_feedrate; static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0; // Determines Absolute or Relative Coordinates. // Also there is bool axis_relative_modes[] per axis flag. static bool relative_mode = false; // String circular buffer. Commands may be pushed to the buffer from both sides: // Chained commands will be pushed to the front, interactive (from LCD menu) // and printing commands (from serial line or from SD card) are pushed to the tail. // First character of each entry indicates the type of the entry: #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0 // Command in cmdbuffer was sent over USB. #define CMDBUFFER_CURRENT_TYPE_USB 1 // Command in cmdbuffer was read from SDCARD. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2 // Command in cmdbuffer was generated by the UI. #define CMDBUFFER_CURRENT_TYPE_UI 3 // Command in cmdbuffer was generated by another G-code. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4 // How much space to reserve for the chained commands // of type CMDBUFFER_CURRENT_TYPE_CHAINED, // which are pushed to the front of the queue? // Maximum 5 commands of max length 20 + null terminator. #define CMDBUFFER_RESERVE_FRONT (5*21) // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT]; // Head of the circular buffer, where to read. static int bufindr = 0; // Tail of the buffer, where to write. static int bufindw = 0; // Number of lines in cmdbuffer. static int buflen = 0; // Flag for processing the current command inside the main Arduino loop(). // If a new command was pushed to the front of a command buffer while // processing another command, this replaces the command on the top. // Therefore don't remove the command from the queue in the loop() function. static bool cmdbuffer_front_already_processed = false; // Type of a command, which is to be executed right now. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr]) // String of a command, which is to be executed right now. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1) // Enable debugging of the command buffer. // Debugging information will be sent to serial line. // #define CMDBUFFER_DEBUG static int serial_count = 0; static boolean comment_mode = false; static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42 //static float tt = 0; //static float bt = 0; //Inactivity shutdown variables static unsigned long previous_millis_cmd = 0; unsigned long max_inactive_time = 0; static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l; unsigned long starttime=0; unsigned long stoptime=0; unsigned long _usb_timer = 0; static uint8_t tmp_extruder; bool Stopped=false; #if NUM_SERVOS > 0 Servo servos[NUM_SERVOS]; #endif bool CooldownNoWait = true; bool target_direction; //Insert variables if CHDK is defined #ifdef CHDK unsigned long chdkHigh = 0; boolean chdkActive = false; #endif //=========================================================================== //=============================Routines====================================== //=========================================================================== void get_arc_coordinates(); bool setTargetedHotend(int code); void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); } #ifdef SDSUPPORT #include "SdFatUtil.h" int freeMemory() { return SdFatUtil::FreeRam(); } #else extern "C" { extern unsigned int __bss_end; extern unsigned int __heap_start; extern void *__brkval; int freeMemory() { int free_memory; if ((int)__brkval == 0) free_memory = ((int)&free_memory) - ((int)&__bss_end); else free_memory = ((int)&free_memory) - ((int)__brkval); return free_memory; } } #endif //!SDSUPPORT // Pop the currently processed command from the queue. // It is expected, that there is at least one command in the queue. bool cmdqueue_pop_front() { if (buflen > 0) { #ifdef CMDBUFFER_DEBUG SERIAL_ECHOPGM("Dequeing "); SERIAL_ECHO(cmdbuffer+bufindr+1); SERIAL_ECHOLNPGM(""); SERIAL_ECHOPGM("Old indices: buflen "); SERIAL_ECHO(buflen); SERIAL_ECHOPGM(", bufindr "); SERIAL_ECHO(bufindr); SERIAL_ECHOPGM(", bufindw "); SERIAL_ECHO(bufindw); SERIAL_ECHOPGM(", serial_count "); SERIAL_ECHO(serial_count); SERIAL_ECHOPGM(", bufsize "); SERIAL_ECHO(sizeof(cmdbuffer)); SERIAL_ECHOLNPGM(""); #endif /* CMDBUFFER_DEBUG */ if (-- buflen == 0) { // Empty buffer. if (serial_count == 0) // No serial communication is pending. Reset both pointers to zero. bufindw = 0; bufindr = bufindw; } else { // There is at least one ready line in the buffer. // First skip the current command ID and iterate up to the end of the string. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ; // Second, skip the end of string null character and iterate until a nonzero command ID is found. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ; // If the end of the buffer was empty, if (bufindr == sizeof(cmdbuffer)) { // skip to the start and find the nonzero command. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ; } #ifdef CMDBUFFER_DEBUG SERIAL_ECHOPGM("New indices: buflen "); SERIAL_ECHO(buflen); SERIAL_ECHOPGM(", bufindr "); SERIAL_ECHO(bufindr); SERIAL_ECHOPGM(", bufindw "); SERIAL_ECHO(bufindw); SERIAL_ECHOPGM(", serial_count "); SERIAL_ECHO(serial_count); SERIAL_ECHOPGM(" new command on the top: "); SERIAL_ECHO(cmdbuffer+bufindr+1); SERIAL_ECHOLNPGM(""); #endif /* CMDBUFFER_DEBUG */ } return true; } return false; } void cmdqueue_reset() { while (cmdqueue_pop_front()) ; } // How long a string could be pushed to the front of the command queue? // If yes, adjust bufindr to the new position, where the new command could be enqued. // len_asked does not contain the zero terminator size. bool cmdqueue_could_enqueue_front(int len_asked) { // MAX_CMD_SIZE has to accommodate the zero terminator. if (len_asked >= MAX_CMD_SIZE) return false; // Remove the currently processed command from the queue. if (! cmdbuffer_front_already_processed) { cmdqueue_pop_front(); cmdbuffer_front_already_processed = true; } if (bufindr == bufindw && buflen > 0) // Full buffer. return false; // Adjust the end of the write buffer based on whether a partial line is in the receive buffer. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw; if (bufindw < bufindr) { int bufindr_new = bufindr - len_asked - 2; // Simple case. There is a contiguous space between the write buffer and the read buffer. if (endw <= bufindr_new) { bufindr = bufindr_new; return true; } } else { // Otherwise the free space is split between the start and end. if (len_asked + 2 <= bufindr) { // Could fit at the start. bufindr -= len_asked + 2; return true; } int bufindr_new = sizeof(cmdbuffer) - len_asked - 2; if (endw <= bufindr_new) { memset(cmdbuffer, 0, bufindr); bufindr = bufindr_new; return true; } } return false; } // Could one enqueue a command of lenthg len_asked into the buffer, // while leaving CMDBUFFER_RESERVE_FRONT at the start? // If yes, adjust bufindw to the new position, where the new command could be enqued. // len_asked does not contain the zero terminator size. bool cmdqueue_could_enqueue_back(int len_asked) { // MAX_CMD_SIZE has to accommodate the zero terminator. if (len_asked >= MAX_CMD_SIZE) return false; if (bufindr == bufindw && buflen > 0) // Full buffer. return false; if (serial_count > 0) { // If there is some data stored starting at bufindw, len_asked is certainly smaller than // the allocated data buffer. Try to reserve a new buffer and to move the already received // serial data. // How much memory to reserve for the commands pushed to the front? // End of the queue, when pushing to the end. int endw = bufindw + len_asked + 2; if (bufindw < bufindr) // Simple case. There is a contiguous space between the write buffer and the read buffer. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr; // Otherwise the free space is split between the start and end. if (// Could one fit to the end, including the reserve? endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) || // Could one fit to the end, and the reserve to the start? (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr)) return true; // Could one fit both to the start? if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) { // Mark the rest of the buffer as used. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw); // and point to the start. bufindw = 0; return true; } } else { // How much memory to reserve for the commands pushed to the front? // End of the queue, when pushing to the end. int endw = bufindw + len_asked + 2; if (bufindw < bufindr) // Simple case. There is a contiguous space between the write buffer and the read buffer. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr; // Otherwise the free space is split between the start and end. if (// Could one fit to the end, including the reserve? endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) || // Could one fit to the end, and the reserve to the start? (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr)) return true; // Could one fit both to the start? if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) { // Mark the rest of the buffer as used. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw); // and point to the start. bufindw = 0; return true; } } return false; } #ifdef CMDBUFFER_DEBUG static void cmdqueue_dump_to_serial_single_line(int nr, const char *p) { SERIAL_ECHOPGM("Entry nr: "); SERIAL_ECHO(nr); SERIAL_ECHOPGM(", type: "); SERIAL_ECHO(int(*p)); SERIAL_ECHOPGM(", cmd: "); SERIAL_ECHO(p+1); SERIAL_ECHOLNPGM(""); } static void cmdqueue_dump_to_serial() { if (buflen == 0) { SERIAL_ECHOLNPGM("The command buffer is empty."); } else { SERIAL_ECHOPGM("Content of the buffer: entries "); SERIAL_ECHO(buflen); SERIAL_ECHOPGM(", indr "); SERIAL_ECHO(bufindr); SERIAL_ECHOPGM(", indw "); SERIAL_ECHO(bufindw); SERIAL_ECHOLNPGM(""); int nr = 0; if (bufindr < bufindw) { for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) { cmdqueue_dump_to_serial_single_line(nr, p); // Skip the command. for (++p; *p != 0; ++ p); // Skip the gaps. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p); } } else { for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) { cmdqueue_dump_to_serial_single_line(nr, p); // Skip the command. for (++p; *p != 0; ++ p); // Skip the gaps. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p); } for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) { cmdqueue_dump_to_serial_single_line(nr, p); // Skip the command. for (++p; *p != 0; ++ p); // Skip the gaps. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p); } } SERIAL_ECHOLNPGM("End of the buffer."); } } #endif /* CMDBUFFER_DEBUG */ //adds an command to the main command buffer //thats really done in a non-safe way. //needs overworking someday // Currently the maximum length of a command piped through this function is around 20 characters void enquecommand(const char *cmd, bool from_progmem) { int len = from_progmem ? strlen_P(cmd) : strlen(cmd); // Does cmd fit the queue while leaving sufficient space at the front for the chained commands? // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd. if (cmdqueue_could_enqueue_back(len)) { // This is dangerous if a mixing of serial and this happens // This may easily be tested: If serial_count > 0, we have a problem. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI; if (from_progmem) strcpy_P(cmdbuffer + bufindw + 1, cmd); else strcpy(cmdbuffer + bufindw + 1, cmd); SERIAL_ECHO_START; SERIAL_ECHORPGM(MSG_Enqueing); SERIAL_ECHO(cmdbuffer + bufindw + 1); SERIAL_ECHOLNPGM("\""); bufindw += len + 2; if (bufindw == sizeof(cmdbuffer)) bufindw = 0; ++ buflen; #ifdef CMDBUFFER_DEBUG cmdqueue_dump_to_serial(); #endif /* CMDBUFFER_DEBUG */ } else { SERIAL_ERROR_START; SERIAL_ECHORPGM(MSG_Enqueing); if (from_progmem) SERIAL_PROTOCOLRPGM(cmd); else SERIAL_ECHO(cmd); SERIAL_ECHOLNPGM("\" failed: Buffer full!"); #ifdef CMDBUFFER_DEBUG cmdqueue_dump_to_serial(); #endif /* CMDBUFFER_DEBUG */ } } void enquecommand_front(const char *cmd, bool from_progmem) { int len = from_progmem ? strlen_P(cmd) : strlen(cmd); // Does cmd fit the queue? This call shall move bufindr, so the command may be copied. if (cmdqueue_could_enqueue_front(len)) { cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI; if (from_progmem) strcpy_P(cmdbuffer + bufindr + 1, cmd); else strcpy(cmdbuffer + bufindr + 1, cmd); ++ buflen; SERIAL_ECHO_START; SERIAL_ECHOPGM("Enqueing to the front: \""); SERIAL_ECHO(cmdbuffer + bufindr + 1); SERIAL_ECHOLNPGM("\""); #ifdef CMDBUFFER_DEBUG cmdqueue_dump_to_serial(); #endif /* CMDBUFFER_DEBUG */ } else { SERIAL_ERROR_START; SERIAL_ECHOPGM("Enqueing to the front: \""); if (from_progmem) SERIAL_PROTOCOLRPGM(cmd); else SERIAL_ECHO(cmd); SERIAL_ECHOLNPGM("\" failed: Buffer full!"); #ifdef CMDBUFFER_DEBUG cmdqueue_dump_to_serial(); #endif /* CMDBUFFER_DEBUG */ } } // Mark the command at the top of the command queue as new. // Therefore it will not be removed from the queue. void repeatcommand_front() { cmdbuffer_front_already_processed = true; } void setup_killpin() { #if defined(KILL_PIN) && KILL_PIN > -1 SET_INPUT(KILL_PIN); WRITE(KILL_PIN,HIGH); #endif } // Set home pin void setup_homepin(void) { #if defined(HOME_PIN) && HOME_PIN > -1 SET_INPUT(HOME_PIN); WRITE(HOME_PIN,HIGH); #endif } void setup_photpin() { #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1 SET_OUTPUT(PHOTOGRAPH_PIN); WRITE(PHOTOGRAPH_PIN, LOW); #endif } void setup_powerhold() { #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 SET_OUTPUT(SUICIDE_PIN); WRITE(SUICIDE_PIN, HIGH); #endif #if defined(PS_ON_PIN) && PS_ON_PIN > -1 SET_OUTPUT(PS_ON_PIN); #if defined(PS_DEFAULT_OFF) WRITE(PS_ON_PIN, PS_ON_ASLEEP); #else WRITE(PS_ON_PIN, PS_ON_AWAKE); #endif #endif } void suicide() { #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 SET_OUTPUT(SUICIDE_PIN); WRITE(SUICIDE_PIN, LOW); #endif } void servo_init() { #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1) servos[0].attach(SERVO0_PIN); #endif #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1) servos[1].attach(SERVO1_PIN); #endif #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1) servos[2].attach(SERVO2_PIN); #endif #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1) servos[3].attach(SERVO3_PIN); #endif #if (NUM_SERVOS >= 5) #error "TODO: enter initalisation code for more servos" #endif } static void lcd_language_menu(); #ifdef MESH_BED_LEVELING enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet }; #endif // "Setup" function is called by the Arduino framework on startup. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code // are initialized by the main() routine provided by the Arduino framework. void setup() { setup_killpin(); setup_powerhold(); MYSERIAL.begin(BAUDRATE); SERIAL_PROTOCOLLNPGM("start"); SERIAL_ECHO_START; #if 0 SERIAL_ECHOLN("Reading eeprom from 0 to 100: start"); for (int i = 0; i < 4096; ++ i) { int b = eeprom_read_byte((unsigned char*)i); if (b != 255) { SERIAL_ECHO(i); SERIAL_ECHO(":"); SERIAL_ECHO(b); SERIAL_ECHOLN(""); } } SERIAL_ECHOLN("Reading eeprom from 0 to 100: done"); #endif // Check startup - does nothing if bootloader sets MCUSR to 0 byte mcu = MCUSR; if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP); if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET); if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET); if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET); if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET); MCUSR=0; //SERIAL_ECHORPGM(MSG_MARLIN); //SERIAL_ECHOLNRPGM(VERSION_STRING); #ifdef STRING_VERSION_CONFIG_H #ifdef STRING_CONFIG_H_AUTHOR SERIAL_ECHO_START; SERIAL_ECHORPGM(MSG_CONFIGURATION_VER); SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H); SERIAL_ECHORPGM(MSG_AUTHOR); SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR); SERIAL_ECHOPGM("Compiled: "); SERIAL_ECHOLNPGM(__DATE__); #endif #endif SERIAL_ECHO_START; SERIAL_ECHORPGM(MSG_FREE_MEMORY); SERIAL_ECHO(freeMemory()); SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES); SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE); // loads data from EEPROM if available else uses defaults (and resets step acceleration rate) Config_RetrieveSettings(); tp_init(); // Initialize temperature loop plan_init(); // Initialize planner; watchdog_init(); st_init(); // Initialize stepper, this enables interrupts! setup_photpin(); servo_init(); // Reset the machine correction matrix. // It does not make sense to load the correction matrix until the machine is homed. world2machine_reset(); lcd_init(); if (!READ(BTN_ENC)) { _delay_ms(1000); if (!READ(BTN_ENC)) { SET_OUTPUT(BEEPER); WRITE(BEEPER, HIGH); lcd_force_language_selection(); farm_no = 0; EEPROM_save_B(EEPROM_FARM_MODE, &farm_no); farm_mode = false; while (!READ(BTN_ENC)); WRITE(BEEPER, LOW); #ifdef MESH_BED_LEVELING _delay_ms(2000); if (!READ(BTN_ENC)) { WRITE(BEEPER, HIGH); _delay_ms(100); WRITE(BEEPER, LOW); _delay_ms(200); WRITE(BEEPER, HIGH); _delay_ms(100); WRITE(BEEPER, LOW); int _z = 0; eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01); EEPROM_save_B(EEPROM_BABYSTEP_X, &_z); EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z); EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z); } else { WRITE(BEEPER, HIGH); _delay_ms(100); WRITE(BEEPER, LOW); } #endif // mesh } } else { _delay_ms(1000); // wait 1sec to display the splash screen } #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan #endif #ifdef DIGIPOT_I2C digipot_i2c_init(); #endif setup_homepin(); #if defined(Z_AXIS_ALWAYS_ON) enable_z(); #endif EEPROM_read_B(EEPROM_FARM_MODE, &farm_no); if (farm_no > 0) { farm_mode = true; farm_no = farm_no; prusa_statistics(8); } else { farm_mode = false; farm_no = 0; } if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff && eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff && eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) { // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board, // where all the EEPROM entries are set to 0x0ff. // Once a firmware boots up, it forces at least a language selection, which changes // EEPROM_LANG to number lower than 0x0ff. // 1) Set a high power mode. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0); } // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version // is being written into the EEPROM, so the update procedure will be triggered only once. if (eeprom_read_byte((uint8_t*)EEPROM_BABYSTEP_Z_SET) == 0x0ff) { // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_X, 0x0ff); // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Y, 0x0ff); eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Z, 0x0ff); // Get the selected laugnage index before display update. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG); if (lang_selected >= LANG_NUM) lang_selected = LANG_ID_DEFAULT; // Czech language // Show the message. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET); lcd_update_enable(true); lcd_implementation_clear(); } // Store the currently running firmware into an eeprom, // so the next time the firmware gets updated, it will know from which version it has been updated. update_current_firmware_version_to_eeprom(); } // The loop() function is called in an endless loop by the Arduino framework from the default main() routine. // Before loop(), the setup() function is called by the main() routine. void loop() { if (usb_printing_counter > 0 && millis()-_usb_timer > 1000) { is_usb_printing = true; usb_printing_counter--; _usb_timer = millis(); } if (usb_printing_counter == 0) { is_usb_printing = false; } get_command(); #ifdef SDSUPPORT card.checkautostart(false); #endif if(buflen) { #ifdef SDSUPPORT if(card.saving) { // Saving a G-code file onto an SD-card is in progress. // Saving starts with M28, saving until M29 is seen. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) { card.write_command(CMDBUFFER_CURRENT_STRING); if(card.logging) process_commands(); else SERIAL_PROTOCOLLNRPGM(MSG_OK); } else { card.closefile(); SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED); } } else { process_commands(); } #else process_commands(); #endif //SDSUPPORT if (! cmdbuffer_front_already_processed) cmdqueue_pop_front(); cmdbuffer_front_already_processed = false; } //check heater every n milliseconds manage_heater(); manage_inactivity(); checkHitEndstops(); lcd_update(); } void get_command() { // Test and reserve space for the new command string. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1)) return; while (MYSERIAL.available() > 0) { char serial_char = MYSERIAL.read(); if (serial_char < 0) // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names // and Marlin does not support such file names anyway. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading // to a hang-up of the print process from an SD card. continue; if(serial_char == '\n' || serial_char == '\r' || (serial_char == ':' && comment_mode == false) || serial_count >= (MAX_CMD_SIZE - 1) ) { if(!serial_count) { //if empty line comment_mode = false; //for new command return; } cmdbuffer[bufindw+serial_count+1] = 0; //terminate string if(!comment_mode){ comment_mode = false; //for new command if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) { // Line number met. When sending a G-code over a serial line, each line may be stamped with its index, // and Marlin tests, whether the successive lines are stamped with an increasing line number ID. gcode_N = (strtol(strchr_pointer+1, NULL, 10)); if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) { // M110 - set current line number. // Line numbers not sent in succession. SERIAL_ERROR_START; SERIAL_ERRORRPGM(MSG_ERR_LINE_NO); SERIAL_ERRORLN(gcode_LastN); //Serial.println(gcode_N); FlushSerialRequestResend(); serial_count = 0; return; } if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL) { byte checksum = 0; char *p = cmdbuffer+bufindw+1; while (p != strchr_pointer) checksum = checksum^(*p++); if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) { SERIAL_ERROR_START; SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH); SERIAL_ERRORLN(gcode_LastN); FlushSerialRequestResend(); serial_count = 0; return; } // If no errors, remove the checksum and continue parsing. *strchr_pointer = 0; } else { SERIAL_ERROR_START; SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM); SERIAL_ERRORLN(gcode_LastN); FlushSerialRequestResend(); serial_count = 0; return; } gcode_LastN = gcode_N; //if no errors, continue parsing } // end of 'N' command else // if we don't receive 'N' but still see '*' { if((strchr(cmdbuffer+bufindw+1, '*') != NULL)) { SERIAL_ERROR_START; SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM); SERIAL_ERRORLN(gcode_LastN); serial_count = 0; return; } } // end of '*' command if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) { if (! IS_SD_PRINTING) { usb_printing_counter = 10; is_usb_printing = true; } if (Stopped == true) { int gcode = strtol(strchr_pointer+1, NULL, 10); if (gcode >= 0 && gcode <= 3) { SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED); LCD_MESSAGERPGM(MSG_STOPPED); } } } // end of 'G' command //If command was e-stop process now if(strcmp(cmdbuffer+bufindw+1, "M112") == 0) kill(); // Store the current line into buffer, move to the next line. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB; #ifdef CMDBUFFER_DEBUG SERIAL_ECHO_START; SERIAL_ECHOPGM("Storing a command line to buffer: "); SERIAL_ECHO(cmdbuffer+bufindw+1); SERIAL_ECHOLNPGM(""); #endif /* CMDBUFFER_DEBUG */ bufindw += strlen(cmdbuffer+bufindw+1) + 2; if (bufindw == sizeof(cmdbuffer)) bufindw = 0; ++ buflen; #ifdef CMDBUFFER_DEBUG SERIAL_ECHOPGM("Number of commands in the buffer: "); SERIAL_ECHO(buflen); SERIAL_ECHOLNPGM(""); #endif /* CMDBUFFER_DEBUG */ } // end of 'not comment mode' serial_count = 0; //clear buffer // Don't call cmdqueue_could_enqueue_back if there are no characters waiting // in the queue, as this function will reserve the memory. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1)) return; } // end of "end of line" processing else { // Not an "end of line" symbol. Store the new character into a buffer. if(serial_char == ';') comment_mode = true; if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char; } } // end of serial line processing loop #ifdef SDSUPPORT if(!card.sdprinting || serial_count!=0){ // If there is a half filled buffer from serial line, wait until return before // continuing with the serial line. return; } //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible // if it occurs, stop_buffering is triggered and the buffer is ran dry. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing static bool stop_buffering=false; if(buflen==0) stop_buffering=false; // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer. while( !card.eof() && !stop_buffering) { int16_t n=card.get(); char serial_char = (char)n; if(serial_char == '\n' || serial_char == '\r' || (serial_char == '#' && comment_mode == false) || (serial_char == ':' && comment_mode == false) || serial_count >= (MAX_CMD_SIZE - 1)||n==-1) { if(card.eof()){ SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED); stoptime=millis(); char time[30]; unsigned long t=(stoptime-starttime)/1000; int hours, minutes; minutes=(t/60)%60; hours=t/60/60; save_statistics(total_filament_used, t); sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes); SERIAL_ECHO_START; SERIAL_ECHOLN(time); lcd_setstatus(time); card.printingHasFinished(); card.checkautostart(true); if (farm_mode) { prusa_statistics(6); lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM; } } if(serial_char=='#') stop_buffering=true; if(!serial_count) { comment_mode = false; //for new command return; //if empty line } cmdbuffer[bufindw+serial_count+1] = 0; //terminate string cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD; ++ buflen; bufindw += strlen(cmdbuffer+bufindw+1) + 2; if (bufindw == sizeof(cmdbuffer)) bufindw = 0; comment_mode = false; //for new command serial_count = 0; //clear buffer // The following line will reserve buffer space if available. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1)) return; } else { if(serial_char == ';') comment_mode = true; if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char; } } #endif //SDSUPPORT } // Return True if a character was found static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; } static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; } static inline float code_value() { return strtod(strchr_pointer+1, NULL); } static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); } static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); }; static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); }; #define DEFINE_PGM_READ_ANY(type, reader) \ static inline type pgm_read_any(const type *p) \ { return pgm_read_##reader##_near(p); } DEFINE_PGM_READ_ANY(float, float); DEFINE_PGM_READ_ANY(signed char, byte); #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \ static const PROGMEM type array##_P[3] = \ { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \ static inline type array(int axis) \ { return pgm_read_any(&array##_P[axis]); } \ type array##_ext(int axis) \ { return pgm_read_any(&array##_P[axis]); } XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS); XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS); XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS); XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH); XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM); XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); static void axis_is_at_home(int axis) { current_position[axis] = base_home_pos(axis) + add_homing[axis]; min_pos[axis] = base_min_pos(axis) + add_homing[axis]; max_pos[axis] = base_max_pos(axis) + add_homing[axis]; } inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); } inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); } static void setup_for_endstop_move() { saved_feedrate = feedrate; saved_feedmultiply = feedmultiply; feedmultiply = 100; previous_millis_cmd = millis(); enable_endstops(true); } static void clean_up_after_endstop_move() { #ifdef ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false); #endif feedrate = saved_feedrate; feedmultiply = saved_feedmultiply; previous_millis_cmd = millis(); } #ifdef ENABLE_AUTO_BED_LEVELING #ifdef AUTO_BED_LEVELING_GRID static void set_bed_level_equation_lsq(double *plane_equation_coefficients) { vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); planeNormal.debug("planeNormal"); plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); //bedLevel.debug("bedLevel"); //plan_bed_level_matrix.debug("bed level before"); //vector_3 uncorrected_position = plan_get_position_mm(); //uncorrected_position.debug("position before"); vector_3 corrected_position = plan_get_position(); // corrected_position.debug("position after"); current_position[X_AXIS] = corrected_position.x; current_position[Y_AXIS] = corrected_position.y; current_position[Z_AXIS] = corrected_position.z; // put the bed at 0 so we don't go below it. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } #else // not AUTO_BED_LEVELING_GRID static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) { plan_bed_level_matrix.set_to_identity(); vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1); vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2); vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3); vector_3 from_2_to_1 = (pt1 - pt2).get_normal(); vector_3 from_2_to_3 = (pt3 - pt2).get_normal(); vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal(); planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z)); plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); vector_3 corrected_position = plan_get_position(); current_position[X_AXIS] = corrected_position.x; current_position[Y_AXIS] = corrected_position.y; current_position[Z_AXIS] = corrected_position.z; // put the bed at 0 so we don't go below it. current_position[Z_AXIS] = zprobe_zoffset; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } #endif // AUTO_BED_LEVELING_GRID static void run_z_probe() { plan_bed_level_matrix.set_to_identity(); feedrate = homing_feedrate[Z_AXIS]; // move down until you find the bed float zPosition = -10; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); st_synchronize(); // we have to let the planner know where we are right now as it is not where we said to go. zPosition = st_get_position_mm(Z_AXIS); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]); // move up the retract distance zPosition += home_retract_mm(Z_AXIS); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); st_synchronize(); // move back down slowly to find bed feedrate = homing_feedrate[Z_AXIS]/4; zPosition -= home_retract_mm(Z_AXIS) * 2; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); st_synchronize(); current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); // make sure the planner knows where we are as it may be a bit different than we last said to move to plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } static void do_blocking_move_to(float x, float y, float z) { float oldFeedRate = feedrate; feedrate = homing_feedrate[Z_AXIS]; current_position[Z_AXIS] = z; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); st_synchronize(); feedrate = XY_TRAVEL_SPEED; current_position[X_AXIS] = x; current_position[Y_AXIS] = y; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); st_synchronize(); feedrate = oldFeedRate; } static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) { do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z); } /// Probe bed height at position (x,y), returns the measured z value static float probe_pt(float x, float y, float z_before) { // move to right place do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); run_z_probe(); float measured_z = current_position[Z_AXIS]; SERIAL_PROTOCOLRPGM(MSG_BED); SERIAL_PROTOCOLPGM(" x: "); SERIAL_PROTOCOL(x); SERIAL_PROTOCOLPGM(" y: "); SERIAL_PROTOCOL(y); SERIAL_PROTOCOLPGM(" z: "); SERIAL_PROTOCOL(measured_z); SERIAL_PROTOCOLPGM("\n"); return measured_z; } #endif // #ifdef ENABLE_AUTO_BED_LEVELING void homeaxis(int axis) { #define HOMEAXIS_DO(LETTER) \ ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) if (axis==X_AXIS ? HOMEAXIS_DO(X) : axis==Y_AXIS ? HOMEAXIS_DO(Y) : axis==Z_AXIS ? HOMEAXIS_DO(Z) : 0) { int axis_home_dir = home_dir(axis); current_position[axis] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[axis] = 1.5 * max_length(axis) * axis_home_dir; feedrate = homing_feedrate[axis]; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); current_position[axis] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[axis] = -home_retract_mm(axis) * axis_home_dir; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); destination[axis] = 2*home_retract_mm(axis) * axis_home_dir; feedrate = homing_feedrate[axis]/2 ; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); axis_is_at_home(axis); destination[axis] = current_position[axis]; feedrate = 0.0; endstops_hit_on_purpose(); axis_known_position[axis] = true; } } void home_xy() { set_destination_to_current(); homeaxis(X_AXIS); homeaxis(Y_AXIS); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); endstops_hit_on_purpose(); } void refresh_cmd_timeout(void) { previous_millis_cmd = millis(); } #ifdef FWRETRACT void retract(bool retracting, bool swapretract = false) { if(retracting && !retracted[active_extruder]) { destination[X_AXIS]=current_position[X_AXIS]; destination[Y_AXIS]=current_position[Y_AXIS]; destination[Z_AXIS]=current_position[Z_AXIS]; destination[E_AXIS]=current_position[E_AXIS]; if (swapretract) { current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder]; } else { current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder]; } plan_set_e_position(current_position[E_AXIS]); float oldFeedrate = feedrate; feedrate=retract_feedrate*60; retracted[active_extruder]=true; prepare_move(); current_position[Z_AXIS]-=retract_zlift; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); prepare_move(); feedrate = oldFeedrate; } else if(!retracting && retracted[active_extruder]) { destination[X_AXIS]=current_position[X_AXIS]; destination[Y_AXIS]=current_position[Y_AXIS]; destination[Z_AXIS]=current_position[Z_AXIS]; destination[E_AXIS]=current_position[E_AXIS]; current_position[Z_AXIS]+=retract_zlift; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); //prepare_move(); if (swapretract) { current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder]; } else { current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder]; } plan_set_e_position(current_position[E_AXIS]); float oldFeedrate = feedrate; feedrate=retract_recover_feedrate*60; retracted[active_extruder]=false; prepare_move(); feedrate = oldFeedrate; } } //retract #endif //FWRETRACT void process_commands() { #ifdef FILAMENT_RUNOUT_SUPPORT SET_INPUT(FR_SENS); #endif #ifdef CMDBUFFER_DEBUG SERIAL_ECHOPGM("Processing a GCODE command: "); SERIAL_ECHO(cmdbuffer+bufindr+1); SERIAL_ECHOLNPGM(""); SERIAL_ECHOPGM("In cmdqueue: "); SERIAL_ECHO(buflen); SERIAL_ECHOLNPGM(""); #endif /* CMDBUFFER_DEBUG */ unsigned long codenum; //throw away variable char *starpos = NULL; #ifdef ENABLE_AUTO_BED_LEVELING float x_tmp, y_tmp, z_tmp, real_z; #endif // PRUSA GCODES if(code_seen("PRUSA")){ if(code_seen("Fir")){ SERIAL_PROTOCOLLN(FW_version); } else if(code_seen("Rev")){ SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE ); } else if(code_seen("Lang")) { lcd_force_language_selection(); } else if(code_seen("Lz")) { EEPROM_save_B(EEPROM_BABYSTEP_Z,0); } //else if (code_seen('Cal')) { // lcd_calibration(); // } } else if(code_seen('G')) { switch((int)code_value()) { case 0: // G0 -> G1 case 1: // G1 if(Stopped == false) { #ifdef FILAMENT_RUNOUT_SUPPORT if(READ(FR_SENS)){ feedmultiplyBckp=feedmultiply; float target[4]; float lastpos[4]; target[X_AXIS]=current_position[X_AXIS]; target[Y_AXIS]=current_position[Y_AXIS]; target[Z_AXIS]=current_position[Z_AXIS]; target[E_AXIS]=current_position[E_AXIS]; lastpos[X_AXIS]=current_position[X_AXIS]; lastpos[Y_AXIS]=current_position[Y_AXIS]; lastpos[Z_AXIS]=current_position[Z_AXIS]; lastpos[E_AXIS]=current_position[E_AXIS]; //retract by E target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); target[Z_AXIS]+= FILAMENTCHANGE_ZADD ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder); target[X_AXIS]= FILAMENTCHANGE_XPOS ; target[Y_AXIS]= FILAMENTCHANGE_YPOS ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); //finish moves st_synchronize(); //disable extruder steppers so filament can be removed disable_e0(); disable_e1(); disable_e2(); delay(100); //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE); uint8_t cnt=0; int counterBeep = 0; lcd_wait_interact(); while(!lcd_clicked()){ cnt++; manage_heater(); manage_inactivity(true); //lcd_update(); if(cnt==0) { #if BEEPER > 0 if (counterBeep== 500){ counterBeep = 0; } SET_OUTPUT(BEEPER); if (counterBeep== 0){ WRITE(BEEPER,HIGH); } if (counterBeep== 20){ WRITE(BEEPER,LOW); } counterBeep++; #else #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS) lcd_buzz(1000/6,100); #else lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ); #endif #endif } } WRITE(BEEPER,LOW); target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); lcd_change_fil_state = 0; lcd_loading_filament(); while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){ lcd_change_fil_state = 0; lcd_alright(); switch(lcd_change_fil_state){ case 2: target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); lcd_loading_filament(); break; case 3: target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); lcd_loading_color(); break; default: lcd_change_success(); break; } } target[E_AXIS]+= 5; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding //plan_set_e_position(current_position[E_AXIS]); plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT; plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract plan_set_e_position(lastpos[E_AXIS]); feedmultiply=feedmultiplyBckp; char cmd[9]; sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp); enquecommand(cmd); } #endif get_coordinates(); // For X Y Z E F total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100); #ifdef FWRETRACT if(autoretract_enabled) if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) { float echange=destination[E_AXIS]-current_position[E_AXIS]; if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations plan_set_e_position(current_position[E_AXIS]); //AND from the planner retract(!retracted); return; } } #endif //FWRETRACT prepare_move(); //ClearToSend(); } break; case 2: // G2 - CW ARC if(Stopped == false) { get_arc_coordinates(); prepare_arc_move(true); } break; case 3: // G3 - CCW ARC if(Stopped == false) { get_arc_coordinates(); prepare_arc_move(false); } break; case 4: // G4 dwell LCD_MESSAGERPGM(MSG_DWELL); codenum = 0; if(code_seen('P')) codenum = code_value(); // milliseconds to wait if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait st_synchronize(); codenum += millis(); // keep track of when we started waiting previous_millis_cmd = millis(); while(millis() < codenum) { manage_heater(); manage_inactivity(); lcd_update(); } break; #ifdef FWRETRACT case 10: // G10 retract #if EXTRUDERS > 1 retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument retract(true,retracted_swap[active_extruder]); #else retract(true); #endif break; case 11: // G11 retract_recover #if EXTRUDERS > 1 retract(false,retracted_swap[active_extruder]); #else retract(false); #endif break; #endif //FWRETRACT case 28: //G28 Home all Axis one at a time #ifdef ENABLE_AUTO_BED_LEVELING plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data) #endif //ENABLE_AUTO_BED_LEVELING // For mesh bed leveling deactivate the matrix temporarily #ifdef MESH_BED_LEVELING mbl.active = 0; #endif // Reset world2machine_rotation_and_skew and world2machine_shift, therefore // the planner will not perform any adjustments in the XY plane. // Wait for the motors to stop and update the current position with the absolute values. world2machine_revert_to_uncorrected(); // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be // consumed during the first movements following this statement. #ifdef BABYSTEP_LOADZ_BY_PLANNER shift_z(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS])); #else babystepsTodoZsubtract(babystepLoadZ); #endif /* BABYSTEP_LOADZ_BY_PLANNER */ babystepLoadZ = 0; saved_feedrate = feedrate; saved_feedmultiply = feedmultiply; feedmultiply = 100; previous_millis_cmd = millis(); enable_endstops(true); for(int8_t i=0; i < NUM_AXIS; i++) destination[i] = current_position[i]; feedrate = 0.0; home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))); #if Z_HOME_DIR > 0 // If homing away from BED do Z first if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) { homeaxis(Z_AXIS); } #endif #ifdef QUICK_HOME // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move { current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0; int x_axis_home_dir = home_dir(X_AXIS); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS); feedrate = homing_feedrate[X_AXIS]; if(homing_feedrate[Y_AXIS] max_length(Y_AXIS)) { feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1); } else { feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1); } plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); axis_is_at_home(X_AXIS); axis_is_at_home(Y_AXIS); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[X_AXIS] = current_position[X_AXIS]; destination[Y_AXIS] = current_position[Y_AXIS]; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); feedrate = 0.0; st_synchronize(); endstops_hit_on_purpose(); current_position[X_AXIS] = destination[X_AXIS]; current_position[Y_AXIS] = destination[Y_AXIS]; current_position[Z_AXIS] = destination[Z_AXIS]; } #endif /* QUICK_HOME */ if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) homeaxis(X_AXIS); if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) homeaxis(Y_AXIS); if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0) current_position[X_AXIS]=code_value()+add_homing[X_AXIS]; if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS]; #if Z_HOME_DIR < 0 // If homing towards BED do Z last #ifndef Z_SAFE_HOMING if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) { #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0) destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed feedrate = max_feedrate[Z_AXIS]; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); st_synchronize(); #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0) #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] )) { homeaxis(X_AXIS); homeaxis(Y_AXIS); } // 