Prusa-Firmware/Firmware/Marlin_main.cpp
Yuri D'Elia 048628083a Remove clear_current_adv_vars()
The pressure state is already reset implicitly at the end of each block,
meaning an extruder switch will never have to reset the internal state
anyway.

We clear the internal backpressure in the following conditions:

- when switching to a non-LA block
- when quickStop is called
- when the scheduler is idling (losing pressure)
2019-06-05 20:25:19 +02:00

9655 lines
327 KiB
C++

/* -*- c++ -*- */
/**
* @file
*/
/**
* @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
*
* @section intro_sec Introduction
*
* This firmware is a mashup between Sprinter and grbl.
* https://github.com/kliment/Sprinter
* https://github.com/simen/grbl/tree
*
* It has preliminary support for Matthew Roberts advance algorithm
* http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*
* Prusa Research s.r.o. https://www.prusa3d.cz
*
* @section copyright_sec Copyright
*
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* @section notes_sec Notes
*
* * Do not create static objects in global functions.
* Otherwise constructor guard against concurrent calls is generated costing
* about 8B RAM and 14B flash.
*
*
*/
#include "Marlin.h"
#ifdef ENABLE_AUTO_BED_LEVELING
#include "vector_3.h"
#ifdef AUTO_BED_LEVELING_GRID
#include "qr_solve.h"
#endif
#endif // ENABLE_AUTO_BED_LEVELING
#ifdef MESH_BED_LEVELING
#include "mesh_bed_leveling.h"
#include "mesh_bed_calibration.h"
#endif
#include "printers.h"
#include "menu.h"
#include "ultralcd.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "motion_control.h"
#include "cardreader.h"
#include "ConfigurationStore.h"
#include "language.h"
#include "pins_arduino.h"
#include "math.h"
#include "util.h"
#include "Timer.h"
#include <avr/wdt.h>
#include <avr/pgmspace.h>
#include "Dcodes.h"
#include "AutoDeplete.h"
#ifdef SWSPI
#include "swspi.h"
#endif //SWSPI
#include "spi.h"
#ifdef SWI2C
#include "swi2c.h"
#endif //SWI2C
#ifdef FILAMENT_SENSOR
#include "fsensor.h"
#endif //FILAMENT_SENSOR
#ifdef TMC2130
#include "tmc2130.h"
#endif //TMC2130
#ifdef W25X20CL
#include "w25x20cl.h"
#include "optiboot_w25x20cl.h"
#endif //W25X20CL
#ifdef BLINKM
#include "BlinkM.h"
#include "Wire.h"
#endif
#ifdef ULTRALCD
#include "ultralcd.h"
#endif
#if NUM_SERVOS > 0
#include "Servo.h"
#endif
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
#include <SPI.h>
#endif
#include "mmu.h"
#define VERSION_STRING "1.0.2"
#include "ultralcd.h"
#include "sound.h"
#include "cmdqueue.h"
#include "io_atmega2560.h"
// Macros for bit masks
#define BIT(b) (1<<(b))
#define TEST(n,b) (((n)&BIT(b))!=0)
#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
//Macro for print fan speed
#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
#define PRINTING_TYPE_SD 0
#define PRINTING_TYPE_USB 1
#define PRINTING_TYPE_NONE 2
//filament types
#define FILAMENT_DEFAULT 0
#define FILAMENT_FLEX 1
#define FILAMENT_PVA 2
#define FILAMENT_UNDEFINED 255
//Stepper Movement Variables
//===========================================================================
//=============================imported variables============================
//===========================================================================
//===========================================================================
//=============================public variables=============================
//===========================================================================
#ifdef SDSUPPORT
CardReader card;
#endif
unsigned long PingTime = _millis();
unsigned long NcTime;
uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
//used for PINDA temp calibration and pause print
#define DEFAULT_RETRACTION 1
#define DEFAULT_RETRACTION_MM 4 //MM
float default_retraction = DEFAULT_RETRACTION;
float homing_feedrate[] = HOMING_FEEDRATE;
// Currently only the extruder axis may be switched to a relative mode.
// Other axes are always absolute or relative based on the common relative_mode flag.
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int feedmultiply=100; //100->1 200->2
int extrudemultiply=100; //100->1 200->2
int extruder_multiply[EXTRUDERS] = {100
#if EXTRUDERS > 1
, 100
#if EXTRUDERS > 2
, 100
#endif
#endif
};
int bowden_length[4] = {385, 385, 385, 385};
bool is_usb_printing = false;
bool homing_flag = false;
bool temp_cal_active = false;
unsigned long kicktime = _millis()+100000;
unsigned int usb_printing_counter;
int8_t lcd_change_fil_state = 0;
unsigned long pause_time = 0;
unsigned long start_pause_print = _millis();
unsigned long t_fan_rising_edge = _millis();
LongTimer safetyTimer;
static LongTimer crashDetTimer;
//unsigned long load_filament_time;
bool mesh_bed_leveling_flag = false;
bool mesh_bed_run_from_menu = false;
int8_t FarmMode = 0;
bool prusa_sd_card_upload = false;
unsigned int status_number = 0;
unsigned long total_filament_used;
unsigned int heating_status;
unsigned int heating_status_counter;
bool loading_flag = false;
char snmm_filaments_used = 0;
bool fan_state[2];
int fan_edge_counter[2];
int fan_speed[2];
char dir_names[3][9];
bool sortAlpha = false;
float extruder_multiplier[EXTRUDERS] = {1.0
#if EXTRUDERS > 1
, 1.0
#if EXTRUDERS > 2
, 1.0
#endif
#endif
};
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
//shortcuts for more readable code
#define _x current_position[X_AXIS]
#define _y current_position[Y_AXIS]
#define _z current_position[Z_AXIS]
#define _e current_position[E_AXIS]
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
bool axis_known_position[3] = {false, false, false};
// Extruder offset
#if EXTRUDERS > 1
#define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
#endif
};
#endif
uint8_t active_extruder = 0;
int fanSpeed=0;
#ifdef FWRETRACT
bool retracted[EXTRUDERS]={false
#if EXTRUDERS > 1
, false
#if EXTRUDERS > 2
, false
#endif
#endif
};
bool retracted_swap[EXTRUDERS]={false
#if EXTRUDERS > 1
, false
#if EXTRUDERS > 2
, false
#endif
#endif
};
float retract_length_swap = RETRACT_LENGTH_SWAP;
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
#endif
#ifdef PS_DEFAULT_OFF
bool powersupply = false;
#else
bool powersupply = true;
#endif
bool cancel_heatup = false ;
int8_t busy_state = NOT_BUSY;
static long prev_busy_signal_ms = -1;
uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
const char errormagic[] PROGMEM = "Error:";
const char echomagic[] PROGMEM = "echo:";
bool no_response = false;
uint8_t important_status;
uint8_t saved_filament_type;
// save/restore printing in case that mmu was not responding
bool mmu_print_saved = false;
// storing estimated time to end of print counted by slicer
uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
bool wizard_active = false; //autoload temporarily disabled during wizard
//===========================================================================
//=============================Private Variables=============================
//===========================================================================
#define MSG_BED_LEVELING_FAILED_TIMEOUT 30
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
// For tracing an arc
static float offset[3] = {0.0, 0.0, 0.0};
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
// Determines Absolute or Relative Coordinates.
// Also there is bool axis_relative_modes[] per axis flag.
static bool relative_mode = false;
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
//static float tt = 0;
//static float bt = 0;
//Inactivity shutdown variables
static unsigned long previous_millis_cmd = 0;
unsigned long max_inactive_time = 0;
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
unsigned long starttime=0;
unsigned long stoptime=0;
unsigned long _usb_timer = 0;
bool Stopped=false;
#if NUM_SERVOS > 0
Servo servos[NUM_SERVOS];
#endif
bool CooldownNoWait = true;
bool target_direction;
//Insert variables if CHDK is defined
#ifdef CHDK
unsigned long chdkHigh = 0;
boolean chdkActive = false;
#endif
//! @name RAM save/restore printing
//! @{
bool saved_printing = false; //!< Print is paused and saved in RAM
static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
static uint8_t saved_printing_type = PRINTING_TYPE_SD;
static float saved_pos[4] = { 0, 0, 0, 0 };
//! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
static float saved_feedrate2 = 0;
static uint8_t saved_active_extruder = 0;
static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
static bool saved_extruder_relative_mode = false;
static int saved_fanSpeed = 0; //!< Print fan speed
//! @}
static int saved_feedmultiply_mm = 100;
//===========================================================================
//=============================Routines======================================
//===========================================================================
static void get_arc_coordinates();
static bool setTargetedHotend(int code, uint8_t &extruder);
static void print_time_remaining_init();
static void wait_for_heater(long codenum, uint8_t extruder);
static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
uint16_t gcode_in_progress = 0;
uint16_t mcode_in_progress = 0;
void serial_echopair_P(const char *s_P, float v)
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, double v)
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, unsigned long v)
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
#ifdef SDSUPPORT
#include "SdFatUtil.h"
int freeMemory() { return SdFatUtil::FreeRam(); }
#else
extern "C" {
extern unsigned int __bss_end;
extern unsigned int __heap_start;
extern void *__brkval;
int freeMemory() {
int free_memory;
if ((int)__brkval == 0)
free_memory = ((int)&free_memory) - ((int)&__bss_end);
else
free_memory = ((int)&free_memory) - ((int)__brkval);
return free_memory;
}
}
#endif //!SDSUPPORT
void setup_killpin()
{
#if defined(KILL_PIN) && KILL_PIN > -1
SET_INPUT(KILL_PIN);
WRITE(KILL_PIN,HIGH);
#endif
}
// Set home pin
void setup_homepin(void)
{
#if defined(HOME_PIN) && HOME_PIN > -1
SET_INPUT(HOME_PIN);
WRITE(HOME_PIN,HIGH);
#endif
}
void setup_photpin()
{
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
SET_OUTPUT(PHOTOGRAPH_PIN);
WRITE(PHOTOGRAPH_PIN, LOW);
#endif
}
void setup_powerhold()
{
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, HIGH);
#endif
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
SET_OUTPUT(PS_ON_PIN);
#if defined(PS_DEFAULT_OFF)
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#else
WRITE(PS_ON_PIN, PS_ON_AWAKE);
#endif
#endif
}
void suicide()
{
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, LOW);
#endif
}
void servo_init()
{
#if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
servos[0].attach(SERVO0_PIN);
#endif
#if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
servos[1].attach(SERVO1_PIN);
#endif
#if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
servos[2].attach(SERVO2_PIN);
#endif
#if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
servos[3].attach(SERVO3_PIN);
#endif
#if (NUM_SERVOS >= 5)
#error "TODO: enter initalisation code for more servos"
#endif
}
bool fans_check_enabled = true;
#ifdef TMC2130
extern int8_t CrashDetectMenu;
void crashdet_enable()
{
tmc2130_sg_stop_on_crash = true;
eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
CrashDetectMenu = 1;
}
void crashdet_disable()
{
tmc2130_sg_stop_on_crash = false;
tmc2130_sg_crash = 0;
eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
CrashDetectMenu = 0;
}
void crashdet_stop_and_save_print()
{
stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
}
void crashdet_restore_print_and_continue()
{
restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
// babystep_apply();
}
void crashdet_stop_and_save_print2()
{
cli();
planner_abort_hard(); //abort printing
cmdqueue_reset(); //empty cmdqueue
card.sdprinting = false;
card.closefile();
// Reset and re-enable the stepper timer just before the global interrupts are enabled.
st_reset_timer();
sei();
}
void crashdet_detected(uint8_t mask)
{
st_synchronize();
static uint8_t crashDet_counter = 0;
bool automatic_recovery_after_crash = true;
if (crashDet_counter++ == 0) {
crashDetTimer.start();
}
else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
crashDetTimer.stop();
crashDet_counter = 0;
}
else if(crashDet_counter == CRASHDET_COUNTER_MAX){
automatic_recovery_after_crash = false;
crashDetTimer.stop();
crashDet_counter = 0;
}
else {
crashDetTimer.start();
}
lcd_update_enable(true);
lcd_clear();
lcd_update(2);
if (mask & X_AXIS_MASK)
{
eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
}
if (mask & Y_AXIS_MASK)
{
eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
}
lcd_update_enable(true);
lcd_update(2);
lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
gcode_G28(true, true, false); //home X and Y
st_synchronize();
if (automatic_recovery_after_crash) {
enquecommand_P(PSTR("CRASH_RECOVER"));
}else{
setTargetHotend(0, active_extruder);
bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
lcd_update_enable(true);
if (yesno)
{
enquecommand_P(PSTR("CRASH_RECOVER"));
}
else
{
enquecommand_P(PSTR("CRASH_CANCEL"));
}
}
}
void crashdet_recover()
{
crashdet_restore_print_and_continue();
tmc2130_sg_stop_on_crash = true;
}
void crashdet_cancel()
{
saved_printing = false;
tmc2130_sg_stop_on_crash = true;
if (saved_printing_type == PRINTING_TYPE_SD) {
lcd_print_stop();
}else if(saved_printing_type == PRINTING_TYPE_USB){
SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
SERIAL_PROTOCOLLNRPGM(MSG_OK);
}
}
#endif //TMC2130
void failstats_reset_print()
{
eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
}
#ifdef MESH_BED_LEVELING
enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
#endif
// Factory reset function
// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
// Level input parameter sets depth of reset
int er_progress = 0;
static void factory_reset(char level)
{
lcd_clear();
switch (level) {
// Level 0: Language reset
case 0:
if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
lang_reset();
break;
//Level 1: Reset statistics
case 1:
if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
lcd_menu_statistics();
break;
// Level 2: Prepare for shipping
case 2:
//lcd_puts_P(PSTR("Factory RESET"));
//lcd_puts_at_P(1,2,PSTR("Shipping prep"));
// Force language selection at the next boot up.
lang_reset();
// Force the "Follow calibration flow" message at the next boot up.
calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
farm_no = 0;
farm_mode = false;
eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
#ifdef FILAMENT_SENSOR
fsensor_enable();
fsensor_autoload_set(true);
#endif //FILAMENT_SENSOR
if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
//_delay_ms(2000);
break;
// Level 3: erase everything, whole EEPROM will be set to 0xFF
case 3:
lcd_puts_P(PSTR("Factory RESET"));
lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
er_progress = 0;
lcd_puts_at_P(3, 3, PSTR(" "));
lcd_set_cursor(3, 3);
lcd_print(er_progress);
// Erase EEPROM
for (int i = 0; i < 4096; i++) {
eeprom_update_byte((uint8_t*)i, 0xFF);
if (i % 41 == 0) {
er_progress++;
lcd_puts_at_P(3, 3, PSTR(" "));
lcd_set_cursor(3, 3);
lcd_print(er_progress);
lcd_puts_P(PSTR("%"));
}
}
break;
case 4:
bowden_menu();
break;
default:
break;
}
}
extern "C" {
FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
}
int uart_putchar(char c, FILE *)
{
MYSERIAL.write(c);
return 0;
}
void lcd_splash()
{
// lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
// lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
// lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
// fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
// lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
}
void factory_reset()
{
KEEPALIVE_STATE(PAUSED_FOR_USER);
if (!READ(BTN_ENC))
{
_delay_ms(1000);
if (!READ(BTN_ENC))
{
lcd_clear();
lcd_puts_P(PSTR("Factory RESET"));
SET_OUTPUT(BEEPER);
if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
WRITE(BEEPER, HIGH);
while (!READ(BTN_ENC));
WRITE(BEEPER, LOW);
_delay_ms(2000);
char level = reset_menu();
factory_reset(level);
switch (level) {
case 0: _delay_ms(0); break;
case 1: _delay_ms(0); break;
case 2: _delay_ms(0); break;
case 3: _delay_ms(0); break;
}
}
}
KEEPALIVE_STATE(IN_HANDLER);
}
void show_fw_version_warnings() {
if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
switch (FW_DEV_VERSION) {
case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
case(FW_VERSION_DEVEL):
case(FW_VERSION_DEBUG):
lcd_update_enable(false);
lcd_clear();
#if FW_DEV_VERSION == FW_VERSION_DEVEL
lcd_puts_at_P(0, 0, PSTR("Development build !!"));
#else
lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
#endif
lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
lcd_wait_for_click();
break;
// default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
}
lcd_update_enable(true);
}
//! @brief try to check if firmware is on right type of printer
static void check_if_fw_is_on_right_printer(){
#ifdef FILAMENT_SENSOR
if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
#ifdef IR_SENSOR
swi2c_init();
const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
if (pat9125_detected){
lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
#endif //IR_SENSOR
#ifdef PAT9125
//will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
if (ir_detected){
lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
#endif //PAT9125
}
#endif //FILAMENT_SENSOR
}
uint8_t check_printer_version()
{
uint8_t version_changed = 0;
uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
if (printer_type != PRINTER_TYPE) {
if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
else version_changed |= 0b10;
}
if (motherboard != MOTHERBOARD) {
if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
else version_changed |= 0b01;
}
return version_changed;
}
#ifdef BOOTAPP
#include "bootapp.h" //bootloader support
#endif //BOOTAPP
#if (LANG_MODE != 0) //secondary language support
#ifdef W25X20CL
// language update from external flash
#define LANGBOOT_BLOCKSIZE 0x1000u
#define LANGBOOT_RAMBUFFER 0x0800
void update_sec_lang_from_external_flash()
{
if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
{
uint8_t lang = boot_reserved >> 4;
uint8_t state = boot_reserved & 0xf;
lang_table_header_t header;
uint32_t src_addr;
if (lang_get_header(lang, &header, &src_addr))
{
fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
_delay(100);
boot_reserved = (state + 1) | (lang << 4);
if ((state * LANGBOOT_BLOCKSIZE) < header.size)
{
cli();
uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
if (state == 0)
{
//TODO - check header integrity
}
bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
}
else
{
//TODO - check sec lang data integrity
eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
}
}
}
boot_app_flags &= ~BOOT_APP_FLG_USER0;
}
#ifdef DEBUG_W25X20CL
uint8_t lang_xflash_enum_codes(uint16_t* codes)
{
lang_table_header_t header;
uint8_t count = 0;
uint32_t addr = 0x00000;
while (1)
{
printf_P(_n("LANGTABLE%d:"), count);
w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
if (header.magic != LANG_MAGIC)
{
printf_P(_n("NG!\n"));
break;
}
printf_P(_n("OK\n"));
printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
addr += header.size;
codes[count] = header.code;
count ++;
}
return count;
}
void list_sec_lang_from_external_flash()
{
uint16_t codes[8];
uint8_t count = lang_xflash_enum_codes(codes);
printf_P(_n("XFlash lang count = %hhd\n"), count);
}
#endif //DEBUG_W25X20CL
#endif //W25X20CL
#endif //(LANG_MODE != 0)
static void w25x20cl_err_msg()
{
lcd_puts_P(_n(ESC_2J ESC_H(0,0) "External SPI flash" ESC_H(0,1) "W25X20CL is not res-"
ESC_H(0,2) "ponding. Language" ESC_H(0,3) "switch unavailable."));
}
// "Setup" function is called by the Arduino framework on startup.
// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
// are initialized by the main() routine provided by the Arduino framework.
void setup()
{
mmu_init();
ultralcd_init();
#if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
analogWrite(LCD_BL_PIN, 255); //set full brightnes
#endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
spi_init();
lcd_splash();
Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
#ifdef W25X20CL
bool w25x20cl_success = w25x20cl_init();
if (w25x20cl_success)
{
optiboot_w25x20cl_enter();
#if (LANG_MODE != 0) //secondary language support
update_sec_lang_from_external_flash();
#endif //(LANG_MODE != 0)
}
else
{
w25x20cl_err_msg();
}
#else
const bool w25x20cl_success = true;
#endif //W25X20CL
setup_killpin();
setup_powerhold();
farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
if (farm_mode)
{
no_response = true; //we need confirmation by recieving PRUSA thx
important_status = 8;
prusa_statistics(8);
selectedSerialPort = 1;
#ifdef TMC2130
//increased extruder current (PFW363)
tmc2130_current_h[E_AXIS] = 36;
tmc2130_current_r[E_AXIS] = 36;
#endif //TMC2130
#ifdef FILAMENT_SENSOR
//disabled filament autoload (PFW360)
fsensor_autoload_set(false);
#endif //FILAMENT_SENSOR
}
MYSERIAL.begin(BAUDRATE);
fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
#ifndef W25X20CL
SERIAL_PROTOCOLLNPGM("start");
#endif //W25X20CL
stdout = uartout;
SERIAL_ECHO_START;
printf_P(PSTR(" " FW_VERSION_FULL "\n"));
#ifdef DEBUG_SEC_LANG
lang_table_header_t header;
uint32_t src_addr = 0x00000;
if (lang_get_header(1, &header, &src_addr))
{
//this is comparsion of some printing-methods regarding to flash space usage and code size/readability
#define LT_PRINT_TEST 2
// flash usage
// total p.test
//0 252718 t+c text code
//1 253142 424 170 254
//2 253040 322 164 158
//3 253248 530 135 395
#if (LT_PRINT_TEST==1) //not optimized printf
printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
#elif (LT_PRINT_TEST==2) //optimized printf
printf_P(
_n(
" _src_addr = 0x%08lx\n"
" _lt_magic = 0x%08lx %S\n"
" _lt_size = 0x%04x (%d)\n"
" _lt_count = 0x%04x (%d)\n"
" _lt_chsum = 0x%04x\n"
" _lt_code = 0x%04x (%c%c)\n"
" _lt_resv1 = 0x%08lx\n"
),
src_addr,
header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
header.size, header.size,
header.count, header.count,
header.checksum,
header.code, header.code >> 8, header.code & 0xff,
header.signature
);
#elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
MYSERIAL.print(" _src_addr = 0x");
MYSERIAL.println(src_addr, 16);
MYSERIAL.print(" _lt_magic = 0x");
MYSERIAL.print(header.magic, 16);
MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
MYSERIAL.print(" _lt_size = 0x");
MYSERIAL.print(header.size, 16);
MYSERIAL.print(" (");
MYSERIAL.print(header.size, 10);
MYSERIAL.println(")");
MYSERIAL.print(" _lt_count = 0x");
MYSERIAL.print(header.count, 16);
MYSERIAL.print(" (");
MYSERIAL.print(header.count, 10);
MYSERIAL.println(")");
MYSERIAL.print(" _lt_chsum = 0x");
MYSERIAL.println(header.checksum, 16);
MYSERIAL.print(" _lt_code = 0x");
MYSERIAL.print(header.code, 16);
MYSERIAL.print(" (");
MYSERIAL.print((char)(header.code >> 8), 0);
MYSERIAL.print((char)(header.code & 0xff), 0);
MYSERIAL.println(")");
MYSERIAL.print(" _lt_resv1 = 0x");
MYSERIAL.println(header.signature, 16);
#endif //(LT_PRINT_TEST==)
#undef LT_PRINT_TEST
#if 0
w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
for (uint16_t i = 0; i < 1024; i++)
{
if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
if ((i % 16) == 15) putchar('\n');
}
#endif
uint16_t sum = 0;
for (uint16_t i = 0; i < header.size; i++)
sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
sum -= header.checksum; //subtract checksum
printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
if (sum == header.checksum)
printf_P(_n("Checksum OK\n"), sum);
else
printf_P(_n("Checksum NG\n"), sum);
}
else
printf_P(_n("lang_get_header failed!\n"));
#if 0
for (uint16_t i = 0; i < 1024*10; i++)
{
if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
if ((i % 16) == 15) putchar('\n');
}
#endif
#if 0
SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
for (int i = 0; i < 4096; ++i) {
int b = eeprom_read_byte((unsigned char*)i);
if (b != 255) {
SERIAL_ECHO(i);
SERIAL_ECHO(":");
SERIAL_ECHO(b);
SERIAL_ECHOLN("");
}
}
SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
#endif
#endif //DEBUG_SEC_LANG
// Check startup - does nothing if bootloader sets MCUSR to 0
byte mcu = MCUSR;
/* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
if (mcu & 1) puts_P(MSG_POWERUP);
if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
MCUSR = 0;
//SERIAL_ECHORPGM(MSG_MARLIN);
//SERIAL_ECHOLNRPGM(VERSION_STRING);
#ifdef STRING_VERSION_CONFIG_H
#ifdef STRING_CONFIG_H_AUTHOR
SERIAL_ECHO_START;
SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
SERIAL_ECHOPGM("Compiled: ");
SERIAL_ECHOLNPGM(__DATE__);
#endif
#endif
SERIAL_ECHO_START;
SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
SERIAL_ECHO(freeMemory());
SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
//lcd_update_enable(false); // why do we need this?? - andre
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
bool previous_settings_retrieved = false;
uint8_t hw_changed = check_printer_version();
if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
previous_settings_retrieved = Config_RetrieveSettings();
}
else { //printer version was changed so use default settings
Config_ResetDefault();
}
SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
tp_init(); // Initialize temperature loop
if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
else
{
w25x20cl_err_msg();
printf_P(_n("W25X20CL not responding.\n"));
}
plan_init(); // Initialize planner;
factory_reset();
lcd_encoder_diff=0;
#ifdef TMC2130
uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
if (silentMode == 0xff) silentMode = 0;
tmc2130_mode = TMC2130_MODE_NORMAL;
uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
if (crashdet && !farm_mode)
{
crashdet_enable();
puts_P(_N("CrashDetect ENABLED!"));
}
else
{
crashdet_disable();
puts_P(_N("CrashDetect DISABLED"));
}
#ifdef TMC2130_LINEARITY_CORRECTION
#ifdef TMC2130_LINEARITY_CORRECTION_XYZ
tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
#endif //TMC2130_LINEARITY_CORRECTION_XYZ
tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
#endif //TMC2130_LINEARITY_CORRECTION
#ifdef TMC2130_VARIABLE_RESOLUTION
tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
#else //TMC2130_VARIABLE_RESOLUTION
tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
#endif //TMC2130_VARIABLE_RESOLUTION
#endif //TMC2130
st_init(); // Initialize stepper, this enables interrupts!
