3067 lines
118 KiB
C++
3067 lines
118 KiB
C++
#include "Marlin.h"
|
|
#include "Configuration.h"
|
|
#include "ConfigurationStore.h"
|
|
#include "language.h"
|
|
#include "mesh_bed_calibration.h"
|
|
#include "mesh_bed_leveling.h"
|
|
#include "stepper.h"
|
|
#include "ultralcd.h"
|
|
|
|
#ifdef TMC2130
|
|
#include "tmc2130.h"
|
|
#endif //TMC2130
|
|
|
|
uint8_t world2machine_correction_mode;
|
|
float world2machine_rotation_and_skew[2][2];
|
|
float world2machine_rotation_and_skew_inv[2][2];
|
|
float world2machine_shift[2];
|
|
|
|
// Weight of the Y coordinate for the least squares fitting of the bed induction sensor targets.
|
|
// Only used for the first row of the points, which may not befully in reach of the sensor.
|
|
#define WEIGHT_FIRST_ROW_X_HIGH (1.f)
|
|
#define WEIGHT_FIRST_ROW_X_LOW (0.35f)
|
|
#define WEIGHT_FIRST_ROW_Y_HIGH (0.3f)
|
|
#define WEIGHT_FIRST_ROW_Y_LOW (0.0f)
|
|
|
|
#define BED_ZERO_REF_X (- 22.f + X_PROBE_OFFSET_FROM_EXTRUDER) // -22 + 23 = 1
|
|
#define BED_ZERO_REF_Y (- 0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER + 4.f) // -0.6 + 5 + 4 = 8.4
|
|
|
|
// Scaling of the real machine axes against the programmed dimensions in the firmware.
|
|
// The correction is tiny, here around 0.5mm on 250mm length.
|
|
//#define MACHINE_AXIS_SCALE_X ((250.f - 0.5f) / 250.f)
|
|
//#define MACHINE_AXIS_SCALE_Y ((250.f - 0.5f) / 250.f)
|
|
#define MACHINE_AXIS_SCALE_X 1.f
|
|
#define MACHINE_AXIS_SCALE_Y 1.f
|
|
|
|
#define BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN (0.8f)
|
|
#define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X (0.8f)
|
|
#define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y (1.5f)
|
|
|
|
#define MIN_BED_SENSOR_POINT_RESPONSE_DMR (2.0f)
|
|
|
|
//#define Y_MIN_POS_FOR_BED_CALIBRATION (MANUAL_Y_HOME_POS-0.2f)
|
|
#define Y_MIN_POS_FOR_BED_CALIBRATION (Y_MIN_POS)
|
|
// Distances toward the print bed edge may not be accurate.
|
|
#define Y_MIN_POS_CALIBRATION_POINT_ACCURATE (Y_MIN_POS + 3.f)
|
|
// When the measured point center is out of reach of the sensor, Y coordinate will be ignored
|
|
// by the Least Squares fitting and the X coordinate will be weighted low.
|
|
#define Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH (Y_MIN_POS - 0.5f)
|
|
|
|
// 0.12 degrees equals to an offset of 0.5mm on 250mm length.
|
|
const float bed_skew_angle_mild = (0.12f * M_PI / 180.f);
|
|
// 0.25 degrees equals to an offset of 1.1mm on 250mm length.
|
|
const float bed_skew_angle_extreme = (0.25f * M_PI / 180.f);
|
|
|
|
// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
|
|
// The points are ordered in a zig-zag fashion to speed up the calibration.
|
|
|
|
#ifdef HEATBED_V2
|
|
|
|
/**
|
|
* [0,0] bed print area point X coordinate in bed coordinates ver. 05d/24V
|
|
*/
|
|
#define BED_PRINT_ZERO_REF_X 2.f
|
|
/**
|
|
* [0,0] bed print area point Y coordinate in bed coordinates ver. 05d/24V
|
|
*/
|
|
#define BED_PRINT_ZERO_REF_Y 9.4f
|
|
|
|
/**
|
|
* @brief Positions of the bed reference points in print area coordinates. ver. 05d/24V
|
|
*
|
|
* Numeral constants are in bed coordinates, subtracting macro defined values converts it to print area coordinates.
|
|
*
|
|
* The points are the following:
|
|
* MK2: center front, center right, center rear, center left.
|
|
* MK25 and MK3: front left, front right, rear right, rear left
|
|
*/
|
|
const float bed_ref_points_4[] PROGMEM = {
|
|
37.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_X,
|
|
18.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y,
|
|
|
|
245.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_X,
|
|
18.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y,
|
|
|
|
245.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_X,
|
|
210.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y,
|
|
|
|
37.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_X,
|
|
210.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y
|
|
};
|
|
|
|
const float bed_ref_points[] PROGMEM = {
|
|
13.f - BED_ZERO_REF_X, 10.4f - BED_ZERO_REF_Y,
|
|
115.f - BED_ZERO_REF_X, 10.4f - BED_ZERO_REF_Y,
|
|
216.f - BED_ZERO_REF_X, 10.4f - BED_ZERO_REF_Y,
|
|
|
|
216.f - BED_ZERO_REF_X, 106.4f - BED_ZERO_REF_Y,
|
|
115.f - BED_ZERO_REF_X, 106.4f - BED_ZERO_REF_Y,
|
|
13.f - BED_ZERO_REF_X, 106.4f - BED_ZERO_REF_Y,
|
|
|
|
13.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
|
|
115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
|
|
216.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y
|
|
};
|
|
#else
|
|
|
|
// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
|
|
// The points are the following: center front, center right, center rear, center left.
|
|
const float bed_ref_points_4[] PROGMEM = {
|
|
115.f - BED_ZERO_REF_X, 8.4f - BED_ZERO_REF_Y,
|
|
216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
|
|
115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
|
|
13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y
|
|
};
|
|
|
|
const float bed_ref_points[] PROGMEM = {
|
|
13.f - BED_ZERO_REF_X, 8.4f - BED_ZERO_REF_Y,
|
|
115.f - BED_ZERO_REF_X, 8.4f - BED_ZERO_REF_Y,
|
|
216.f - BED_ZERO_REF_X, 8.4f - BED_ZERO_REF_Y,
|
|
|
|
216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
|
|
115.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
|
|
13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
|
|
|
|
13.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
|
|
115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
|
|
216.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y
|
|
};
|
|
|
|
#endif //not HEATBED_V2
|
|
|
|
static inline float sqr(float x) { return x * x; }
|
|
|
|
#ifdef HEATBED_V2
|
|
static inline bool point_on_1st_row(const uint8_t /*i*/)
|
|
{
|
|
return false;
|
|
}
|
|
#else //HEATBED_V2
|
|
static inline bool point_on_1st_row(const uint8_t i)
|
|
{
|
|
return (i < 3);
|
|
}
|
|
#endif //HEATBED_V2
|
|
|
|
// Weight of a point coordinate in a least squares optimization.
|
|
// The first row of points may not be fully reachable
|
|
// and the y values may be shortened a bit by the bed carriage
|
|
// pulling the belt up.
|
|
static inline float point_weight_x(const uint8_t i, const float &y)
|
|
{
|
|
float w = 1.f;
|
|
if (point_on_1st_row(i)) {
|
|
if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {
|
|
w = WEIGHT_FIRST_ROW_X_HIGH;
|
|
} else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
|
|
// If the point is fully outside, give it some weight.
|
|
w = WEIGHT_FIRST_ROW_X_LOW;
|
|
} else {
|
|
// Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.
|
|
float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
|
|
w = (1.f - t) * WEIGHT_FIRST_ROW_X_LOW + t * WEIGHT_FIRST_ROW_X_HIGH;
|
|
}
|
|
}
|
|
return w;
|
|
}
|
|
|
|
// Weight of a point coordinate in a least squares optimization.
|
|
// The first row of points may not be fully reachable
|
|
// and the y values may be shortened a bit by the bed carriage
|
|
// pulling the belt up.
|
|
static inline float point_weight_y(const uint8_t i, const float &y)
|
|
{
|
|
float w = 1.f;
|
|
if (point_on_1st_row(i)) {
|
|
if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {
|
|
w = WEIGHT_FIRST_ROW_Y_HIGH;
|
|
} else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
|
|
// If the point is fully outside, give it some weight.