1st mesh bed leveling measurement point, corrected. world2machine_initialize(); world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]); world2machine_reset(); if (destination[Y_AXIS] < Y_MIN_POS) destination[Y_AXIS] = Y_MIN_POS; destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed feedrate = homing_feedrate[Z_AXIS]/10; current_position[Z_AXIS] = 0; enable_endstops(false); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); st_synchronize(); current_position[X_AXIS] = destination[X_AXIS]; current_position[Y_AXIS] = destination[Y_AXIS]; enable_endstops(true); endstops_hit_on_purpose(); homeaxis(Z_AXIS); #else // MESH_BED_LEVELING homeaxis(Z_AXIS); #endif // MESH_BED_LEVELING } #else // defined(Z_SAFE_HOMING): Z Safe mode activated. if(home_all_axis) { destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER); destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER); destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed feedrate = XY_TRAVEL_SPEED/60; current_position[Z_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); st_synchronize(); current_position[X_AXIS] = destination[X_AXIS]; current_position[Y_AXIS] = destination[Y_AXIS]; homeaxis(Z_AXIS); } // Let's see if X and Y are homed and probe is inside bed area. if(code_seen(axis_codes[Z_AXIS])) { if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \ && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \ && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \ && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \ && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) { current_position[Z_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed feedrate = max_feedrate[Z_AXIS]; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); st_synchronize(); homeaxis(Z_AXIS); } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) { LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN); SERIAL_ECHO_START; SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN); } else { LCD_MESSAGERPGM(MSG_ZPROBE_OUT); SERIAL_ECHO_START; SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT); } } #endif // Z_SAFE_HOMING #endif // Z_HOME_DIR < 0 if(code_seen(axis_codes[Z_AXIS])) { if(code_value_long() != 0) { current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS]; } } #ifdef ENABLE_AUTO_BED_LEVELING if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) { current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative) } #endif plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); #ifdef ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false); #endif feedrate = saved_feedrate; feedmultiply = saved_feedmultiply; previous_millis_cmd = millis(); endstops_hit_on_purpose(); #ifndef MESH_BED_LEVELING // If MESH_BED_LEVELING is not active, then it is the original Prusa i3. // Offer the user to load the baby step value, which has been adjusted at the previous print session. if(card.sdprinting) { EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ); if(babystepLoadZ != 0) lcd_adjust_z(); } #endif // Load the machine correction matrix world2machine_initialize(); // and correct the current_position to match the transformed coordinate system. world2machine_update_current(); #ifdef MESH_BED_LEVELING if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS])) { } else { st_synchronize(); // Push the commands to the front of the message queue in the reverse order! // There shall be always enough space reserved for these commands. // enquecommand_front_P((PSTR("G80"))); goto case_G80; } #endif if (farm_mode) { prusa_statistics(20); }; break; #ifdef ENABLE_AUTO_BED_LEVELING case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points. { #if Z_MIN_PIN == -1 #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin." #endif // Prevent user from running a G29 without first homing in X and Y if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) ) { LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN); SERIAL_ECHO_START; SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN); break; // abort G29, since we don't know where we are } st_synchronize(); // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly //vector_3 corrected_position = plan_get_position_mm(); //corrected_position.debug("position before G29"); plan_bed_level_matrix.set_to_identity(); vector_3 uncorrected_position = plan_get_position(); //uncorrected_position.debug("position durring G29"); current_position[X_AXIS] = uncorrected_position.x; current_position[Y_AXIS] = uncorrected_position.y; current_position[Z_AXIS] = uncorrected_position.z; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); setup_for_endstop_move(); feedrate = homing_feedrate[Z_AXIS]; #ifdef AUTO_BED_LEVELING_GRID // probe at the points of a lattice grid int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); // solve the plane equation ax + by + d = z // A is the matrix with rows [x y 1] for all the probed points // B is the vector of the Z positions // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0 // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z // "A" matrix of the linear system of equations double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3]; // "B" vector of Z points double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS]; int probePointCounter = 0; bool zig = true; for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing) { int xProbe, xInc; if (zig) { xProbe = LEFT_PROBE_BED_POSITION; //xEnd = RIGHT_PROBE_BED_POSITION; xInc = xGridSpacing; zig = false; } else // zag { xProbe = RIGHT_PROBE_BED_POSITION; //xEnd = LEFT_PROBE_BED_POSITION; xInc = -xGridSpacing; zig = true; } for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++) { float z_before; if (probePointCounter == 0) { // raise before probing z_before = Z_RAISE_BEFORE_PROBING; } else { // raise extruder z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS; } float measured_z = probe_pt(xProbe, yProbe, z_before); eqnBVector[probePointCounter] = measured_z; eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe; eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe; eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1; probePointCounter++; xProbe += xInc; } } clean_up_after_endstop_move(); // solve lsq problem double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector); SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); SERIAL_PROTOCOL(plane_equation_coefficients[0]); SERIAL_PROTOCOLPGM(" b: "); SERIAL_PROTOCOL(plane_equation_coefficients[1]); SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOLLN(plane_equation_coefficients[2]); set_bed_level_equation_lsq(plane_equation_coefficients); free(plane_equation_coefficients); #else // AUTO_BED_LEVELING_GRID not defined // Probe at 3 arbitrary points // probe 1 float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING); // probe 2 float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // probe 3 float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); clean_up_after_endstop_move(); set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); #endif // AUTO_BED_LEVELING_GRID st_synchronize(); // The following code correct the Z height difference from z-probe position and hotend tip position. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend. // When the bed is uneven, this height must be corrected. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane) x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER; y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER; z_tmp = current_position[Z_AXIS]; apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } break; #ifndef Z_PROBE_SLED case 30: // G30 Single Z Probe { st_synchronize(); // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly setup_for_endstop_move(); feedrate = homing_feedrate[Z_AXIS]; run_z_probe(); SERIAL_PROTOCOLPGM(MSG_BED); SERIAL_PROTOCOLPGM(" X: "); SERIAL_PROTOCOL(current_position[X_AXIS]); SERIAL_PROTOCOLPGM(" Y: "); SERIAL_PROTOCOL(current_position[Y_AXIS]); SERIAL_PROTOCOLPGM(" Z: "); SERIAL_PROTOCOL(current_position[Z_AXIS]); SERIAL_PROTOCOLPGM("\n"); clean_up_after_endstop_move(); } break; #else case 31: // dock the sled dock_sled(true); break; case 32: // undock the sled dock_sled(false); break; #endif // Z_PROBE_SLED #endif // ENABLE_AUTO_BED_LEVELING #ifdef MESH_BED_LEVELING case 30: // G30 Single Z Probe { st_synchronize(); // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly setup_for_endstop_move(); feedrate = homing_feedrate[Z_AXIS]; find_bed_induction_sensor_point_z(-10.f, 3); SERIAL_PROTOCOLRPGM(MSG_BED); SERIAL_PROTOCOLPGM(" X: "); MYSERIAL.print(current_position[X_AXIS], 5); SERIAL_PROTOCOLPGM(" Y: "); MYSERIAL.print(current_position[Y_AXIS], 5); SERIAL_PROTOCOLPGM(" Z: "); MYSERIAL.print(current_position[Z_AXIS], 5); SERIAL_PROTOCOLPGM("\n"); clean_up_after_endstop_move(); } break; /** * G80: Mesh-based Z probe, probes a grid and produces a * mesh to compensate for variable bed height * * The S0 report the points as below * * +----> X-axis * | * | * v Y-axis * */ case 80: case_G80: { // Firstly check if we know where we are if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){ // We don't know where we are! HOME! // Push the commands to the front of the message queue in the reverse order! // There shall be always enough space reserved for these commands. repeatcommand_front(); // repeat G80 with all its parameters enquecommand_front_P((PSTR("G28 W0"))); break; } // Save custom message state, set a new custom message state to display: Calibrating point 9. bool custom_message_old = custom_message; unsigned int custom_message_type_old = custom_message_type; unsigned int custom_message_state_old = custom_message_state; custom_message = true; custom_message_type = 1; custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10; lcd_update(1); mbl.reset(); // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be // consumed during the first movements following this statement. #ifdef BABYSTEP_LOADZ_BY_PLANNER shift_z(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS])); #else babystepsTodoZsubtract(babystepLoadZ); #endif /* BABYSTEP_LOADZ_BY_PLANNER */ babystepLoadZ = 0; // Cycle through all points and probe them // First move up. During this first movement, the babystepping will be reverted. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder); // The move to the first calibration point. current_position[X_AXIS] = pgm_read_float(bed_ref_points); current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1); world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder); // Wait until the move is finished. st_synchronize(); int mesh_point = 0; int ix = 0; int iy = 0; int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20; int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60; int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40; bool has_z = is_bed_z_jitter_data_valid(); setup_for_endstop_move(); const char *kill_message = NULL; while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) { // Get coords of a measuring point. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; iy = mesh_point / MESH_MEAS_NUM_X_POINTS; if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag float z0 = 0.f; if (has_z && mesh_point > 0) { uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1))); z0 = mbl.z_values[0][0] + *reinterpret_cast(&z_offset_u) * 0.01; #if 0 SERIAL_ECHOPGM("Bed leveling, point: "); MYSERIAL.print(mesh_point); SERIAL_ECHOPGM(", calibration z: "); MYSERIAL.print(z0, 5); SERIAL_ECHOLNPGM(""); #endif } // Move Z to proper distance current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); st_synchronize(); current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point); current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1); world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); // mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false); enable_endstops(false); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder); st_synchronize(); // Go down until endstop is hit const float Z_CALIBRATION_THRESHOLD = 1.f; if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW; break; } if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) { kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED; break; } if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH; break; } mbl.set_z(ix, iy, current_position[Z_AXIS]); custom_message_state--; mesh_point++; lcd_update(1); } current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) { st_synchronize(); kill(kill_message); } clean_up_after_endstop_move(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated. if(card.sdprinting || is_usb_printing ) { if(eeprom_read_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET) == 0x01) { // End of G80: Apply the baby stepping value. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ); #if 0 SERIAL_ECHO("Z baby step: "); SERIAL_ECHO(babystepLoadZ); SERIAL_ECHO(", current Z: "); SERIAL_ECHO(current_position[Z_AXIS]); SERIAL_ECHO("correction: "); SERIAL_ECHO(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS])); SERIAL_ECHOLN(""); #endif #ifdef BABYSTEP_LOADZ_BY_PLANNER shift_z(- float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS])); #else babystepsTodoZadd(babystepLoadZ); #endif /* BABYSTEP_LOADZ_BY_PLANNER */ } } bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1; for (uint8_t i = 0; i < 4; ++ i) { unsigned char codes[4] = { 'L', 'R', 'F', 'B' }; long correction = 0; if (code_seen(codes[i])) correction = code_value_long(); else if (eeprom_bed_correction_valid) { unsigned char *addr = (i < 2) ? ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) : ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR); correction = eeprom_read_int8(addr); } if (correction == 0) continue; float offset = float(correction) * 0.001f; if (fabs(offset) > 0.101f) { SERIAL_ERROR_START; SERIAL_ECHOPGM("Excessive bed leveling correction: "); SERIAL_ECHO(offset); SERIAL_ECHOLNPGM(" microns"); } else { switch (i) { case 0: for (uint8_t row = 0; row < 3; ++ row) { mbl.z_values[row][1] += 0.5f * offset; mbl.z_values[row][0] += offset; } break; case 1: for (uint8_t row = 0; row < 3; ++ row) { mbl.z_values[row][1] += 0.5f * offset; mbl.z_values[row][2] += offset; } break; case 2: for (uint8_t col = 0; col < 3; ++ col) { mbl.z_values[1][col] += 0.5f * offset; mbl.z_values[0][col] += offset; } break; case 3: for (uint8_t col = 0; col < 3; ++ col) { mbl.z_values[1][col] += 0.5f * offset; mbl.z_values[2][col] += offset; } break; } } } mbl.upsample_3x3(); mbl.active = 1; current_position[X_AXIS] = X_MIN_POS+0.2; current_position[Y_AXIS] = Y_MIN_POS+0.2; current_position[Z_AXIS] = Z_MIN_POS; world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); plan_buffer_line(current_position[X_AXIS], current_position[X_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder); st_synchronize(); // Restore custom message state custom_message = custom_message_old; custom_message_type = custom_message_type_old; custom_message_state = custom_message_state_old; lcd_update(1); } break; /** * G81: Print mesh bed leveling status and bed profile if activated */ case 81: if (mbl.active) { SERIAL_PROTOCOLPGM("Num X,Y: "); SERIAL_PROTOCOL(MESH_NUM_X_POINTS); SERIAL_PROTOCOLPGM(","); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS); SERIAL_PROTOCOLPGM("\nZ search height: "); SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH); SERIAL_PROTOCOLLNPGM("\nMeasured points:"); for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) { for (int x = 0; x < MESH_NUM_X_POINTS; x++) { SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5); } SERIAL_PROTOCOLPGM("\n"); } } else SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active."); break; #if 0 /** * G82: Single Z probe at current location * * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen! * */ case 82: SERIAL_PROTOCOLLNPGM("Finding bed "); setup_for_endstop_move(); find_bed_induction_sensor_point_z(); clean_up_after_endstop_move(); SERIAL_PROTOCOLPGM("Bed found at: "); SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5); SERIAL_PROTOCOLPGM("\n"); break; /** * G83: Prusa3D specific: Babystep in Z and store to EEPROM */ case 83: { int babystepz = code_seen('S') ? code_value() : 0; int BabyPosition = code_seen('P') ? code_value() : 0; if (babystepz != 0) { //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4? // Is the axis indexed starting with zero or one? if (BabyPosition > 4) { SERIAL_PROTOCOLLNPGM("Index out of bounds"); }else{ // Save it to the eeprom babystepLoadZ = babystepz; EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ); // adjust the Z babystepsTodoZadd(babystepLoadZ); } } } break; /** * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back) */ case 84: babystepsTodoZsubtract(babystepLoadZ); // babystepLoadZ = 0; break; /** * G85: Prusa3D specific: Pick best babystep */ case 85: lcd_pick_babystep(); break; #endif /** * G86: Prusa3D specific: Disable babystep correction after home. * This G-code will be performed at the start of a calibration script. */ case 86: eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF); break; /** * G87: Prusa3D specific: Enable babystep correction after home * This G-code will be performed at the end of a calibration script. */ case 87: eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01); break; /** * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode */ case 88: break; #endif // ENABLE_MESH_BED_LEVELING case 90: // G90 relative_mode = false; break; case 91: // G91 relative_mode = true; break; case 92: // G92 if(!code_seen(axis_codes[E_AXIS])) st_synchronize(); for(int8_t i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) { if(i == E_AXIS) { current_position[i] = code_value(); plan_set_e_position(current_position[E_AXIS]); } else { current_position[i] = code_value()+add_homing[i]; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } } } break; case 98: farm_no = 21; EEPROM_save_B(EEPROM_FARM_MODE, &farm_no); farm_mode = true; break; case 99: farm_no = 0; EEPROM_save_B(EEPROM_FARM_MODE, &farm_no); farm_mode = false; break; } } // end if(code_seen('G')) else if(code_seen('M')) { switch( (int)code_value() ) { #ifdef ULTIPANEL case 0: // M0 - Unconditional stop - Wait for user button press on LCD case 1: // M1 - Conditional stop - Wait for user button press on LCD { char *src = strchr_pointer + 2; codenum = 0; bool hasP = false, hasS = false; if (code_seen('P')) { codenum = code_value(); // milliseconds to wait hasP = codenum > 0; } if (code_seen('S')) { codenum = code_value() * 1000; // seconds to wait hasS = codenum > 0; } starpos = strchr(src, '*'); if (starpos != NULL) *(starpos) = '\0'; while (*src == ' ') ++src; if (!hasP && !hasS && *src != '\0') { lcd_setstatus(src); } else { LCD_MESSAGERPGM(MSG_USERWAIT); } lcd_ignore_click(); st_synchronize(); previous_millis_cmd = millis(); if (codenum > 0){ codenum += millis(); // keep track of when we started waiting while(millis() < codenum && !lcd_clicked()){ manage_heater(); manage_inactivity(); lcd_update(); } lcd_ignore_click(false); }else{ if (!lcd_detected()) break; while(!lcd_clicked()){ manage_heater(); manage_inactivity(); lcd_update(); } } if (IS_SD_PRINTING) LCD_MESSAGERPGM(MSG_RESUMING); else LCD_MESSAGERPGM(WELCOME_MSG); } break; #endif case 17: LCD_MESSAGERPGM(MSG_NO_MOVE); enable_x(); enable_y(); enable_z(); enable_e0(); enable_e1(); enable_e2(); break; #ifdef SDSUPPORT case 20: // M20 - list SD card SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST); card.ls(); SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST); break; case 21: // M21 - init SD card card.initsd(); break; case 22: //M22 - release SD card card.release(); break; case 23: //M23 - Select file starpos = (strchr(strchr_pointer + 4,'*')); if(starpos!=NULL) *(starpos)='\0'; card.openFile(strchr_pointer + 4,true); break; case 24: //M24 - Start SD print card.startFileprint(); starttime=millis(); break; case 25: //M25 - Pause SD print card.pauseSDPrint(); break; case 26: //M26 - Set SD index if(card.cardOK && code_seen('S')) { card.setIndex(code_value_long()); } break; case 27: //M27 - Get SD status card.getStatus(); break; case 28: //M28 - Start SD write starpos = (strchr(strchr_pointer + 4,'*')); if(starpos != NULL){ char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N'); strchr_pointer = strchr(npos,' ') + 1; *(starpos) = '\0'; } card.openFile(strchr_pointer+4,false); break; case 29: //M29 - Stop SD write //processed in write to file routine above //card,saving = false; break; case 30: //M30 Delete File if (card.cardOK){ card.closefile(); starpos = (strchr(strchr_pointer + 4,'*')); if(starpos != NULL){ char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N'); strchr_pointer = strchr(npos,' ') + 1; *(starpos) = '\0'; } card.removeFile(strchr_pointer + 4); } break; case 32: //M32 - Select file and start SD print { if(card.sdprinting) { st_synchronize(); } starpos = (strchr(strchr_pointer + 4,'*')); char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start. if(namestartpos==NULL) { namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M } else namestartpos++; //to skip the '!' if(starpos!=NULL) *(starpos)='\0'; bool call_procedure=(code_seen('P')); if(strchr_pointer>namestartpos) call_procedure=false; //false alert, 'P' found within filename if( card.cardOK ) { card.openFile(namestartpos,true,!call_procedure); if(code_seen('S')) if(strchr_pointer= 0 && pin_status <= 255) pin_number = code_value(); for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++) { if (sensitive_pins[i] == pin_number) { pin_number = -1; break; } } #if defined(FAN_PIN) && FAN_PIN > -1 if (pin_number == FAN_PIN) fanSpeed = pin_status; #endif if (pin_number > -1) { pinMode(pin_number, OUTPUT); digitalWrite(pin_number, pin_status); analogWrite(pin_number, pin_status); } } break; case 44: // M44: Prusa3D: Reset the bed skew and offset calibration. // Reset the skew and offset in both RAM and EEPROM. reset_bed_offset_and_skew(); // Reset world2machine_rotation_and_skew and world2machine_shift, therefore // the planner will not perform any adjustments in the XY plane. // Wait for the motors to stop and update the current position with the absolute values. world2machine_revert_to_uncorrected(); break; case 45: // M45: Prusa3D: bed skew and offset with manual Z up { // Disable the default update procedure of the display. We will do a modal dialog. lcd_update_enable(false); // Let the planner use the uncorrected coordinates. mbl.reset(); // Reset world2machine_rotation_and_skew and world2machine_shift, therefore // the planner will not perform any adjustments in the XY plane. // Wait for the motors to stop and update the current position with the absolute values. world2machine_revert_to_uncorrected(); // Let the user move the Z axes up to the end stoppers. if (lcd_calibrate_z_end_stop_manual()) { refresh_cmd_timeout(); // Move the print head close to the bed. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); st_synchronize(); // Home in the XY plane. set_destination_to_current(); setup_for_endstop_move(); home_xy(); int8_t verbosity_level = 0; if (code_seen('V')) { // Just 'V' without a number counts as V1. char c = strchr_pointer[1]; verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); } BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level); uint8_t point_too_far_mask = 0; clean_up_after_endstop_move(); // Print head up. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); st_synchronize(); if (result >= 0) { // Second half: The fine adjustment. // Let the planner use the uncorrected coordinates. mbl.reset(); world2machine_reset(); // Home in the XY plane. setup_for_endstop_move(); home_xy(); result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask); clean_up_after_endstop_move(); // Print head up. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); st_synchronize(); } lcd_bed_calibration_show_result(result, point_too_far_mask); } else { // Timeouted. } lcd_update_enable(true); lcd_implementation_clear(); // lcd_return_to_status(); lcd_update(); break; } /* case 46: { // M46: Prusa3D: Show the assigned IP address. uint8_t ip[4]; bool hasIP = card.ToshibaFlashAir_GetIP(ip); if (hasIP) { SERIAL_ECHOPGM("Toshiba FlashAir current IP: "); SERIAL_ECHO(int(ip[0])); SERIAL_ECHOPGM("."); SERIAL_ECHO(int(ip[1])); SERIAL_ECHOPGM("."); SERIAL_ECHO(int(ip[2])); SERIAL_ECHOPGM("."); SERIAL_ECHO(int(ip[3])); SERIAL_ECHOLNPGM(""); } else { SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed"); } break; } */ case 47: // M47: Prusa3D: Show end stops dialog on the display. lcd_diag_show_end_stops(); break; #if 0 case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC. { // Disable the default update procedure of the display. We will do a modal dialog. lcd_update_enable(false); // Let the planner use the uncorrected coordinates. mbl.reset(); // Reset world2machine_rotation_and_skew and world2machine_shift, therefore // the planner will not perform any adjustments in the XY plane. // Wait for the motors to stop and update the current position with the absolute values. world2machine_revert_to_uncorrected(); // Move the print head close to the bed. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); st_synchronize(); // Home in the XY plane. set_destination_to_current(); setup_for_endstop_move(); home_xy(); int8_t verbosity_level = 0; if (code_seen('V')) { // Just 'V' without a number counts as V1. char c = strchr_pointer[1]; verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); } bool success = scan_bed_induction_points(verbosity_level); clean_up_after_endstop_move(); // Print head up. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); st_synchronize(); lcd_update_enable(true); lcd_implementation_clear(); // lcd_return_to_status(); lcd_update(); break; } #endif // M48 Z-Probe repeatability measurement function. // // Usage: M48 // // This function assumes the bed has been homed. Specificaly, that a G28 command // as been issued prior to invoking the M48 Z-Probe repeatability measurement function. // Any information generated by a prior G29 Bed leveling command will be lost and need to be // regenerated. // // The number of samples will default to 10 if not specified. You can use upper or lower case // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital // N for its communication protocol and will get horribly confused if you send it a capital N. // #ifdef ENABLE_AUTO_BED_LEVELING #ifdef Z_PROBE_REPEATABILITY_TEST case 48: // M48 Z-Probe repeatability { #if Z_MIN_PIN == -1 #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability." #endif double sum=0.0; double mean=0.0; double sigma=0.0; double sample_set[50]; int verbose_level=1, n=0, j, n_samples = 10, n_legs=0; double X_current, Y_current, Z_current; double X_probe_location, Y_probe_location, Z_start_location, ext_position; if (code_seen('V') || code_seen('v')) { verbose_level = code_value(); if (verbose_level<0 || verbose_level>4 ) { SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n"); goto Sigma_Exit; } } if (verbose_level > 0) { SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n"); SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n"); } if (code_seen('n')) { n_samples = code_value(); if (n_samples<4 || n_samples>50 ) { SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n"); goto Sigma_Exit; } } X_current = X_probe_location = st_get_position_mm(X_AXIS); Y_current = Y_probe_location = st_get_position_mm(Y_AXIS); Z_current = st_get_position_mm(Z_AXIS); Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING; ext_position = st_get_position_mm(E_AXIS); if (code_seen('X') || code_seen('x') ) { X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER; if (X_probe_locationX_MAX_POS ) { SERIAL_PROTOCOLPGM("?Specified X position out of range.\n"); goto Sigma_Exit; } } if (code_seen('Y') || code_seen('y') ) { Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER; if (Y_probe_locationY_MAX_POS ) { SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n"); goto Sigma_Exit; } } if (code_seen('L') || code_seen('l') ) { n_legs = code_value(); if ( n_legs==1 ) n_legs = 2; if ( n_legs<0 || n_legs>15 ) { SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n"); goto Sigma_Exit; } } // // Do all the preliminary setup work. First raise the probe. // st_synchronize(); plan_bed_level_matrix.set_to_identity(); plan_buffer_line( X_current, Y_current, Z_start_location, ext_position, homing_feedrate[Z_AXIS]/60, active_extruder); st_synchronize(); // // Now get everything to the specified probe point So we can safely do a probe to // get us close to the bed. If the Z-Axis is far from the bed, we don't want to // use that as a starting point for each probe. // if (verbose_level > 2) SERIAL_PROTOCOL("Positioning probe for the test.