#ifdef TMC2130
tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
update_mode_profile();
tmc2130_init();
#endif //TMC2130
setup_photpin();
servo_init();
// Reset the machine correction matrix.
// It does not make sense to load the correction matrix until the machine is homed.
world2machine_reset();
#ifdef FILAMENT_SENSOR
fsensor_init();
#endif //FILAMENT_SENSOR
#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
#endif
setup_homepin();
#ifdef TMC2130
if (1) {
// try to run to zero phase before powering the Z motor.
// Move in negative direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
// Round the current micro-micro steps to micro steps.
for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
// Until the phase counter is reset to zero.
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
_delay(2);
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
_delay(2);
}
}
#endif //TMC2130
#if defined(Z_AXIS_ALWAYS_ON)
enable_z();
#endif
farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
if (farm_mode)
{
prusa_statistics(8);
}
// Enable Toshiba FlashAir SD card / WiFi enahanced card.
card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
// Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
// where all the EEPROM entries are set to 0x0ff.
// Once a firmware boots up, it forces at least a language selection, which changes
// EEPROM_LANG to number lower than 0x0ff.
// 1) Set a high power mode.
#ifdef TMC2130
eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
tmc2130_mode = TMC2130_MODE_NORMAL;
#endif //TMC2130
eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
}
// Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
// but this times out if a blocking dialog is shown in setup().
card.initsd();
#ifdef DEBUG_SD_SPEED_TEST
if (card.cardOK)
{
uint8_t* buff = (uint8_t*)block_buffer;
uint32_t block = 0;
uint32_t sumr = 0;
uint32_t sumw = 0;
for (int i = 0; i < 1024; i++)
{
uint32_t u = _micros();
bool res = card.card.readBlock(i, buff);
u = _micros() - u;
if (res)
{
printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
sumr += u;
u = _micros();
res = card.card.writeBlock(i, buff);
u = _micros() - u;
if (res)
{
printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
sumw += u;
}
else
{
printf_P(PSTR("writeBlock %4d error\n"), i);
break;
}
}
else
{
printf_P(PSTR("readBlock %4d error\n"), i);
break;
}
}
uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
}
else
printf_P(PSTR("Card NG!\n"));
#endif //DEBUG_SD_SPEED_TEST
if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
#ifdef SNMM
if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
int _z = BOWDEN_LENGTH;
for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
}
#endif
// In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
// If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
// is being written into the EEPROM, so the update procedure will be triggered only once.
#if (LANG_MODE != 0) //secondary language support
#ifdef DEBUG_W25X20CL
W25X20CL_SPI_ENTER();
uint8_t uid[8]; // 64bit unique id
w25x20cl_rd_uid(uid);
puts_P(_n("W25X20CL UID="));
for (uint8_t i = 0; i < 8; i ++)
printf_P(PSTR("%02hhx"), uid[i]);
putchar('\n');
list_sec_lang_from_external_flash();
#endif //DEBUG_W25X20CL
// lang_reset();
if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
lcd_language();
#ifdef DEBUG_SEC_LANG
uint16_t sec_lang_code = lang_get_code(1);
uint16_t ui = _SEC_LANG_TABLE; //table pointer
printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
lang_print_sec_lang(uartout);
#endif //DEBUG_SEC_LANG
#endif //(LANG_MODE != 0)
if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
temp_cal_active = false;
} else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
//eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
int16_t z_shift = 0;
for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
temp_cal_active = false;
}
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
}
if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
}
//mbl_mode_init();
mbl_settings_init();
SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
if (SilentModeMenu_MMU == 255) {
SilentModeMenu_MMU = 1;
eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
}
check_babystep(); //checking if Z babystep is in allowed range
#ifdef UVLO_SUPPORT
setup_uvlo_interrupt();
#endif //UVLO_SUPPORT
#if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
setup_fan_interrupt();
#endif //DEBUG_DISABLE_FANCHECK
#ifdef PAT9125
fsensor_setup_interrupt();
#endif //PAT9125
for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
#ifndef DEBUG_DISABLE_STARTMSGS
KEEPALIVE_STATE(PAUSED_FOR_USER);
check_if_fw_is_on_right_printer();
show_fw_version_warnings();
switch (hw_changed) {
//if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
//if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
case(0b01):
lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
break;
case(0b10):
lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
break;
case(0b11):
lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
break;
default: break; //no change, show no message
}
if (!previous_settings_retrieved) {
lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
Config_StoreSettings();
}
if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
lcd_wizard(WizState::Run);
}
if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
// Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
// Show the message.
lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
}
else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
// Show the message.
lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
lcd_update_enable(true);
}
else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
//lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
lcd_update_enable(true);
}
else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
// Show the message.
lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
}
}
#if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
update_current_firmware_version_to_eeprom();
lcd_selftest();
}
#endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
KEEPALIVE_STATE(IN_PROCESS);
#endif //DEBUG_DISABLE_STARTMSGS
lcd_update_enable(true);
lcd_clear();
lcd_update(2);
// Store the currently running firmware into an eeprom,
// so the next time the firmware gets updated, it will know from which version it has been updated.
update_current_firmware_version_to_eeprom();
#ifdef TMC2130
tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
#endif //TMC2130
#ifdef UVLO_SUPPORT
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
/*
if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
else {
eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
lcd_update_enable(true);
lcd_update(2);
lcd_setstatuspgm(_T(WELCOME_MSG));
}
*/
manage_heater(); // Update temperatures
#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
#endif
if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
puts_P(_N("Automatic recovery!"));
#endif
recover_print(1);
}
else{
#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
puts_P(_N("Normal recovery!"));
#endif
if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
else {
eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
lcd_update_enable(true);
lcd_update(2);
lcd_setstatuspgm(_T(WELCOME_MSG));
}
}
}
#endif //UVLO_SUPPORT
KEEPALIVE_STATE(NOT_BUSY);
#ifdef WATCHDOG
wdt_enable(WDTO_4S);
#endif //WATCHDOG
}
void trace();
#define CHUNK_SIZE 64 // bytes
#define SAFETY_MARGIN 1
char chunk[CHUNK_SIZE+SAFETY_MARGIN];
int chunkHead = 0;
void serial_read_stream() {
setAllTargetHotends(0);
setTargetBed(0);
lcd_clear();
lcd_puts_P(PSTR(" Upload in progress"));
// first wait for how many bytes we will receive
uint32_t bytesToReceive;
// receive the four bytes
char bytesToReceiveBuffer[4];
for (int i=0; i<4; i++) {
int data;
while ((data = MYSERIAL.read()) == -1) {};
bytesToReceiveBuffer[i] = data;
}
// make it a uint32
memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
// we're ready, notify the sender
MYSERIAL.write('+');
// lock in the routine
uint32_t receivedBytes = 0;
while (prusa_sd_card_upload) {
int i;
for (i=0; i<CHUNK_SIZE; i++) {
int data;
// check if we're not done
if (receivedBytes == bytesToReceive) {
break;
}
// read the next byte
while ((data = MYSERIAL.read()) == -1) {};
receivedBytes++;
// save it to the chunk
chunk[i] = data;
}
// write the chunk to SD
card.write_command_no_newline(&chunk[0]);
// notify the sender we're ready for more data
MYSERIAL.write('+');
// for safety
manage_heater();
// check if we're done
if(receivedBytes == bytesToReceive) {
trace(); // beep
card.closefile();
prusa_sd_card_upload = false;
SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
}
}
}
/**
* Output a "busy" message at regular intervals
* while the machine is not accepting commands.
*/
void host_keepalive() {
#ifndef HOST_KEEPALIVE_FEATURE
return;
#endif //HOST_KEEPALIVE_FEATURE
if (farm_mode) return;
long ms = _millis();
if (host_keepalive_interval && busy_state != NOT_BUSY) {
if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
switch (busy_state) {
case IN_HANDLER:
case IN_PROCESS:
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("busy: processing");
break;
case PAUSED_FOR_USER:
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("busy: paused for user");
break;
case PAUSED_FOR_INPUT:
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("busy: paused for input");
break;
default:
break;
}
}
prev_busy_signal_ms = ms;
}
// The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
// Before loop(), the setup() function is called by the main() routine.
void loop()
{
KEEPALIVE_STATE(NOT_BUSY);
if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
{
is_usb_printing = true;
usb_printing_counter--;
_usb_timer = _millis();
}
if (usb_printing_counter == 0)
{
is_usb_printing = false;
}
if (prusa_sd_card_upload)
{
//we read byte-by byte
serial_read_stream();
} else
{
get_command();
#ifdef SDSUPPORT
card.checkautostart(false);
#endif
if(buflen)
{
cmdbuffer_front_already_processed = false;
#ifdef SDSUPPORT
if(card.saving)
{
// Saving a G-code file onto an SD-card is in progress.
// Saving starts with M28, saving until M29 is seen.
if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
card.write_command(CMDBUFFER_CURRENT_STRING);
if(card.logging)
process_commands();
else
SERIAL_PROTOCOLLNRPGM(MSG_OK);
} else {
card.closefile();
SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
}
} else {
process_commands();
}
#else
process_commands();
#endif //SDSUPPORT
if (! cmdbuffer_front_already_processed && buflen)
{
// ptr points to the start of the block currently being processed.
// The first character in the block is the block type.
char *ptr = cmdbuffer + bufindr;
if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
// To support power panic, move the lenght of the command on the SD card to a planner buffer.
union {
struct {
char lo;
char hi;
} lohi;
uint16_t value;
} sdlen;
sdlen.value = 0;
{
// This block locks the interrupts globally for 3.25 us,
// which corresponds to a maximum repeat frequency of 307.69 kHz.
// This blocking is safe in the context of a 10kHz stepper driver interrupt
// or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
cli();
// Reset the command to something, which will be ignored by the power panic routine,
// so this buffer length will not be counted twice.
*ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
// Extract the current buffer length.
sdlen.lohi.lo = *ptr ++;
sdlen.lohi.hi = *ptr;
// and pass it to the planner queue.
planner_add_sd_length(sdlen.value);
sei();
}
}
else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
cli();
*ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
// and one for each command to previous block in the planner queue.
planner_add_sd_length(1);
sei();
}
// Now it is safe to release the already processed command block. If interrupted by the power panic now,
// this block's SD card length will not be counted twice as its command type has been replaced
// by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
cmdqueue_pop_front();
}
host_keepalive();
}
}
//check heater every n milliseconds
manage_heater();
isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
checkHitEndstops();
lcd_update(0);
#ifdef TMC2130
tmc2130_check_overtemp();
if (tmc2130_sg_crash)
{
uint8_t crash = tmc2130_sg_crash;
tmc2130_sg_crash = 0;
// crashdet_stop_and_save_print();
switch (crash)
{
case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
}
}
#endif //TMC2130
mmu_loop();
}
#define DEFINE_PGM_READ_ANY(type, reader) \
static inline type pgm_read_any(const type *p) \
{ return pgm_read_##reader##_near(p); }
DEFINE_PGM_READ_ANY(float, float);
DEFINE_PGM_READ_ANY(signed char, byte);
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array##_P[3] = \
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
static inline type array(int axis) \
{ return pgm_read_any(&array##_P[axis]); } \
type array##_ext(int axis) \
{ return pgm_read_any(&array##_P[axis]); }
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
static void axis_is_at_home(int axis) {
current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
}
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
//! @return original feedmultiply
static int setup_for_endstop_move(bool enable_endstops_now = true) {
saved_feedrate = feedrate;
int l_feedmultiply = feedmultiply;
feedmultiply = 100;
previous_millis_cmd = _millis();
enable_endstops(enable_endstops_now);
return l_feedmultiply;
}
//! @param original_feedmultiply feedmultiply to restore
static void clean_up_after_endstop_move(int original_feedmultiply) {
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
feedrate = saved_feedrate;
feedmultiply = original_feedmultiply;
previous_millis_cmd = _millis();
}
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
{
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
planeNormal.debug("planeNormal");
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
//bedLevel.debug("bedLevel");
//plan_bed_level_matrix.debug("bed level before");
//vector_3 uncorrected_position = plan_get_position_mm();
//uncorrected_position.debug("position before");
vector_3 corrected_position = plan_get_position();
// corrected_position.debug("position after");
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
// put the bed at 0 so we don't go below it.
current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
#else // not AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
plan_bed_level_matrix.set_to_identity();
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = plan_get_position();
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
// put the bed at 0 so we don't go below it.
current_position[Z_AXIS] = cs.zprobe_zoffset;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
#endif // AUTO_BED_LEVELING_GRID
static void run_z_probe() {
plan_bed_level_matrix.set_to_identity();
feedrate = homing_feedrate[Z_AXIS];
// move down until you find the bed
float zPosition = -10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
// we have to let the planner know where we are right now as it is not where we said to go.
zPosition = st_get_position_mm(Z_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
// move up the retract distance
zPosition += home_retract_mm(Z_AXIS);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
// move back down slowly to find bed
feedrate = homing_feedrate[Z_AXIS]/4;
zPosition -= home_retract_mm(Z_AXIS) * 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
// make sure the planner knows where we are as it may be a bit different than we last said to move to
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
static void do_blocking_move_to(float x, float y, float z) {
float oldFeedRate = feedrate;
feedrate = homing_feedrate[Z_AXIS];
current_position[Z_AXIS] = z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
feedrate = XY_TRAVEL_SPEED;
current_position[X_AXIS] = x;
current_position[Y_AXIS] = y;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
feedrate = oldFeedRate;
}
static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
}
/// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before) {
// move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
run_z_probe();
float measured_z = current_position[Z_AXIS];
SERIAL_PROTOCOLRPGM(_T(MSG_BED));
SERIAL_PROTOCOLPGM(" x: ");
SERIAL_PROTOCOL(x);
SERIAL_PROTOCOLPGM(" y: ");
SERIAL_PROTOCOL(y);
SERIAL_PROTOCOLPGM(" z: ");
SERIAL_PROTOCOL(measured_z);
SERIAL_PROTOCOLPGM("\n");
return measured_z;
}
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
#ifdef LIN_ADVANCE
/**
* M900: Set and/or Get advance K factor
*
* K<factor> Set advance K factor
*/
inline void gcode_M900() {
st_synchronize();
const float newK = code_seen('K') ? code_value_float() : -1;
if (newK >= 0 && newK < 10)
extruder_advance_K = newK;
else
SERIAL_ECHOLNPGM("K out of allowed range!");
SERIAL_ECHO_START;
SERIAL_ECHOPGM("Advance K=");
SERIAL_ECHOLN(extruder_advance_K);
}
#endif // LIN_ADVANCE
bool check_commands() {
bool end_command_found = false;
while (buflen)
{
if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
if (!cmdbuffer_front_already_processed)
cmdqueue_pop_front();
cmdbuffer_front_already_processed = false;
}
return end_command_found;
}
#ifdef TMC2130
bool calibrate_z_auto()
{
//lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
lcd_clear();
lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
bool endstops_enabled = enable_endstops(true);
int axis_up_dir = -home_dir(Z_AXIS);
tmc2130_home_enter(Z_AXIS_MASK);
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
set_destination_to_current();
destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
feedrate = homing_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
// current_position[axis] = 0;
// plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
tmc2130_home_exit();
enable_endstops(false);
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
set_destination_to_current();
destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
feedrate = homing_feedrate[Z_AXIS] / 2;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
enable_endstops(endstops_enabled);
if (PRINTER_TYPE == PRINTER_MK3) {
current_position[Z_AXIS] = Z_MAX_POS + 2.0;
}
else {
current_position[Z_AXIS] = Z_MAX_POS + 9.0;
}
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
return true;
}
#endif //TMC2130
#ifdef TMC2130
void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
#else
void homeaxis(int axis, uint8_t cnt)
#endif //TMC2130
{
bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
#define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
{
int axis_home_dir = home_dir(axis);
feedrate = homing_feedrate[axis];
#ifdef TMC2130
tmc2130_home_enter(X_AXIS_MASK << axis);
#endif //TMC2130
// Move away a bit, so that the print head does not touch the end position,
// and the following movement to endstop has a chance to achieve the required velocity
// for the stall guard to work.
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
set_destination_to_current();
// destination[axis] = 11.f;
destination[axis] = -3.f * axis_home_dir;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
// Move away from the possible collision with opposite endstop with the collision detection disabled.
endstops_hit_on_purpose();
enable_endstops(false);
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = 1. * axis_home_dir;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
// Now continue to move up to the left end stop with the collision detection enabled.
enable_endstops(true);
destination[axis] = 1.1 * axis_home_dir * max_length(axis);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
for (uint8_t i = 0; i < cnt; i++)
{
// Move away from the collision to a known distance from the left end stop with the collision detection disabled.
endstops_hit_on_purpose();
enable_endstops(false);
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = -10.f * axis_home_dir;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
endstops_hit_on_purpose();
// Now move left up to the collision, this time with a repeatable velocity.
enable_endstops(true);
destination[axis] = 11.f * axis_home_dir;
#ifdef TMC2130
feedrate = homing_feedrate[axis];
#else //TMC2130
feedrate = homing_feedrate[axis] / 2;
#endif //TMC2130
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
#ifdef TMC2130
uint16_t mscnt = tmc2130_rd_MSCNT(axis);
if (pstep) pstep[i] = mscnt >> 4;
printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
#endif //TMC2130
}
endstops_hit_on_purpose();
enable_endstops(false);
#ifdef TMC2130
uint8_t orig = tmc2130_home_origin[axis];
uint8_t back = tmc2130_home_bsteps[axis];
if (tmc2130_home_enabled && (orig <= 63))
{
tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
if (back > 0)
tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
}
else
tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
tmc2130_home_exit();
#endif //TMC2130
axis_is_at_home(axis);
axis_known_position[axis] = true;
// Move from minimum
#ifdef TMC2130
float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
#else //TMC2130
float dist = - axis_home_dir * 0.01f * 64;
#endif //TMC2130
current_position[axis] -= dist;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
current_position[axis] += dist;
destination[axis] = current_position[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
st_synchronize();
feedrate = 0.0;
}
else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
{
#ifdef TMC2130
FORCE_HIGH_POWER_START;
#endif
int axis_home_dir = home_dir(axis);
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
feedrate = homing_feedrate[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
#ifdef TMC2130
if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
FORCE_HIGH_POWER_END;
kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
return;
}
#endif //TMC2130
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
feedrate = homing_feedrate[axis]/2 ;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
#ifdef TMC2130
if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
FORCE_HIGH_POWER_END;
kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
return;
}
#endif //TMC2130
axis_is_at_home(axis);
destination[axis] = current_position[axis];
feedrate = 0.0;
endstops_hit_on_purpose();
axis_known_position[axis] = true;
#ifdef TMC2130
FORCE_HIGH_POWER_END;
#endif
}
enable_endstops(endstops_enabled);
}
/**/
void home_xy()
{
set_destination_to_current();
homeaxis(X_AXIS);
homeaxis(Y_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
endstops_hit_on_purpose();
}
void refresh_cmd_timeout(void)
{
previous_millis_cmd = _millis();
}
#ifdef FWRETRACT
void retract(bool retracting, bool swapretract = false) {
if(retracting && !retracted[active_extruder]) {
destination[X_AXIS]=current_position[X_AXIS];
destination[Y_AXIS]=current_position[Y_AXIS];
destination[Z_AXIS]=current_position[Z_AXIS];
destination[E_AXIS]=current_position[E_AXIS];
current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate;
feedrate=cs.retract_feedrate*60;
retracted[active_extruder]=true;
prepare_move();
current_position[Z_AXIS]-=cs.retract_zlift;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
prepare_move();
feedrate = oldFeedrate;
} else if(!retracting && retracted[active_extruder]) {
destination[X_AXIS]=current_position[X_AXIS];
destination[Y_AXIS]=current_position[Y_AXIS];
destination[Z_AXIS]=current_position[Z_AXIS];
destination[E_AXIS]=current_position[E_AXIS];
current_position[Z_AXIS]+=cs.retract_zlift;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate;
feedrate=cs.retract_recover_feedrate*60;
retracted[active_extruder]=false;
prepare_move();
feedrate = oldFeedrate;
}
} //retract
#endif //FWRETRACT
void trace() {
//if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
_tone(BEEPER, 440);
_delay(25);
_noTone(BEEPER);
_delay(20);
}
/*
void ramming() {
// float tmp[4] = DEFAULT_MAX_FEEDRATE;
if (current_temperature[0] < 230) {
//PLA
max_feedrate[E_AXIS] = 50;
//current_position[E_AXIS] -= 8;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
//current_position[E_AXIS] += 8;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
current_position[E_AXIS] += 5.4;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
current_position[E_AXIS] += 3.2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[E_AXIS] += 3;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
st_synchronize();
max_feedrate[E_AXIS] = 80;
current_position[E_AXIS] -= 82;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
current_position[E_AXIS] -= 20;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
current_position[E_AXIS] += 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
current_position[E_AXIS] += 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
current_position[E_AXIS] -= 10;
st_synchronize();
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
current_position[E_AXIS] += 10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
current_position[E_AXIS] -= 10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
current_position[E_AXIS] += 10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
current_position[E_AXIS] -= 10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
st_synchronize();
}
else {
//ABS
max_feedrate[E_AXIS] = 50;
//current_position[E_AXIS] -= 8;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
//current_position[E_AXIS] += 8;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
current_position[E_AXIS] += 3.1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
current_position[E_AXIS] += 3.1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
current_position[E_AXIS] += 4;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
//current_position[X_AXIS] += 23; //delay
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
//current_position[X_AXIS] -= 23; //delay
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
_delay(4700);
max_feedrate[E_AXIS] = 80;
current_position[E_AXIS] -= 92;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
current_position[E_AXIS] -= 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
current_position[E_AXIS] += 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
current_position[E_AXIS] -= 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
current_position[E_AXIS] -= 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
current_position[E_AXIS] += 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
current_position[E_AXIS] -= 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
st_synchronize();
}
}
*/
#ifdef TMC2130
void force_high_power_mode(bool start_high_power_section) {
uint8_t silent;
silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
if (silent == 1) {
//we are in silent mode, set to normal mode to enable crash detection
// Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
st_synchronize();
cli();
tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
update_mode_profile();
tmc2130_init();
// We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
// Be safe than sorry, reset the stepper timer before re-enabling interrupts.
st_reset_timer();
sei();
}
}
#endif //TMC2130
#ifdef TMC2130
static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
#else
static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
#endif //TMC2130
{
st_synchronize();
#if 0
SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
#endif
// Flag for the display update routine and to disable the print cancelation during homing.
homing_flag = true;
// Which axes should be homed?
bool home_x = home_x_axis;
bool home_y = home_y_axis;
bool home_z = home_z_axis;
// Either all X,Y,Z codes are present, or none of them.
bool home_all_axes = home_x == home_y && home_x == home_z;
if (home_all_axes)
// No X/Y/Z code provided means to home all axes.
home_x = home_y = home_z = true;
//if we are homing all axes, first move z higher to protect heatbed/steel sheet
if (home_all_axes) {
current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
feedrate = homing_feedrate[Z_AXIS];
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
}
#ifdef ENABLE_AUTO_BED_LEVELING
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
#endif //ENABLE_AUTO_BED_LEVELING
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected();
// For mesh bed leveling deactivate the matrix temporarily.
// It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
// in a single axis only.