|
|
w = WEIGHT_FIRST_ROW_Y_LOW;
|
|
} else {
|
|
// Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.
|
|
float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
|
|
w = (1.f - t) * WEIGHT_FIRST_ROW_Y_LOW + t * WEIGHT_FIRST_ROW_Y_HIGH;
|
|
}
|
|
}
|
|
return w;
|
|
}
|
|
/**
|
|
* @brief Calculate machine skew and offset
|
|
*
|
|
* Non-Linear Least Squares fitting of the bed to the measured induction points
|
|
* using the Gauss-Newton method.
|
|
* This method will maintain a unity length of the machine axes,
|
|
* which is the correct approach if the sensor points are not measured precisely.
|
|
* @param measured_pts Matrix of 2D points (maximum 18 floats)
|
|
* @param npts Number of points (maximum 9)
|
|
* @param true_pts
|
|
* @param [out] vec_x Resulting correction matrix. X axis vector
|
|
* @param [out] vec_y Resulting correction matrix. Y axis vector
|
|
* @param [out] cntr Resulting correction matrix. [0;0] pont offset
|
|
* @param verbosity_level
|
|
* @return BedSkewOffsetDetectionResultType
|
|
*/
|
|
BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
|
const float *measured_pts,
|
|
uint8_t npts,
|
|
const float *true_pts,
|
|
float *vec_x,
|
|
float *vec_y,
|
|
float *cntr,
|
|
int8_t
|
|
#ifdef SUPPORT_VERBOSITY
|
|
verbosity_level
|
|
#endif //SUPPORT_VERBOSITY
|
|
)
|
|
{
|
|
float angleDiff;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 10) {
|
|
SERIAL_ECHOLNPGM("calculate machine skew and offset LS");
|
|
|
|
// Show the initial state, before the fitting.
|
|
SERIAL_ECHOPGM("X vector, initial: ");
|
|
MYSERIAL.print(vec_x[0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(vec_x[1], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
SERIAL_ECHOPGM("Y vector, initial: ");
|
|
MYSERIAL.print(vec_y[0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(vec_y[1], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
SERIAL_ECHOPGM("center, initial: ");
|
|
MYSERIAL.print(cntr[0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(cntr[1], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
for (uint8_t i = 0; i < npts; ++i) {
|
|
SERIAL_ECHOPGM("point #");
|
|
MYSERIAL.print(int(i));
|
|
SERIAL_ECHOPGM(" measured: (");
|
|
MYSERIAL.print(measured_pts[i * 2], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(measured_pts[i * 2 + 1], 5);
|
|
SERIAL_ECHOPGM("); target: (");
|
|
MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
|
|
SERIAL_ECHOPGM("), error: ");
|
|
MYSERIAL.print(sqrt(
|
|
sqr(pgm_read_float(true_pts + i * 2) - measured_pts[i * 2]) +
|
|
sqr(pgm_read_float(true_pts + i * 2 + 1) - measured_pts[i * 2 + 1])), 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
delay_keep_alive(100);
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
|
|
// Run some iterations of the Gauss-Newton method of non-linear least squares.
|
|
// Initial set of parameters:
|
|
// X,Y offset
|
|
cntr[0] = 0.f;
|
|
cntr[1] = 0.f;
|
|
// Rotation of the machine X axis from the bed X axis.
|
|
float a1 = 0;
|
|
// Rotation of the machine Y axis from the bed Y axis.
|
|
float a2 = 0;
|
|
for (int8_t iter = 0; iter < 100; ++iter) {
|
|
float c1 = cos(a1) * MACHINE_AXIS_SCALE_X;
|
|
float s1 = sin(a1) * MACHINE_AXIS_SCALE_X;
|
|
float c2 = cos(a2) * MACHINE_AXIS_SCALE_Y;
|
|
float s2 = sin(a2) * MACHINE_AXIS_SCALE_Y;
|
|
// Prepare the Normal equation for the Gauss-Newton method.
|
|
float A[4][4] = { 0.f };
|
|
float b[4] = { 0.f };
|
|
float acc;
|
|
delay_keep_alive(0); //manage heater, reset watchdog, manage inactivity
|
|
for (uint8_t r = 0; r < 4; ++r) {
|
|
for (uint8_t c = 0; c < 4; ++c) {
|
|
acc = 0;
|
|
// J^T times J
|
|
for (uint8_t i = 0; i < npts; ++i) {
|
|
// First for the residuum in the x axis:
|
|
if (r != 1 && c != 1) {
|
|
float a =
|
|
(r == 0) ? 1.f :
|
|
((r == 2) ? (-s1 * measured_pts[2 * i]) :
|
|
(-c2 * measured_pts[2 * i + 1]));
|
|
float b =
|
|
(c == 0) ? 1.f :
|
|
((c == 2) ? (-s1 * measured_pts[2 * i]) :
|
|
(-c2 * measured_pts[2 * i + 1]));
|
|
float w = point_weight_x(i, measured_pts[2 * i + 1]);
|
|
acc += a * b * w;
|
|
}
|
|
// Second for the residuum in the y axis.
|
|
// The first row of the points have a low weight, because their position may not be known
|
|
// with a sufficient accuracy.
|
|
if (r != 0 && c != 0) {
|
|
float a =
|
|
(r == 1) ? 1.f :
|
|
((r == 2) ? ( c1 * measured_pts[2 * i]) :
|
|
(-s2 * measured_pts[2 * i + 1]));
|
|
float b =
|
|
(c == 1) ? 1.f :
|
|
((c == 2) ? ( c1 * measured_pts[2 * i]) :
|
|
(-s2 * measured_pts[2 * i + 1]));
|
|
float w = point_weight_y(i, measured_pts[2 * i + 1]);
|
|
acc += a * b * w;
|
|
}
|
|
}
|
|
A[r][c] = acc;
|
|
}
|
|
// J^T times f(x)
|
|
acc = 0.f;
|
|
for (uint8_t i = 0; i < npts; ++i) {
|
|
{
|
|
float j =
|
|
(r == 0) ? 1.f :
|
|
((r == 1) ? 0.f :
|
|
((r == 2) ? (-s1 * measured_pts[2 * i]) :
|
|
(-c2 * measured_pts[2 * i + 1])));
|
|
float fx = c1 * measured_pts[2 * i] - s2 * measured_pts[2 * i + 1] + cntr[0] - pgm_read_float(true_pts + i * 2);
|
|
float w = point_weight_x(i, measured_pts[2 * i + 1]);
|
|
acc += j * fx * w;
|
|
}
|
|
{
|
|
float j =
|
|
(r == 0) ? 0.f :
|
|
((r == 1) ? 1.f :
|
|
((r == 2) ? ( c1 * measured_pts[2 * i]) :
|
|
(-s2 * measured_pts[2 * i + 1])));
|
|
float fy = s1 * measured_pts[2 * i] + c2 * measured_pts[2 * i + 1] + cntr[1] - pgm_read_float(true_pts + i * 2 + 1);
|
|
float w = point_weight_y(i, measured_pts[2 * i + 1]);
|
|
acc += j * fy * w;
|
|
}
|
|
}
|
|
b[r] = -acc;
|
|
}
|
|
|
|
// Solve for h by a Gauss iteration method.
|
|
float h[4] = { 0.f };
|
|
for (uint8_t gauss_iter = 0; gauss_iter < 100; ++gauss_iter) {
|
|
h[0] = (b[0] - A[0][1] * h[1] - A[0][2] * h[2] - A[0][3] * h[3]) / A[0][0];
|
|
h[1] = (b[1] - A[1][0] * h[0] - A[1][2] * h[2] - A[1][3] * h[3]) / A[1][1];
|
|
h[2] = (b[2] - A[2][0] * h[0] - A[2][1] * h[1] - A[2][3] * h[3]) / A[2][2];
|
|
h[3] = (b[3] - A[3][0] * h[0] - A[3][1] * h[1] - A[3][2] * h[2]) / A[3][3];
|
|
}
|
|
|
|
// and update the current position with h.
|
|
// It may be better to use the Levenberg-Marquart method here,
|
|
// but because we are very close to the solution alread,
|
|
// the simple Gauss-Newton non-linear Least Squares method works well enough.