\n"); plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, ext_position, homing_feedrate[X_AXIS]/60, active_extruder); st_synchronize(); current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS); current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS); current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS); // // OK, do the inital probe to get us close to the bed. // Then retrace the right amount and use that in subsequent probes // setup_for_endstop_move(); run_z_probe(); current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING; plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, ext_position, homing_feedrate[X_AXIS]/60, active_extruder); st_synchronize(); current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); for( n=0; nX_MAX_POS) X_current = X_MAX_POS; if ( Y_currentY_MAX_POS) Y_current = Y_MAX_POS; if (verbose_level>3 ) { SERIAL_ECHOPAIR("x: ", X_current); SERIAL_ECHOPAIR("y: ", Y_current); SERIAL_PROTOCOLLNPGM(""); } do_blocking_move_to( X_current, Y_current, Z_current ); } do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location } setup_for_endstop_move(); run_z_probe(); sample_set[n] = current_position[Z_AXIS]; // // Get the current mean for the data points we have so far // sum=0.0; for( j=0; j<=n; j++) { sum = sum + sample_set[j]; } mean = sum / (double (n+1)); // // Now, use that mean to calculate the standard deviation for the // data points we have so far // sum=0.0; for( j=0; j<=n; j++) { sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean); } sigma = sqrt( sum / (double (n+1)) ); if (verbose_level > 1) { SERIAL_PROTOCOL(n+1); SERIAL_PROTOCOL(" of "); SERIAL_PROTOCOL(n_samples); SERIAL_PROTOCOLPGM(" z: "); SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6); } if (verbose_level > 2) { SERIAL_PROTOCOL(" mean: "); SERIAL_PROTOCOL_F(mean,6); SERIAL_PROTOCOL(" sigma: "); SERIAL_PROTOCOL_F(sigma,6); } if (verbose_level > 0) SERIAL_PROTOCOLPGM("\n"); plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder); st_synchronize(); } delay(1000); clean_up_after_endstop_move(); // enable_endstops(true); if (verbose_level > 0) { SERIAL_PROTOCOLPGM("Mean: "); SERIAL_PROTOCOL_F(mean, 6); SERIAL_PROTOCOLPGM("\n"); } SERIAL_PROTOCOLPGM("Standard Deviation: "); SERIAL_PROTOCOL_F(sigma, 6); SERIAL_PROTOCOLPGM("\n\n"); Sigma_Exit: break; } #endif // Z_PROBE_REPEATABILITY_TEST #endif // ENABLE_AUTO_BED_LEVELING case 104: // M104 if(setTargetedHotend(104)){ break; } if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder); setWatch(); break; case 112: // M112 -Emergency Stop kill(); break; case 140: // M140 set bed temp if (code_seen('S')) setTargetBed(code_value()); break; case 105 : // M105 if(setTargetedHotend(105)){ break; } #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1 SERIAL_PROTOCOLPGM("ok T:"); SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1); SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1); #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 SERIAL_PROTOCOLPGM(" B:"); SERIAL_PROTOCOL_F(degBed(),1); SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(degTargetBed(),1); #endif //TEMP_BED_PIN for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { SERIAL_PROTOCOLPGM(" T"); SERIAL_PROTOCOL(cur_extruder); SERIAL_PROTOCOLPGM(":"); SERIAL_PROTOCOL_F(degHotend(cur_extruder),1); SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1); } #else SERIAL_ERROR_START; SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS); #endif SERIAL_PROTOCOLPGM(" @:"); #ifdef EXTRUDER_WATTS SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127); SERIAL_PROTOCOLPGM("W"); #else SERIAL_PROTOCOL(getHeaterPower(tmp_extruder)); #endif SERIAL_PROTOCOLPGM(" B@:"); #ifdef BED_WATTS SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127); SERIAL_PROTOCOLPGM("W"); #else SERIAL_PROTOCOL(getHeaterPower(-1)); #endif #ifdef SHOW_TEMP_ADC_VALUES #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 SERIAL_PROTOCOLPGM(" ADC B:"); SERIAL_PROTOCOL_F(degBed(),1); SERIAL_PROTOCOLPGM("C->"); SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0); #endif for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { SERIAL_PROTOCOLPGM(" T"); SERIAL_PROTOCOL(cur_extruder); SERIAL_PROTOCOLPGM(":"); SERIAL_PROTOCOL_F(degHotend(cur_extruder),1); SERIAL_PROTOCOLPGM("C->"); SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0); } #endif SERIAL_PROTOCOLLN(""); return; break; case 109: {// M109 - Wait for extruder heater to reach target. if(setTargetedHotend(109)){ break; } LCD_MESSAGERPGM(MSG_HEATING); heating_status = 1; if (farm_mode) { prusa_statistics(1); }; #ifdef AUTOTEMP autotemp_enabled=false; #endif if (code_seen('S')) { setTargetHotend(code_value(), tmp_extruder); CooldownNoWait = true; } else if (code_seen('R')) { setTargetHotend(code_value(), tmp_extruder); CooldownNoWait = false; } #ifdef AUTOTEMP if (code_seen('S')) autotemp_min=code_value(); if (code_seen('B')) autotemp_max=code_value(); if (code_seen('F')) { autotemp_factor=code_value(); autotemp_enabled=true; } #endif setWatch(); codenum = millis(); /* See if we are heating up or cooling down */ target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling cancel_heatup = false; #ifdef TEMP_RESIDENCY_TIME long residencyStart; residencyStart = -1; /* continue to loop until we have reached the target temp _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */ while((!cancel_heatup)&&((residencyStart == -1) || (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) { #else while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) { #endif //TEMP_RESIDENCY_TIME if( (millis() - codenum) > 1000UL ) { //Print Temp Reading and remaining time every 1 second while heating up/cooling down SERIAL_PROTOCOLPGM("T:"); SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1); SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOL((int)tmp_extruder); #ifdef TEMP_RESIDENCY_TIME SERIAL_PROTOCOLPGM(" W:"); if(residencyStart > -1) { codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL; SERIAL_PROTOCOLLN( codenum ); } else { SERIAL_PROTOCOLLN( "?" ); } #else SERIAL_PROTOCOLLN(""); #endif codenum = millis(); } manage_heater(); manage_inactivity(); lcd_update(); #ifdef TEMP_RESIDENCY_TIME /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time or when current temp falls outside the hysteresis after target temp was reached */ if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) || (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) || (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) ) { residencyStart = millis(); } #endif //TEMP_RESIDENCY_TIME } LCD_MESSAGERPGM(MSG_HEATING_COMPLETE); heating_status = 2; if (farm_mode) { prusa_statistics(2); }; starttime=millis(); previous_millis_cmd = millis(); } break; case 190: // M190 - Wait for bed heater to reach target. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 LCD_MESSAGERPGM(MSG_BED_HEATING); heating_status = 3; if (farm_mode) { prusa_statistics(1); }; if (code_seen('S')) { setTargetBed(code_value()); CooldownNoWait = true; } else if (code_seen('R')) { setTargetBed(code_value()); CooldownNoWait = false; } codenum = millis(); cancel_heatup = false; target_direction = isHeatingBed(); // true if heating, false if cooling while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) { if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up. { float tt=degHotend(active_extruder); SERIAL_PROTOCOLPGM("T:"); SERIAL_PROTOCOL(tt); SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOL((int)active_extruder); SERIAL_PROTOCOLPGM(" B:"); SERIAL_PROTOCOL_F(degBed(),1); SERIAL_PROTOCOLLN(""); codenum = millis(); } manage_heater(); manage_inactivity(); lcd_update(); } LCD_MESSAGERPGM(MSG_BED_DONE); heating_status = 4; previous_millis_cmd = millis(); #endif break; #if defined(FAN_PIN) && FAN_PIN > -1 case 106: //M106 Fan On if (code_seen('S')){ fanSpeed=constrain(code_value(),0,255); } else { fanSpeed=255; } break; case 107: //M107 Fan Off fanSpeed = 0; break; #endif //FAN_PIN #if defined(PS_ON_PIN) && PS_ON_PIN > -1 case 80: // M80 - Turn on Power Supply SET_OUTPUT(PS_ON_PIN); //GND WRITE(PS_ON_PIN, PS_ON_AWAKE); // If you have a switch on suicide pin, this is useful // if you want to start another print with suicide feature after // a print without suicide... #if defined SUICIDE_PIN && SUICIDE_PIN > -1 SET_OUTPUT(SUICIDE_PIN); WRITE(SUICIDE_PIN, HIGH); #endif #ifdef ULTIPANEL powersupply = true; LCD_MESSAGERPGM(WELCOME_MSG); lcd_update(); #endif break; #endif case 81: // M81 - Turn off Power Supply disable_heater(); st_synchronize(); disable_e0(); disable_e1(); disable_e2(); finishAndDisableSteppers(); fanSpeed = 0; delay(1000); // Wait a little before to switch off #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 st_synchronize(); suicide(); #elif defined(PS_ON_PIN) && PS_ON_PIN > -1 SET_OUTPUT(PS_ON_PIN); WRITE(PS_ON_PIN, PS_ON_ASLEEP); #endif #ifdef ULTIPANEL powersupply = false; LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!! /* MACHNAME = "Prusa i3" MSGOFF = "Vypnuto" "Prusai3"" ""vypnuto""." "Prusa i3"" "MSG_ALL[lang_selected][50]"." */ lcd_update(); #endif break; case 82: axis_relative_modes[3] = false; break; case 83: axis_relative_modes[3] = true; break; case 18: //compatibility case 84: // M84 if(code_seen('S')){ stepper_inactive_time = code_value() * 1000; } else { bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS]))); if(all_axis) { st_synchronize(); disable_e0(); disable_e1(); disable_e2(); finishAndDisableSteppers(); } else { st_synchronize(); if(code_seen('X')) disable_x(); if(code_seen('Y')) disable_y(); if(code_seen('Z')) disable_z(); #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS if(code_seen('E')) { disable_e0(); disable_e1(); disable_e2(); } #endif } } break; case 85: // M85 if(code_seen('S')) { max_inactive_time = code_value() * 1000; } break; case 92: // M92 for(int8_t i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) { if(i == 3) { // E float value = code_value(); if(value < 20.0) { float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab. max_jerk[E_AXIS] *= factor; max_feedrate[i] *= factor; axis_steps_per_sqr_second[i] *= factor; } axis_steps_per_unit[i] = value; } else { axis_steps_per_unit[i] = code_value(); } } } break; case 115: // M115 if (code_seen('V')) { // Report the Prusa version number. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P()); } else if (code_seen('U')) { // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, // pause the print and ask the user to upgrade the firmware. show_upgrade_dialog_if_version_newer(++ strchr_pointer); } else { SERIAL_PROTOCOLRPGM(MSG_M115_REPORT); } break; case 117: // M117 display message starpos = (strchr(strchr_pointer + 5,'*')); if(starpos!=NULL) *(starpos)='\0'; lcd_setstatus(strchr_pointer + 5); break; case 114: // M114 SERIAL_PROTOCOLPGM("X:"); SERIAL_PROTOCOL(current_position[X_AXIS]); SERIAL_PROTOCOLPGM(" Y:"); SERIAL_PROTOCOL(current_position[Y_AXIS]); SERIAL_PROTOCOLPGM(" Z:"); SERIAL_PROTOCOL(current_position[Z_AXIS]); SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOL(current_position[E_AXIS]); SERIAL_PROTOCOLRPGM(MSG_COUNT_X); SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]); SERIAL_PROTOCOLPGM(" Y:"); SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]); SERIAL_PROTOCOLPGM(" Z:"); SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]); SERIAL_PROTOCOLLN(""); break; case 120: // M120 enable_endstops(false) ; break; case 121: // M121 enable_endstops(true) ; break; case 119: // M119 SERIAL_PROTOCOLRPGM(MSG_M119_REPORT); SERIAL_PROTOCOLLN(""); #if defined(X_MIN_PIN) && X_MIN_PIN > -1 SERIAL_PROTOCOLRPGM(MSG_X_MIN); if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); }else{ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); } SERIAL_PROTOCOLLN(""); #endif #if defined(X_MAX_PIN) && X_MAX_PIN > -1 SERIAL_PROTOCOLRPGM(MSG_X_MAX); if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); }else{ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); } SERIAL_PROTOCOLLN(""); #endif #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 SERIAL_PROTOCOLRPGM(MSG_Y_MIN); if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); }else{ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); } SERIAL_PROTOCOLLN(""); #endif #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 SERIAL_PROTOCOLRPGM(MSG_Y_MAX); if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); }else{ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); } SERIAL_PROTOCOLLN(""); #endif #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 SERIAL_PROTOCOLRPGM(MSG_Z_MIN); if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); }else{ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); } SERIAL_PROTOCOLLN(""); #endif #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 SERIAL_PROTOCOLRPGM(MSG_Z_MAX); if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); }else{ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); } SERIAL_PROTOCOLLN(""); #endif break; //TODO: update for all axis, use for loop #ifdef BLINKM case 150: // M150 { byte red; byte grn; byte blu; if(code_seen('R')) red = code_value(); if(code_seen('U')) grn = code_value(); if(code_seen('B')) blu = code_value(); SendColors(red,grn,blu); } break; #endif //BLINKM case 200: // M200 D set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters). { tmp_extruder = active_extruder; if(code_seen('T')) { tmp_extruder = code_value(); if(tmp_extruder >= EXTRUDERS) { SERIAL_ECHO_START; SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER); break; } } float area = .0; if(code_seen('D')) { float diameter = (float)code_value(); if (diameter == 0.0) { // setting any extruder filament size disables volumetric on the assumption that // slicers either generate