// In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
#ifdef MESH_BED_LEVELING
uint8_t mbl_was_active = mbl.active;
mbl.active = 0;
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
#endif
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
// consumed during the first movements following this statement.
if (home_z)
babystep_undo();
saved_feedrate = feedrate;
int l_feedmultiply = feedmultiply;
feedmultiply = 100;
previous_millis_cmd = _millis();
enable_endstops(true);
memcpy(destination, current_position, sizeof(destination));
feedrate = 0.0;
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
if(home_z)
homeaxis(Z_AXIS);
#endif
#ifdef QUICK_HOME
// In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
if(home_x && home_y) //first diagonal move
{
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
int x_axis_home_dir = home_dir(X_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
feedrate = homing_feedrate[X_AXIS];
if(homing_feedrate[Y_AXIS]<feedrate)
feedrate = homing_feedrate[Y_AXIS];
if (max_length(X_AXIS) > max_length(Y_AXIS)) {
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
} else {
feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
}
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
axis_is_at_home(X_AXIS);
axis_is_at_home(Y_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
feedrate = 0.0;
st_synchronize();
endstops_hit_on_purpose();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
current_position[Z_AXIS] = destination[Z_AXIS];
}
#endif /* QUICK_HOME */
#ifdef TMC2130
if(home_x)
{
if (!calib)
homeaxis(X_AXIS);
else
tmc2130_home_calibrate(X_AXIS);
}
if(home_y)
{
if (!calib)
homeaxis(Y_AXIS);
else
tmc2130_home_calibrate(Y_AXIS);
}
#else //TMC2130
if(home_x) homeaxis(X_AXIS);
if(home_y) homeaxis(Y_AXIS);
#endif //TMC2130
if(home_x_axis && home_x_value != 0)
current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
if(home_y_axis && home_y_value != 0)
current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
#ifndef Z_SAFE_HOMING
if(home_z) {
#if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
#endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
#if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
{
homeaxis(X_AXIS);
homeaxis(Y_AXIS);
}
// 1st mesh bed leveling measurement point, corrected.
world2machine_initialize();
world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
world2machine_reset();
if (destination[Y_AXIS] < Y_MIN_POS)
destination[Y_AXIS] = Y_MIN_POS;
destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
feedrate = homing_feedrate[Z_AXIS]/10;
current_position[Z_AXIS] = 0;
enable_endstops(false);
#ifdef DEBUG_BUILD
SERIAL_ECHOLNPGM("plan_set_position()");
MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
#endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#ifdef DEBUG_BUILD
SERIAL_ECHOLNPGM("plan_buffer_line()");
MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
#endif
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
enable_endstops(true);
endstops_hit_on_purpose();
homeaxis(Z_AXIS);
#else // MESH_BED_LEVELING
homeaxis(Z_AXIS);
#endif // MESH_BED_LEVELING
}
#else // defined(Z_SAFE_HOMING): Z Safe mode activated.
if(home_all_axes) {
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = XY_TRAVEL_SPEED/60;
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
homeaxis(Z_AXIS);
}
// Let's see if X and Y are homed and probe is inside bed area.
if(home_z) {
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
homeaxis(Z_AXIS);
} else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
} else {
LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
}
}
#endif // Z_SAFE_HOMING
#endif // Z_HOME_DIR < 0
if(home_z_axis && home_z_value != 0)
current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
#ifdef ENABLE_AUTO_BED_LEVELING
if(home_z)
current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
#endif
// Set the planner and stepper routine positions.
// At this point the mesh bed leveling and world2machine corrections are disabled and current_position
// contains the machine coordinates.
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
feedrate = saved_feedrate;
feedmultiply = l_feedmultiply;
previous_millis_cmd = _millis();
endstops_hit_on_purpose();
#ifndef MESH_BED_LEVELING
// If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
// Offer the user to load the baby step value, which has been adjusted at the previous print session.
if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
lcd_adjust_z();
#endif
// Load the machine correction matrix
world2machine_initialize();
// and correct the current_position XY axes to match the transformed coordinate system.
world2machine_update_current();
#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
{
if (! home_z && mbl_was_active) {
// Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
mbl.active = true;
// and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
}
}
else
{
st_synchronize();
homing_flag = false;
}
#endif
if (farm_mode) { prusa_statistics(20); };
homing_flag = false;
#if 0
SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
#endif
}
static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
{
#ifdef TMC2130
gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
#else
gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
#endif //TMC2130
}
void adjust_bed_reset()
{
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
}
//! @brief Calibrate XYZ
//! @param onlyZ if true, calibrate only Z axis
//! @param verbosity_level
//! @retval true Succeeded
//! @retval false Failed
bool gcode_M45(bool onlyZ, int8_t verbosity_level)
{
bool final_result = false;
#ifdef TMC2130
FORCE_HIGH_POWER_START;
#endif // TMC2130
// Only Z calibration?
if (!onlyZ)
{
setTargetBed(0);
setAllTargetHotends(0);
adjust_bed_reset(); //reset bed level correction
}
// Disable the default update procedure of the display. We will do a modal dialog.
lcd_update_enable(false);
// Let the planner use the uncorrected coordinates.
mbl.reset();
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected();
// Reset the baby step value applied without moving the axes.
babystep_reset();
// Mark all axes as in a need for homing.
memset(axis_known_position, 0, sizeof(axis_known_position));
// Home in the XY plane.
//set_destination_to_current();
int l_feedmultiply = setup_for_endstop_move();
lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
home_xy();
enable_endstops(false);
current_position[X_AXIS] += 5;
current_position[Y_AXIS] += 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
st_synchronize();
// Let the user move the Z axes up to the end stoppers.
#ifdef TMC2130
if (calibrate_z_auto())
{
#else //TMC2130
if (lcd_calibrate_z_end_stop_manual(onlyZ))
{
#endif //TMC2130
lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
if(onlyZ){
lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
lcd_set_cursor(0, 3);
lcd_print(1);
lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
}else{
//lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
lcd_set_cursor(0, 2);
lcd_print(1);
lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
}
refresh_cmd_timeout();
#ifndef STEEL_SHEET
if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
{
lcd_wait_for_cool_down();
}
#endif //STEEL_SHEET
if(!onlyZ)
{
KEEPALIVE_STATE(PAUSED_FOR_USER);
#ifdef STEEL_SHEET
bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
#endif //STEEL_SHEET
lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
KEEPALIVE_STATE(IN_HANDLER);
lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
lcd_set_cursor(0, 2);
lcd_print(1);
lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
}
bool endstops_enabled = enable_endstops(false);
current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
st_synchronize();
// Move the print head close to the bed.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
enable_endstops(true);
#ifdef TMC2130
tmc2130_home_enter(Z_AXIS_MASK);
#endif //TMC2130
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
st_synchronize();
#ifdef TMC2130
tmc2130_home_exit();
#endif //TMC2130
enable_endstops(endstops_enabled);
if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
{
if (onlyZ)
{
clean_up_after_endstop_move(l_feedmultiply);
// Z only calibration.
// Load the machine correction matrix
world2machine_initialize();
// and correct the current_position to match the transformed coordinate system.
world2machine_update_current();
//FIXME
bool result = sample_mesh_and_store_reference();
if (result)
{
if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
// Shipped, the nozzle height has been set already. The user can start printing now.
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
final_result = true;
// babystep_apply();
}
}
else
{
// Reset the baby step value and the baby step applied flag.
calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
// Complete XYZ calibration.
uint8_t point_too_far_mask = 0;
BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
clean_up_after_endstop_move(l_feedmultiply);
// Print head up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
st_synchronize();
//#ifndef NEW_XYZCAL
if (result >= 0)
{
#ifdef HEATBED_V2
sample_z();
#else //HEATBED_V2
point_too_far_mask = 0;
// Second half: The fine adjustment.
// Let the planner use the uncorrected coordinates.
mbl.reset();
world2machine_reset();
// Home in the XY plane.
int l_feedmultiply = setup_for_endstop_move();
home_xy();
result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
clean_up_after_endstop_move(l_feedmultiply);
// Print head up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
st_synchronize();
// if (result >= 0) babystep_apply();
#endif //HEATBED_V2
}
//#endif //NEW_XYZCAL
lcd_update_enable(true);
lcd_update(2);
lcd_bed_calibration_show_result(result, point_too_far_mask);
if (result >= 0)
{
// Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
final_result = true;
}
}
#ifdef TMC2130
tmc2130_home_exit();
#endif
}
else
{
lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
final_result = false;
}
}
else
{
// Timeouted.
}
lcd_update_enable(true);
#ifdef TMC2130
FORCE_HIGH_POWER_END;
#endif // TMC2130
return final_result;
}
void gcode_M114()
{
SERIAL_PROTOCOLPGM("X:");
SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(current_position[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(current_position[Z_AXIS]);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL(current_position[E_AXIS]);
SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
SERIAL_PROTOCOLLN("");
}
static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
{
st_synchronize();
float lastpos[4];
if (farm_mode)
{
prusa_statistics(22);
}
//First backup current position and settings
int feedmultiplyBckp = feedmultiply;
float HotendTempBckp = degTargetHotend(active_extruder);
int fanSpeedBckp = fanSpeed;
lastpos[X_AXIS] = current_position[X_AXIS];
lastpos[Y_AXIS] = current_position[Y_AXIS];
lastpos[Z_AXIS] = current_position[Z_AXIS];
lastpos[E_AXIS] = current_position[E_AXIS];
//Retract E
current_position[E_AXIS] += e_shift;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
st_synchronize();
//Lift Z
current_position[Z_AXIS] += z_shift;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
st_synchronize();
//Move XY to side
current_position[X_AXIS] = x_position;
current_position[Y_AXIS] = y_position;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
st_synchronize();
//Beep, manage nozzle heater and wait for user to start unload filament
if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
lcd_change_fil_state = 0;
// Unload filament
if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
else unload_filament(); //unload filament for single material (used also in M702)
//finish moves
st_synchronize();
if (!mmu_enabled)
{
KEEPALIVE_STATE(PAUSED_FOR_USER);
lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
if (lcd_change_fil_state == 0)
{
lcd_clear();
lcd_set_cursor(0, 2);
lcd_puts_P(_T(MSG_PLEASE_WAIT));
current_position[X_AXIS] -= 100;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
st_synchronize();
lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
}
}
if (mmu_enabled)
{
if (!automatic) {
if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
mmu_M600_wait_and_beep();
if (saved_printing) {
lcd_clear();
lcd_set_cursor(0, 2);
lcd_puts_P(_T(MSG_PLEASE_WAIT));
mmu_command(MmuCmd::R0);
manage_response(false, false);
}
}
mmu_M600_load_filament(automatic, HotendTempBckp);
}
else
M600_load_filament();
if (!automatic) M600_check_state(HotendTempBckp);
lcd_update_enable(true);
//Not let's go back to print
fanSpeed = fanSpeedBckp;
//Feed a little of filament to stabilize pressure
if (!automatic)
{
current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
}
//Move XY back
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
FILAMENTCHANGE_XYFEED, active_extruder);
st_synchronize();
//Move Z back
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
FILAMENTCHANGE_ZFEED, active_extruder);
st_synchronize();
//Set E position to original
plan_set_e_position(lastpos[E_AXIS]);
memcpy(current_position, lastpos, sizeof(lastpos));
memcpy(destination, current_position, sizeof(current_position));
//Recover feed rate
feedmultiply = feedmultiplyBckp;
char cmd[9];
sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
enquecommand(cmd);
#ifdef IR_SENSOR
//this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
fsensor_check_autoload();
#endif //IR_SENSOR
lcd_setstatuspgm(_T(WELCOME_MSG));
custom_message_type = CUSTOM_MSG_TYPE_STATUS;
}
//! @brief Rise Z if too low to avoid blob/jam before filament loading
//!
//! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
//! during extruding (loading) filament.
void marlin_rise_z(void)
{
if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
}
void gcode_M701()
{
printf_P(PSTR("gcode_M701 begin\n"));
if (mmu_enabled)
{
extr_adj(tmp_extruder);//loads current extruder
mmu_extruder = tmp_extruder;
}
else
{
enable_z();
custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
#ifdef FSENSOR_QUALITY
fsensor_oq_meassure_start(40);
#endif //FSENSOR_QUALITY
lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
current_position[E_AXIS] += 40;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
st_synchronize();
marlin_rise_z();
current_position[E_AXIS] += 30;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
load_filament_final_feed(); //slow sequence
st_synchronize();
if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) _tone(BEEPER, 500);
delay_keep_alive(50);
_noTone(BEEPER);
if (!farm_mode && loading_flag) {
lcd_load_filament_color_check();
}
lcd_update_enable(true);
lcd_update(2);
lcd_setstatuspgm(_T(WELCOME_MSG));
disable_z();
loading_flag = false;
custom_message_type = CUSTOM_MSG_TYPE_STATUS;
#ifdef FSENSOR_QUALITY
fsensor_oq_meassure_stop();
if (!fsensor_oq_result())
{
bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
lcd_update_enable(true);
lcd_update(2);
if (disable)
fsensor_disable();
}
#endif //FSENSOR_QUALITY
}
}
/**
* @brief Get serial number from 32U2 processor
*
* Typical format of S/N is:CZPX0917X003XC13518
*
* Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
*
* Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
* reply is transmitted to serial port 1 character by character.
* Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
* it is interrupted, so less, or no characters are retransmitted, only newline character is send
* in any case.
*/
static void gcode_PRUSA_SN()
{
if (farm_mode) {
selectedSerialPort = 0;
putchar(';');
putchar('S');
int numbersRead = 0;
ShortTimer timeout;
timeout.start();
while (numbersRead < 19) {
while (MSerial.available() > 0) {
uint8_t serial_char = MSerial.read();
selectedSerialPort = 1;
putchar(serial_char);
numbersRead++;
selectedSerialPort = 0;
}
if (timeout.expired(100u)) break;
}
selectedSerialPort = 1;
putchar('\n');
#if 0
for (int b = 0; b < 3; b++) {
_tone(BEEPER, 110);
_delay(50);
_noTone(BEEPER);
_delay(50);
}
#endif
} else {
puts_P(_N("Not in farm mode."));
}
}
#ifdef BACKLASH_X
extern uint8_t st_backlash_x;
#endif //BACKLASH_X
#ifdef BACKLASH_Y
extern uint8_t st_backlash_y;
#endif //BACKLASH_Y
//! @brief Parse and process commands
//!
//! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
//! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
//!
//! Implemented Codes
//! -------------------
//!
//!@n PRUSA CODES
//!@n P F - Returns FW versions
//!@n P R - Returns revision of printer
//!
//!@n G0 -> G1
//!@n G1 - Coordinated Movement X Y Z E
//!@n G2 - CW ARC
//!@n G3 - CCW ARC
//!@n G4 - Dwell S<seconds> or P<milliseconds>
//!@n G10 - retract filament according to settings of M207
//!@n G11 - retract recover filament according to settings of M208
//!@n G28 - Home all Axis
//!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
//!@n G30 - Single Z Probe, probes bed at current XY location.
//!@n G31 - Dock sled (Z_PROBE_SLED only)
//!@n G32 - Undock sled (Z_PROBE_SLED only)
//!@n G80 - Automatic mesh bed leveling
//!@n G81 - Print bed profile
//!@n G90 - Use Absolute Coordinates
//!@n G91 - Use Relative Coordinates
//!@n G92 - Set current position to coordinates given
//!
//!@n M Codes
//!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
//!@n M1 - Same as M0
//!@n M17 - Enable/Power all stepper motors
//!@n M18 - Disable all stepper motors; same as M84
//!@n M20 - List SD card
//!@n M21 - Init SD card
//!@n M22 - Release SD card
//!@n M23 - Select SD file (M23 filename.g)
//!@n M24 - Start/resume SD print
//!@n M25 - Pause SD print
//!@n M26 - Set SD position in bytes (M26 S12345)
//!@n M27 - Report SD print status
//!@n M28 - Start SD write (M28 filename.g)
//!@n M29 - Stop SD write
//!@n M30 - Delete file from SD (M30 filename.g)
//!@n M31 - Output time since last M109 or SD card start to serial
//!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
//! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
//! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
//! The '#' is necessary when calling from within sd files, as it stops buffer prereading
//!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
//!@n M73 - Show percent done and print time remaining
//!@n M80 - Turn on Power Supply
//!@n M81 - Turn off Power Supply
//!@n M82 - Set E codes absolute (default)
//!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
//!@n M84 - Disable steppers until next move,
//! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
//!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
//!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
//!@n M92 - Set axis_steps_per_unit - same syntax as G92
//!@n M104 - Set extruder target temp
//!@n M105 - Read current temp
//!@n M106 - Fan on
//!@n M107 - Fan off
//!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
//! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
//! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
//!@n M112 - Emergency stop
//!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
//!@n M114 - Output current position to serial port
//!@n M115 - Capabilities string
//!@n M117 - display message
//!@n M119 - Output Endstop status to serial port
//!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
//!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
//!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
//!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
//!@n M140 - Set bed target temp
//!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
//!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
//! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
//!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
//!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
//!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
//!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
//!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
//!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
//!@n M206 - set additional homing offset
//!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
//!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
//!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
//!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
//!@n M220 S<factor in percent>- set speed factor override percentage
//!@n M221 S<factor in percent>- set extrude factor override percentage
//!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
//!@n M240 - Trigger a camera to take a photograph
//!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
//!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
//!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
//!@n M301 - Set PID parameters P I and D
//!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
//!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
//!@n M304 - Set bed PID parameters P I and D
//!@n M400 - Finish all moves
//!@n M401 - Lower z-probe if present
//!@n M402 - Raise z-probe if present
//!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
//!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
//!@n M406 - Turn off Filament Sensor extrusion control
//!@n M407 - Displays measured filament diameter
//!@n M500 - stores parameters in EEPROM
//!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
//!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//!@n M503 - print the current settings (from memory not from EEPROM)
//!@n M509 - force language selection on next restart
//!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
//!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
//!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
//!@n M860 - Wait for PINDA thermistor to reach target temperature.
//!@n M861 - Set / Read PINDA temperature compensation offsets
//!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
//!@n M907 - Set digital trimpot motor current using axis codes.
//!@n M908 - Control digital trimpot directly.
//!@n M350 - Set microstepping mode.
//!@n M351 - Toggle MS1 MS2 pins directly.
//!
//!@n M928 - Start SD logging (M928 filename.g) - ended by M29
//!@n M999 - Restart after being stopped by error
void process_commands()
{
#ifdef FANCHECK
if (fan_check_error){
fan_check_error = false;
lcd_pause_print();
return;
}
#endif
if (!buflen) return; //empty command
#ifdef FILAMENT_RUNOUT_SUPPORT
SET_INPUT(FR_SENS);
#endif
#ifdef CMDBUFFER_DEBUG
SERIAL_ECHOPGM("Processing a GCODE command: ");
SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("In cmdqueue: ");
SERIAL_ECHO(buflen);
SERIAL_ECHOLNPGM("");
#endif /* CMDBUFFER_DEBUG */
unsigned long codenum; //throw away variable
char *starpos = NULL;
#ifdef ENABLE_AUTO_BED_LEVELING
float x_tmp, y_tmp, z_tmp, real_z;
#endif
// PRUSA GCODES
KEEPALIVE_STATE(IN_HANDLER);
#ifdef SNMM
float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
int8_t SilentMode;
#endif
if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
starpos = (strchr(strchr_pointer + 5, '*'));
if (starpos != NULL)
*(starpos) = '\0';
lcd_setstatus(strchr_pointer + 5);
}
#ifdef TMC2130
else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
{
if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
{
uint8_t mask = 0;
if (code_seen('X')) mask |= X_AXIS_MASK;
if (code_seen('Y')) mask |= Y_AXIS_MASK;
crashdet_detected(mask);
}
else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
crashdet_recover();
else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
crashdet_cancel();
}
else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
{
if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
{
uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
axis = (axis == 'E')?3:(axis - 'X');
if (axis < 4)
{
uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
tmc2130_set_wave(axis, 247, fac);
}
}
else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
{
uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
axis = (axis == 'E')?3:(axis - 'X');
if (axis < 4)
{
uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
uint16_t res = tmc2130_get_res(axis);
tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
}
}
else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
{
uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
axis = (axis == 'E')?3:(axis - 'X');
if (axis < 4)
{
uint8_t chop0 = tmc2130_chopper_config[axis].toff;
uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
uint8_t chop2 = tmc2130_chopper_config[axis].hend;
uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
char* str_end = 0;
if (CMDBUFFER_CURRENT_STRING[14])
{
chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
if (str_end && *str_end)
{
chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
if (str_end && *str_end)
{
chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
if (str_end && *str_end)
chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
}
}
}
tmc2130_chopper_config[axis].toff = chop0;
tmc2130_chopper_config[axis].hstr = chop1 & 7;
tmc2130_chopper_config[axis].hend = chop2 & 15;
tmc2130_chopper_config[axis].tbl = chop3 & 3;
tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
//printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
}
}
}
#ifdef BACKLASH_X
else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
{
uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
st_backlash_x = bl;
printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
}
#endif //BACKLASH_X
#ifdef BACKLASH_Y
else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
{
uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
st_backlash_y = bl;
printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
}
#endif //BACKLASH_Y
#endif //TMC2130
else if(code_seen("PRUSA")){
if (code_seen("Ping")) { //! PRUSA Ping
if (farm_mode) {
PingTime = _millis();
//MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
}
}
else if (code_seen("PRN")) { //! PRUSA PRN
printf_P(_N("%d"), status_number);
}else if (code_seen("FAN")) { //! PRUSA FAN
printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
}else if (code_seen("fn")) { //! PRUSA fn
if (farm_mode) {
printf_P(_N("%d"), farm_no);
}
else {
puts_P(_N("Not in farm mode."));
}
}
else if (code_seen("thx")) //! PRUSA thx
{
no_response = false;
}
else if (code_seen("uvlo")) //! PRUSA uvlo
{
eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
enquecommand_P(PSTR("M24"));
}
#ifdef FILAMENT_SENSOR
else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
{
fsensor_restore_print_and_continue();
}
#endif //FILAMENT_SENSOR
else if (code_seen("MMURES")) //! PRUSA MMURES
{
mmu_reset();
}
else if (code_seen("RESET")) { //! PRUSA RESET
// careful!
if (farm_mode) {
#if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
boot_app_magic = BOOT_APP_MAGIC;
boot_app_flags = BOOT_APP_FLG_RUN;
wdt_enable(WDTO_15MS);
cli();
while(1);
#else //WATCHDOG
asm volatile("jmp 0x3E000");
#endif //WATCHDOG
}
else {
MYSERIAL.println("Not in farm mode.");
}
}else if (code_seen("fv")) { //! PRUSA fv
// get file version
#ifdef SDSUPPORT
card.openFile(strchr_pointer + 3,true);
while (true) {
uint16_t readByte = card.get();
MYSERIAL.write(readByte);
if (readByte=='\n') {
break;
}
}
card.closefile();
#endif // SDSUPPORT
} else if (code_seen("M28")) { //! PRUSA M28
trace();
prusa_sd_card_upload = true;
card.openFile(strchr_pointer+4,false);
} else if (code_seen("SN")) { //! PRUSA SN
gcode_PRUSA_SN();
} else if(code_seen("Fir")){ //! PRUSA Fir
SERIAL_PROTOCOLLN(FW_VERSION_FULL);
} else if(code_seen("Rev")){ //! PRUSA Rev
SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
} else if(code_seen("Lang")) { //! PRUSA Lang
lang_reset();
} else if(code_seen("Lz")) { //! PRUSA Lz
EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
} else if(code_seen("Beat")) { //! PRUSA Beat
// Kick farm link timer
kicktime = _millis();
} else if(code_seen("FR")) { //! PRUSA FR
// Factory full reset
factory_reset(0);
}
//else if (code_seen('Cal')) {
// lcd_calibration();
// }
}
else if (code_seen('^')) {
// nothing, this is a version line
} else if(code_seen('G'))
{
gcode_in_progress = (int)code_value();
// printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
switch (gcode_in_progress)
{
case 0: // G0 -> G1
case 1: // G1
if(Stopped == false) {
#ifdef FILAMENT_RUNOUT_SUPPORT
if(READ(FR_SENS)){
int feedmultiplyBckp=feedmultiply;
float target[4];
float lastpos[4];
target[X_AXIS]=current_position[X_AXIS];
target[Y_AXIS]=current_position[Y_AXIS];
target[Z_AXIS]=current_position[Z_AXIS];
target[E_AXIS]=current_position[E_AXIS];
lastpos[X_AXIS]=current_position[X_AXIS];
lastpos[Y_AXIS]=current_position[Y_AXIS];
lastpos[Z_AXIS]=current_position[Z_AXIS];
lastpos[E_AXIS]=current_position[E_AXIS];
//retract by E
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
target[X_AXIS]= FILAMENTCHANGE_XPOS ;
target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
//finish moves
st_synchronize();
//disable extruder steppers so filament can be removed
disable_e0();
disable_e1();
disable_e2();
_delay(100);
//LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
uint8_t cnt=0;
int counterBeep = 0;
lcd_wait_interact();
while(!lcd_clicked()){
cnt++;
manage_heater();
manage_inactivity(true);
//lcd_update(0);
if(cnt==0)
{
#if BEEPER > 0
if (counterBeep== 500){
counterBeep = 0;
}
SET_OUTPUT(BEEPER);
if (counterBeep== 0){
if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
WRITE(BEEPER,HIGH);
}
if (counterBeep== 20){
WRITE(BEEPER,LOW);
}
counterBeep++;
#else
#endif
}
}
WRITE(BEEPER,LOW);
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
lcd_change_fil_state = 0;
lcd_loading_filament();
while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
lcd_change_fil_state = 0;
lcd_alright();
switch(lcd_change_fil_state){
case 2:
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
lcd_loading_filament();
break;
case 3:
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
lcd_loading_color();
break;
default:
lcd_change_success();
break;
}
}
target[E_AXIS]+= 5;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
//current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
//plan_set_e_position(current_position[E_AXIS]);
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
plan_set_e_position(lastpos[E_AXIS]);
feedmultiply=feedmultiplyBckp;
char cmd[9];
sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
enquecommand(cmd);
}
#endif
get_coordinates(); // For X Y Z E F
if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
}
#ifdef FWRETRACT
if(cs.autoretract_enabled)
if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
float echange=destination[E_AXIS]-current_position[E_AXIS];
if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
plan_set_e_position(current_position[E_AXIS]); //AND from the planner
retract(!retracted[active_extruder]);
return;
}
}
#endif //FWRETRACT
prepare_move();
//ClearToSend();
}
break;
case 2: // G2 - CW ARC
if(Stopped == false) {
get_arc_coordinates();
prepare_arc_move(true);
}
break;
case 3: // G3 - CCW ARC
if(Stopped == false) {
get_arc_coordinates();
prepare_arc_move(false);
}
break;
case 4: // G4 dwell
codenum = 0;
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
st_synchronize();
codenum += _millis(); // keep track of when we started waiting
previous_millis_cmd = _millis();
while(_millis() < codenum) {
manage_heater();
manage_inactivity();
lcd_update(0);
}
break;
#ifdef FWRETRACT
case 10: // G10 retract
#if EXTRUDERS > 1
retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
retract(true,retracted_swap[active_extruder]);
#else
retract(true);
#endif
break;
case 11: // G11 retract_recover
#if EXTRUDERS > 1
retract(false,retracted_swap[active_extruder]);
#else
retract(false);
#endif
break;
#endif //FWRETRACT
case 28: //G28 Home all Axis one at a time
{
long home_x_value = 0;
long home_y_value = 0;
long home_z_value = 0;
// Which axes should be homed?
bool home_x = code_seen(axis_codes[X_AXIS]);
home_x_value = code_value_long();
bool home_y = code_seen(axis_codes[Y_AXIS]);
home_y_value = code_value_long();
bool home_z = code_seen(axis_codes[Z_AXIS]);
home_z_value = code_value_long();
bool without_mbl = code_seen('W');
// calibrate?