|
|
cntr[0] += h[0];
|
|
cntr[1] += h[1];
|
|
a1 += h[2];
|
|
a2 += h[3];
|
|
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOPGM("iteration: ");
|
|
MYSERIAL.print(int(iter));
|
|
SERIAL_ECHOPGM("; correction vector: ");
|
|
MYSERIAL.print(h[0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(h[1], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(h[2], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(h[3], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("corrected x/y: ");
|
|
MYSERIAL.print(cntr[0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(cntr[0], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("corrected angles: ");
|
|
MYSERIAL.print(180.f * a1 / M_PI, 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(180.f * a2 / M_PI, 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
|
|
vec_x[0] = cos(a1) * MACHINE_AXIS_SCALE_X;
|
|
vec_x[1] = sin(a1) * MACHINE_AXIS_SCALE_X;
|
|
vec_y[0] = -sin(a2) * MACHINE_AXIS_SCALE_Y;
|
|
vec_y[1] = cos(a2) * MACHINE_AXIS_SCALE_Y;
|
|
|
|
BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
|
|
{
|
|
angleDiff = fabs(a2 - a1);
|
|
eeprom_update_float((float*)(EEPROM_XYZ_CAL_SKEW), angleDiff); //storing xyz cal. skew to be able to show in support menu later
|
|
if (angleDiff > bed_skew_angle_mild)
|
|
result = (angleDiff > bed_skew_angle_extreme) ?
|
|
BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME :
|
|
BED_SKEW_OFFSET_DETECTION_SKEW_MILD;
|
|
if (fabs(a1) > bed_skew_angle_extreme ||
|
|
fabs(a2) > bed_skew_angle_extreme)
|
|
result = BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
|
|
}
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 1) {
|
|
SERIAL_ECHOPGM("correction angles: ");
|
|
MYSERIAL.print(180.f * a1 / M_PI, 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(180.f * a2 / M_PI, 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
|
|
if (verbosity_level >= 10) {
|
|
// Show the adjusted state, before the fitting.
|
|
SERIAL_ECHOPGM("X vector new, inverted: ");
|
|
MYSERIAL.print(vec_x[0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(vec_x[1], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
SERIAL_ECHOPGM("Y vector new, inverted: ");
|
|
MYSERIAL.print(vec_y[0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(vec_y[1], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
SERIAL_ECHOPGM("center new, inverted: ");
|
|
MYSERIAL.print(cntr[0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(cntr[1], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
delay_keep_alive(100);
|
|
|
|
SERIAL_ECHOLNPGM("Error after correction: ");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
// Measure the error after correction.
|
|
for (uint8_t i = 0; i < npts; ++i) {
|
|
float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1] + cntr[0];
|
|
float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1] + cntr[1];
|
|
float errX = sqr(pgm_read_float(true_pts + i * 2) - x);
|
|
float errY = sqr(pgm_read_float(true_pts + i * 2 + 1) - y);
|
|
float err = sqrt(errX + errY);
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 10) {
|
|
SERIAL_ECHOPGM("point #");
|
|
MYSERIAL.print(int(i));
|
|
SERIAL_ECHOLNPGM(":");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
|
|
if (point_on_1st_row(i)) {
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if(verbosity_level >= 20) SERIAL_ECHOPGM("Point on first row");
|
|
#endif // SUPPORT_VERBOSITY
|
|
float w = point_weight_y(i, measured_pts[2 * i + 1]);
|
|
if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X ||
|
|
(w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y)) {
|
|
result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOPGM(", weigth Y: ");
|
|
MYSERIAL.print(w);
|
|
if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X) SERIAL_ECHOPGM(", error X > max. error X");
|
|
if (w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y) SERIAL_ECHOPGM(", error Y > max. error Y");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
}
|
|
else {
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if(verbosity_level >=20 ) SERIAL_ECHOPGM("Point not on first row");
|
|
#endif // SUPPORT_VERBOSITY
|
|
if (err > BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN) {
|
|
result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if(verbosity_level >= 20) SERIAL_ECHOPGM(", error > max. error euclidian");
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
}
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 10) {
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("measured: (");
|
|
MYSERIAL.print(measured_pts[i * 2], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(measured_pts[i * 2 + 1], 5);
|
|
SERIAL_ECHOPGM("); corrected: (");
|
|
MYSERIAL.print(x, 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(y, 5);
|
|
SERIAL_ECHOPGM("); target: (");
|
|
MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
|
|
SERIAL_ECHOLNPGM(")");
|
|
SERIAL_ECHOPGM("error: ");
|
|
MYSERIAL.print(err);
|
|
SERIAL_ECHOPGM(", error X: ");
|
|
MYSERIAL.print(sqrt(errX));
|
|
SERIAL_ECHOPGM(", error Y: ");
|
|
MYSERIAL.print(sqrt(errY));
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOLNPGM("Max. errors:");
|
|
SERIAL_ECHOPGM("Max. error X:");
|
|
MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X);
|
|
SERIAL_ECHOPGM("Max. error Y:");
|
|
MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y);
|
|
SERIAL_ECHOPGM("Max. error euclidian:");
|
|
MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
|
|
#if 0
|
|
if (result == BED_SKEW_OFFSET_DETECTION_PERFECT && fabs(a1) < bed_skew_angle_mild && fabs(a2) < bed_skew_angle_mild) {
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level > 0)
|
|
SERIAL_ECHOLNPGM("Very little skew detected. Disabling skew correction.");
|
|
#endif // SUPPORT_VERBOSITY
|
|
// Just disable the skew correction.
|
|
vec_x[0] = MACHINE_AXIS_SCALE_X;
|
|
vec_x[1] = 0.f;
|
|
vec_y[0] = 0.f;
|
|
vec_y[1] = MACHINE_AXIS_SCALE_Y;
|
|
}
|
|
#else
|
|
if (result == BED_SKEW_OFFSET_DETECTION_PERFECT) {
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level > 0)
|
|
SERIAL_ECHOLNPGM("Very little skew detected. Orthogonalizing the axes.");
|
|
#endif // SUPPORT_VERBOSITY
|
|
// Orthogonalize the axes.
|
|
a1 = 0.5f * (a1 + a2);
|
|
vec_x[0] = cos(a1) * MACHINE_AXIS_SCALE_X;
|
|
vec_x[1] = sin(a1) * MACHINE_AXIS_SCALE_X;
|
|
vec_y[0] = -sin(a1) * MACHINE_AXIS_SCALE_Y;
|
|
vec_y[1] = cos(a1) * MACHINE_AXIS_SCALE_Y;
|
|
// Refresh the offset.
|
|
cntr[0] = 0.f;
|
|
cntr[1] = 0.f;
|
|
float wx = 0.f;
|
|
float wy = 0.f;
|
|
for (int8_t i = 0; i < npts; ++ i) {
|
|
float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1];
|
|
float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1];
|
|
float w = point_weight_x(i, y);
|
|
cntr[0] += w * (pgm_read_float(true_pts + i * 2) - x);
|
|
wx += w;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
MYSERIAL.print(i);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOLNPGM("Weight_x:");
|
|
MYSERIAL.print(w);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOLNPGM("cntr[0]:");
|
|
MYSERIAL.print(cntr[0]);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOLNPGM("wx:");
|
|
MYSERIAL.print(wx);
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
w = point_weight_y(i, y);
|
|
cntr[1] += w * (pgm_read_float(true_pts + i * 2 + 1) - y);
|
|
wy += w;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOLNPGM("Weight_y:");
|
|
MYSERIAL.print(w);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOLNPGM("cntr[1]:");
|
|
MYSERIAL.print(cntr[1]);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOLNPGM("wy:");
|
|
MYSERIAL.print(wy);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
|
|
}
|
|
cntr[0] /= wx;
|
|
cntr[1] /= wy;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOLNPGM("Final cntr values:");
|
|
SERIAL_ECHOLNPGM("cntr[0]:");
|
|
MYSERIAL.print(cntr[0]);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOLNPGM("cntr[1]:");
|
|
MYSERIAL.print(cntr[1]);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
#endif
|
|
|
|
// Invert the transformation matrix made of vec_x, vec_y and cntr.