in extruder values as cubic mm or as as filament feeds // for all extruders volumetric_enabled = false; } else { filament_size[tmp_extruder] = (float)code_value(); // make sure all extruders have some sane value for the filament size filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]); #if EXTRUDERS > 1 filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]); #if EXTRUDERS > 2 filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]); #endif #endif volumetric_enabled = true; } } else { //reserved for setting filament diameter via UFID or filament measuring device break; } calculate_volumetric_multipliers(); } break; case 201: // M201 for(int8_t i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) { max_acceleration_units_per_sq_second[i] = code_value(); } } // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) reset_acceleration_rates(); break; #if 0 // Not used for Sprinter/grbl gen6 case 202: // M202 for(int8_t i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; } break; #endif case 203: // M203 max feedrate mm/sec for(int8_t i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) max_feedrate[i] = code_value(); } break; case 204: // M204 acclereration S normal moves T filmanent only moves { if(code_seen('S')) acceleration = code_value() ; if(code_seen('T')) retract_acceleration = code_value() ; } break; case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk { if(code_seen('S')) minimumfeedrate = code_value(); if(code_seen('T')) mintravelfeedrate = code_value(); if(code_seen('B')) minsegmenttime = code_value() ; if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value(); if(code_seen('Y')) max_jerk[Y_AXIS] = code_value(); if(code_seen('Z')) max_jerk[Z_AXIS] = code_value(); if(code_seen('E')) max_jerk[E_AXIS] = code_value(); } break; case 206: // M206 additional homing offset for(int8_t i=0; i < 3; i++) { if(code_seen(axis_codes[i])) add_homing[i] = code_value(); } break; #ifdef FWRETRACT case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop] { if(code_seen('S')) { retract_length = code_value() ; } if(code_seen('F')) { retract_feedrate = code_value()/60 ; } if(code_seen('Z')) { retract_zlift = code_value() ; } }break; case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min] { if(code_seen('S')) { retract_recover_length = code_value() ; } if(code_seen('F')) { retract_recover_feedrate = code_value()/60 ; } }break; case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. { if(code_seen('S')) { int t= code_value() ; switch(t) { case 0: { autoretract_enabled=false; retracted[0]=false; #if EXTRUDERS > 1 retracted[1]=false; #endif #if EXTRUDERS > 2 retracted[2]=false; #endif }break; case 1: { autoretract_enabled=true; retracted[0]=false; #if EXTRUDERS > 1 retracted[1]=false; #endif #if EXTRUDERS > 2 retracted[2]=false; #endif }break; default: SERIAL_ECHO_START; SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND); SERIAL_ECHO(CMDBUFFER_CURRENT_STRING); SERIAL_ECHOLNPGM("\""); } } }break; #endif // FWRETRACT #if EXTRUDERS > 1 case 218: // M218 - set hotend offset (in mm), T X Y { if(setTargetedHotend(218)){ break; } if(code_seen('X')) { extruder_offset[X_AXIS][tmp_extruder] = code_value(); } if(code_seen('Y')) { extruder_offset[Y_AXIS][tmp_extruder] = code_value(); } SERIAL_ECHO_START; SERIAL_ECHORPGM(MSG_HOTEND_OFFSET); for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) { SERIAL_ECHO(" "); SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]); SERIAL_ECHO(","); SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]); } SERIAL_ECHOLN(""); }break; #endif case 220: // M220 S- set speed factor override percentage { if(code_seen('S')) { feedmultiply = code_value() ; } } break; case 221: // M221 S- set extrude factor override percentage { if(code_seen('S')) { int tmp_code = code_value(); if (code_seen('T')) { if(setTargetedHotend(221)){ break; } extruder_multiply[tmp_extruder] = tmp_code; } else { extrudemultiply = tmp_code ; } } } break; case 226: // M226 P S- Wait until the specified pin reaches the state required { if(code_seen('P')){ int pin_number = code_value(); // pin number int pin_state = -1; // required pin state - default is inverted if(code_seen('S')) pin_state = code_value(); // required pin state if(pin_state >= -1 && pin_state <= 1){ for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++) { if (sensitive_pins[i] == pin_number) { pin_number = -1; break; } } if (pin_number > -1) { int target = LOW; st_synchronize(); pinMode(pin_number, INPUT); switch(pin_state){ case 1: target = HIGH; break; case 0: target = LOW; break; case -1: target = !digitalRead(pin_number); break; } while(digitalRead(pin_number) != target){ manage_heater(); manage_inactivity(); lcd_update(); } } } } } break; #if NUM_SERVOS > 0 case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds { int servo_index = -1; int servo_position = 0; if (code_seen('P')) servo_index = code_value(); if (code_seen('S')) { servo_position = code_value(); if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) { #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) servos[servo_index].attach(0); #endif servos[servo_index].write(servo_position); #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) delay(PROBE_SERVO_DEACTIVATION_DELAY); servos[servo_index].detach(); #endif } else { SERIAL_ECHO_START; SERIAL_ECHO("Servo "); SERIAL_ECHO(servo_index); SERIAL_ECHOLN(" out of range"); } } else if (servo_index >= 0) { SERIAL_PROTOCOL(MSG_OK); SERIAL_PROTOCOL(" Servo "); SERIAL_PROTOCOL(servo_index); SERIAL_PROTOCOL(": "); SERIAL_PROTOCOL(servos[servo_index].read()); SERIAL_PROTOCOLLN(""); } } break; #endif // NUM_SERVOS > 0 #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))) case 300: // M300 { int beepS = code_seen('S') ? code_value() : 110; int beepP = code_seen('P') ? code_value() : 1000; if (beepS > 0) { #if BEEPER > 0 tone(BEEPER, beepS); delay(beepP); noTone(BEEPER); #elif defined(ULTRALCD) lcd_buzz(beepS, beepP); #elif defined(LCD_USE_I2C_BUZZER) lcd_buzz(beepP, beepS); #endif } else { delay(beepP); } } break; #endif // M300 #ifdef PIDTEMP case 301: // M301 { if(code_seen('P')) Kp = code_value(); if(code_seen('I')) Ki = scalePID_i(code_value()); if(code_seen('D')) Kd = scalePID_d(code_value()); #ifdef PID_ADD_EXTRUSION_RATE if(code_seen('C')) Kc = code_value(); #endif updatePID(); SERIAL_PROTOCOL(MSG_OK); SERIAL_PROTOCOL(" p:"); SERIAL_PROTOCOL(Kp); SERIAL_PROTOCOL(" i:"); SERIAL_PROTOCOL(unscalePID_i(Ki)); SERIAL_PROTOCOL(" d:"); SERIAL_PROTOCOL(unscalePID_d(Kd)); #ifdef PID_ADD_EXTRUSION_RATE SERIAL_PROTOCOL(" c:"); //Kc does not have scaling applied above, or in resetting defaults SERIAL_PROTOCOL(Kc); #endif SERIAL_PROTOCOLLN(""); } break; #endif //PIDTEMP #ifdef PIDTEMPBED case 304: // M304 { if(code_seen('P')) bedKp = code_value(); if(code_seen('I')) bedKi = scalePID_i(code_value()); if(code_seen('D')) bedKd = scalePID_d(code_value()); updatePID(); SERIAL_PROTOCOL(MSG_OK); SERIAL_PROTOCOL(" p:"); SERIAL_PROTOCOL(bedKp); SERIAL_PROTOCOL(" i:"); SERIAL_PROTOCOL(unscalePID_i(bedKi)); SERIAL_PROTOCOL(" d:"); SERIAL_PROTOCOL(unscalePID_d(bedKd)); SERIAL_PROTOCOLLN(""); } break; #endif //PIDTEMP case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/ { #ifdef CHDK SET_OUTPUT(CHDK); WRITE(CHDK, HIGH); chdkHigh = millis(); chdkActive = true; #else #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1 const uint8_t NUM_PULSES=16; const float PULSE_LENGTH=0.01524; for(int i=0; i < NUM_PULSES; i++) { WRITE(PHOTOGRAPH_PIN, HIGH); _delay_ms(PULSE_LENGTH); WRITE(PHOTOGRAPH_PIN, LOW); _delay_ms(PULSE_LENGTH); } delay(7.33); for(int i=0; i < NUM_PULSES; i++) { WRITE(PHOTOGRAPH_PIN, HIGH); _delay_ms(PULSE_LENGTH); WRITE(PHOTOGRAPH_PIN, LOW); _delay_ms(PULSE_LENGTH); } #endif #endif //chdk end if } break; #ifdef DOGLCD case 250: // M250 Set LCD contrast value: C (value 0..63) { if (code_seen('C')) { lcd_setcontrast( ((int)code_value())&63 ); } SERIAL_PROTOCOLPGM("lcd contrast value: "); SERIAL_PROTOCOL(lcd_contrast); SERIAL_PROTOCOLLN(""); } break; #endif #ifdef PREVENT_DANGEROUS_EXTRUDE case 302: // allow cold extrudes, or set the minimum extrude temperature { float temp = .0; if (code_seen('S')) temp=code_value(); set_extrude_min_temp(temp); } break; #endif case 303: // M303 PID autotune { float temp = 150.0; int e=0; int c=5; if (code_seen('E')) e=code_value(); if (e<0) temp=70; if (code_seen('S')) temp=code_value(); if (code_seen('C')) c=code_value(); PID_autotune(temp, e, c); } break; case 400: // M400 finish all moves { st_synchronize(); } break; #ifdef FILAMENT_SENSOR case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width { #if (FILWIDTH_PIN > -1) if(code_seen('N')) filament_width_nominal=code_value(); else{ SERIAL_PROTOCOLPGM("Filament dia (nominal mm):"); SERIAL_PROTOCOLLN(filament_width_nominal); } #endif } break; case 405: //M405 Turn on filament sensor for control { if(code_seen('D')) meas_delay_cm=code_value(); if(meas_delay_cm> MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY; if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup { int temp_ratio = widthFil_to_size_ratio(); for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){ measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte } delay_index1=0; delay_index2=0; } filament_sensor = true ; //SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); //SERIAL_PROTOCOL(filament_width_meas); //SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); //SERIAL_PROTOCOL(extrudemultiply); } break; case 406: //M406 Turn off filament sensor for control { filament_sensor = false ; } break; case 407: //M407 Display measured filament diameter { SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); SERIAL_PROTOCOLLN(filament_width_meas); } break; #endif case 500: // M500 Store settings in EEPROM { Config_StoreSettings(); } break; case 501: // M501 Read settings from EEPROM { Config_RetrieveSettings(); } break; case 502: // M502 Revert to default settings { Config_ResetDefault(); } break; case 503: // M503 print settings currently in memory { Config_PrintSettings(); } break; case 509: //M509 Force language selection { lcd_force_language_selection(); SERIAL_ECHO_START; SERIAL_PROTOCOLPGM(("LANG SEL FORCED")); } break; #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED case 540: { if(code_seen('S')) abort_on_endstop_hit = code_value() > 0; } break; #endif #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET: { float value; if (code_seen('Z')) { value = code_value(); if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX)) { zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp SERIAL_ECHO_START; SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR(""))); SERIAL_PROTOCOLLN(""); } else { SERIAL_ECHO_START; SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET); SERIAL_ECHORPGM(MSG_Z_MIN); SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN); SERIAL_ECHORPGM(MSG_Z_MAX); SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX); SERIAL_PROTOCOLLN(""); } } else { SERIAL_ECHO_START; SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : "))); SERIAL_ECHO(-zprobe_zoffset); SERIAL_PROTOCOLLN(""); } break; } #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET #ifdef FILAMENTCHANGEENABLE case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] { st_synchronize(); feedmultiplyBckp=feedmultiply; int8_t TooLowZ = 0; float target[4]; float lastpos[4]; target[X_AXIS]=current_position[X_AXIS]; target[Y_AXIS]=current_position[Y_AXIS]; target[Z_AXIS]=current_position[Z_AXIS]; target[E_AXIS]=current_position[E_AXIS]; lastpos[X_AXIS]=current_position[X_AXIS]; lastpos[Y_AXIS]=current_position[Y_AXIS]; lastpos[Z_AXIS]=current_position[Z_AXIS]; lastpos[E_AXIS]=current_position[E_AXIS]; //Restract extruder if(code_seen('E')) { target[E_AXIS]+= code_value(); } else { #ifdef FILAMENTCHANGE_FIRSTRETRACT target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ; #endif } plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); //Lift Z if(code_seen('Z')) { target[Z_AXIS]+= code_value(); } else { #ifdef FILAMENTCHANGE_ZADD target[Z_AXIS]+= FILAMENTCHANGE_ZADD ; if(target[Z_AXIS] < 10){ target[Z_AXIS]+= 10 ; TooLowZ = 1; }else{ TooLowZ = 0; } #endif } plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder); //Move XY to side if(code_seen('X')) { target[X_AXIS]+= code_value(); } else { #ifdef FILAMENTCHANGE_XPOS target[X_AXIS]= FILAMENTCHANGE_XPOS ; #endif } if(code_seen('Y')) { target[Y_AXIS]= code_value(); } else { #ifdef FILAMENTCHANGE_YPOS target[Y_AXIS]= FILAMENTCHANGE_YPOS ; #endif } plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder); // Unload filament if(code_seen('L')) { target[E_AXIS]+= code_value(); } else { #ifdef FILAMENTCHANGE_FINALRETRACT target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ; #endif } plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); //finish moves st_synchronize(); //disable extruder steppers so filament can be removed disable_e0(); disable_e1(); disable_e2(); delay(100); //Wait for user to insert filament uint8_t cnt=0; int counterBeep = 0; lcd_wait_interact(); while(!lcd_clicked()){ cnt++; manage_heater(); manage_inactivity(true); if(cnt==0) { #if BEEPER > 0 if (counterBeep== 500){ counterBeep = 0; } SET_OUTPUT(BEEPER); if (counterBeep== 0){ WRITE(BEEPER,HIGH); } if (counterBeep== 20){ WRITE(BEEPER,LOW); } counterBeep++; #else #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS) lcd_buzz(1000/6,100); #else lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ); #endif #endif } } //Filament inserted WRITE(BEEPER,LOW); //Feed the filament to the end of nozzle quickly target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); //Extrude some filament target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); //Wait for user to check the state lcd_change_fil_state = 0; lcd_loading_filament(); while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){ lcd_change_fil_state = 0; lcd_alright(); switch(lcd_change_fil_state){ // Filament failed to load so load it again case 2: target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); lcd_loading_filament(); break; // Filament loaded properly but color is not clear case 3: target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); lcd_loading_color(); break; // Everything good default: lcd_change_success(); break; } } //Not let's go back to print //Feed a little of filament to stabilize pressure target[E_AXIS]+= FILAMENTCHANGE_RECFEED; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); //Retract target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing //Move XY back plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder); //Move Z back plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder); target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT; //Unretract plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); //Set E position to original plan_set_e_position(lastpos[E_AXIS]); //Recover feed rate feedmultiply=feedmultiplyBckp; char cmd[9]; sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp); enquecommand(cmd); } break; #endif //FILAMENTCHANGEENABLE case 907: // M907 Set digital trimpot motor current using axis codes. { #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 for(int i=0;i -1 uint8_t channel,current; if(code_seen('P')) channel=code_value(); if(code_seen('S')) current=code_value(); digitalPotWrite(channel, current); #endif } break; case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. { #if defined(X_MS1_PIN) && X_MS1_PIN > -1 if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value()); for(int i=0;i -1 if(code_seen('S')) switch((int)code_value()) { case 1: for(int i=0;i= EXTRUDERS) { SERIAL_ECHO_START; SERIAL_ECHO("T"); SERIAL_ECHO(tmp_extruder); SERIAL_ECHOLN(MSG_INVALID_EXTRUDER); } else { boolean make_move = false; if(code_seen('F')) { make_move = true; next_feedrate = code_value(); if(next_feedrate > 0.0) { feedrate = next_feedrate; } } #if EXTRUDERS > 1 if(tmp_extruder != active_extruder) { // Save current position to return to after applying extruder offset memcpy(destination, current_position, sizeof(destination)); // Offset extruder (only by XY) int i; for(i = 0; i < 2; i++) { current_position[i] = current_position[i] - extruder_offset[i][active_extruder] + extruder_offset[i][tmp_extruder]; } // Set the new active extruder and position active_extruder = tmp_extruder; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); // Move to the old position if 'F' was in the parameters if(make_move && Stopped == false) { prepare_move(); } } #endif SERIAL_ECHO_START; SERIAL_ECHO(MSG_ACTIVE_EXTRUDER); SERIAL_PROTOCOLLN((int)active_extruder); } } // end if(code_seen('T')) (end of T codes) else { SERIAL_ECHO_START; SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND); SERIAL_ECHO(CMDBUFFER_CURRENT_STRING); SERIAL_ECHOLNPGM("\""); } ClearToSend(); } void FlushSerialRequestResend() { //char cmdbuffer[bufindr][100]="Resend:"; MYSERIAL.flush(); SERIAL_PROTOCOLRPGM(MSG_RESEND); SERIAL_PROTOCOLLN(gcode_LastN + 1); ClearToSend(); } // Confirm the execution of a command, if sent from a serial line. // Execution of a command from a SD card will not be confirmed. void ClearToSend() { previous_millis_cmd = millis(); if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) SERIAL_PROTOCOLLNRPGM(MSG_OK); } void get_coordinates() { bool seen[4]={false,false,false,false}; for(int8_t i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) { destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i]; seen[i]=true; } else destination[i] = current_position[i]; //Are these else lines really needed? } if(code_seen('F')) { next_feedrate = code_value(); if(next_feedrate > 0.0) feedrate = next_feedrate; } } void get_arc_coordinates() { #ifdef SF_ARC_FIX bool relative_mode_backup = relative_mode; relative_mode = true; #endif get_coordinates(); #ifdef SF_ARC_FIX relative_mode=relative_mode_backup; #endif if(code_seen('I')) { offset[0] = code_value(); } else { offset[0] = 0.0; } if(code_seen('J')) { offset[1] = code_value(); } else { offset[1] = 0.0; } } void clamp_to_software_endstops(float target[3]) { world2machine_clamp(target[0], target[1]); // Clamp the Z coordinate. if (min_software_endstops) { float negative_z_offset = 0; #ifdef ENABLE_AUTO_BED_LEVELING if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER; if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS]; #endif if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset; } if (max_software_endstops) { if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS]; } } #ifdef MESH_BED_LEVELING void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) { float dx = x - current_position[X_AXIS]; float dy = y - current_position[Y_AXIS]; float dz = z - current_position[Z_AXIS]; int n_segments = 0; if (mbl.active) { float len = abs(dx) + abs(dy); if (len > 0) // Split to 3cm segments or shorter. n_segments = int(ceil(len / 30.f)); } if (n_segments > 1) { float de = e - current_position[E_AXIS]; for (int i = 1; i < n_segments; ++ i) { float t = float(i) / float(n_segments); plan_buffer_line( current_position[X_AXIS] + t * dx, current_position[Y_AXIS] + t * dy, current_position[Z_AXIS] + t * dz, current_position[E_AXIS] + t * de, feed_rate, extruder); } } // The rest of the path. plan_buffer_line(x, y, z, e, feed_rate, extruder); current_position[X_AXIS] = x; current_position[Y_AXIS] = y; current_position[Z_AXIS] = z; current_position[E_AXIS] = e; } #endif // MESH_BED_LEVELING void prepare_move() { clamp_to_software_endstops(destination); previous_millis_cmd = millis(); // Do not use feedmultiply for E or Z only moves if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) { #ifdef MESH_BED_LEVELING mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); #else plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); #endif } else { #ifdef MESH_BED_LEVELING mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder); #else plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder); #endif } for(int8_t i=0; i < NUM_AXIS; i++) { current_position[i] = destination[i]; } } void prepare_arc_move(char isclockwise) { float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc // Trace the arc mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder); // As far as the parser is concerned, the position is now == target. In reality the // motion control system might still be processing the action and the real tool position // in any intermediate location. for(int8_t i=0; i < NUM_AXIS; i++) { current_position[i] = destination[i]; } previous_millis_cmd = millis(); } #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 #if defined(FAN_PIN) #if CONTROLLERFAN_PIN == FAN_PIN #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN" #endif #endif unsigned long lastMotor = 0; //Save the time for when a motor was turned on last unsigned long lastMotorCheck = 0; void controllerFan() { if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms { lastMotorCheck = millis(); if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0) #if EXTRUDERS > 2 || !READ(E2_ENABLE_PIN) #endif #if EXTRUDER > 1 #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 || !READ(X2_ENABLE_PIN) #endif || !READ(E1_ENABLE_PIN) #endif || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled... { lastMotor = millis(); //... set time to NOW so the fan will turn on } if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC... { digitalWrite(CONTROLLERFAN_PIN, 0); analogWrite(CONTROLLERFAN_PIN, 0); } else { // allows digital or PWM fan output to be used (see M42 handling) digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED); analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED); } } } #endif #ifdef TEMP_STAT_LEDS static bool blue_led = false; static bool red_led = false; static uint32_t stat_update = 0; void handle_status_leds(void) { float max_temp = 0.0; if(millis() > stat_update) { stat_update += 500; // Update every 0.5s for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { max_temp = max(max_temp, degHotend(cur_extruder)); max_temp = max(max_temp, degTargetHotend(cur_extruder)); } #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 max_temp = max(max_temp, degTargetBed()); max_temp = max(max_temp, degBed()); #endif if((max_temp > 55.0) && (red_led == false)) { digitalWrite(STAT_LED_RED, 1); digitalWrite(STAT_LED_BLUE, 0); red_led = true; blue_led = false; } if((max_temp < 54.0) && (blue_led == false)) { digitalWrite(STAT_LED_RED, 0); digitalWrite(STAT_LED_BLUE, 1); red_led = false; blue_led = true; } } } #endif void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h { #if defined(KILL_PIN) && KILL_PIN > -1 static int killCount = 0; // make the inactivity button a bit less responsive const int KILL_DELAY = 10000; #endif if(buflen < (BUFSIZE-1)) get_command(); if( (millis() - previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill(); if(stepper_inactive_time) { if( (millis() - previous_millis_cmd) > stepper_inactive_time ) { if(blocks_queued() == false && ignore_stepper_queue == false) { disable_x(); // SERIAL_ECHOLNPGM("manage_inactivity - disable Y"); disable_y(); disable_z(); disable_e0(); disable_e1(); disable_e2(); } } } #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH if (chdkActive && (millis() - chdkHigh > CHDK_DELAY)) { chdkActive = false; WRITE(CHDK, LOW); } #endif #if defined(KILL_PIN) && KILL_PIN > -1 // Check if the kill button was pressed and wait just in case it was an accidental // key kill key press // ------------------------------------------------------------------------------- if( 0 == READ(KILL_PIN) ) { killCount++; } else if (killCount > 0) { killCount--; } // Exceeded threshold and we can confirm that it was not accidental // KILL the machine // ---------------------------------------------------------------- if ( killCount >= KILL_DELAY) { kill(); } #endif #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 controllerFan(); //Check if fan should be turned on to cool stepper drivers down #endif #ifdef EXTRUDER_RUNOUT_PREVENT if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 ) if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP) { bool oldstatus=READ(E0_ENABLE_PIN); enable_e0(); float oldepos=current_position[E_AXIS]; float oldedes=destination[E_AXIS]; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder); current_position[E_AXIS]=oldepos; destination[E_AXIS]=oldedes; plan_set_e_position(oldepos); previous_millis_cmd=millis(); st_synchronize(); WRITE(E0_ENABLE_PIN,oldstatus); } #endif #ifdef TEMP_STAT_LEDS handle_status_leds(); #endif check_axes_activity(); } void kill(const char *full_screen_message) { cli(); // Stop interrupts disable_heater(); disable_x(); // SERIAL_ECHOLNPGM("kill - disable Y"); disable_y(); disable_z(); disable_e0(); disable_e1(); disable_e2(); #if defined(PS_ON_PIN) && PS_ON_PIN > -1 pinMode(PS_ON_PIN,INPUT); #endif SERIAL_ERROR_START; SERIAL_ERRORLNRPGM(MSG_ERR_KILLED); if (full_screen_message != NULL) { SERIAL_ERRORLNRPGM(full_screen_message); lcd_display_message_fullscreen_P(full_screen_message); } else { LCD_ALERTMESSAGERPGM(MSG_KILLED); } // FMC small patch to update the LCD before ending sei(); // enable interrupts for ( int i=5; i--; lcd_update()) { delay(200); } cli(); // disable interrupts suicide(); while(1) { /* Intentionally left empty */ } // Wait for reset } void Stop() { disable_heater(); if(Stopped == false) { Stopped = true; Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart SERIAL_ERROR_START; SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED); LCD_MESSAGERPGM(MSG_STOPPED); } } bool IsStopped() { return Stopped; }; #ifdef FAST_PWM_FAN void setPwmFrequency(uint8_t pin, int val) { val &= 0x07; switch(digitalPinToTimer(pin)) { #if defined(TCCR0A) case TIMER0A: case TIMER0B: // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02)); // TCCR0B |= val; break; #endif #if defined(TCCR1A) case TIMER1A: case TIMER1B: // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); // TCCR1B |= val; break; #endif #if defined(TCCR2) case TIMER2: case TIMER2: TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); TCCR2 |= val; break; #endif #if defined(TCCR2A) case TIMER2A: case TIMER2B: TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22)); TCCR2B |= val; break; #endif #if defined(TCCR3A) case TIMER3A: case TIMER3B: case TIMER3C: TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32)); TCCR3B |= val; break; #endif #if defined(TCCR4A) case TIMER4A: case TIMER4B: case TIMER4C: TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42)); TCCR4B |= val; break; #endif #if defined(TCCR5A) case TIMER5A: case TIMER5B: case TIMER5C: TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52)); TCCR5B |= val; break; #endif } } #endif //FAST_PWM_FAN bool setTargetedHotend(int code){ tmp_extruder = active_extruder; if(code_seen('T')) { tmp_extruder = code_value(); if(tmp_extruder >= EXTRUDERS) { SERIAL_ECHO_START; switch(code){ case 104: SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER); break; case 105: SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER); break; case 109: SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER); break; case 218: SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER); break; case 221: SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER); break; } SERIAL_ECHOLN(tmp_extruder); return true; } } return false; } void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) { if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255) { eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); } unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000)); total_filament_used = 0; } float calculate_volumetric_multiplier(float diameter) { float area = .0; float radius = .0; radius = diameter * .5; if (! volumetric_enabled || radius == 0) { area = 1; } else { area = M_PI * pow(radius, 2); } return 1.0 / area; } void calculate_volumetric_multipliers() { volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]); #if EXTRUDERS > 1 volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]); #if EXTRUDERS > 2 volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]); #endif #endif } void delay_keep_alive(int ms) { for (;;) { manage_heater(); // Manage inactivity, but don't disable steppers on timeout. manage_inactivity(true); lcd_update(); if (ms == 0) break; else if (ms >= 50) { delay(50); ms -= 50; } else { delay(ms); ms = 0; } } }