#ifdef TMC2130
bool calib = code_seen('C');
gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
#else
gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
#endif //TMC2130
if ((home_x || home_y || without_mbl || home_z) == false) {
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
goto case_G80;
}
break;
}
#ifdef ENABLE_AUTO_BED_LEVELING
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
{
#if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
#endif
// Prevent user from running a G29 without first homing in X and Y
if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
{
LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
break; // abort G29, since we don't know where we are
}
st_synchronize();
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
//vector_3 corrected_position = plan_get_position_mm();
//corrected_position.debug("position before G29");
plan_bed_level_matrix.set_to_identity();
vector_3 uncorrected_position = plan_get_position();
//uncorrected_position.debug("position durring G29");
current_position[X_AXIS] = uncorrected_position.x;
current_position[Y_AXIS] = uncorrected_position.y;
current_position[Z_AXIS] = uncorrected_position.z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
int l_feedmultiply = setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
#ifdef AUTO_BED_LEVELING_GRID
// probe at the points of a lattice grid
int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
// solve the plane equation ax + by + d = z
// A is the matrix with rows [x y 1] for all the probed points
// B is the vector of the Z positions
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
// "A" matrix of the linear system of equations
double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
// "B" vector of Z points
double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
int probePointCounter = 0;
bool zig = true;
for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
{
int xProbe, xInc;
if (zig)
{
xProbe = LEFT_PROBE_BED_POSITION;
//xEnd = RIGHT_PROBE_BED_POSITION;
xInc = xGridSpacing;
zig = false;
} else // zag
{
xProbe = RIGHT_PROBE_BED_POSITION;
//xEnd = LEFT_PROBE_BED_POSITION;
xInc = -xGridSpacing;
zig = true;
}
for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
{
float z_before;
if (probePointCounter == 0)
{
// raise before probing
z_before = Z_RAISE_BEFORE_PROBING;
} else
{
// raise extruder
z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
}
float measured_z = probe_pt(xProbe, yProbe, z_before);
eqnBVector[probePointCounter] = measured_z;
eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
probePointCounter++;
xProbe += xInc;
}
}
clean_up_after_endstop_move(l_feedmultiply);
// solve lsq problem
double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL(plane_equation_coefficients[1]);
SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
set_bed_level_equation_lsq(plane_equation_coefficients);
free(plane_equation_coefficients);
#else // AUTO_BED_LEVELING_GRID not defined
// Probe at 3 arbitrary points
// probe 1
float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
// probe 2
float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
// probe 3
float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
clean_up_after_endstop_move(l_feedmultiply);
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
#endif // AUTO_BED_LEVELING_GRID
st_synchronize();
// The following code correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected.
real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
z_tmp = current_position[Z_AXIS];
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
break;
#ifndef Z_PROBE_SLED
case 30: // G30 Single Z Probe
{
st_synchronize();
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
int l_feedmultiply = setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
run_z_probe();
SERIAL_PROTOCOLPGM(_T(MSG_BED));
SERIAL_PROTOCOLPGM(" X: ");
SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(current_position[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL(current_position[Z_AXIS]);
SERIAL_PROTOCOLPGM("\n");
clean_up_after_endstop_move(l_feedmultiply);
}
break;
#else
case 31: // dock the sled
dock_sled(true);
break;
case 32: // undock the sled
dock_sled(false);
break;
#endif // Z_PROBE_SLED
#endif // ENABLE_AUTO_BED_LEVELING
#ifdef MESH_BED_LEVELING
case 30: // G30 Single Z Probe
{
st_synchronize();
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
int l_feedmultiply = setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
find_bed_induction_sensor_point_z(-10.f, 3);
printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
clean_up_after_endstop_move(l_feedmultiply);
}
break;
case 75:
{
for (int i = 40; i <= 110; i++)
printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
}
break;
case 76: //! G76 - PINDA probe temperature calibration
{
#ifdef PINDA_THERMISTOR
if (true)
{
if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
//we need to know accurate position of first calibration point
//if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
break;
}
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
{
// We don't know where we are! HOME!
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
repeatcommand_front(); // repeat G76 with all its parameters
enquecommand_front_P((PSTR("G28 W0")));
break;
}
lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
if (result)
{
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[Z_AXIS] = 50;
current_position[Y_AXIS] = 180;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
gcode_G28(false, false, true);
}
if ((current_temperature_pinda > 35) && (farm_mode == false)) {
//waiting for PIDNA probe to cool down in case that we are not in farm mode
current_position[Z_AXIS] = 100;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
lcd_temp_cal_show_result(false);
break;
}
}
lcd_update_enable(true);
KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
SERIAL_ECHOLNPGM("PINDA probe calibration start");
float zero_z;
int z_shift = 0; //unit: steps
float start_temp = 5 * (int)(current_temperature_pinda / 5);
if (start_temp < 35) start_temp = 35;
if (start_temp < current_temperature_pinda) start_temp += 5;
printf_P(_N("start temperature: %.1f\n"), start_temp);
// setTargetHotend(200, 0);
setTargetBed(70 + (start_temp - 30));
custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
custom_message_state = 1;
lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[X_AXIS] = PINDA_PREHEAT_X;
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
while (current_temperature_pinda < start_temp)
{
delay_keep_alive(1000);
serialecho_temperatures();
}
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
if (find_z_result == false) {
lcd_temp_cal_show_result(find_z_result);
break;
}
zero_z = current_position[Z_AXIS];
printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
int i = -1; for (; i < 5; i++)
{
float temp = (40 + i * 5);
printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
if (start_temp <= temp) break;
}
for (i++; i < 5; i++)
{
float temp = (40 + i * 5);
printf_P(_N("\nStep: %d/6\n"), i + 2);
custom_message_state = i + 2;
setTargetBed(50 + 10 * (temp - 30) / 5);
// setTargetHotend(255, 0);
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[X_AXIS] = PINDA_PREHEAT_X;
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
while (current_temperature_pinda < temp)
{
delay_keep_alive(1000);
serialecho_temperatures();
}
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
find_z_result = find_bed_induction_sensor_point_z(-1.f);
if (find_z_result == false) {
lcd_temp_cal_show_result(find_z_result);
break;
}
z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
}
lcd_temp_cal_show_result(true);
break;
}
#endif //PINDA_THERMISTOR
setTargetBed(PINDA_MIN_T);
float zero_z;
int z_shift = 0; //unit: steps
int t_c; // temperature
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
// We don't know where we are! HOME!
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
repeatcommand_front(); // repeat G76 with all its parameters
enquecommand_front_P((PSTR("G28 W0")));
break;
}
puts_P(_N("PINDA probe calibration start"));
custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
custom_message_state = 1;
lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
current_position[X_AXIS] = PINDA_PREHEAT_X;
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
while (abs(degBed() - PINDA_MIN_T) > 1) {
delay_keep_alive(1000);
serialecho_temperatures();
}
//enquecommand_P(PSTR("M190 S50"));
for (int i = 0; i < PINDA_HEAT_T; i++) {
delay_keep_alive(1000);
serialecho_temperatures();
}
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
current_position[Z_AXIS] = 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[X_AXIS] = BED_X0;
current_position[Y_AXIS] = BED_Y0;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
find_bed_induction_sensor_point_z(-1.f);
zero_z = current_position[Z_AXIS];
printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
for (int i = 0; i<5; i++) {
printf_P(_N("\nStep: %d/6\n"), i + 2);
custom_message_state = i + 2;
t_c = 60 + i * 10;
setTargetBed(t_c);
current_position[X_AXIS] = PINDA_PREHEAT_X;
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
while (degBed() < t_c) {
delay_keep_alive(1000);
serialecho_temperatures();
}
for (int i = 0; i < PINDA_HEAT_T; i++) {
delay_keep_alive(1000);
serialecho_temperatures();
}
current_position[Z_AXIS] = 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[X_AXIS] = BED_X0;
current_position[Y_AXIS] = BED_Y0;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
find_bed_induction_sensor_point_z(-1.f);
z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
}
custom_message_type = CUSTOM_MSG_TYPE_STATUS;
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
puts_P(_N("Temperature calibration done."));
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
setTargetBed(0); //set bed target temperature back to 0
lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
temp_cal_active = true;
eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
lcd_update_enable(true);
lcd_update(2);
}
break;
/**
* G80: Mesh-based Z probe, probes a grid and produces a
* mesh to compensate for variable bed height
*
* The S0 report the points as below
* @code{.unparsed}
* +----> X-axis
* |
* |
* v Y-axis
* @endcode
*/
case 80:
#ifdef MK1BP
break;
#endif //MK1BP
case_G80:
{
mesh_bed_leveling_flag = true;
static bool run = false;
#ifdef SUPPORT_VERBOSITY
int8_t verbosity_level = 0;
if (code_seen('V')) {
// Just 'V' without a number counts as V1.
char c = strchr_pointer[1];
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
}
#endif //SUPPORT_VERBOSITY
// Firstly check if we know where we are
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
// We don't know where we are! HOME!
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
repeatcommand_front(); // repeat G80 with all its parameters
enquecommand_front_P((PSTR("G28 W0")));
}
else {
mesh_bed_leveling_flag = false;
}
break;
}
uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
if (code_seen('N')) {
nMeasPoints = code_value_uint8();
if (nMeasPoints != 7) {
nMeasPoints = 3;
}
}
else {
nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
}
uint8_t nProbeRetry = 3;
if (code_seen('R')) {
nProbeRetry = code_value_uint8();
if (nProbeRetry > 10) {
nProbeRetry = 10;
}
}
else {
nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
}
bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
bool temp_comp_start = true;
#ifdef PINDA_THERMISTOR
temp_comp_start = false;
#endif //PINDA_THERMISTOR
if (temp_comp_start)
if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
temp_compensation_start();
run = true;
repeatcommand_front(); // repeat G80 with all its parameters
enquecommand_front_P((PSTR("G28 W0")));
}
else {
mesh_bed_leveling_flag = false;
}
break;
}
run = false;
if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
mesh_bed_leveling_flag = false;
break;
}
// Save custom message state, set a new custom message state to display: Calibrating point 9.
unsigned int custom_message_type_old = custom_message_type;
unsigned int custom_message_state_old = custom_message_state;
custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
custom_message_state = (nMeasPoints * nMeasPoints) + 10;
lcd_update(1);
mbl.reset(); //reset mesh bed leveling
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
// consumed during the first movements following this statement.
babystep_undo();
// Cycle through all points and probe them
// First move up. During this first movement, the babystepping will be reverted.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
// The move to the first calibration point.
current_position[X_AXIS] = BED_X0;
current_position[Y_AXIS] = BED_Y0;
#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1)
{
bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
}
#else //SUPPORT_VERBOSITY
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
#endif //SUPPORT_VERBOSITY
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
// Wait until the move is finished.
st_synchronize();
uint8_t mesh_point = 0; //index number of calibration point
int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) {
has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
}
#endif // SUPPORT_VERBOSITY
int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
const char *kill_message = NULL;
while (mesh_point != nMeasPoints * nMeasPoints) {
// Get coords of a measuring point.
uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
uint8_t iy = mesh_point / nMeasPoints;
/*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
custom_message_state--;
mesh_point++;
continue; //skip
}*/
if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
{
has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
}
float z0 = 0.f;
if (has_z && (mesh_point > 0)) {
uint16_t z_offset_u = 0;
if (nMeasPoints == 7) {
z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
}
else {
z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
}
z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) {
printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
}
#endif // SUPPORT_VERBOSITY
}
// Move Z up to MESH_HOME_Z_SEARCH.
if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
float init_z_bckp = current_position[Z_AXIS];
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
st_synchronize();
// Move to XY position of the sensor point.
current_position[X_AXIS] = BED_X(ix, nMeasPoints);
current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
//printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) {
clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
SERIAL_PROTOCOL(mesh_point);
clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
}
#else //SUPPORT_VERBOSITY
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
#endif // SUPPORT_VERBOSITY
//printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
st_synchronize();
// Go down until endstop is hit
const float Z_CALIBRATION_THRESHOLD = 1.f;
if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
break;
}
if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
//printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
st_synchronize();
if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
break;
}
if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
break;
}
}
if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
break;
}
#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 10) {
SERIAL_ECHOPGM("X: ");
MYSERIAL.print(current_position[X_AXIS], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("Y: ");
MYSERIAL.print(current_position[Y_AXIS], 5);
SERIAL_PROTOCOLPGM("\n");
}
#endif // SUPPORT_VERBOSITY
float offset_z = 0;
#ifdef PINDA_THERMISTOR
offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
#endif //PINDA_THERMISTOR
// #ifdef SUPPORT_VERBOSITY
/* if (verbosity_level >= 1)
{
SERIAL_ECHOPGM("mesh bed leveling: ");
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_ECHOPGM(" offset: ");
MYSERIAL.print(offset_z, 5);
SERIAL_ECHOLNPGM("");
}*/
// #endif // SUPPORT_VERBOSITY
mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
custom_message_state--;
mesh_point++;
lcd_update(1);
}
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
MYSERIAL.print(current_position[Z_AXIS], 5);
}
#endif // SUPPORT_VERBOSITY
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
st_synchronize();
if (mesh_point != nMeasPoints * nMeasPoints) {
Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
bool bState;
do { // repeat until Z-leveling o.k.
lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
#ifdef TMC2130
lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
#else // TMC2130
lcd_wait_for_click_delay(0); // ~ no timeout
lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
#endif // TMC2130
// ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
bState=enable_z_endstop(false);
current_position[Z_AXIS] -= 1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
st_synchronize();
enable_z_endstop(true);
#ifdef TMC2130
tmc2130_home_enter(Z_AXIS_MASK);
#endif // TMC2130
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
st_synchronize();
#ifdef TMC2130
tmc2130_home_exit();
#endif // TMC2130
enable_z_endstop(bState);
} while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
// plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
lcd_update_enable(true); // display / status-line recovery
gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
repeatcommand_front(); // re-run (i.e. of "G80")
break;
}
clean_up_after_endstop_move(l_feedmultiply);
// SERIAL_ECHOLNPGM("clean up finished ");
bool apply_temp_comp = true;
#ifdef PINDA_THERMISTOR
apply_temp_comp = false;
#endif
if (apply_temp_comp)
if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
// SERIAL_ECHOLNPGM("babystep applied");
bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) {
eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
}
#endif // SUPPORT_VERBOSITY
for (uint8_t i = 0; i < 4; ++i) {
unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
long correction = 0;
if (code_seen(codes[i]))
correction = code_value_long();
else if (eeprom_bed_correction_valid) {
unsigned char *addr = (i < 2) ?
((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
correction = eeprom_read_int8(addr);
}
if (correction == 0)
continue;
if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
SERIAL_ERROR_START;
SERIAL_ECHOPGM("Excessive bed leveling correction: ");
SERIAL_ECHO(correction);
SERIAL_ECHOLNPGM(" microns");
}
else {
float offset = float(correction) * 0.001f;
switch (i) {
case 0:
for (uint8_t row = 0; row < nMeasPoints; ++row) {
for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
}
}
break;
case 1:
for (uint8_t row = 0; row < nMeasPoints; ++row) {
for (uint8_t col = 1; col < nMeasPoints; ++col) {
mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
}
}
break;
case 2:
for (uint8_t col = 0; col < nMeasPoints; ++col) {
for (uint8_t row = 0; row < nMeasPoints; ++row) {
mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
}
}
break;
case 3:
for (uint8_t col = 0; col < nMeasPoints; ++col) {
for (uint8_t row = 1; row < nMeasPoints; ++row) {
mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
}
}
break;
}
}
}
// SERIAL_ECHOLNPGM("Bed leveling correction finished");
if (nMeasPoints == 3) {
mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
}
/*
SERIAL_PROTOCOLPGM("Num X,Y: ");
SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
SERIAL_PROTOCOLPGM(",");
SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
SERIAL_PROTOCOLPGM("\nZ search height: ");
SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
SERIAL_PROTOCOLPGM(" ");
SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
}
SERIAL_PROTOCOLPGM("\n");
}
*/
if (nMeasPoints == 7 && magnet_elimination) {
mbl_interpolation(nMeasPoints);
}
/*
SERIAL_PROTOCOLPGM("Num X,Y: ");
SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
SERIAL_PROTOCOLPGM(",");
SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
SERIAL_PROTOCOLPGM("\nZ search height: ");
SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
SERIAL_PROTOCOLPGM(" ");
SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
}
SERIAL_PROTOCOLPGM("\n");
}
*/
// SERIAL_ECHOLNPGM("Upsample finished");
mbl.active = 1; //activate mesh bed leveling
// SERIAL_ECHOLNPGM("Mesh bed leveling activated");
go_home_with_z_lift();
// SERIAL_ECHOLNPGM("Go home finished");
//unretract (after PINDA preheat retraction)
if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
current_position[E_AXIS] += default_retraction;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
}
KEEPALIVE_STATE(NOT_BUSY);
// Restore custom message state
lcd_setstatuspgm(_T(WELCOME_MSG));
custom_message_type = custom_message_type_old;
custom_message_state = custom_message_state_old;
mesh_bed_leveling_flag = false;
mesh_bed_run_from_menu = false;
lcd_update(2);
}
break;
/**
* G81: Print mesh bed leveling status and bed profile if activated
*/
case 81:
if (mbl.active) {
SERIAL_PROTOCOLPGM("Num X,Y: ");
SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
SERIAL_PROTOCOLPGM(",");
SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
SERIAL_PROTOCOLPGM("\nZ search height: ");
SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
SERIAL_PROTOCOLPGM(" ");
SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
}
SERIAL_PROTOCOLPGM("\n");
}
}
else
SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
break;
#if 0
/**
* G82: Single Z probe at current location
*
* WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
*
*/
case 82:
SERIAL_PROTOCOLLNPGM("Finding bed ");
int l_feedmultiply = setup_for_endstop_move();
find_bed_induction_sensor_point_z();
clean_up_after_endstop_move(l_feedmultiply);
SERIAL_PROTOCOLPGM("Bed found at: ");
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
SERIAL_PROTOCOLPGM("\n");
break;
/**
* G83: Prusa3D specific: Babystep in Z and store to EEPROM
*/
case 83:
{
int babystepz = code_seen('S') ? code_value() : 0;
int BabyPosition = code_seen('P') ? code_value() : 0;
if (babystepz != 0) {
//FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
// Is the axis indexed starting with zero or one?
if (BabyPosition > 4) {
SERIAL_PROTOCOLLNPGM("Index out of bounds");
}else{
// Save it to the eeprom
babystepLoadZ = babystepz;
EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
// adjust the Z
babystepsTodoZadd(babystepLoadZ);
}
}
}
break;
/**
* G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
*/
case 84:
babystepsTodoZsubtract(babystepLoadZ);
// babystepLoadZ = 0;
break;
/**
* G85: Prusa3D specific: Pick best babystep
*/
case 85:
lcd_pick_babystep();
break;
#endif
/**
* G86: Prusa3D specific: Disable babystep correction after home.
* This G-code will be performed at the start of a calibration script.
*/
case 86:
calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
break;
/**
* G87: Prusa3D specific: Enable babystep correction after home
* This G-code will be performed at the end of a calibration script.
*/
case 87:
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
break;
/**
* G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
*/
case 88:
break;
#endif // ENABLE_MESH_BED_LEVELING
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
if(!code_seen(axis_codes[E_AXIS]))
st_synchronize();
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) {
if(i == E_AXIS) {
current_position[i] = code_value();
plan_set_e_position(current_position[E_AXIS]);
}
else {
current_position[i] = code_value()+cs.add_homing[i];
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
}
}
break;
case 98: //! G98 (activate farm mode)
farm_mode = 1;
PingTime = _millis();
eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
SilentModeMenu = SILENT_MODE_OFF;
eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
break;
case 99: //! G99 (deactivate farm mode)
farm_mode = 0;
lcd_printer_connected();
eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
lcd_update(2);
break;
default:
printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
}
// printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
gcode_in_progress = 0;
} // end if(code_seen('G'))
else if(code_seen('M'))
{
int index;
for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
/*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
} else
{
mcode_in_progress = (int)code_value();
// printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
switch(mcode_in_progress)
{
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
case 1: // M1 - Conditional stop - Wait for user button press on LCD
{
char *src = strchr_pointer + 2;
codenum = 0;
bool hasP = false, hasS = false;
if (code_seen('P')) {
codenum = code_value(); // milliseconds to wait
hasP = codenum > 0;
}
if (code_seen('S')) {
codenum = code_value() * 1000; // seconds to wait
hasS = codenum > 0;
}
starpos = strchr(src, '*');
if (starpos != NULL) *(starpos) = '\0';
while (*src == ' ') ++src;
if (!hasP && !hasS && *src != '\0') {
lcd_setstatus(src);
} else {
LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
}
lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
st_synchronize();
previous_millis_cmd = _millis();
if (codenum > 0){
codenum += _millis(); // keep track of when we started waiting
KEEPALIVE_STATE(PAUSED_FOR_USER);
while(_millis() < codenum && !lcd_clicked()){
manage_heater();
manage_inactivity(true);
lcd_update(0);
}
KEEPALIVE_STATE(IN_HANDLER);
lcd_ignore_click(false);
}else{
marlin_wait_for_click();
}
if (IS_SD_PRINTING)
LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
else
LCD_MESSAGERPGM(_T(WELCOME_MSG));
}
break;
case 17:
LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
enable_x();
enable_y();
enable_z();
enable_e0();
enable_e1();
enable_e2();
break;
#ifdef SDSUPPORT
case 20: // M20 - list SD card
SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
card.ls();
SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
break;
case 21: // M21 - init SD card
card.initsd();
break;
case 22: //M22 - release SD card
card.release();
break;
case 23: //M23 - Select file
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos!=NULL)
*(starpos)='\0';
card.openFile(strchr_pointer + 4,true);
break;
case 24: //M24 - Start SD print
if (!card.paused)
failstats_reset_print();
card.startFileprint();
starttime=_millis();
break;
case 25: //M25 - Pause SD print
card.pauseSDPrint();
break;
case 26: //M26 - Set SD index
if(card.cardOK && code_seen('S')) {
card.setIndex(code_value_long());
}
break;
case 27: //M27 - Get SD status
card.getStatus();
break;
case 28: //M28 - Start SD write
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos) = '\0';
}
card.openFile(strchr_pointer+4,false);
break;
case 29: //M29 - Stop SD write
//processed in write to file routine above
//card,saving = false;
break;
case 30: //M30 <filename> Delete File
if (card.cardOK){
card.closefile();
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos) = '\0';
}
card.removeFile(strchr_pointer + 4);
}
break;
case 32: //M32 - Select file and start SD print
{
if(card.sdprinting) {
st_synchronize();
}
starpos = (strchr(strchr_pointer + 4,'*'));
char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
if(namestartpos==NULL)
{
namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
}
else
namestartpos++; //to skip the '!'
if(starpos!=NULL)
*(starpos)='\0';
bool call_procedure=(code_seen('P'));
if(strchr_pointer>namestartpos)
call_procedure=false; //false alert, 'P' found within filename
if( card.cardOK )
{
card.openFile(namestartpos,true,!call_procedure);
if(code_seen('S'))
if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
card.setIndex(code_value_long());
card.startFileprint();
if(!call_procedure)
starttime=_millis(); //procedure calls count as normal print time.