|
|
{
|
|
float d = vec_x[0] * vec_y[1] - vec_x[1] * vec_y[0];
|
|
float Ainv[2][2] = {
|
|
{ vec_y[1] / d, -vec_y[0] / d },
|
|
{ -vec_x[1] / d, vec_x[0] / d }
|
|
};
|
|
float cntrInv[2] = {
|
|
-Ainv[0][0] * cntr[0] - Ainv[0][1] * cntr[1],
|
|
-Ainv[1][0] * cntr[0] - Ainv[1][1] * cntr[1]
|
|
};
|
|
vec_x[0] = Ainv[0][0];
|
|
vec_x[1] = Ainv[1][0];
|
|
vec_y[0] = Ainv[0][1];
|
|
vec_y[1] = Ainv[1][1];
|
|
cntr[0] = cntrInv[0];
|
|
cntr[1] = cntrInv[1];
|
|
}
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 1) {
|
|
// Show the adjusted state, before the fitting.
|
|
SERIAL_ECHOPGM("X vector, adjusted: ");
|
|
MYSERIAL.print(vec_x[0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(vec_x[1], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
SERIAL_ECHOPGM("Y vector, adjusted: ");
|
|
MYSERIAL.print(vec_y[0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(vec_y[1], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
SERIAL_ECHOPGM("center, adjusted: ");
|
|
MYSERIAL.print(cntr[0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(cntr[1], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
delay_keep_alive(100);
|
|
}
|
|
|
|
if (verbosity_level >= 2) {
|
|
SERIAL_ECHOLNPGM("Difference after correction: ");
|
|
for (uint8_t i = 0; i < npts; ++i) {
|
|
float x = vec_x[0] * pgm_read_float(true_pts + i * 2) + vec_y[0] * pgm_read_float(true_pts + i * 2 + 1) + cntr[0];
|
|
float y = vec_x[1] * pgm_read_float(true_pts + i * 2) + vec_y[1] * pgm_read_float(true_pts + i * 2 + 1) + cntr[1];
|
|
SERIAL_ECHOPGM("point #");
|
|
MYSERIAL.print(int(i));
|
|
SERIAL_ECHOPGM("measured: (");
|
|
MYSERIAL.print(measured_pts[i * 2], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(measured_pts[i * 2 + 1], 5);
|
|
SERIAL_ECHOPGM("); measured-corrected: (");
|
|
MYSERIAL.print(x, 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(y, 5);
|
|
SERIAL_ECHOPGM("); target: (");
|
|
MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
|
|
SERIAL_ECHOPGM("), error: ");
|
|
MYSERIAL.print(sqrt(sqr(measured_pts[i * 2] - x) + sqr(measured_pts[i * 2 + 1] - y)));
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOLNPGM("Calculate offset and skew returning result:");
|
|
MYSERIAL.print(int(result));
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
delay_keep_alive(100);
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* @brief Erase calibration data stored in EEPROM
|
|
*/
|
|
void reset_bed_offset_and_skew()
|
|
{
|
|
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+0), 0x0FFFFFFFF);
|
|
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+4), 0x0FFFFFFFF);
|
|
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +0), 0x0FFFFFFFF);
|
|
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +4), 0x0FFFFFFFF);
|
|
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +0), 0x0FFFFFFFF);
|
|
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +4), 0x0FFFFFFFF);
|
|
|
|
// Reset the 8 16bit offsets.
|
|
for (int8_t i = 0; i < 4; ++ i)
|
|
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*4), 0x0FFFFFFFF);
|
|
}
|
|
|
|
bool is_bed_z_jitter_data_valid()
|
|
// offsets of the Z heiths of the calibration points from the first point are saved as 16bit signed int, scaled to tenths of microns
|
|
{
|
|
for (int8_t i = 0; i < 8; ++ i)
|
|
if (eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*2)) == 0x0FFFF)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static void world2machine_update(const float vec_x[2], const float vec_y[2], const float cntr[2])
|
|
{
|
|
world2machine_rotation_and_skew[0][0] = vec_x[0];
|
|
world2machine_rotation_and_skew[1][0] = vec_x[1];
|
|
world2machine_rotation_and_skew[0][1] = vec_y[0];
|
|
world2machine_rotation_and_skew[1][1] = vec_y[1];
|
|
world2machine_shift[0] = cntr[0];
|
|
world2machine_shift[1] = cntr[1];
|
|
// No correction.
|
|
world2machine_correction_mode = WORLD2MACHINE_CORRECTION_NONE;
|
|
if (world2machine_shift[0] != 0.f || world2machine_shift[1] != 0.f)
|
|
// Shift correction.
|
|
world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SHIFT;
|
|
if (world2machine_rotation_and_skew[0][0] != 1.f || world2machine_rotation_and_skew[0][1] != 0.f ||
|
|
world2machine_rotation_and_skew[1][0] != 0.f || world2machine_rotation_and_skew[1][1] != 1.f) {
|
|
// Rotation & skew correction.
|
|
world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SKEW;
|
|
// Invert the world2machine matrix.
|
|
float d = world2machine_rotation_and_skew[0][0] * world2machine_rotation_and_skew[1][1] - world2machine_rotation_and_skew[1][0] * world2machine_rotation_and_skew[0][1];
|
|
world2machine_rotation_and_skew_inv[0][0] = world2machine_rotation_and_skew[1][1] / d;
|
|
world2machine_rotation_and_skew_inv[0][1] = -world2machine_rotation_and_skew[0][1] / d;
|
|
world2machine_rotation_and_skew_inv[1][0] = -world2machine_rotation_and_skew[1][0] / d;
|
|
world2machine_rotation_and_skew_inv[1][1] = world2machine_rotation_and_skew[0][0] / d;
|
|
} else {
|
|
world2machine_rotation_and_skew_inv[0][0] = 1.f;
|
|
world2machine_rotation_and_skew_inv[0][1] = 0.f;
|
|
world2machine_rotation_and_skew_inv[1][0] = 0.f;
|
|
world2machine_rotation_and_skew_inv[1][1] = 1.f;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Set calibration matrix to identity
|
|
*
|
|
* In contrast with world2machine_revert_to_uncorrected(), it doesn't wait for finishing moves
|
|
* nor updates the current position with the absolute values.
|
|
*/
|
|
void world2machine_reset()
|
|
{
|
|
const float vx[] = { 1.f, 0.f };
|
|
const float vy[] = { 0.f, 1.f };
|
|
const float cntr[] = { 0.f, 0.f };
|
|
world2machine_update(vx, vy, cntr);
|
|
}
|
|
|
|
/**
|
|
* @brief Get calibration matrix default value
|
|
*
|
|
* This is used if no valid calibration data can be read from EEPROM.
|
|
* @param [out] vec_x axis x vector
|
|
* @param [out] vec_y axis y vector
|
|
* @param [out] cntr offset vector
|
|
*/
|
|
static void world2machine_default(float vec_x[2], float vec_y[2], float cntr[2])
|
|
{
|
|
vec_x[0] = 1.f;
|
|
vec_x[1] = 0.f;
|
|
vec_y[0] = 0.f;
|
|
vec_y[1] = 1.f;
|
|
cntr[0] = 0.f;
|
|
#ifdef DEFAULT_Y_OFFSET
|
|
cntr[1] = DEFAULT_Y_OFFSET;
|
|
#else
|
|
cntr[1] = 0.f;
|
|
#endif
|
|
}
|
|
/**
|
|
* @brief Set calibration matrix to identity and update current position with absolute position
|
|
*
|
|
* Wait for the motors to stop and then update the current position with the absolute values.
|
|
*/
|
|
void world2machine_revert_to_uncorrected()
|
|
{
|
|
if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE) {
|
|
world2machine_reset();
|
|
st_synchronize();
|
|
current_position[X_AXIS] = st_get_position_mm(X_AXIS);
|
|
current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
|
|
}
|
|
}
|
|
|
|
static inline bool vec_undef(const float v[2])
|
|
{
|
|
const uint32_t *vx = (const uint32_t*)v;
|
|
return vx[0] == 0x0FFFFFFFF || vx[1] == 0x0FFFFFFFF;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Read calibration data from EEPROM
|
|
*
|
|
* If no calibration data has been stored in EEPROM or invalid,
|
|
* world2machine_default() is used.
|
|
*
|
|
* If stored calibration data is invalid, EEPROM storage is cleared.