}
} break;
case 928: //M928 - Start SD write
starpos = (strchr(strchr_pointer + 5,'*'));
if(starpos != NULL){
char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos) = '\0';
}
card.openLogFile(strchr_pointer+5);
break;
#endif //SDSUPPORT
case 31: //M31 take time since the start of the SD print or an M109 command
{
stoptime=_millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int sec,min;
min=t/60;
sec=t%60;
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
SERIAL_ECHO_START;
SERIAL_ECHOLN(time);
lcd_setstatus(time);
autotempShutdown();
}
break;
case 42: //M42 -Change pin status via gcode
if (code_seen('S'))
{
int pin_status = code_value();
int pin_number = LED_PIN;
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
pin_number = code_value();
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
{
if (sensitive_pins[i] == pin_number)
{
pin_number = -1;
break;
}
}
#if defined(FAN_PIN) && FAN_PIN > -1
if (pin_number == FAN_PIN)
fanSpeed = pin_status;
#endif
if (pin_number > -1)
{
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
analogWrite(pin_number, pin_status);
}
}
break;
case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
// Reset the baby step value and the baby step applied flag.
calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
// Reset the skew and offset in both RAM and EEPROM.
reset_bed_offset_and_skew();
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected();
break;
case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
{
int8_t verbosity_level = 0;
bool only_Z = code_seen('Z');
#ifdef SUPPORT_VERBOSITY
if (code_seen('V'))
{
// Just 'V' without a number counts as V1.
char c = strchr_pointer[1];
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
}
#endif //SUPPORT_VERBOSITY
gcode_M45(only_Z, verbosity_level);
}
break;
/*
case 46:
{
// M46: Prusa3D: Show the assigned IP address.
uint8_t ip[4];
bool hasIP = card.ToshibaFlashAir_GetIP(ip);
if (hasIP) {
SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
SERIAL_ECHO(int(ip[0]));
SERIAL_ECHOPGM(".");
SERIAL_ECHO(int(ip[1]));
SERIAL_ECHOPGM(".");
SERIAL_ECHO(int(ip[2]));
SERIAL_ECHOPGM(".");
SERIAL_ECHO(int(ip[3]));
SERIAL_ECHOLNPGM("");
} else {
SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
}
break;
}
*/
case 47:
//! M47: Prusa3D: Show end stops dialog on the display.
KEEPALIVE_STATE(PAUSED_FOR_USER);
lcd_diag_show_end_stops();
KEEPALIVE_STATE(IN_HANDLER);
break;
#if 0
case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
{
// Disable the default update procedure of the display. We will do a modal dialog.
lcd_update_enable(false);
// Let the planner use the uncorrected coordinates.
mbl.reset();
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected();
// Move the print head close to the bed.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
st_synchronize();
// Home in the XY plane.
set_destination_to_current();
int l_feedmultiply = setup_for_endstop_move();
home_xy();
int8_t verbosity_level = 0;
if (code_seen('V')) {
// Just 'V' without a number counts as V1.
char c = strchr_pointer[1];
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
}
bool success = scan_bed_induction_points(verbosity_level);
clean_up_after_endstop_move(l_feedmultiply);
// Print head up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
st_synchronize();
lcd_update_enable(true);
break;
}
#endif
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef Z_PROBE_REPEATABILITY_TEST
//! M48 Z-Probe repeatability measurement function.
//!
//! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
//!
//! This function assumes the bed has been homed. Specificaly, that a G28 command
//! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
//! Any information generated by a prior G29 Bed leveling command will be lost and need to be
//! regenerated.
//!
//! The number of samples will default to 10 if not specified. You can use upper or lower case
//! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
//! N for its communication protocol and will get horribly confused if you send it a capital N.
//!
case 48: // M48 Z-Probe repeatability
{
#if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
#endif
double sum=0.0;
double mean=0.0;
double sigma=0.0;
double sample_set[50];
int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
double X_current, Y_current, Z_current;
double X_probe_location, Y_probe_location, Z_start_location, ext_position;
if (code_seen('V') || code_seen('v')) {
verbose_level = code_value();
if (verbose_level<0 || verbose_level>4 ) {
SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
goto Sigma_Exit;
}
}
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
}
if (code_seen('n')) {
n_samples = code_value();
if (n_samples<4 || n_samples>50 ) {
SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
goto Sigma_Exit;
}
}
X_current = X_probe_location = st_get_position_mm(X_AXIS);
Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
Z_current = st_get_position_mm(Z_AXIS);
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
ext_position = st_get_position_mm(E_AXIS);
if (code_seen('X') || code_seen('x') ) {
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
goto Sigma_Exit;
}
}
if (code_seen('Y') || code_seen('y') ) {
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
goto Sigma_Exit;
}
}
if (code_seen('L') || code_seen('l') ) {
n_legs = code_value();
if ( n_legs==1 )
n_legs = 2;
if ( n_legs<0 || n_legs>15 ) {
SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
goto Sigma_Exit;
}
}
//
// Do all the preliminary setup work. First raise the probe.
//
st_synchronize();
plan_bed_level_matrix.set_to_identity();
plan_buffer_line( X_current, Y_current, Z_start_location,
ext_position,
homing_feedrate[Z_AXIS]/60,
active_extruder);
st_synchronize();
//
// Now get everything to the specified probe point So we can safely do a probe to
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
// use that as a starting point for each probe.
//
if (verbose_level > 2)
SERIAL_PROTOCOL("Positioning probe for the test.\n");
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
ext_position,
homing_feedrate[X_AXIS]/60,
active_extruder);
st_synchronize();
current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
//
// OK, do the inital probe to get us close to the bed.
// Then retrace the right amount and use that in subsequent probes
//
int l_feedmultiply = setup_for_endstop_move();
run_z_probe();
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
ext_position,
homing_feedrate[X_AXIS]/60,
active_extruder);
st_synchronize();
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
for( n=0; n<n_samples; n++) {
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
if ( n_legs) {
double radius=0.0, theta=0.0, x_sweep, y_sweep;
int rotational_direction, l;
rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
//SERIAL_ECHOPAIR("starting radius: ",radius);
//SERIAL_ECHOPAIR(" theta: ",theta);
//SERIAL_ECHOPAIR(" direction: ",rotational_direction);
//SERIAL_PROTOCOLLNPGM("");
for( l=0; l<n_legs-1; l++) {
if (rotational_direction==1)
theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
else
theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
if ( radius<0.0 )
radius = -radius;
X_current = X_probe_location + cos(theta) * radius;
Y_current = Y_probe_location + sin(theta) * radius;
if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
X_current = X_MIN_POS;
if ( X_current>X_MAX_POS)
X_current = X_MAX_POS;
if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
Y_current = Y_MIN_POS;
if ( Y_current>Y_MAX_POS)
Y_current = Y_MAX_POS;
if (verbose_level>3 ) {
SERIAL_ECHOPAIR("x: ", X_current);
SERIAL_ECHOPAIR("y: ", Y_current);
SERIAL_PROTOCOLLNPGM("");
}
do_blocking_move_to( X_current, Y_current, Z_current );
}
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
}
int l_feedmultiply = setup_for_endstop_move();
run_z_probe();
sample_set[n] = current_position[Z_AXIS];
//
// Get the current mean for the data points we have so far
//
sum=0.0;
for( j=0; j<=n; j++) {
sum = sum + sample_set[j];
}
mean = sum / (double (n+1));
//
// Now, use that mean to calculate the standard deviation for the
// data points we have so far
//
sum=0.0;
for( j=0; j<=n; j++) {
sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
}
sigma = sqrt( sum / (double (n+1)) );
if (verbose_level > 1) {
SERIAL_PROTOCOL(n+1);
SERIAL_PROTOCOL(" of ");
SERIAL_PROTOCOL(n_samples);
SERIAL_PROTOCOLPGM(" z: ");
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
}
if (verbose_level > 2) {
SERIAL_PROTOCOL(" mean: ");
SERIAL_PROTOCOL_F(mean,6);
SERIAL_PROTOCOL(" sigma: ");
SERIAL_PROTOCOL_F(sigma,6);
}
if (verbose_level > 0)
SERIAL_PROTOCOLPGM("\n");
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
st_synchronize();
}
_delay(1000);
clean_up_after_endstop_move(l_feedmultiply);
// enable_endstops(true);
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("Mean: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_PROTOCOLPGM("\n");
}
SERIAL_PROTOCOLPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_PROTOCOLPGM("\n\n");
Sigma_Exit:
break;
}
#endif // Z_PROBE_REPEATABILITY_TEST
#endif // ENABLE_AUTO_BED_LEVELING
case 73: //M73 show percent done and time remaining
if(code_seen('P')) print_percent_done_normal = code_value();
if(code_seen('R')) print_time_remaining_normal = code_value();
if(code_seen('Q')) print_percent_done_silent = code_value();
if(code_seen('S')) print_time_remaining_silent = code_value();
{
const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
}
break;
case 104: // M104
{
uint8_t extruder;
if(setTargetedHotend(104,extruder)){
break;
}
if (code_seen('S'))
{
setTargetHotendSafe(code_value(), extruder);
}
setWatch();
break;
}
case 112: // M112 -Emergency Stop
kill(_n(""), 3);
break;
case 140: // M140 set bed temp
if (code_seen('S')) setTargetBed(code_value());
break;
case 105 : // M105
{
uint8_t extruder;
if(setTargetedHotend(105, extruder)){
break;
}
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
SERIAL_PROTOCOLPGM("ok T:");
SERIAL_PROTOCOL_F(degHotend(extruder),1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetBed(),1);
#endif //TEMP_BED_PIN
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLPGM(":");
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
}
#else
SERIAL_ERROR_START;
SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
#endif
SERIAL_PROTOCOLPGM(" @:");
#ifdef EXTRUDER_WATTS
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
SERIAL_PROTOCOLPGM("W");
#else
SERIAL_PROTOCOL(getHeaterPower(extruder));
#endif
SERIAL_PROTOCOLPGM(" B@:");
#ifdef BED_WATTS
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
SERIAL_PROTOCOLPGM("W");
#else
SERIAL_PROTOCOL(getHeaterPower(-1));
#endif
#ifdef PINDA_THERMISTOR
SERIAL_PROTOCOLPGM(" P:");
SERIAL_PROTOCOL_F(current_temperature_pinda,1);
#endif //PINDA_THERMISTOR
#ifdef AMBIENT_THERMISTOR
SERIAL_PROTOCOLPGM(" A:");
SERIAL_PROTOCOL_F(current_temperature_ambient,1);
#endif //AMBIENT_THERMISTOR
#ifdef SHOW_TEMP_ADC_VALUES
{float raw = 0.0;
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
SERIAL_PROTOCOLPGM(" ADC B:");
SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLPGM("C->");
raw = rawBedTemp();
SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
SERIAL_PROTOCOLPGM(" Rb->");
SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
SERIAL_PROTOCOLPGM(" Rxb->");
SERIAL_PROTOCOL_F(raw, 5);
#endif
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLPGM(":");
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
SERIAL_PROTOCOLPGM("C->");
raw = rawHotendTemp(cur_extruder);
SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
SERIAL_PROTOCOLPGM(" Rt");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLPGM("->");
SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
SERIAL_PROTOCOLPGM(" Rx");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLPGM("->");
SERIAL_PROTOCOL_F(raw, 5);
}}
#endif
SERIAL_PROTOCOLLN("");
KEEPALIVE_STATE(NOT_BUSY);
return;
break;
}
case 109:
{// M109 - Wait for extruder heater to reach target.
uint8_t extruder;
if(setTargetedHotend(109, extruder)){
break;
}
LCD_MESSAGERPGM(_T(MSG_HEATING));
heating_status = 1;
if (farm_mode) { prusa_statistics(1); };
#ifdef AUTOTEMP
autotemp_enabled=false;
#endif
if (code_seen('S')) {
setTargetHotendSafe(code_value(), extruder);
CooldownNoWait = true;
} else if (code_seen('R')) {
setTargetHotendSafe(code_value(), extruder);
CooldownNoWait = false;
}
#ifdef AUTOTEMP
if (code_seen('S')) autotemp_min=code_value();
if (code_seen('B')) autotemp_max=code_value();
if (code_seen('F'))
{
autotemp_factor=code_value();
autotemp_enabled=true;
}
#endif
setWatch();
codenum = _millis();
/* See if we are heating up or cooling down */
target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
KEEPALIVE_STATE(NOT_BUSY);
cancel_heatup = false;
wait_for_heater(codenum, extruder); //loops until target temperature is reached
LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
KEEPALIVE_STATE(IN_HANDLER);
heating_status = 2;
if (farm_mode) { prusa_statistics(2); };
//starttime=_millis();
previous_millis_cmd = _millis();
}
break;
case 190: // M190 - Wait for bed heater to reach target.
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
heating_status = 3;
if (farm_mode) { prusa_statistics(1); };
if (code_seen('S'))
{
setTargetBed(code_value());
CooldownNoWait = true;
}
else if (code_seen('R'))
{
setTargetBed(code_value());
CooldownNoWait = false;
}
codenum = _millis();
cancel_heatup = false;
target_direction = isHeatingBed(); // true if heating, false if cooling
KEEPALIVE_STATE(NOT_BUSY);
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
{
if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
if (!farm_mode) {
float tt = degHotend(active_extruder);
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL(tt);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)active_extruder);
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(), 1);
SERIAL_PROTOCOLLN("");
}
codenum = _millis();
}
manage_heater();
manage_inactivity();
lcd_update(0);
}
LCD_MESSAGERPGM(_T(MSG_BED_DONE));
KEEPALIVE_STATE(IN_HANDLER);
heating_status = 4;
previous_millis_cmd = _millis();
#endif
break;
#if defined(FAN_PIN) && FAN_PIN > -1
case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
if (code_seen('S')){
fanSpeed=constrain(code_value(),0,255);
}
else {
fanSpeed=255;
}
break;
case 107: //M107 Fan Off
fanSpeed = 0;
break;
#endif //FAN_PIN
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
case 80: // M80 - Turn on Power Supply
SET_OUTPUT(PS_ON_PIN); //GND
WRITE(PS_ON_PIN, PS_ON_AWAKE);
// If you have a switch on suicide pin, this is useful
// if you want to start another print with suicide feature after
// a print without suicide...
#if defined SUICIDE_PIN && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, HIGH);
#endif
powersupply = true;
LCD_MESSAGERPGM(_T(WELCOME_MSG));
lcd_update(0);
break;
#endif
case 81: // M81 - Turn off Power Supply
disable_heater();
st_synchronize();
disable_e0();
disable_e1();
disable_e2();
finishAndDisableSteppers();
fanSpeed = 0;
_delay(1000); // Wait a little before to switch off
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
st_synchronize();
suicide();
#elif defined(PS_ON_PIN) && PS_ON_PIN > -1
SET_OUTPUT(PS_ON_PIN);
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#endif
powersupply = false;
LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
lcd_update(0);
break;
case 82:
axis_relative_modes[3] = false;
break;
case 83:
axis_relative_modes[3] = true;
break;
case 18: //compatibility
case 84: // M84
if(code_seen('S')){
stepper_inactive_time = code_value() * 1000;
}
else
{
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
if(all_axis)
{
st_synchronize();
disable_e0();
disable_e1();
disable_e2();
finishAndDisableSteppers();
}
else
{
st_synchronize();
if (code_seen('X')) disable_x();
if (code_seen('Y')) disable_y();
if (code_seen('Z')) disable_z();
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
if (code_seen('E')) {
disable_e0();
disable_e1();
disable_e2();
}
#endif
}
}
//in the end of print set estimated time to end of print and extruders used during print to default values for next print
print_time_remaining_init();
snmm_filaments_used = 0;
break;
case 85: // M85
if(code_seen('S')) {
max_inactive_time = code_value() * 1000;
}
break;
#ifdef SAFETYTIMER
case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
//when safety timer expires heatbed and nozzle target temperatures are set to zero
if (code_seen('S')) {
safetytimer_inactive_time = code_value() * 1000;
safetyTimer.start();
}
break;
#endif
case 92: // M92
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i]))
{
if(i == 3) { // E
float value = code_value();
if(value < 20.0) {
float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
cs.max_jerk[E_AXIS] *= factor;
max_feedrate[i] *= factor;
axis_steps_per_sqr_second[i] *= factor;
}
cs.axis_steps_per_unit[i] = value;
}
else {
cs.axis_steps_per_unit[i] = code_value();
}
}
}
break;
case 110: //! M110 N<line number> - reset line pos
if (code_seen('N'))
gcode_LastN = code_value_long();
break;
case 113: // M113 - Get or set Host Keepalive interval
if (code_seen('S')) {
host_keepalive_interval = (uint8_t)code_value_short();
// NOMORE(host_keepalive_interval, 60);
}
else {
SERIAL_ECHO_START;
SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
SERIAL_PROTOCOLLN("");
}
break;
case 115: // M115
if (code_seen('V')) {
// Report the Prusa version number.
SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
} else if (code_seen('U')) {
// Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
// pause the print and ask the user to upgrade the firmware.
show_upgrade_dialog_if_version_newer(++ strchr_pointer);
} else {
SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
SERIAL_ECHORPGM(FW_VERSION_STR_P());
SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
SERIAL_ECHOPGM(PROTOCOL_VERSION);
SERIAL_ECHOPGM(" MACHINE_TYPE:");
SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
SERIAL_ECHOPGM(" UUID:");
SERIAL_ECHOLNPGM(MACHINE_UUID);
}
break;
/* case 117: // M117 display message
starpos = (strchr(strchr_pointer + 5,'*'));
if(starpos!=NULL)
*(starpos)='\0';
lcd_setstatus(strchr_pointer + 5);
break;*/
case 114: // M114
gcode_M114();
break;
case 120: //! M120 - Disable endstops
enable_endstops(false) ;
break;
case 121: //! M121 - Enable endstops
enable_endstops(true) ;
break;
case 119: // M119
SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
SERIAL_PROTOCOLLN("");
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
break;
//TODO: update for all axis, use for loop
#ifdef BLINKM
case 150: // M150
{
byte red;
byte grn;
byte blu;
if(code_seen('R')) red = code_value();
if(code_seen('U')) grn = code_value();
if(code_seen('B')) blu = code_value();
SendColors(red,grn,blu);
}
break;
#endif //BLINKM
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
{
uint8_t extruder = active_extruder;
if(code_seen('T')) {
extruder = code_value();
if(extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
break;
}
}
if(code_seen('D')) {
float diameter = (float)code_value();
if (diameter == 0.0) {
// setting any extruder filament size disables volumetric on the assumption that
// slicers either generate in extruder values as cubic mm or as as filament feeds
// for all extruders
cs.volumetric_enabled = false;
} else {
cs.filament_size[extruder] = (float)code_value();
// make sure all extruders have some sane value for the filament size
cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
#if EXTRUDERS > 1
cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
#if EXTRUDERS > 2
cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
#endif
#endif
cs.volumetric_enabled = true;
}
} else {
//reserved for setting filament diameter via UFID or filament measuring device
break;
}
calculate_extruder_multipliers();
}
break;
case 201: // M201
for (int8_t i = 0; i < NUM_AXIS; i++)
{
if (code_seen(axis_codes[i]))
{
unsigned long val = code_value();
#ifdef TMC2130
unsigned long val_silent = val;
if ((i == X_AXIS) || (i == Y_AXIS))
{
if (val > NORMAL_MAX_ACCEL_XY)
val = NORMAL_MAX_ACCEL_XY;
if (val_silent > SILENT_MAX_ACCEL_XY)
val_silent = SILENT_MAX_ACCEL_XY;
}
cs.max_acceleration_units_per_sq_second_normal[i] = val;
cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
#else //TMC2130
max_acceleration_units_per_sq_second[i] = val;
#endif //TMC2130
}
}
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
reset_acceleration_rates();
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
}
break;
#endif
case 203: // M203 max feedrate mm/sec
for (int8_t i = 0; i < NUM_AXIS; i++)
{
if (code_seen(axis_codes[i]))
{
float val = code_value();
#ifdef TMC2130
float val_silent = val;
if ((i == X_AXIS) || (i == Y_AXIS))
{
if (val > NORMAL_MAX_FEEDRATE_XY)
val = NORMAL_MAX_FEEDRATE_XY;
if (val_silent > SILENT_MAX_FEEDRATE_XY)
val_silent = SILENT_MAX_FEEDRATE_XY;
}
cs.max_feedrate_normal[i] = val;
cs.max_feedrate_silent[i] = val_silent;
#else //TMC2130
max_feedrate[i] = val;
#endif //TMC2130
}
}
break;
case 204:
//! M204 acclereration settings.
//!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
//!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
{
if(code_seen('S')) {
// Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
// and it is also generated by Slic3r to control acceleration per extrusion type
// (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
cs.acceleration = code_value();
// Interpret the T value as retract acceleration in the old Marlin format.
if(code_seen('T'))
cs.retract_acceleration = code_value();
} else {
// New acceleration format, compatible with the upstream Marlin.
if(code_seen('P'))
cs.acceleration = code_value();
if(code_seen('R'))
cs.retract_acceleration = code_value();
if(code_seen('T')) {
// Interpret the T value as the travel acceleration in the new Marlin format.
//FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
// travel_acceleration = code_value();
}
}
}
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
{
if(code_seen('S')) cs.minimumfeedrate = code_value();
if(code_seen('T')) cs.mintravelfeedrate = code_value();
if(code_seen('B')) cs.minsegmenttime = code_value() ;
if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
}
break;
case 206: // M206 additional homing offset
for(int8_t i=0; i < 3; i++)
{
if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
}
break;
#ifdef FWRETRACT
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
{
if(code_seen('S'))
{
cs.retract_length = code_value() ;
}
if(code_seen('F'))
{
cs.retract_feedrate = code_value()/60 ;
}
if(code_seen('Z'))
{
cs.retract_zlift = code_value() ;
}
}break;
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
{
if(code_seen('S'))
{
cs.retract_recover_length = code_value() ;
}
if(code_seen('F'))
{
cs.retract_recover_feedrate = code_value()/60 ;
}
}break;
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
{
if(code_seen('S'))
{
int t= code_value() ;
switch(t)
{
case 0:
{
cs.autoretract_enabled=false;
retracted[0]=false;
#if EXTRUDERS > 1
retracted[1]=false;
#endif
#if EXTRUDERS > 2
retracted[2]=false;
#endif
}break;
case 1:
{
cs.autoretract_enabled=true;
retracted[0]=false;
#if EXTRUDERS > 1
retracted[1]=false;
#endif
#if EXTRUDERS > 2
retracted[2]=false;
#endif
}break;
default:
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
SERIAL_ECHOLNPGM("\"(1)");
}
}
}break;
#endif // FWRETRACT
#if EXTRUDERS > 1
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
{
uint8_t extruder;
if(setTargetedHotend(218, extruder)){
break;
}
if(code_seen('X'))
{
extruder_offset[X_AXIS][extruder] = code_value();
}
if(code_seen('Y'))
{
extruder_offset[Y_AXIS][extruder] = code_value();
}
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
for(extruder = 0; extruder < EXTRUDERS; extruder++)
{
SERIAL_ECHO(" ");
SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
SERIAL_ECHO(",");
SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
}
SERIAL_ECHOLN("");
}break;
#endif
case 220: // M220 S<factor in percent>- set speed factor override percentage
{
if (code_seen('B')) //backup current speed factor
{
saved_feedmultiply_mm = feedmultiply;
}
if(code_seen('S'))
{
feedmultiply = code_value() ;
}
if (code_seen('R')) { //restore previous feedmultiply
feedmultiply = saved_feedmultiply_mm;
}
}
break;
case 221: // M221 S<factor in percent>- set extrude factor override percentage
{
if(code_seen('S'))
{
int tmp_code = code_value();
if (code_seen('T'))
{
uint8_t extruder;
if(setTargetedHotend(221, extruder)){
break;
}
extruder_multiply[extruder] = tmp_code;
}
else
{
extrudemultiply = tmp_code ;
}
}
calculate_extruder_multipliers();
}
break;
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
{
if(code_seen('P')){
int pin_number = code_value(); // pin number
int pin_state = -1; // required pin state - default is inverted
if(code_seen('S')) pin_state = code_value(); // required pin state
if(pin_state >= -1 && pin_state <= 1){
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
{
if (sensitive_pins[i] == pin_number)
{
pin_number = -1;
break;
}
}
if (pin_number > -1)
{
int target = LOW;
st_synchronize();
pinMode(pin_number, INPUT);
switch(pin_state){
case 1:
target = HIGH;
break;
case 0:
target = LOW;
break;
case -1:
target = !digitalRead(pin_number);
break;
}
while(digitalRead(pin_number) != target){
manage_heater();
manage_inactivity();
lcd_update(0);
}
}
}
}
}
break;
#if NUM_SERVOS > 0
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
{
int servo_index = -1;
int servo_position = 0;
if (code_seen('P'))
servo_index = code_value();
if (code_seen('S')) {
servo_position = code_value();
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
servos[servo_index].attach(0);
#endif
servos[servo_index].write(servo_position);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
_delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_index].detach();
#endif
}
else {
SERIAL_ECHO_START;
SERIAL_ECHO("Servo ");
SERIAL_ECHO(servo_index);
SERIAL_ECHOLN(" out of range");
}
}
else if (servo_index >= 0) {
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" Servo ");
SERIAL_PROTOCOL(servo_index);
SERIAL_PROTOCOL(": ");
SERIAL_PROTOCOL(servos[servo_index].read());
SERIAL_PROTOCOLLN("");
}
}
break;
#endif // NUM_SERVOS > 0
#if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
case 300: // M300
{
int beepS = code_seen('S') ? code_value() : 110;
int beepP = code_seen('P') ? code_value() : 1000;
if (beepS > 0)
{
#if BEEPER > 0
if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
_tone(BEEPER, beepS);
_delay(beepP);
_noTone(BEEPER);
#endif
}
else
{
_delay(beepP);
}
}
break;
#endif // M300
#ifdef PIDTEMP
case 301: // M301
{
if(code_seen('P')) cs.Kp = code_value();
if(code_seen('I')) cs.Ki = scalePID_i(code_value());
if(code_seen('D')) cs.Kd = scalePID_d(code_value());
#ifdef PID_ADD_EXTRUSION_RATE
if(code_seen('C')) Kc = code_value();
#endif
updatePID();
SERIAL_PROTOCOLRPGM(MSG_OK);
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(cs.Kp);
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
#ifdef PID_ADD_EXTRUSION_RATE
SERIAL_PROTOCOL(" c:");
//Kc does not have scaling applied above, or in resetting defaults
SERIAL_PROTOCOL(Kc);
#endif
SERIAL_PROTOCOLLN("");
}
break;
#endif //PIDTEMP
#ifdef PIDTEMPBED
case 304: // M304
{
if(code_seen('P')) cs.bedKp = code_value();
if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
updatePID();
SERIAL_PROTOCOLRPGM(MSG_OK);
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(cs.bedKp);
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
SERIAL_PROTOCOLLN("");
}
break;
#endif //PIDTEMP
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
{
#ifdef CHDK
SET_OUTPUT(CHDK);
WRITE(CHDK, HIGH);
chdkHigh = _millis();
chdkActive = true;
#else
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
const uint8_t NUM_PULSES=16;
const float PULSE_LENGTH=0.01524;
for(int i=0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
_delay(7.33);
for(int i=0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
#endif
#endif //chdk end if
}
break;
#ifdef PREVENT_DANGEROUS_EXTRUDE
case 302: // allow cold extrudes, or set the minimum extrude temperature
{
float temp = .0;
if (code_seen('S')) temp=code_value();
set_extrude_min_temp(temp);
}
break;
#endif
case 303: // M303 PID autotune
{
float temp = 150.0;
int e=0;
int c=5;
if (code_seen('E')) e=code_value();
if (e<0)
temp=70;
if (code_seen('S')) temp=code_value();
if (code_seen('C')) c=code_value();
PID_autotune(temp, e, c);
}
break;
case 400: // M400 finish all moves
{
st_synchronize();
}
break;
case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
{
//! currently three different materials are needed (default, flex and PVA)
//! add storing this information for different load/unload profiles etc. in the future
//!firmware does not wait for "ok" from mmu
if (mmu_enabled)
{
uint8_t extruder = 255;
uint8_t filament = FILAMENT_UNDEFINED;
if(code_seen('E')) extruder = code_value();
if(code_seen('F')) filament = code_value();
mmu_set_filament_type(extruder, filament);
}
}
break;
case 500: // M500 Store settings in EEPROM
{
Config_StoreSettings();
}
break;
case 501: // M501 Read settings from EEPROM
{
Config_RetrieveSettings();
}
break;
case 502: // M502 Revert to default settings
{
Config_ResetDefault();
}
break;
case 503: // M503 print settings currently in memory
{
Config_PrintSettings();
}
break;
case 509: //M509 Force language selection
{
lang_reset();
SERIAL_ECHO_START;
SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
}
break;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
case 540:
{
if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
}
break;
#endif
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
{
float value;
if (code_seen('Z'))
{
value = code_value();
if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
{
cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
SERIAL_PROTOCOLLN("");
}
else
{
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
SERIAL_ECHORPGM(MSG_Z_MIN);
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
SERIAL_ECHORPGM(MSG_Z_MAX);
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
SERIAL_PROTOCOLLN("");
}
}
else
{
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
SERIAL_ECHO(-cs.zprobe_zoffset);
SERIAL_PROTOCOLLN("");
}
break;
}
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
#ifdef FILAMENTCHANGEENABLE
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
{
st_synchronize();
float x_position = current_position[X_AXIS];
float y_position = current_position[Y_AXIS];
float z_shift = 0;
float e_shift_init = 0;
float e_shift_late = 0;
bool automatic = false;
//Retract extruder
if(code_seen('E'))
{
e_shift_init = code_value();
}
else
{
#ifdef FILAMENTCHANGE_FIRSTRETRACT
e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
#endif
}
//currently don't work as we are using the same unload sequence as in M702, needs re-work
if (code_seen('L'))
{
e_shift_late = code_value();
}
else
{
#ifdef FILAMENTCHANGE_FINALRETRACT
e_shift_late = FILAMENTCHANGE_FINALRETRACT;
#endif
}
//Lift Z
if(code_seen('Z'))
{
z_shift = code_value();
}
else
{
#ifdef FILAMENTCHANGE_ZADD
z_shift= FILAMENTCHANGE_ZADD ;
if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
#endif
}
//Move XY to side
if(code_seen('X'))
{
x_position = code_value();
}
else
{
#ifdef FILAMENTCHANGE_XPOS
x_position = FILAMENTCHANGE_XPOS;
#endif
}
if(code_seen('Y'))
{
y_position = code_value();
}
else
{
#ifdef FILAMENTCHANGE_YPOS
y_position = FILAMENTCHANGE_YPOS ;
#endif
}
if (mmu_enabled && code_seen("AUTO"))
automatic = true;
gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
}
break;
#endif //FILAMENTCHANGEENABLE
case 601: //! M601 - Pause print
{
cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
lcd_pause_print();
}
break;
case 602: { //! M602 - Resume print
lcd_resume_print();
}
break;
#ifdef PINDA_THERMISTOR
case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
{
int set_target_pinda = 0;
if (code_seen('S')) {
set_target_pinda = code_value();
}
else {
break;
}
LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
SERIAL_PROTOCOL(set_target_pinda);
SERIAL_PROTOCOLLN("");
codenum = _millis();
cancel_heatup = false;
bool is_pinda_cooling = false;
if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
is_pinda_cooling = true;
}
while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
{
SERIAL_PROTOCOLPGM("P:");
SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
SERIAL_PROTOCOLPGM("/");
SERIAL_PROTOCOL(set_target_pinda);
SERIAL_PROTOCOLLN("");
codenum = _millis();
}
manage_heater();
manage_inactivity();
lcd_update(0);
}
LCD_MESSAGERPGM(MSG_OK);
break;
}
case 861: // M861 - Set/Read PINDA temperature compensation offsets
if (code_seen('?')) { // ? - Print out current EEPROM offset values
uint8_t cal_status = calibration_status_pinda();
int16_t usteps = 0;
cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
SERIAL_PROTOCOLLN("index, temp, ustep, um");
for (uint8_t i = 0; i < 6; i++)
{
if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
SERIAL_PROTOCOLPGM(", ");
SERIAL_PROTOCOL(35 + (i * 5));
SERIAL_PROTOCOLPGM(", ");
SERIAL_PROTOCOL(usteps);
SERIAL_PROTOCOLPGM(", ");
SERIAL_PROTOCOL(mm * 1000);
SERIAL_PROTOCOLLN("");
}
}
else if (code_seen('!')) { // ! - Set factory default values
eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
int16_t z_shift = 8; //40C - 20um - 8usteps
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
z_shift = 24; //45C - 60um - 24usteps
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
z_shift = 48; //50C - 120um - 48usteps
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
z_shift = 80; //55C - 200um - 80usteps
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
z_shift = 120; //60C - 300um - 120usteps
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
SERIAL_PROTOCOLLN("factory restored");
}
else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
int16_t z_shift = 0;
for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
SERIAL_PROTOCOLLN("zerorized");
}
else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
int16_t usteps = code_value();
if (code_seen('I')) {
uint8_t index = code_value();
if (index < 5) {
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
SERIAL_PROTOCOLLN("OK");
SERIAL_PROTOCOLLN("index, temp, ustep, um");
for (uint8_t i = 0; i < 6; i++)
{
usteps = 0;
if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
SERIAL_PROTOCOLPGM(", ");
SERIAL_PROTOCOL(35 + (i * 5));
SERIAL_PROTOCOLPGM(", ");
SERIAL_PROTOCOL(usteps);
SERIAL_PROTOCOLPGM(", ");
SERIAL_PROTOCOL(mm * 1000);
SERIAL_PROTOCOLLN("");
}
}
}
}
else {
SERIAL_PROTOCOLPGM("no valid command");
}
break;
#endif //PINDA_THERMISTOR
#ifdef LIN_ADVANCE
case 900: // M900: Set LIN_ADVANCE options.
gcode_M900();
break;
#endif
case 907: // M907 Set digital trimpot motor current using axis codes.
{
#ifdef TMC2130
for (int i = 0; i < NUM_AXIS; i++)
if(code_seen(axis_codes[i]))
{
long cur_mA = code_value_long();
uint8_t val = tmc2130_cur2val(cur_mA);
tmc2130_set_current_h(i, val);
tmc2130_set_current_r(i, val);
//if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
}
#else //TMC2130
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
if(code_seen('B')) st_current_set(4,code_value());
if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
if(code_seen('X')) st_current_set(0, code_value());
#endif
#ifdef MOTOR_CURRENT_PWM_Z_PIN
if(code_seen('Z')) st_current_set(1, code_value());
#endif
#ifdef MOTOR_CURRENT_PWM_E_PIN
if(code_seen('E')) st_current_set(2, code_value());
#endif
#endif //TMC2130
}
break;
case 908: // M908 Control digital trimpot directly.
{
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
uint8_t channel,current;
if(code_seen('P')) channel=code_value();
if(code_seen('S')) current=code_value();
digitalPotWrite(channel, current);
#endif
}
break;
#ifdef TMC2130_SERVICE_CODES_M910_M918
case 910: //! M910 - TMC2130 init
{
tmc2130_init();
}
break;
case 911: //! M911 - Set TMC2130 holding currents
{
if (code_seen('X')) tmc2130_set_current_h(0, code_value());
if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
if (code_seen('E')) tmc2130_set_current_h(3, code_value());
}
break;
case 912: //! M912 - Set TMC2130 running currents
{
if (code_seen('X')) tmc2130_set_current_r(0, code_value());
if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
if (code_seen('E')) tmc2130_set_current_r(3, code_value());
}
break;
case 913: //! M913 - Print TMC2130 currents
{
tmc2130_print_currents();
}
break;
case 914: //! M914 - Set normal mode
{
tmc2130_mode = TMC2130_MODE_NORMAL;
update_mode_profile();
tmc2130_init();
}
break;
case 915: //! M915 - Set silent mode
{
tmc2130_mode = TMC2130_MODE_SILENT;
update_mode_profile();
tmc2130_init();
}
break;
case 916: //! M916 - Set sg_thrs
{
if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
}
break;
case 917: //! M917 - Set TMC2130 pwm_ampl
{
if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
}
break;
case 918: //! M918 - Set TMC2130 pwm_grad
{
if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
}
break;
#endif //TMC2130_SERVICE_CODES_M910_M918
case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
{
#ifdef TMC2130
if(code_seen('E'))
{
uint16_t res_new = code_value();
if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
{
st_synchronize();
uint8_t axis = E_AXIS;
uint16_t res = tmc2130_get_res(axis);
tmc2130_set_res(axis, res_new);
cs.axis_ustep_resolution[axis] = res_new;
if (res_new > res)
{
uint16_t fac = (res_new / res);
cs.axis_steps_per_unit[axis] *= fac;
position[E_AXIS] *= fac;
}
else
{
uint16_t fac = (res / res_new);
cs.axis_steps_per_unit[axis] /= fac;
position[E_AXIS] /= fac;
}
}
}
#else //TMC2130
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
if(code_seen('B')) microstep_mode(4,code_value());
microstep_readings();
#endif
#endif //TMC2130
}
break;
case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
{
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
if(code_seen('S')) switch((int)code_value())
{
case 1:
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
if(code_seen('B')) microstep_ms(4,code_value(),-1);
break;
case 2:
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
if(code_seen('B')) microstep_ms(4,-1,code_value());
break;
}
microstep_readings();
#endif
}
break;
case 701: //! M701 - load filament
{
if (mmu_enabled && code_seen('E'))
tmp_extruder = code_value();
gcode_M701();
}
break;
case 702: //! M702 [U C] -
{
#ifdef SNMM
if (code_seen('U'))
extr_unload_used(); //! if "U" unload all filaments which were used in current print
else if (code_seen('C'))
extr_unload(); //! if "C" unload just current filament
else
extr_unload_all(); //! otherwise unload all filaments
#else
if (code_seen('C')) {
if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
}
else {
if(mmu_enabled) extr_unload(); //! unload current filament
else unload_filament();
}
#endif //SNMM
}
break;
case 999: // M999: Restart after being stopped
Stopped = false;
lcd_reset_alert_level();
gcode_LastN = Stopped_gcode_LastN;
FlushSerialRequestResend();
break;
default:
printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
}
// printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
mcode_in_progress = 0;
}
}
// end if(code_seen('M')) (end of M codes)
//! T<extruder nr.> - select extruder in case of multi extruder printer
//! select filament in case of MMU_V2
//! if extruder is "?", open menu to let the user select extruder/filament
//!
//! For MMU_V2:
//! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
//! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
//! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
//! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
else if(code_seen('T'))
{
int index;
bool load_to_nozzle = false;
for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
*(strchr_pointer + index) = tolower(*(strchr_pointer + index));
if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
SERIAL_ECHOLNPGM("Invalid T code.");
}
else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
if (mmu_enabled)
{
tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
{
printf_P(PSTR("Duplicate T-code ignored.\n"));
}
else
{
st_synchronize();
mmu_command(MmuCmd::T0 + tmp_extruder);
manage_response(true, true, MMU_TCODE_MOVE);
}
}
}
else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
if (mmu_enabled)
{
st_synchronize();
mmu_continue_loading(is_usb_printing);
mmu_extruder = tmp_extruder; //filament change is finished
mmu_load_to_nozzle();
}
}
else {
if (*(strchr_pointer + index) == '?')
{
if(mmu_enabled)
{
tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
load_to_nozzle = true;
} else
{
tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
}
}
else {
tmp_extruder = code_value();
if (mmu_enabled && lcd_autoDepleteEnabled())
{
tmp_extruder = ad_getAlternative(tmp_extruder);
}
}
st_synchronize();
snmm_filaments_used |= (1 << tmp_extruder); //for stop print
if (mmu_enabled)
{
if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
{
printf_P(PSTR("Duplicate T-code ignored.\n"));
}
else
{
mmu_command(MmuCmd::T0 + tmp_extruder);
manage_response(true, true, MMU_TCODE_MOVE);
mmu_continue_loading(is_usb_printing);
mmu_extruder = tmp_extruder; //filament change is finished
if (load_to_nozzle)// for single material usage with mmu
{
mmu_load_to_nozzle();
}
}
}
else
{
#ifdef SNMM
mmu_extruder = tmp_extruder;
_delay(100);
disable_e0();
disable_e1();
disable_e2();
pinMode(E_MUX0_PIN, OUTPUT);
pinMode(E_MUX1_PIN, OUTPUT);
_delay(100);
SERIAL_ECHO_START;
SERIAL_ECHO("T:");
SERIAL_ECHOLN((int)tmp_extruder);
switch (tmp_extruder) {
case 1:
WRITE(E_MUX0_PIN, HIGH);
WRITE(E_MUX1_PIN, LOW);
break;
case 2:
WRITE(E_MUX0_PIN, LOW);
WRITE(E_MUX1_PIN, HIGH);
break;
case 3:
WRITE(E_MUX0_PIN, HIGH);
WRITE(E_MUX1_PIN, HIGH);
break;
default:
WRITE(E_MUX0_PIN, LOW);
WRITE(E_MUX1_PIN, LOW);
break;
}
_delay(100);
#else //SNMM
if (tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_ECHOPGM("T");
SERIAL_PROTOCOLLN((int)tmp_extruder);
SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
}
else {
#if EXTRUDERS > 1
boolean make_move = false;
#endif
if (code_seen('F')) {
#if EXTRUDERS > 1
make_move = true;
#endif
next_feedrate = code_value();
if (next_feedrate > 0.0) {
feedrate = next_feedrate;
}
}
#if EXTRUDERS > 1
if (tmp_extruder != active_extruder) {
// Save current position to return to after applying extruder offset
memcpy(destination, current_position, sizeof(destination));
// Offset extruder (only by XY)
int i;
for (i = 0; i < 2; i++) {
current_position[i] = current_position[i] -
extruder_offset[i][active_extruder] +
extruder_offset[i][tmp_extruder];
}
// Set the new active extruder and position
active_extruder = tmp_extruder;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
// Move to the old position if 'F' was in the parameters
if (make_move && Stopped == false) {
prepare_move();
}
}
#endif
SERIAL_ECHO_START;
SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
SERIAL_PROTOCOLLN((int)active_extruder);
}
#endif //SNMM
}
}
} // end if(code_seen('T')) (end of T codes)
else if (code_seen('D')) // D codes (debug)
{
switch((int)code_value())
{
case -1: //! D-1 - Endless loop
dcode__1(); break;
#ifdef DEBUG_DCODES
case 0: //! D0 - Reset
dcode_0(); break;
case 1: //! D1 - Clear EEPROM
dcode_1(); break;
case 2: //! D2 - Read/Write RAM
dcode_2(); break;
#endif //DEBUG_DCODES
#ifdef DEBUG_DCODE3
case 3: //! D3 - Read/Write EEPROM
dcode_3(); break;
#endif //DEBUG_DCODE3
#ifdef DEBUG_DCODES
case 4: //! D4 - Read/Write PIN
dcode_4(); break;
#endif //DEBUG_DCODES
#ifdef DEBUG_DCODE5
case 5: // D5 - Read/Write FLASH
dcode_5(); break;
break;
#endif //DEBUG_DCODE5
#ifdef DEBUG_DCODES
case 6: // D6 - Read/Write external FLASH
dcode_6(); break;
case 7: //! D7 - Read/Write Bootloader
dcode_7(); break;
case 8: //! D8 - Read/Write PINDA
dcode_8(); break;
case 9: //! D9 - Read/Write ADC
dcode_9(); break;
case 10: //! D10 - XYZ calibration = OK
dcode_10(); break;
#endif //DEBUG_DCODES
#ifdef HEATBED_ANALYSIS
case 80:
{
float dimension_x = 40;
float dimension_y = 40;
int points_x = 40;
int points_y = 40;
float offset_x = 74;
float offset_y = 33;
if (code_seen('E')) dimension_x = code_value();
if (code_seen('F')) dimension_y = code_value();
if (code_seen('G')) {points_x = code_value(); }
if (code_seen('H')) {points_y = code_value(); }
if (code_seen('I')) {offset_x = code_value(); }
if (code_seen('J')) {offset_y = code_value(); }
printf_P(PSTR("DIM X: %f\n"), dimension_x);
printf_P(PSTR("DIM Y: %f\n"), dimension_y);
printf_P(PSTR("POINTS X: %d\n"), points_x);
printf_P(PSTR("POINTS Y: %d\n"), points_y);
printf_P(PSTR("OFFSET X: %f\n"), offset_x);
printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
}break;
case 81:
{
float dimension_x = 40;
float dimension_y = 40;
int points_x = 40;
int points_y = 40;
float offset_x = 74;
float offset_y = 33;
if (code_seen('E')) dimension_x = code_value();
if (code_seen('F')) dimension_y = code_value();
if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
} break;
#endif //HEATBED_ANALYSIS
#ifdef DEBUG_DCODES
case 106: //D106 print measured fan speed for different pwm values
{
for (int i = 255; i > 0; i = i - 5) {
fanSpeed = i;
//delay_keep_alive(2000);
for (int j = 0; j < 100; j++) {
delay_keep_alive(100);
}
printf_P(_N("%d: %d\n"), i, fan_speed[1]);
}
}break;
#ifdef TMC2130
case 2130: //! D2130 - TMC2130
dcode_2130(); break;
#endif //TMC2130
#if (defined (FILAMENT_SENSOR) && defined(PAT9125))
case 9125: //! D9125 - FILAMENT_SENSOR
dcode_9125(); break;
#endif //FILAMENT_SENSOR
#endif //DEBUG_DCODES
}
}
else
{
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
SERIAL_ECHOLNPGM("\"(2)");
}
KEEPALIVE_STATE(NOT_BUSY);
ClearToSend();
}
void FlushSerialRequestResend()
{
//char cmdbuffer[bufindr][100]="Resend:";
MYSERIAL.flush();
printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
}
// Confirm the execution of a command, if sent from a serial line.
// Execution of a command from a SD card will not be confirmed.
void ClearToSend()
{
previous_millis_cmd = _millis();
if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
SERIAL_PROTOCOLLNRPGM(MSG_OK);
}
#if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
void update_currents() {
float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
float tmp_motor[3];
//SERIAL_ECHOLNPGM("Currents updated: ");
if (destination[Z_AXIS] < Z_SILENT) {
//SERIAL_ECHOLNPGM("LOW");
for (uint8_t i = 0; i < 3; i++) {
st_current_set(i, current_low[i]);
/*MYSERIAL.print(int(i));
SERIAL_ECHOPGM(": ");
MYSERIAL.println(current_low[i]);*/
}
}
else if (destination[Z_AXIS] > Z_HIGH_POWER) {
//SERIAL_ECHOLNPGM("HIGH");
for (uint8_t i = 0; i < 3; i++) {
st_current_set(i, current_high[i]);
/*MYSERIAL.print(int(i));
SERIAL_ECHOPGM(": ");
MYSERIAL.println(current_high[i]);*/
}
}
else {
for (uint8_t i = 0; i < 3; i++) {
float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
st_current_set(i, tmp_motor[i]);
/*MYSERIAL.print(int(i));
SERIAL_ECHOPGM(": ");
MYSERIAL.println(tmp_motor[i]);*/
}
}
}
#endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
void get_coordinates()
{
bool seen[4]={false,false,false,false};
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i]))
{
bool relative = axis_relative_modes[i] || relative_mode;
destination[i] = (float)code_value();
if (i == E_AXIS) {
float emult = extruder_multiplier[active_extruder];
if (emult != 1.) {
if (! relative) {
destination[i] -= current_position[i];
relative = true;
}
destination[i] *= emult;
}
}
if (relative)
destination[i] += current_position[i];
seen[i]=true;
#if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
#endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
}
else destination[i] = current_position[i]; //Are these else lines really needed?