|
|
* @param [out] vec_x axis x vector
|
|
* @param [out] vec_y axis y vector
|
|
* @param [out] cntr offset vector
|
|
*/
|
|
void world2machine_read_valid(float vec_x[2], float vec_y[2], float cntr[2])
|
|
{
|
|
vec_x[0] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0));
|
|
vec_x[1] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4));
|
|
vec_y[0] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0));
|
|
vec_y[1] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4));
|
|
cntr[0] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0));
|
|
cntr[1] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4));
|
|
|
|
bool reset = false;
|
|
if (vec_undef(cntr) || vec_undef(vec_x) || vec_undef(vec_y))
|
|
{
|
|
#if 0
|
|
SERIAL_ECHOLNPGM("Undefined bed correction matrix.");
|
|
#endif
|
|
reset = true;
|
|
}
|
|
else
|
|
{
|
|
// Length of the vec_x shall be close to unity.
|
|
float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
|
|
if (l < 0.9 || l > 1.1)
|
|
{
|
|
#if 0
|
|
SERIAL_ECHOLNPGM("X vector length:");
|
|
MYSERIAL.println(l);
|
|
SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the X vector out of range.");
|
|
#endif
|
|
reset = true;
|
|
}
|
|
// Length of the vec_y shall be close to unity.
|
|
l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);
|
|
if (l < 0.9 || l > 1.1)
|
|
{
|
|
#if 0
|
|
SERIAL_ECHOLNPGM("Y vector length:");
|
|
MYSERIAL.println(l);
|
|
SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the Y vector out of range.");
|
|
#endif
|
|
reset = true;
|
|
}
|
|
// Correction of the zero point shall be reasonably small.
|
|
l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);
|
|
if (l > 15.f)
|
|
{
|
|
#if 0
|
|
SERIAL_ECHOLNPGM("Zero point correction:");
|
|
MYSERIAL.println(l);
|
|
SERIAL_ECHOLNPGM("Invalid bed correction matrix. Shift out of range.");
|
|
#endif
|
|
reset = true;
|
|
}
|
|
// vec_x and vec_y shall be nearly perpendicular.
|
|
l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];
|
|
if (fabs(l) > 0.1f)
|
|
{
|
|
#if 0
|
|
SERIAL_ECHOLNPGM("Invalid bed correction matrix. X/Y axes are far from being perpendicular.");
|
|
#endif
|
|
reset = true;
|
|
}
|
|
}
|
|
|
|
if (reset)
|
|
{
|
|
#if 0
|
|
SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");
|
|
#endif
|
|
reset_bed_offset_and_skew();
|
|
world2machine_default(vec_x, vec_y, cntr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Read and apply validated calibration data from EEPROM
|
|
*/
|
|
void world2machine_initialize()
|
|
{
|
|
#if 0
|
|
SERIAL_ECHOLNPGM("world2machine_initialize");
|
|
#endif
|
|
float vec_x[2];
|
|
float vec_y[2];
|
|
float cntr[2];
|
|
world2machine_read_valid(vec_x, vec_y, cntr);
|
|
world2machine_update(vec_x, vec_y, cntr);
|
|
#if 0
|
|
SERIAL_ECHOPGM("world2machine_initialize() loaded: ");
|
|
MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
|
|
SERIAL_ECHOPGM(", offset ");
|
|
MYSERIAL.print(world2machine_shift[0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(world2machine_shift[1], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Update current position after switching to corrected coordinates
|
|
*
|
|
* When switching from absolute to corrected coordinates,
|
|
* this will get the absolute coordinates from the servos,
|
|
* applies the inverse world2machine transformation
|
|
* and stores the result into current_position[x,y].
|
|
*/
|
|
void world2machine_update_current()
|
|
{
|
|
float x = current_position[X_AXIS] - world2machine_shift[0];
|
|
float y = current_position[Y_AXIS] - world2machine_shift[1];
|
|
current_position[X_AXIS] = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;
|
|
current_position[Y_AXIS] = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;
|
|
}
|
|
|
|
static inline void go_xyz(float x, float y, float z, float fr)
|
|
{
|
|
plan_buffer_line(x, y, z, current_position[E_AXIS], fr, active_extruder);
|
|
st_synchronize();
|
|
}
|
|
|
|
static inline void go_xy(float x, float y, float fr)
|
|
{
|
|
plan_buffer_line(x, y, current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
|
|
st_synchronize();
|
|
}
|
|
|
|
static inline void go_to_current(float fr)
|
|
{
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
|
|
st_synchronize();
|
|
}
|
|
|
|
static inline void update_current_position_xyz()
|
|
{
|
|
current_position[X_AXIS] = st_get_position_mm(X_AXIS);
|
|
current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
|
|
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
|
|
static inline void update_current_position_z()
|
|
{
|
|
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
plan_set_z_position(current_position[Z_AXIS]);
|
|
}
|
|
|
|
// At the current position, find the Z stop.
|
|
inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, int
|
|
#ifdef SUPPORT_VERBOSITY
|
|
verbosity_level
|
|
#endif //SUPPORT_VERBOSITY
|
|
)
|
|
{
|
|
#ifdef TMC2130
|
|
FORCE_HIGH_POWER_START;
|
|
#endif
|
|
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if(verbosity_level >= 10) SERIAL_ECHOLNPGM("find bed induction sensor point z");
|
|
#endif // SUPPORT_VERBOSITY
|
|
bool endstops_enabled = enable_endstops(true);
|
|
bool endstop_z_enabled = enable_z_endstop(false);
|
|
float z = 0.f;
|
|
endstop_z_hit_on_purpose();
|
|
|
|
// move down until you find the bed
|
|
current_position[Z_AXIS] = minimum_z;
|
|
go_to_current(homing_feedrate[Z_AXIS]/60);
|
|
// we have to let the planner know where we are right now as it is not where we said to go.
|
|
update_current_position_z();
|
|
if (! endstop_z_hit_on_purpose())
|
|
goto error;
|
|
#ifdef TMC2130
|
|
if (READ(Z_TMC2130_DIAG) != 0) goto error; //crash Z detected
|
|
#endif //TMC2130
|
|
for (uint8_t i = 0; i < n_iter; ++ i)
|
|
{
|
|
// Move up the retract distance.
|
|
current_position[Z_AXIS] += .5f;
|
|
go_to_current(homing_feedrate[Z_AXIS]/60);
|
|
// Move back down slowly to find bed.
|
|
current_position[Z_AXIS] = minimum_z;
|
|
go_to_current(homing_feedrate[Z_AXIS]/(4*60));
|
|
// we have to let the planner know where we are right now as it is not where we said to go.
|
|
update_current_position_z();
|
|
if (! endstop_z_hit_on_purpose())
|
|
goto error;
|
|
#ifdef TMC2130
|
|
if (READ(Z_TMC2130_DIAG) != 0) goto error; //crash Z detected
|
|
#endif //TMC2130
|
|
// SERIAL_ECHOPGM("Bed find_bed_induction_sensor_point_z low, height: ");
|
|
// MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
// SERIAL_ECHOLNPGM("");
|
|
float dz = i?abs(current_position[Z_AXIS] - (z / i)):0;
|
|
z += current_position[Z_AXIS];
|
|
// printf_P(PSTR(" Z[%d] = %d, dz=%d\n"), i, (int)(current_position[Z_AXIS] * 1000), (int)(dz * 1000));
|
|
if (dz > 0.05) goto error;//deviation > 50um
|
|
}
|
|
current_position[Z_AXIS] = z;
|
|
if (n_iter > 1)
|
|
current_position[Z_AXIS] /= float(n_iter);
|
|
|
|
|
|
enable_endstops(endstops_enabled);
|
|
enable_z_endstop(endstop_z_enabled);
|
|
// SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 3");
|
|
#ifdef TMC2130
|
|
FORCE_HIGH_POWER_END;
|
|
#endif
|
|
return true;
|
|
|
|
error:
|
|
// SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 4");
|
|
enable_endstops(endstops_enabled);
|
|
enable_z_endstop(endstop_z_enabled);
|
|
#ifdef TMC2130
|
|
FORCE_HIGH_POWER_END;
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
#ifdef NEW_XYZCAL
|
|
extern bool xyzcal_find_bed_induction_sensor_point_xy();
|
|
#endif //NEW_XYZCAL
|
|
// Search around the current_position[X,Y],
|
|
// look for the induction sensor response.