}
if(code_seen('F')) {
next_feedrate = code_value();
#ifdef MAX_SILENT_FEEDRATE
if (tmc2130_mode == TMC2130_MODE_SILENT)
if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
#endif //MAX_SILENT_FEEDRATE
if(next_feedrate > 0.0) feedrate = next_feedrate;
if (!seen[0] && !seen[1] && !seen[2] && seen[3])
{
// float e_max_speed =
// printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
}
}
}
void get_arc_coordinates()
{
#ifdef SF_ARC_FIX
bool relative_mode_backup = relative_mode;
relative_mode = true;
#endif
get_coordinates();
#ifdef SF_ARC_FIX
relative_mode=relative_mode_backup;
#endif
if(code_seen('I')) {
offset[0] = code_value();
}
else {
offset[0] = 0.0;
}
if(code_seen('J')) {
offset[1] = code_value();
}
else {
offset[1] = 0.0;
}
}
void clamp_to_software_endstops(float target[3])
{
#ifdef DEBUG_DISABLE_SWLIMITS
return;
#endif //DEBUG_DISABLE_SWLIMITS
world2machine_clamp(target[0], target[1]);
// Clamp the Z coordinate.
if (min_software_endstops) {
float negative_z_offset = 0;
#ifdef ENABLE_AUTO_BED_LEVELING
if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
#endif
if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
}
if (max_software_endstops) {
if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
}
}
#ifdef MESH_BED_LEVELING
void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
float dx = x - current_position[X_AXIS];
float dy = y - current_position[Y_AXIS];
float dz = z - current_position[Z_AXIS];
int n_segments = 0;
if (mbl.active) {
float len = abs(dx) + abs(dy);
if (len > 0)
// Split to 3cm segments or shorter.
n_segments = int(ceil(len / 30.f));
}
if (n_segments > 1) {
float de = e - current_position[E_AXIS];
for (int i = 1; i < n_segments; ++ i) {
float t = float(i) / float(n_segments);
if (saved_printing || (mbl.active == false)) return;
plan_buffer_line(
current_position[X_AXIS] + t * dx,
current_position[Y_AXIS] + t * dy,
current_position[Z_AXIS] + t * dz,
current_position[E_AXIS] + t * de,
feed_rate, extruder);
}
}
// The rest of the path.
plan_buffer_line(x, y, z, e, feed_rate, extruder);
current_position[X_AXIS] = x;
current_position[Y_AXIS] = y;
current_position[Z_AXIS] = z;
current_position[E_AXIS] = e;
}
#endif // MESH_BED_LEVELING
void prepare_move()
{
clamp_to_software_endstops(destination);
previous_millis_cmd = _millis();
// Do not use feedmultiply for E or Z only moves
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
}
else {
#ifdef MESH_BED_LEVELING
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
#else
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
#endif
}
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
}
void prepare_arc_move(char isclockwise) {
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
// Trace the arc
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
previous_millis_cmd = _millis();
}
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
#if defined(FAN_PIN)
#if CONTROLLERFAN_PIN == FAN_PIN
#error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
#endif
#endif
unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
unsigned long lastMotorCheck = 0;
void controllerFan()
{
if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
{
lastMotorCheck = _millis();
if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
#if EXTRUDERS > 2
|| !READ(E2_ENABLE_PIN)
#endif
#if EXTRUDER > 1
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|| !READ(X2_ENABLE_PIN)
#endif
|| !READ(E1_ENABLE_PIN)
#endif
|| !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
{
lastMotor = _millis(); //... set time to NOW so the fan will turn on
}
if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
{
digitalWrite(CONTROLLERFAN_PIN, 0);
analogWrite(CONTROLLERFAN_PIN, 0);
}
else
{
// allows digital or PWM fan output to be used (see M42 handling)
digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
}
}
}
#endif
#ifdef TEMP_STAT_LEDS
static bool blue_led = false;
static bool red_led = false;
static uint32_t stat_update = 0;
void handle_status_leds(void) {
float max_temp = 0.0;
if(_millis() > stat_update) {
stat_update += 500; // Update every 0.5s
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
max_temp = max(max_temp, degHotend(cur_extruder));
max_temp = max(max_temp, degTargetHotend(cur_extruder));
}
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
max_temp = max(max_temp, degTargetBed());
max_temp = max(max_temp, degBed());
#endif
if((max_temp > 55.0) && (red_led == false)) {
digitalWrite(STAT_LED_RED, 1);
digitalWrite(STAT_LED_BLUE, 0);
red_led = true;
blue_led = false;
}
if((max_temp < 54.0) && (blue_led == false)) {
digitalWrite(STAT_LED_RED, 0);
digitalWrite(STAT_LED_BLUE, 1);
red_led = false;
blue_led = true;
}
}
}
#endif
#ifdef SAFETYTIMER
/**
* @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
*
* Full screen blocking notification message is shown after heater turning off.
* Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
* damage print.
*
* If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
*/
static void handleSafetyTimer()
{
#if (EXTRUDERS > 1)
#error Implemented only for one extruder.
#endif //(EXTRUDERS > 1)
if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
{
safetyTimer.stop();
}
else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
{
safetyTimer.start();
}
else if (safetyTimer.expired(safetytimer_inactive_time))
{
setTargetBed(0);
setAllTargetHotends(0);
lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
}
}
#endif //SAFETYTIMER
void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
{
bool bInhibitFlag;
#ifdef FILAMENT_SENSOR
if (mmu_enabled == false)
{
//-// if (mcode_in_progress != 600) //M600 not in progress
#ifdef PAT9125
bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
#endif // PAT9125
#ifdef IR_SENSOR
bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
#endif // IR_SENSOR
if ((mcode_in_progress != 600) && (eFilamentAction != e_FILAMENT_ACTION_autoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
{
if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
{
if (fsensor_check_autoload())
{
#ifdef PAT9125
fsensor_autoload_check_stop();
#endif //PAT9125
//-// if (degHotend0() > EXTRUDE_MINTEMP)
if(0)
{
if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
_tone(BEEPER, 1000);
delay_keep_alive(50);
_noTone(BEEPER);
loading_flag = true;
enquecommand_front_P((PSTR("M701")));
}
else
{
/*
lcd_update_enable(false);
show_preheat_nozzle_warning();
lcd_update_enable(true);
*/
eFilamentAction=e_FILAMENT_ACTION_autoLoad;
bFilamentFirstRun=false;
if(target_temperature[0]>=EXTRUDE_MINTEMP)
{
bFilamentPreheatState=true;
// mFilamentItem(target_temperature[0],target_temperature_bed);
menu_submenu(mFilamentItemForce);
}
else
{
menu_submenu(mFilamentMenu);
lcd_timeoutToStatus.start();
}
}
}
}
else
{
#ifdef PAT9125
fsensor_autoload_check_stop();
#endif //PAT9125
fsensor_update();
}
}
}
#endif //FILAMENT_SENSOR
#ifdef SAFETYTIMER
handleSafetyTimer();
#endif //SAFETYTIMER
#if defined(KILL_PIN) && KILL_PIN > -1
static int killCount = 0; // make the inactivity button a bit less responsive
const int KILL_DELAY = 10000;
#endif
if(buflen < (BUFSIZE-1)){
get_command();
}
if( (_millis() - previous_millis_cmd) > max_inactive_time )
if(max_inactive_time)
kill(_n(""), 4);
if(stepper_inactive_time) {
if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
{
if(blocks_queued() == false && ignore_stepper_queue == false) {
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
}
}
}
#ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
{
chdkActive = false;
WRITE(CHDK, LOW);
}
#endif
#if defined(KILL_PIN) && KILL_PIN > -1
// Check if the kill button was pressed and wait just in case it was an accidental
// key kill key press
// -------------------------------------------------------------------------------
if( 0 == READ(KILL_PIN) )
{
killCount++;
}
else if (killCount > 0)
{
killCount--;
}
// Exceeded threshold and we can confirm that it was not accidental
// KILL the machine
// ----------------------------------------------------------------
if ( killCount >= KILL_DELAY)
{
kill("", 5);
}
#endif
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
controllerFan(); //Check if fan should be turned on to cool stepper drivers down
#endif
#ifdef EXTRUDER_RUNOUT_PREVENT
if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
{
bool oldstatus=READ(E0_ENABLE_PIN);
enable_e0();
float oldepos=current_position[E_AXIS];
float oldedes=destination[E_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
current_position[E_AXIS]=oldepos;
destination[E_AXIS]=oldedes;
plan_set_e_position(oldepos);
previous_millis_cmd=_millis();
st_synchronize();
WRITE(E0_ENABLE_PIN,oldstatus);
}
#endif
#ifdef TEMP_STAT_LEDS
handle_status_leds();
#endif
check_axes_activity();
mmu_loop();
}
void kill(const char *full_screen_message, unsigned char id)
{
printf_P(_N("KILL: %d\n"), id);
//return;
cli(); // Stop interrupts
disable_heater();
disable_x();
// SERIAL_ECHOLNPGM("kill - disable Y");
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
pinMode(PS_ON_PIN,INPUT);
#endif
SERIAL_ERROR_START;
SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
if (full_screen_message != NULL) {
SERIAL_ERRORLNRPGM(full_screen_message);
lcd_display_message_fullscreen_P(full_screen_message);
} else {
LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
}
// FMC small patch to update the LCD before ending
sei(); // enable interrupts
for ( int i=5; i--; lcd_update(0))
{
_delay(200);
}
cli(); // disable interrupts
suicide();
while(1)
{
#ifdef WATCHDOG
wdt_reset();
#endif //WATCHDOG
/* Intentionally left empty */
} // Wait for reset
}
void Stop()
{
disable_heater();
if(Stopped == false) {
Stopped = true;
lcd_print_stop();
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
SERIAL_ERROR_START;
SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
LCD_MESSAGERPGM(_T(MSG_STOPPED));
}
}
bool IsStopped() { return Stopped; };
#ifdef FAST_PWM_FAN
void setPwmFrequency(uint8_t pin, int val)
{
val &= 0x07;
switch(digitalPinToTimer(pin))
{
#if defined(TCCR0A)
case TIMER0A:
case TIMER0B:
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
// TCCR0B |= val;
break;
#endif
#if defined(TCCR1A)
case TIMER1A:
case TIMER1B:
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
// TCCR1B |= val;
break;
#endif
#if defined(TCCR2)
case TIMER2:
case TIMER2:
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
TCCR2 |= val;
break;
#endif
#if defined(TCCR2A)
case TIMER2A:
case TIMER2B:
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
TCCR2B |= val;
break;
#endif
#if defined(TCCR3A)
case TIMER3A:
case TIMER3B:
case TIMER3C:
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
TCCR3B |= val;
break;
#endif
#if defined(TCCR4A)
case TIMER4A:
case TIMER4B:
case TIMER4C:
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
TCCR4B |= val;
break;
#endif
#if defined(TCCR5A)
case TIMER5A:
case TIMER5B:
case TIMER5C:
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
TCCR5B |= val;
break;
#endif
}
}
#endif //FAST_PWM_FAN
//! @brief Get and validate extruder number
//!
//! If it is not specified, active_extruder is returned in parameter extruder.
//! @param [in] code M code number
//! @param [out] extruder
//! @return error
//! @retval true Invalid extruder specified in T code
//! @retval false Valid extruder specified in T code, or not specifiead
bool setTargetedHotend(int code, uint8_t &extruder)
{
extruder = active_extruder;
if(code_seen('T')) {
extruder = code_value();
if(extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
switch(code){
case 104:
SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
break;
case 105:
SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
break;
case 109:
SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
break;
case 218:
SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
break;
case 221:
SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
break;
}
SERIAL_PROTOCOLLN((int)extruder);
return true;
}
}
return false;
}
void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
{
if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
{
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
}
unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
total_filament_used = 0;
}
float calculate_extruder_multiplier(float diameter) {
float out = 1.f;
if (cs.volumetric_enabled && diameter > 0.f) {
float area = M_PI * diameter * diameter * 0.25;
out = 1.f / area;
}
if (extrudemultiply != 100)
out *= float(extrudemultiply) * 0.01f;
return out;
}
void calculate_extruder_multipliers() {
extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
#if EXTRUDERS > 1
extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
#if EXTRUDERS > 2
extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
#endif
#endif
}
void delay_keep_alive(unsigned int ms)
{
for (;;) {
manage_heater();
// Manage inactivity, but don't disable steppers on timeout.
manage_inactivity(true);
lcd_update(0);
if (ms == 0)
break;
else if (ms >= 50) {
_delay(50);
ms -= 50;
} else {
_delay(ms);
ms = 0;
}
}
}
static void wait_for_heater(long codenum, uint8_t extruder) {
#ifdef TEMP_RESIDENCY_TIME
long residencyStart;
residencyStart = -1;
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
while ((!cancel_heatup) && ((residencyStart == -1) ||
(residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
#else
while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
#endif //TEMP_RESIDENCY_TIME
if ((_millis() - codenum) > 1000UL)
{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
if (!farm_mode) {
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL_F(degHotend(extruder), 1);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)extruder);
#ifdef TEMP_RESIDENCY_TIME
SERIAL_PROTOCOLPGM(" W:");
if (residencyStart > -1)
{
codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
SERIAL_PROTOCOLLN(codenum);
}
else
{
SERIAL_PROTOCOLLN("?");
}
}
#else
SERIAL_PROTOCOLLN("");
#endif
codenum = _millis();
}
manage_heater();
manage_inactivity(true); //do not disable steppers
lcd_update(0);
#ifdef TEMP_RESIDENCY_TIME
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
or when current temp falls outside the hysteresis after target temp was reached */
if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
(residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
(residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
{
residencyStart = _millis();
}
#endif //TEMP_RESIDENCY_TIME
}
}
void check_babystep()
{
int babystep_z;
EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
babystep_z = 0; //if babystep value is out of min max range, set it to 0
SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
lcd_update_enable(true);
}
}
#ifdef HEATBED_ANALYSIS
void d_setup()
{
pinMode(D_DATACLOCK, INPUT_PULLUP);
pinMode(D_DATA, INPUT_PULLUP);
pinMode(D_REQUIRE, OUTPUT);
digitalWrite(D_REQUIRE, HIGH);
}
float d_ReadData()
{
int digit[13];
String mergeOutput;
float output;
digitalWrite(D_REQUIRE, HIGH);
for (int i = 0; i<13; i++)
{
for (int j = 0; j < 4; j++)
{
while (digitalRead(D_DATACLOCK) == LOW) {}
while (digitalRead(D_DATACLOCK) == HIGH) {}
bitWrite(digit[i], j, digitalRead(D_DATA));
}
}
digitalWrite(D_REQUIRE, LOW);
mergeOutput = "";
output = 0;
for (int r = 5; r <= 10; r++) //Merge digits
{
mergeOutput += digit[r];
}
output = mergeOutput.toFloat();
if (digit[4] == 8) //Handle sign
{
output *= -1;
}
for (int i = digit[11]; i > 0; i--) //Handle floating point
{
output /= 10;
}
return output;
}
void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
int t1 = 0;
int t_delay = 0;
int digit[13];
int m;
char str[3];
//String mergeOutput;
char mergeOutput[15];
float output;
int mesh_point = 0; //index number of calibration point
float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
float mesh_home_z_search = 4;
float measure_z_heigth = 0.2f;
float row[x_points_num];
int ix = 0;
int iy = 0;
const char* filename_wldsd = "mesh.txt";
char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
char numb_wldsd[8]; // (" -A.BCD" + null)
#ifdef MICROMETER_LOGGING
d_setup();
#endif //MICROMETER_LOGGING
int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
unsigned int custom_message_type_old = custom_message_type;
unsigned int custom_message_state_old = custom_message_state;
custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
custom_message_state = (x_points_num * y_points_num) + 10;
lcd_update(1);
//mbl.reset();
babystep_undo();
card.openFile(filename_wldsd, false);
/*destination[Z_AXIS] = mesh_home_z_search;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
st_synchronize();
*/
destination[Z_AXIS] = measure_z_heigth;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
st_synchronize();
/*int l_feedmultiply = */setup_for_endstop_move(false);
SERIAL_PROTOCOLPGM("Num X,Y: ");
SERIAL_PROTOCOL(x_points_num);
SERIAL_PROTOCOLPGM(",");
SERIAL_PROTOCOL(y_points_num);
SERIAL_PROTOCOLPGM("\nZ search height: ");
SERIAL_PROTOCOL(mesh_home_z_search);
SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
SERIAL_PROTOCOL(x_dimension);
SERIAL_PROTOCOLPGM(",");
SERIAL_PROTOCOL(y_dimension);
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
while (mesh_point != x_points_num * y_points_num) {
ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
iy = mesh_point / x_points_num;
if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
float z0 = 0.f;
/*destination[Z_AXIS] = mesh_home_z_search;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
st_synchronize();*/
//current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
//current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
st_synchronize();
// printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
delay_keep_alive(1000);
#ifdef MICROMETER_LOGGING
//memset(numb_wldsd, 0, sizeof(numb_wldsd));
//dtostrf(d_ReadData(), 8, 5, numb_wldsd);
//strcat(data_wldsd, numb_wldsd);
//MYSERIAL.println(data_wldsd);
//delay(1000);
//delay(3000);
//t1 = millis();
//while (digitalRead(D_DATACLOCK) == LOW) {}
//while (digitalRead(D_DATACLOCK) == HIGH) {}
memset(digit, 0, sizeof(digit));
//cli();
digitalWrite(D_REQUIRE, LOW);
for (int i = 0; i<13; i++)
{
//t1 = millis();
for (int j = 0; j < 4; j++)
{
while (digitalRead(D_DATACLOCK) == LOW) {}
while (digitalRead(D_DATACLOCK) == HIGH) {}
//printf_P(PSTR("Done %d\n"), j);
bitWrite(digit[i], j, digitalRead(D_DATA));
}
//t_delay = (millis() - t1);
//SERIAL_PROTOCOLPGM(" ");
//SERIAL_PROTOCOL_F(t_delay, 5);
//SERIAL_PROTOCOLPGM(" ");
}
//sei();
digitalWrite(D_REQUIRE, HIGH);
mergeOutput[0] = '\0';
output = 0;
for (int r = 5; r <= 10; r++) //Merge digits
{
sprintf(str, "%d", digit[r]);
strcat(mergeOutput, str);
}
output = atof(mergeOutput);
if (digit[4] == 8) //Handle sign
{
output *= -1;
}
for (int i = digit[11]; i > 0; i--) //Handle floating point
{
output *= 0.1;
}
//output = d_ReadData();
//row[ix] = current_position[Z_AXIS];
//row[ix] = d_ReadData();
row[ix] = output;
if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
memset(data_wldsd, 0, sizeof(data_wldsd));
for (int i = 0; i < x_points_num; i++) {
SERIAL_PROTOCOLPGM(" ");
SERIAL_PROTOCOL_F(row[i], 5);
memset(numb_wldsd, 0, sizeof(numb_wldsd));
dtostrf(row[i], 7, 3, numb_wldsd);
strcat(data_wldsd, numb_wldsd);
}
card.write_command(data_wldsd);
SERIAL_PROTOCOLPGM("\n");
}
custom_message_state--;
mesh_point++;
lcd_update(1);
}
#endif //MICROMETER_LOGGING
card.closefile();
//clean_up_after_endstop_move(l_feedmultiply);
}
void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
int t1 = 0;
int t_delay = 0;
int digit[13];
int m;
char str[3];
//String mergeOutput;
char mergeOutput[15];
float output;
int mesh_point = 0; //index number of calibration point
float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
float mesh_home_z_search = 4;
float row[x_points_num];
int ix = 0;
int iy = 0;
const char* filename_wldsd = "wldsd.txt";
char data_wldsd[70];
char numb_wldsd[10];
d_setup();
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
// We don't know where we are! HOME!
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
repeatcommand_front(); // repeat G80 with all its parameters
enquecommand_front_P((PSTR("G28 W0")));
enquecommand_front_P((PSTR("G1 Z5")));
return;
}
unsigned int custom_message_type_old = custom_message_type;
unsigned int custom_message_state_old = custom_message_state;
custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
custom_message_state = (x_points_num * y_points_num) + 10;
lcd_update(1);
mbl.reset();
babystep_undo();
card.openFile(filename_wldsd, false);
current_position[Z_AXIS] = mesh_home_z_search;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
int l_feedmultiply = setup_for_endstop_move(false);
SERIAL_PROTOCOLPGM("Num X,Y: ");
SERIAL_PROTOCOL(x_points_num);
SERIAL_PROTOCOLPGM(",");
SERIAL_PROTOCOL(y_points_num);
SERIAL_PROTOCOLPGM("\nZ search height: ");
SERIAL_PROTOCOL(mesh_home_z_search);
SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
SERIAL_PROTOCOL(x_dimension);
SERIAL_PROTOCOLPGM(",");
SERIAL_PROTOCOL(y_dimension);
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
while (mesh_point != x_points_num * y_points_num) {
ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
iy = mesh_point / x_points_num;
if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
float z0 = 0.f;
current_position[Z_AXIS] = mesh_home_z_search;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
st_synchronize();
current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
st_synchronize();
if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
break;
card.closefile();
}
//memset(numb_wldsd, 0, sizeof(numb_wldsd));
//dtostrf(d_ReadData(), 8, 5, numb_wldsd);
//strcat(data_wldsd, numb_wldsd);
//MYSERIAL.println(data_wldsd);
//_delay(1000);
//_delay(3000);
//t1 = _millis();
//while (digitalRead(D_DATACLOCK) == LOW) {}
//while (digitalRead(D_DATACLOCK) == HIGH) {}
memset(digit, 0, sizeof(digit));
//cli();
digitalWrite(D_REQUIRE, LOW);
for (int i = 0; i<13; i++)
{
//t1 = _millis();
for (int j = 0; j < 4; j++)
{
while (digitalRead(D_DATACLOCK) == LOW) {}
while (digitalRead(D_DATACLOCK) == HIGH) {}
bitWrite(digit[i], j, digitalRead(D_DATA));
}
//t_delay = (_millis() - t1);
//SERIAL_PROTOCOLPGM(" ");
//SERIAL_PROTOCOL_F(t_delay, 5);
//SERIAL_PROTOCOLPGM(" ");
}
//sei();
digitalWrite(D_REQUIRE, HIGH);
mergeOutput[0] = '\0';
output = 0;
for (int r = 5; r <= 10; r++) //Merge digits
{
sprintf(str, "%d", digit[r]);
strcat(mergeOutput, str);
}
output = atof(mergeOutput);
if (digit[4] == 8) //Handle sign
{
output *= -1;
}
for (int i = digit[11]; i > 0; i--) //Handle floating point
{
output *= 0.1;
}
//output = d_ReadData();
//row[ix] = current_position[Z_AXIS];
memset(data_wldsd, 0, sizeof(data_wldsd));
for (int i = 0; i <3; i++) {
memset(numb_wldsd, 0, sizeof(numb_wldsd));
dtostrf(current_position[i], 8, 5, numb_wldsd);
strcat(data_wldsd, numb_wldsd);
strcat(data_wldsd, ";");
}
memset(numb_wldsd, 0, sizeof(numb_wldsd));
dtostrf(output, 8, 5, numb_wldsd);
strcat(data_wldsd, numb_wldsd);
//strcat(data_wldsd, ";");
card.write_command(data_wldsd);
//row[ix] = d_ReadData();
row[ix] = output; // current_position[Z_AXIS];
if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
for (int i = 0; i < x_points_num; i++) {
SERIAL_PROTOCOLPGM(" ");
SERIAL_PROTOCOL_F(row[i], 5);
}
SERIAL_PROTOCOLPGM("\n");
}
custom_message_state--;
mesh_point++;
lcd_update(1);
}
card.closefile();
clean_up_after_endstop_move(l_feedmultiply);
}
#endif //HEATBED_ANALYSIS
void temp_compensation_start() {
custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
custom_message_state = PINDA_HEAT_T + 1;
lcd_update(2);
if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
current_position[E_AXIS] -= default_retraction;
}
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
current_position[X_AXIS] = PINDA_PREHEAT_X;
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
for (int i = 0; i < PINDA_HEAT_T; i++) {
delay_keep_alive(1000);
custom_message_state = PINDA_HEAT_T - i;
if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
else lcd_update(1);
}
custom_message_type = CUSTOM_MSG_TYPE_STATUS;
custom_message_state = 0;
}
void temp_compensation_apply() {
int i_add;
int z_shift = 0;
float z_shift_mm;
if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
i_add = (target_temperature_bed - 60) / 10;
EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
}else {
//interpolation
z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
}
printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
st_synchronize();
plan_set_z_position(current_position[Z_AXIS]);
}
else {
//we have no temp compensation data
}
}
float temp_comp_interpolation(float inp_temperature) {
//cubic spline interpolation
int n, i, j;
float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
int shift[10];
int temp_C[10];
n = 6; //number of measured points
shift[0] = 0;
for (i = 0; i < n; i++) {
if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
temp_C[i] = 50 + i * 10; //temperature in C
#ifdef PINDA_THERMISTOR
temp_C[i] = 35 + i * 5; //temperature in C
#else
temp_C[i] = 50 + i * 10; //temperature in C
#endif
x[i] = (float)temp_C[i];
f[i] = (float)shift[i];
}
if (inp_temperature < x[0]) return 0;
for (i = n - 1; i>0; i--) {
F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
h[i - 1] = x[i] - x[i - 1];
}
//*********** formation of h, s , f matrix **************
for (i = 1; i<n - 1; i++) {
m[i][i] = 2 * (h[i - 1] + h[i]);
if (i != 1) {
m[i][i - 1] = h[i - 1];
m[i - 1][i] = h[i - 1];
}
m[i][n - 1] = 6 * (F[i + 1] - F[i]);
}
//*********** forward elimination **************
for (i = 1; i<n - 2; i++) {
temp = (m[i + 1][i] / m[i][i]);
for (j = 1; j <= n - 1; j++)
m[i + 1][j] -= temp*m[i][j];
}
//*********** backward substitution *********
for (i = n - 2; i>0; i--) {
sum = 0;
for (j = i; j <= n - 2; j++)
sum += m[i][j] * s[j];
s[i] = (m[i][n - 1] - sum) / m[i][i];
}
for (i = 0; i<n - 1; i++)
if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
a = (s[i + 1] - s[i]) / (6 * h[i]);
b = s[i] / 2;
c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
d = f[i];
sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
}
return sum;
}
#ifdef PINDA_THERMISTOR
float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
{
if (!temp_cal_active) return 0;
if (!calibration_status_pinda()) return 0;
return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
}
#endif //PINDA_THERMISTOR
void long_pause() //long pause print
{
st_synchronize();
start_pause_print = _millis();
//retract
current_position[E_AXIS] -= default_retraction;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
//lift z
current_position[Z_AXIS] += Z_PAUSE_LIFT;
if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
//Move XY to side
current_position[X_AXIS] = X_PAUSE_POS;
current_position[Y_AXIS] = Y_PAUSE_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
// Turn off the print fan
fanSpeed = 0;
st_synchronize();
}
void serialecho_temperatures() {
float tt = degHotend(active_extruder);
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL(tt);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)active_extruder);
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(), 1);
SERIAL_PROTOCOLLN("");
}
extern uint32_t sdpos_atomic;
#ifdef UVLO_SUPPORT
void uvlo_()
{
unsigned long time_start = _millis();
bool sd_print = card.sdprinting;
// Conserve power as soon as possible.