|
|
// Adjust the current_position[X,Y,Z] to the center of the target dot and its response Z coordinate.
|
|
#define FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS (8.f)
|
|
#define FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS (4.f)
|
|
#define FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP (1.f)
|
|
#ifdef HEATBED_V2
|
|
#define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP (2.f)
|
|
#define FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR (0.03f)
|
|
#else //HEATBED_V2
|
|
#define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP (0.2f)
|
|
#endif //HEATBED_V2
|
|
|
|
#ifdef HEATBED_V2
|
|
inline bool find_bed_induction_sensor_point_xy(int
|
|
#if !defined (NEW_XYZCAL) && defined (SUPPORT_VERBOSITY)
|
|
verbosity_level
|
|
#endif
|
|
)
|
|
{
|
|
#ifdef NEW_XYZCAL
|
|
return xyzcal_find_bed_induction_sensor_point_xy();
|
|
#else //NEW_XYZCAL
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 10) MYSERIAL.println("find bed induction sensor point xy");
|
|
#endif // SUPPORT_VERBOSITY
|
|
float feedrate = homing_feedrate[X_AXIS] / 60.f;
|
|
bool found = false;
|
|
|
|
{
|
|
float x0 = current_position[X_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
|
|
float x1 = current_position[X_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
|
|
float y0 = current_position[Y_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
|
|
float y1 = current_position[Y_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
|
|
uint8_t nsteps_y;
|
|
uint8_t i;
|
|
if (x0 < X_MIN_POS) {
|
|
x0 = X_MIN_POS;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius lower than X_MIN. Clamping was done.");
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
if (x1 > X_MAX_POS) {
|
|
x1 = X_MAX_POS;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius higher than X_MAX. Clamping was done.");
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION) {
|
|
y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius lower than Y_MIN. Clamping was done.");
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
if (y1 > Y_MAX_POS) {
|
|
y1 = Y_MAX_POS;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius higher than X_MAX. Clamping was done.");
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));
|
|
|
|
enable_endstops(false);
|
|
bool dir_positive = true;
|
|
float z_error = 2 * FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP;
|
|
float find_bed_induction_sensor_point_z_step = FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP;
|
|
float initial_z_position = current_position[Z_AXIS];
|
|
|
|
// go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
|
|
go_xyz(x0, y0, current_position[Z_AXIS], feedrate);
|
|
// Continously lower the Z axis.
|
|
endstops_hit_on_purpose();
|
|
enable_z_endstop(true);
|
|
bool direction = false;
|
|
while (current_position[Z_AXIS] > -10.f && z_error > FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR) {
|
|
// Do nsteps_y zig-zag movements.
|
|
|
|
SERIAL_ECHOPGM("z_error: ");
|
|
MYSERIAL.println(z_error);
|
|
current_position[Y_AXIS] = direction ? y1 : y0;
|
|
initial_z_position = current_position[Z_AXIS];
|
|
for (i = 0; i < (nsteps_y - 1); (direction == false) ? (current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1)) : (current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1)), ++i) {
|
|
// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
|
|
current_position[Z_AXIS] -= find_bed_induction_sensor_point_z_step / float(nsteps_y - 1);
|
|
go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
|
|
dir_positive = !dir_positive;
|
|
if (endstop_z_hit_on_purpose()) {
|
|
update_current_position_xyz();
|
|
z_error = initial_z_position - current_position[Z_AXIS] + find_bed_induction_sensor_point_z_step;
|
|
if (z_error > FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR) {
|
|
find_bed_induction_sensor_point_z_step = z_error / 2;
|
|
current_position[Z_AXIS] += z_error;
|
|
enable_z_endstop(false);
|
|
(direction == false) ? go_xyz(x0, y0, current_position[Z_AXIS], feedrate) : go_xyz(x0, y1, current_position[Z_AXIS], feedrate);
|
|
enable_z_endstop(true);
|
|
}
|
|
goto endloop;
|
|
}
|
|
}
|
|
for (i = 0; i < (nsteps_y - 1); (direction == false) ? (current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1)) : (current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1)), ++i) {
|
|
// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
|
|
current_position[Z_AXIS] -= find_bed_induction_sensor_point_z_step / float(nsteps_y - 1);
|
|
go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
|
|
dir_positive = !dir_positive;
|
|
if (endstop_z_hit_on_purpose()) {
|
|
update_current_position_xyz();
|
|
z_error = initial_z_position - current_position[Z_AXIS];
|
|
if (z_error > FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR) {
|
|
find_bed_induction_sensor_point_z_step = z_error / 2;
|
|
current_position[Z_AXIS] += z_error;
|
|
enable_z_endstop(false);
|
|
direction = !direction;
|
|
(direction == false) ? go_xyz(x0, y0, current_position[Z_AXIS], feedrate) : go_xyz(x0, y1, current_position[Z_AXIS], feedrate);
|
|
enable_z_endstop(true);
|
|
}
|
|
goto endloop;
|
|
}
|
|
}
|
|
endloop:;
|
|
}
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHO("First hit");
|
|
SERIAL_ECHO("- X: ");
|
|
MYSERIAL.print(current_position[X_AXIS]);
|
|
SERIAL_ECHO("; Y: ");
|
|
MYSERIAL.print(current_position[Y_AXIS]);
|
|
SERIAL_ECHO("; Z: ");
|
|
MYSERIAL.println(current_position[Z_AXIS]);
|
|
}
|
|
#endif //SUPPORT_VERBOSITY
|
|
//lcd_show_fullscreen_message_and_wait_P(PSTR("First hit"));
|
|
//lcd_update_enable(true);
|
|
|
|
float init_x_position = current_position[X_AXIS];
|
|
float init_y_position = current_position[Y_AXIS];
|
|
|
|
// we have to let the planner know where we are right now as it is not where we said to go.
|
|
update_current_position_xyz();
|
|
enable_z_endstop(false);
|
|
|
|
for (int8_t iter = 0; iter < 2; ++iter) {
|
|
/*SERIAL_ECHOPGM("iter: ");
|
|
MYSERIAL.println(iter);
|
|
SERIAL_ECHOPGM("1 - current_position[Z_AXIS]: ");
|
|
MYSERIAL.println(current_position[Z_AXIS]);*/
|
|
|
|
// Slightly lower the Z axis to get a reliable trigger.
|
|
current_position[Z_AXIS] -= 0.1f;
|
|
go_xyz(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], homing_feedrate[Z_AXIS] / (60 * 10));
|
|
|
|
SERIAL_ECHOPGM("2 - current_position[Z_AXIS]: ");
|
|
MYSERIAL.println(current_position[Z_AXIS]);
|
|
// Do nsteps_y zig-zag movements.
|
|
float a, b;
|
|
float avg[2] = { 0,0 };
|
|
invert_z_endstop(true);
|
|
for (int iteration = 0; iteration < 8; iteration++) {
|
|
|
|
found = false;
|
|
enable_z_endstop(true);
|
|
go_xy(init_x_position + 16.0f, current_position[Y_AXIS], feedrate / 5);
|
|
update_current_position_xyz();
|
|
if (!endstop_z_hit_on_purpose()) {
|
|
// SERIAL_ECHOLN("Search X span 0 - not found");
|
|
continue;
|
|
}
|
|
// SERIAL_ECHOLN("Search X span 0 - found");
|
|
a = current_position[X_AXIS];
|
|
enable_z_endstop(false);
|
|
go_xy(init_x_position, current_position[Y_AXIS], feedrate / 5);
|
|
enable_z_endstop(true);
|
|
go_xy(init_x_position - 16.0f, current_position[Y_AXIS], feedrate / 5);
|
|
update_current_position_xyz();
|
|
if (!endstop_z_hit_on_purpose()) {
|
|
// SERIAL_ECHOLN("Search X span 1 - not found");
|
|
continue;
|
|
}
|
|
// SERIAL_ECHOLN("Search X span 1 - found");
|
|
b = current_position[X_AXIS];
|
|
// Go to the center.
|
|
enable_z_endstop(false);
|
|
current_position[X_AXIS] = 0.5f * (a + b);
|
|
go_xy(current_position[X_AXIS], init_y_position, feedrate / 5);
|
|
found = true;
|
|
|
|
// Search in the Y direction along a cross.