disable_x();
disable_y();
#ifdef TMC2130
tmc2130_set_current_h(Z_AXIS, 20);
tmc2130_set_current_r(Z_AXIS, 20);
tmc2130_set_current_h(E_AXIS, 20);
tmc2130_set_current_r(E_AXIS, 20);
#endif //TMC2130
// Indicate that the interrupt has been triggered.
// SERIAL_ECHOLNPGM("UVLO");
// Read out the current Z motor microstep counter. This will be later used
// for reaching the zero full step before powering off.
uint16_t z_microsteps = 0;
#ifdef TMC2130
z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
#endif //TMC2130
// Calculate the file position, from which to resume this print.
long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
{
uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
sd_position -= sdlen_planner;
uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
sd_position -= sdlen_cmdqueue;
if (sd_position < 0) sd_position = 0;
}
// Backup the feedrate in mm/min.
int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
// After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
// The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
// are in action.
planner_abort_hard();
// Store the current extruder position.
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
// Clean the input command queue.
cmdqueue_reset();
card.sdprinting = false;
// card.closefile();
// Enable stepper driver interrupt to move Z axis.
// This should be fine as the planner and command queues are empty and the SD card printing is disabled.
//FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
// though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
sei();
plan_buffer_line(
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS],
current_position[E_AXIS] - default_retraction,
95, active_extruder);
st_synchronize();
disable_e0();
plan_buffer_line(
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
current_position[E_AXIS] - default_retraction,
40, active_extruder);
st_synchronize();
disable_e0();
plan_buffer_line(
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
current_position[E_AXIS] - default_retraction,
40, active_extruder);
st_synchronize();
disable_e0();
disable_z();
// Move Z up to the next 0th full step.
// Write the file position.
eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
// Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
// Scale the z value to 1u resolution.
int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
}
// Read out the current Z motor microstep counter. This will be later used
// for reaching the zero full step before powering off.
eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
// Store the current position.
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
// Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
#if EXTRUDERS > 1
eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
#if EXTRUDERS > 2
eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
#endif
#endif
eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
#ifdef LIN_ADVANCE
eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
#endif
// Finaly store the "power outage" flag.
if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
st_synchronize();
printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
disable_z();
// Increment power failure counter
eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
#if 0
// Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
st_synchronize();
#endif
wdt_enable(WDTO_500MS);
WRITE(BEEPER,HIGH);
while(1)
;
}
void uvlo_tiny()
{
uint16_t z_microsteps=0;
// Conserve power as soon as possible.
disable_x();
disable_y();
disable_e0();
#ifdef TMC2130
tmc2130_set_current_h(Z_AXIS, 20);
tmc2130_set_current_r(Z_AXIS, 20);
#endif //TMC2130
// Read out the current Z motor microstep counter
#ifdef TMC2130
z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
#endif //TMC2130
planner_abort_hard();
sei();
plan_buffer_line(
current_position[X_AXIS],
current_position[Y_AXIS],
// current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
current_position[E_AXIS],
40, active_extruder);
st_synchronize();
disable_z();
// Finaly store the "power outage" flag.
//if(sd_print)
eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
// Increment power failure counter
eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
wdt_enable(WDTO_500MS);
WRITE(BEEPER,HIGH);
while(1)
;
}
#endif //UVLO_SUPPORT
#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
void setup_fan_interrupt() {
//INT7
DDRE &= ~(1 << 7); //input pin
PORTE &= ~(1 << 7); //no internal pull-up
//start with sensing rising edge
EICRB &= ~(1 << 6);
EICRB |= (1 << 7);
//enable INT7 interrupt
EIMSK |= (1 << 7);
}
// The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
// and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
ISR(INT7_vect) {
//measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
#ifdef FAN_SOFT_PWM
if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
#else //FAN_SOFT_PWM
if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
#endif //FAN_SOFT_PWM
if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
t_fan_rising_edge = millis_nc();
}
else { //interrupt was triggered by falling edge
if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
}
}
EICRB ^= (1 << 6); //change edge
}
#endif
#ifdef UVLO_SUPPORT
void setup_uvlo_interrupt() {
DDRE &= ~(1 << 4); //input pin
PORTE &= ~(1 << 4); //no internal pull-up
//sensing falling edge
EICRB |= (1 << 0);
EICRB &= ~(1 << 1);
//enable INT4 interrupt
EIMSK |= (1 << 4);
}
ISR(INT4_vect) {
EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
SERIAL_ECHOLNPGM("INT4");
if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
}
void recover_print(uint8_t automatic) {
char cmd[30];
lcd_update_enable(true);
lcd_update(2);
lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
// Lift the print head, so one may remove the excess priming material.
if(!bTiny&&(current_position[Z_AXIS]<25))
enquecommand_P(PSTR("G1 Z25 F800"));
// Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
enquecommand_P(PSTR("G28 X Y"));
// Set the target bed and nozzle temperatures and wait.
sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
enquecommand(cmd);
sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
enquecommand(cmd);
enquecommand_P(PSTR("M83")); //E axis relative mode
//enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
// If not automatically recoreverd (long power loss), extrude extra filament to stabilize
if(automatic == 0){
enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
}
enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
// Restart the print.
restore_print_from_eeprom();
printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
}
void recover_machine_state_after_power_panic(bool bTiny)
{
char cmd[30];
// 1) Recover the logical cordinates at the time of the power panic.
// The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
// Recover the logical coordinate of the Z axis at the time of the power panic.
// The current position after power panic is moved to the next closest 0th full step.
if(bTiny)
current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
else
current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
sprintf_P(cmd, PSTR("G92 E"));
dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
enquecommand(cmd);
}
memcpy(destination, current_position, sizeof(destination));
SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
print_world_coordinates();
// 2) Initialize the logical to physical coordinate system transformation.
world2machine_initialize();
// 3) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
mbl.active = false;
for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
// Scale the z value to 10u resolution.
int16_t v;
eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
if (v != 0)
mbl.active = true;
mbl.z_values[iy][ix] = float(v) * 0.001f;
}
// SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
// print_mesh_bed_leveling_table();
// 4) Load the baby stepping value, which is expected to be active at the time of power panic.
// The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
babystep_load();
// 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
// 6) Power up the motors, mark their positions as known.
//FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
axis_known_position[X_AXIS] = true; enable_x();
axis_known_position[Y_AXIS] = true; enable_y();
axis_known_position[Z_AXIS] = true; enable_z();
SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
print_physical_coordinates();
// 7) Recover the target temperatures.
target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
// 8) Recover extruder multipilers
extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
#if EXTRUDERS > 1
extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
#if EXTRUDERS > 2
extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
#endif
#endif
extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
#ifdef LIN_ADVANCE
extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
#endif
}
void restore_print_from_eeprom() {
int feedrate_rec;
uint8_t fan_speed_rec;
char cmd[30];
char filename[13];
uint8_t depth = 0;
char dir_name[9];
fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
SERIAL_ECHOPGM("Feedrate:");
MYSERIAL.println(feedrate_rec);
depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
MYSERIAL.println(int(depth));
for (int i = 0; i < depth; i++) {
for (int j = 0; j < 8; j++) {
dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
}
dir_name[8] = '\0';
MYSERIAL.println(dir_name);
strcpy(dir_names[i], dir_name);
card.chdir(dir_name);
}
for (int i = 0; i < 8; i++) {
filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
}
filename[8] = '\0';
MYSERIAL.print(filename);
strcat_P(filename, PSTR(".gco"));
sprintf_P(cmd, PSTR("M23 %s"), filename);
enquecommand(cmd);
uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
SERIAL_ECHOPGM("Position read from eeprom:");
MYSERIAL.println(position);
// E axis relative mode.
enquecommand_P(PSTR("M83"));
// Move to the XY print position in logical coordinates, where the print has been killed.
strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
strcat_P(cmd, PSTR(" F2000"));
enquecommand(cmd);
// Move the Z axis down to the print, in logical coordinates.
strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
enquecommand(cmd);
// Unretract.
enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
// Set the feedrate saved at the power panic.
sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
enquecommand(cmd);
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
{
enquecommand_P(PSTR("M82")); //E axis abslute mode
}
// Set the fan speed saved at the power panic.
strcpy_P(cmd, PSTR("M106 S"));
strcat(cmd, itostr3(int(fan_speed_rec)));
enquecommand(cmd);
// Set a position in the file.
sprintf_P(cmd, PSTR("M26 S%lu"), position);
enquecommand(cmd);
enquecommand_P(PSTR("G4 S0"));
enquecommand_P(PSTR("PRUSA uvlo"));
}
#endif //UVLO_SUPPORT
//! @brief Immediately stop print moves
//!
//! Immediately stop print moves, save current extruder temperature and position to RAM.
//! If printing from sd card, position in file is saved.
//! If printing from USB, line number is saved.
//!
//! @param z_move
//! @param e_move
void stop_and_save_print_to_ram(float z_move, float e_move)
{
if (saved_printing) return;
#if 0
unsigned char nplanner_blocks;
#endif
unsigned char nlines;
uint16_t sdlen_planner;
uint16_t sdlen_cmdqueue;
cli();
if (card.sdprinting) {
#if 0
nplanner_blocks = number_of_blocks();
#endif
saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
saved_sdpos -= sdlen_planner;
sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
saved_sdpos -= sdlen_cmdqueue;
saved_printing_type = PRINTING_TYPE_SD;
}
else if (is_usb_printing) { //reuse saved_sdpos for storing line number
saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
//reuse planner_calc_sd_length function for getting number of lines of commands in planner:
nlines = planner_calc_sd_length(); //number of lines of commands in planner
saved_sdpos -= nlines;
saved_sdpos -= buflen; //number of blocks in cmd buffer
saved_printing_type = PRINTING_TYPE_USB;
}
else {
saved_printing_type = PRINTING_TYPE_NONE;
//not sd printing nor usb printing
}
#if 0
SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
//SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
{
card.setIndex(saved_sdpos);
SERIAL_ECHOLNPGM("Content of planner buffer: ");
for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
MYSERIAL.print(char(card.get()));
SERIAL_ECHOLNPGM("Content of command buffer: ");
for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
MYSERIAL.print(char(card.get()));
SERIAL_ECHOLNPGM("End of command buffer");
}
{
// Print the content of the planner buffer, line by line:
card.setIndex(saved_sdpos);
int8_t iline = 0;
for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
SERIAL_ECHOPGM("Planner line (from file): ");
MYSERIAL.print(int(iline), DEC);
SERIAL_ECHOPGM(", length: ");
MYSERIAL.print(block_buffer[idx].sdlen, DEC);
SERIAL_ECHOPGM(", steps: (");
MYSERIAL.print(block_buffer[idx].steps_x, DEC);
SERIAL_ECHOPGM(",");
MYSERIAL.print(block_buffer[idx].steps_y, DEC);
SERIAL_ECHOPGM(",");
MYSERIAL.print(block_buffer[idx].steps_z, DEC);
SERIAL_ECHOPGM(",");
MYSERIAL.print(block_buffer[idx].steps_e, DEC);
SERIAL_ECHOPGM("), events: ");
MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
for (int len = block_buffer[idx].sdlen; len > 0; -- len)
MYSERIAL.print(char(card.get()));
}
}
{
// Print the content of the command buffer, line by line:
int8_t iline = 0;
union {
struct {
char lo;
char hi;
} lohi;
uint16_t value;
} sdlen_single;
int _bufindr = bufindr;
for (int _buflen = buflen; _buflen > 0; ++ iline) {
if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
}
SERIAL_ECHOPGM("Buffer line (from buffer): ");
MYSERIAL.print(int(iline), DEC);
SERIAL_ECHOPGM(", type: ");
MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
SERIAL_ECHOPGM(", len: ");
MYSERIAL.println(sdlen_single.value, DEC);
// Print the content of the buffer line.
MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
SERIAL_ECHOPGM("Buffer line (from file): ");
MYSERIAL.println(int(iline), DEC);
for (; sdlen_single.value > 0; -- sdlen_single.value)
MYSERIAL.print(char(card.get()));
if (-- _buflen == 0)
break;
// First skip the current command ID and iterate up to the end of the string.
for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
// Second, skip the end of string null character and iterate until a nonzero command ID is found.
for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
// If the end of the buffer was empty,
if (_bufindr == sizeof(cmdbuffer)) {
// skip to the start and find the nonzero command.
for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
}
}
}
#endif
#if 0
saved_feedrate2 = feedrate; //save feedrate
#else
// Try to deduce the feedrate from the first block of the planner.
// Speed is in mm/min.
saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
#endif
planner_abort_hard(); //abort printing
memcpy(saved_pos, current_position, sizeof(saved_pos));
saved_active_extruder = active_extruder; //save active_extruder
saved_extruder_temperature = degTargetHotend(active_extruder);
saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
saved_fanSpeed = fanSpeed;
cmdqueue_reset(); //empty cmdqueue
card.sdprinting = false;
// card.closefile();
saved_printing = true;
// We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
st_reset_timer();
sei();
if ((z_move != 0) || (e_move != 0)) { // extruder or z move
#if 1
// Rather than calling plan_buffer_line directly, push the move into the command queue,
char buf[48];
// First unretract (relative extrusion)
if(!saved_extruder_relative_mode){
strcpy_P(buf, PSTR("M83"));
enquecommand(buf, false);
}
//retract 45mm/s
strcpy_P(buf, PSTR("G1 E"));
dtostrf(e_move, 6, 3, buf + strlen(buf));
strcat_P(buf, PSTR(" F"));
dtostrf(2700, 8, 3, buf + strlen(buf));
enquecommand(buf, false);
// Then lift Z axis
strcpy_P(buf, PSTR("G1 Z"));
dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
strcat_P(buf, PSTR(" F"));
dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
// At this point the command queue is empty.
enquecommand(buf, false);
// If this call is invoked from the main Arduino loop() function, let the caller know that the command
// in the command queue is not the original command, but a new one, so it should not be removed from the queue.
repeatcommand_front();
#else
plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
st_synchronize(); //wait moving
memcpy(current_position, saved_pos, sizeof(saved_pos));
memcpy(destination, current_position, sizeof(destination));
#endif
}
}
//! @brief Restore print from ram
//!
//! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
//! waits for extruder temperature restore, then restores position and continues
//! print moves.
//! Internaly lcd_update() is called by wait_for_heater().
//!
//! @param e_move
void restore_print_from_ram_and_continue(float e_move)
{
if (!saved_printing) return;
// for (int axis = X_AXIS; axis <= E_AXIS; axis++)
// current_position[axis] = st_get_position_mm(axis);
active_extruder = saved_active_extruder; //restore active_extruder
if (saved_extruder_temperature) {
setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
heating_status = 1;
wait_for_heater(_millis(), saved_active_extruder);
heating_status = 2;
}
feedrate = saved_feedrate2; //restore feedrate
axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
fanSpeed = saved_fanSpeed;
float e = saved_pos[E_AXIS] - e_move;
plan_set_e_position(e);
//first move print head in XY to the saved position:
plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
st_synchronize();
//then move Z
plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
st_synchronize();
//and finaly unretract (35mm/s)
plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
st_synchronize();
memcpy(current_position, saved_pos, sizeof(saved_pos));
memcpy(destination, current_position, sizeof(destination));
if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
card.setIndex(saved_sdpos);
sdpos_atomic = saved_sdpos;
card.sdprinting = true;
printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
}
else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
serial_count = 0;
FlushSerialRequestResend();
}
else {
//not sd printing nor usb printing
}
lcd_setstatuspgm(_T(WELCOME_MSG));
saved_printing = false;
}
void print_world_coordinates()
{
printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
}
void print_physical_coordinates()
{
printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
}
void print_mesh_bed_leveling_table()
{
SERIAL_ECHOPGM("mesh bed leveling: ");
for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
MYSERIAL.print(mbl.z_values[y][x], 3);
SERIAL_ECHOPGM(" ");
}
SERIAL_ECHOLNPGM("");
}
uint16_t print_time_remaining() {
uint16_t print_t = PRINT_TIME_REMAINING_INIT;
#ifdef TMC2130
if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
else print_t = print_time_remaining_silent;
#else
print_t = print_time_remaining_normal;
#endif //TMC2130
if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
return print_t;
}
uint8_t calc_percent_done()
{
//in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
uint8_t percent_done = 0;
#ifdef TMC2130
if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
percent_done = print_percent_done_normal;
}
else if (print_percent_done_silent <= 100) {
percent_done = print_percent_done_silent;
}
#else
if (print_percent_done_normal <= 100) {
percent_done = print_percent_done_normal;
}
#endif //TMC2130
else {
percent_done = card.percentDone();
}
return percent_done;
}
static void print_time_remaining_init()
{
print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
}
void load_filament_final_feed()
{
current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
}
//! @brief Wait for user to check the state
//! @par nozzle_temp nozzle temperature to load filament
void M600_check_state(float nozzle_temp)
{
lcd_change_fil_state = 0;
while (lcd_change_fil_state != 1)
{
lcd_change_fil_state = 0;
KEEPALIVE_STATE(PAUSED_FOR_USER);
lcd_alright();
KEEPALIVE_STATE(IN_HANDLER);
switch(lcd_change_fil_state)
{
// Filament failed to load so load it again
case 2:
if (mmu_enabled)
mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
else
M600_load_filament_movements();
break;
// Filament loaded properly but color is not clear
case 3:
st_synchronize();
load_filament_final_feed();
lcd_loading_color();
st_synchronize();
break;
// Everything good
default:
lcd_change_success();
break;
}
}
}
//! @brief Wait for user action
//!
//! Beep, manage nozzle heater and wait for user to start unload filament
//! If times out, active extruder temperature is set to 0.
//!
//! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
void M600_wait_for_user(float HotendTempBckp) {
KEEPALIVE_STATE(PAUSED_FOR_USER);
int counterBeep = 0;
unsigned long waiting_start_time = _millis();
uint8_t wait_for_user_state = 0;
lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
bool bFirst=true;
while (!(wait_for_user_state == 0 && lcd_clicked())){
manage_heater();
manage_inactivity(true);
#if BEEPER > 0
if (counterBeep == 500) {
counterBeep = 0;
}
SET_OUTPUT(BEEPER);
if (counterBeep == 0) {
if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
{
bFirst=false;
WRITE(BEEPER, HIGH);
}
}
if (counterBeep == 20) {
WRITE(BEEPER, LOW);
}
counterBeep++;
#endif //BEEPER > 0
switch (wait_for_user_state) {
case 0: //nozzle is hot, waiting for user to press the knob to unload filament
delay_keep_alive(4);
if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
wait_for_user_state = 1;
setAllTargetHotends(0);
st_synchronize();
disable_e0();
disable_e1();
disable_e2();
}
break;
case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
delay_keep_alive(4);
if (lcd_clicked()) {
setTargetHotend(HotendTempBckp, active_extruder);
lcd_wait_for_heater();
wait_for_user_state = 2;
}
break;
case 2: //waiting for nozzle to reach target temperature
if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
waiting_start_time = _millis();
wait_for_user_state = 0;
}
else {
counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
lcd_set_cursor(1, 4);
lcd_print(ftostr3(degHotend(active_extruder)));
}
break;
}
}
WRITE(BEEPER, LOW);
}
void M600_load_filament_movements()
{
#ifdef SNMM
display_loading();
do
{
current_position[E_AXIS] += 0.002;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
delay_keep_alive(2);
}
while (!lcd_clicked());
st_synchronize();
current_position[E_AXIS] += bowden_length[mmu_extruder];
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
current_position[E_AXIS] += 40;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
current_position[E_AXIS] += 10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
#else
current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
#endif
load_filament_final_feed();
lcd_loading_filament();
st_synchronize();
}
void M600_load_filament() {
//load filament for single material and SNMM
lcd_wait_interact();
//load_filament_time = _millis();
KEEPALIVE_STATE(PAUSED_FOR_USER);
#ifdef PAT9125
fsensor_autoload_check_start();
#endif //PAT9125
while(!lcd_clicked())
{
manage_heater();
manage_inactivity(true);
#ifdef FILAMENT_SENSOR
if (fsensor_check_autoload())
{
if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
_tone(BEEPER, 1000);
delay_keep_alive(50);
_noTone(BEEPER);
break;
}
#endif //FILAMENT_SENSOR
}
#ifdef PAT9125
fsensor_autoload_check_stop();
#endif //PAT9125
KEEPALIVE_STATE(IN_HANDLER);
#ifdef FSENSOR_QUALITY
fsensor_oq_meassure_start(70);
#endif //FSENSOR_QUALITY
M600_load_filament_movements();
if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
_tone(BEEPER, 500);
delay_keep_alive(50);
_noTone(BEEPER);
#ifdef FSENSOR_QUALITY
fsensor_oq_meassure_stop();
if (!fsensor_oq_result())
{
bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
lcd_update_enable(true);
lcd_update(2);
if (disable)
fsensor_disable();
}
#endif //FSENSOR_QUALITY
lcd_update_enable(false);
}
//! @brief Wait for click
//!
//! Set
void marlin_wait_for_click()
{
int8_t busy_state_backup = busy_state;
KEEPALIVE_STATE(PAUSED_FOR_USER);
lcd_consume_click();
while(!lcd_clicked())
{
manage_heater();
manage_inactivity(true);
lcd_update(0);
}
KEEPALIVE_STATE(busy_state_backup);
}
#define FIL_LOAD_LENGTH 60