|
|
found = false;
|
|
enable_z_endstop(true);
|
|
go_xy(current_position[X_AXIS], init_y_position + 16.0f, feedrate / 5);
|
|
update_current_position_xyz();
|
|
if (!endstop_z_hit_on_purpose()) {
|
|
// SERIAL_ECHOLN("Search Y2 span 0 - not found");
|
|
continue;
|
|
}
|
|
// SERIAL_ECHOLN("Search Y2 span 0 - found");
|
|
a = current_position[Y_AXIS];
|
|
enable_z_endstop(false);
|
|
go_xy(current_position[X_AXIS], init_y_position, feedrate / 5);
|
|
enable_z_endstop(true);
|
|
go_xy(current_position[X_AXIS], init_y_position - 16.0f, feedrate / 5);
|
|
update_current_position_xyz();
|
|
if (!endstop_z_hit_on_purpose()) {
|
|
// SERIAL_ECHOLN("Search Y2 span 1 - not found");
|
|
continue;
|
|
}
|
|
// SERIAL_ECHOLN("Search Y2 span 1 - found");
|
|
b = current_position[Y_AXIS];
|
|
// Go to the center.
|
|
enable_z_endstop(false);
|
|
current_position[Y_AXIS] = 0.5f * (a + b);
|
|
go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate / 5);
|
|
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOPGM("ITERATION: ");
|
|
MYSERIAL.println(iteration);
|
|
SERIAL_ECHOPGM("CURRENT POSITION X: ");
|
|
MYSERIAL.println(current_position[X_AXIS]);
|
|
SERIAL_ECHOPGM("CURRENT POSITION Y: ");
|
|
MYSERIAL.println(current_position[Y_AXIS]);
|
|
}
|
|
#endif //SUPPORT_VERBOSITY
|
|
|
|
if (iteration > 0) {
|
|
// Average the last 7 measurements.
|
|
avg[X_AXIS] += current_position[X_AXIS];
|
|
avg[Y_AXIS] += current_position[Y_AXIS];
|
|
}
|
|
|
|
init_x_position = current_position[X_AXIS];
|
|
init_y_position = current_position[Y_AXIS];
|
|
|
|
found = true;
|
|
|
|
}
|
|
invert_z_endstop(false);
|
|
avg[X_AXIS] *= (1.f / 7.f);
|
|
avg[Y_AXIS] *= (1.f / 7.f);
|
|
|
|
current_position[X_AXIS] = avg[X_AXIS];
|
|
current_position[Y_AXIS] = avg[Y_AXIS];
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOPGM("AVG CURRENT POSITION X: ");
|
|
MYSERIAL.println(current_position[X_AXIS]);
|
|
SERIAL_ECHOPGM("AVG CURRENT POSITION Y: ");
|
|
MYSERIAL.println(current_position[Y_AXIS]);
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
lcd_show_fullscreen_message_and_wait_P(PSTR("Final position"));
|
|
lcd_update_enable(true);
|
|
}
|
|
#endif //SUPPORT_VERBOSITY
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
enable_z_endstop(false);
|
|
invert_z_endstop(false);
|
|
return found;
|
|
#endif //NEW_XYZCAL
|
|
}
|
|
#else //HEATBED_V2
|
|
inline bool find_bed_induction_sensor_point_xy(int verbosity_level)
|
|
{
|
|
#ifdef NEW_XYZCAL
|
|
return xyzcal_find_bed_induction_sensor_point_xy();
|
|
#else //NEW_XYZCAL
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 10) MYSERIAL.println("find bed induction sensor point xy");
|
|
#endif // SUPPORT_VERBOSITY
|
|
float feedrate = homing_feedrate[X_AXIS] / 60.f;
|
|
bool found = false;
|
|
|
|
{
|
|
float x0 = current_position[X_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
|
|
float x1 = current_position[X_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
|
|
float y0 = current_position[Y_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
|
|
float y1 = current_position[Y_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
|
|
uint8_t nsteps_y;
|
|
uint8_t i;
|
|
if (x0 < X_MIN_POS) {
|
|
x0 = X_MIN_POS;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius lower than X_MIN. Clamping was done.");
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
if (x1 > X_MAX_POS) {
|
|
x1 = X_MAX_POS;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius higher than X_MAX. Clamping was done.");
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION) {
|
|
y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius lower than Y_MIN. Clamping was done.");
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
if (y1 > Y_MAX_POS) {
|
|
y1 = Y_MAX_POS;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius higher than X_MAX. Clamping was done.");
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));
|
|
|
|
enable_endstops(false);
|
|
bool dir_positive = true;
|
|
|
|
// go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
|
|
go_xyz(x0, y0, current_position[Z_AXIS], feedrate);
|
|
// Continously lower the Z axis.
|
|
endstops_hit_on_purpose();
|
|
enable_z_endstop(true);
|
|
while (current_position[Z_AXIS] > -10.f) {
|
|
// Do nsteps_y zig-zag movements.
|
|
current_position[Y_AXIS] = y0;
|
|
for (i = 0; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++i) {
|
|
// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
|
|
current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
|
|
go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
|
|
dir_positive = !dir_positive;
|
|
if (endstop_z_hit_on_purpose())
|
|
goto endloop;
|
|
}
|
|
for (i = 0; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++i) {
|
|
// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
|
|
current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
|
|
go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
|
|
dir_positive = !dir_positive;
|
|
if (endstop_z_hit_on_purpose())
|
|
goto endloop;
|
|
}
|
|
}
|
|
endloop:
|
|
// SERIAL_ECHOLN("First hit");
|
|
|
|
// we have to let the planner know where we are right now as it is not where we said to go.
|
|
update_current_position_xyz();
|
|
|
|
// Search in this plane for the first hit. Zig-zag first in X, then in Y axis.
|
|
for (int8_t iter = 0; iter < 3; ++iter) {
|
|
if (iter > 0) {
|
|
// Slightly lower the Z axis to get a reliable trigger.
|
|
current_position[Z_AXIS] -= 0.02f;
|
|
go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS] / 60);
|
|
}
|
|
|
|
// Do nsteps_y zig-zag movements.
|
|
float a, b;
|
|
enable_endstops(false);
|
|
enable_z_endstop(false);
|
|
current_position[Y_AXIS] = y0;
|
|
go_xy(x0, current_position[Y_AXIS], feedrate);
|
|
enable_z_endstop(true);
|
|
found = false;
|
|
for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++i, dir_positive = !dir_positive) {
|
|
go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
|
|
if (endstop_z_hit_on_purpose()) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
update_current_position_xyz();
|
|
if (!found) {
|
|
// SERIAL_ECHOLN("Search in Y - not found");
|
|
continue;
|
|
}
|
|
// SERIAL_ECHOLN("Search in Y - found");
|
|
a = current_position[Y_AXIS];
|
|
|
|
enable_z_endstop(false);
|
|
current_position[Y_AXIS] = y1;
|
|
go_xy(x0, current_position[Y_AXIS], feedrate);
|
|
enable_z_endstop(true);
|
|
found = false;
|
|
for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++i, dir_positive = !dir_positive) {
|
|
go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
|
|
if (endstop_z_hit_on_purpose()) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
update_current_position_xyz();
|
|
if (!found) {
|
|
// SERIAL_ECHOLN("Search in Y2 - not found");
|
|
continue;
|
|
}
|
|
// SERIAL_ECHOLN("Search in Y2 - found");
|
|
b = current_position[Y_AXIS];
|
|
current_position[Y_AXIS] = 0.5f * (a + b);
|
|
|
|
// Search in the X direction along a cross.
|
|
found = false;
|
|
enable_z_endstop(false);
|
|
go_xy(x0, current_position[Y_AXIS], feedrate);
|
|
enable_z_endstop(true);
|
|
go_xy(x1, current_position[Y_AXIS], feedrate);
|
|
update_current_position_xyz();
|
|
if (!endstop_z_hit_on_purpose()) {
|
|
// SERIAL_ECHOLN("Search X span 0 - not found");
|
|
continue;
|
|
}
|
|
// SERIAL_ECHOLN("Search X span 0 - found");
|
|
a = current_position[X_AXIS];
|
|
enable_z_endstop(false);
|
|
go_xy(x1, current_position[Y_AXIS], feedrate);
|
|
enable_z_endstop(true);
|
|
go_xy(x0, current_position[Y_AXIS], feedrate);
|
|
update_current_position_xyz();
|
|
if (!endstop_z_hit_on_purpose()) {
|
|
// SERIAL_ECHOLN("Search X span 1 - not found");
|
|
continue;
|
|
}
|
|
// SERIAL_ECHOLN("Search X span 1 - found");
|
|
b = current_position[X_AXIS];
|
|
// Go to the center.
|
|
enable_z_endstop(false);
|
|
current_position[X_AXIS] = 0.5f * (a + b);
|
|
go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
|
|
found = true;
|
|
|
|
#if 1
|
|
// Search in the Y direction along a cross.
|
|
found = false;
|
|
enable_z_endstop(false);
|
|
go_xy(current_position[X_AXIS], y0, feedrate);
|
|
enable_z_endstop(true);
|
|
go_xy(current_position[X_AXIS], y1, feedrate);
|
|
update_current_position_xyz();
|
|
if (!endstop_z_hit_on_purpose()) {
|
|
// SERIAL_ECHOLN("Search Y2 span 0 - not found");
|
|
continue;
|
|
}
|
|
// SERIAL_ECHOLN("Search Y2 span 0 - found");
|
|
a = current_position[Y_AXIS];
|
|
enable_z_endstop(false);
|
|
go_xy(current_position[X_AXIS], y1, feedrate);
|
|
enable_z_endstop(true);
|
|
go_xy(current_position[X_AXIS], y0, feedrate);
|
|
update_current_position_xyz();
|
|
if (!endstop_z_hit_on_purpose()) {
|
|
// SERIAL_ECHOLN("Search Y2 span 1 - not found");
|
|
continue;
|
|
}
|
|
// SERIAL_ECHOLN("Search Y2 span 1 - found");
|
|
b = current_position[Y_AXIS];
|
|
// Go to the center.
|
|
enable_z_endstop(false);
|
|
current_position[Y_AXIS] = 0.5f * (a + b);
|
|
go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
|
|
found = true;
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
enable_z_endstop(false);
|
|
return found;
|
|
#endif //NEW_XYZCAL
|
|
}
|
|
|
|
#endif //HEATBED_V2
|
|
|
|
#ifndef NEW_XYZCAL
|
|
// Search around the current_position[X,Y,Z].
|
|
// It is expected, that the induction sensor is switched on at the current position.
|
|
// Look around this center point by painting a star around the point.
|
|
inline bool improve_bed_induction_sensor_point()
|
|
{
|
|
static const float search_radius = 8.f;
|
|
|
|
bool endstops_enabled = enable_endstops(false);
|
|
bool endstop_z_enabled = enable_z_endstop(false);
|
|
bool found = false;
|
|
float feedrate = homing_feedrate[X_AXIS] / 60.f;
|
|
float center_old_x = current_position[X_AXIS];
|
|
float center_old_y = current_position[Y_AXIS];
|
|
float center_x = 0.f;
|
|
float center_y = 0.f;
|
|
|
|
for (uint8_t iter = 0; iter < 4; ++ iter) {
|
|
switch (iter) {
|
|
case 0:
|
|
destination[X_AXIS] = center_old_x - search_radius * 0.707;
|
|
destination[Y_AXIS] = center_old_y - search_radius * 0.707;
|
|
break;
|
|
case 1:
|
|
destination[X_AXIS] = center_old_x + search_radius * 0.707;
|
|
destination[Y_AXIS] = center_old_y + search_radius * 0.707;
|
|
break;
|
|
case 2:
|
|
destination[X_AXIS] = center_old_x + search_radius * 0.707;
|
|
destination[Y_AXIS] = center_old_y - search_radius * 0.707;
|
|
break;
|
|
case 3:
|
|
default:
|
|
destination[X_AXIS] = center_old_x - search_radius * 0.707;
|
|
destination[Y_AXIS] = center_old_y + search_radius * 0.707;
|
|
break;
|
|
}
|
|
|
|
// Trim the vector from center_old_[x,y] to destination[x,y] by the bed dimensions.
|
|
float vx = destination[X_AXIS] - center_old_x;
|
|
float vy = destination[Y_AXIS] - center_old_y;
|
|
float l = sqrt(vx*vx+vy*vy);
|
|
float t;
|
|
if (destination[X_AXIS] < X_MIN_POS) {
|
|
// Exiting the bed at xmin.
|
|
t = (center_x - X_MIN_POS) / l;
|
|
destination[X_AXIS] = X_MIN_POS;
|
|
destination[Y_AXIS] = center_old_y + t * vy;
|
|
} else if (destination[X_AXIS] > X_MAX_POS) {
|
|
// Exiting the bed at xmax.
|
|
t = (X_MAX_POS - center_x) / l;
|
|
destination[X_AXIS] = X_MAX_POS;
|
|
destination[Y_AXIS] = center_old_y + t * vy;
|
|
}
|
|
if (destination[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION) {
|
|
// Exiting the bed at ymin.
|
|
t = (center_y - Y_MIN_POS_FOR_BED_CALIBRATION) / l;
|
|
destination[X_AXIS] = center_old_x + t * vx;
|
|
destination[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
|
|
} else if (destination[Y_AXIS] > Y_MAX_POS) {
|
|
// Exiting the bed at xmax.
|
|
t = (Y_MAX_POS - center_y) / l;
|
|
destination[X_AXIS] = center_old_x + t * vx;
|
|
destination[Y_AXIS] = Y_MAX_POS;
|
|
}
|
|
|
|
// Move away from the measurement point.
|
|
enable_endstops(false);
|
|
go_xy(destination[X_AXIS], destination[Y_AXIS], feedrate);
|
|
// Move towards the measurement point, until the induction sensor triggers.
|
|
enable_endstops(true);
|
|
go_xy(center_old_x, center_old_y, feedrate);
|
|
update_current_position_xyz();
|
|
// if (! endstop_z_hit_on_purpose()) return false;
|
|
center_x += current_position[X_AXIS];
|
|
center_y += current_position[Y_AXIS];
|
|
}
|
|
|
|
// Calculate the new center, move to the new center.
|
|
center_x /= 4.f;
|
|
center_y /= 4.f;
|
|
current_position[X_AXIS] = center_x;
|
|
current_position[Y_AXIS] = center_y;
|
|
enable_endstops(false);
|
|
go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
|
|
|
|
enable_endstops(endstops_enabled);
|
|
enable_z_endstop(endstop_z_enabled);
|
|
return found;
|
|
}
|
|
#endif //NEW_XYZCAL
|
|
|
|
#ifndef NEW_XYZCAL
|
|
static inline void debug_output_point(const char *type, const float &x, const float &y, const float &z)
|
|
{
|
|
SERIAL_ECHOPGM("Measured ");
|
|
SERIAL_ECHORPGM(type);
|
|
SERIAL_ECHOPGM(" ");
|
|
MYSERIAL.print(x, 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(y, 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(z, 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif //NEW_XYZCAL
|
|
|
|
#ifndef NEW_XYZCAL
|
|
// Search around the current_position[X,Y,Z].
|
|
// It is expected, that the induction sensor is switched on at the current position.
|
|
// Look around this center point by painting a star around the point.
|
|
#define IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS (8.f)
|
|
inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t verbosity_level)
|
|
{
|
|
float center_old_x = current_position[X_AXIS];
|
|
float center_old_y = current_position[Y_AXIS];
|
|
float a, b;
|
|
bool point_small = false;
|
|
|
|
enable_endstops(false);
|
|
|
|
{
|
|
float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
|
|
float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
|
|
if (x0 < X_MIN_POS)
|
|
x0 = X_MIN_POS;
|
|
if (x1 > X_MAX_POS)
|
|
x1 = X_MAX_POS;
|
|
|
|
// Search in the X direction along a cross.
|
|
enable_z_endstop(false);
|
|
go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
|
|
enable_z_endstop(true);
|
|
go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
|
|
update_current_position_xyz();
|
|
if (! endstop_z_hit_on_purpose()) {
|
|
current_position[X_AXIS] = center_old_x;
|
|
goto canceled;
|
|
}
|
|
a = current_position[X_AXIS];
|
|
enable_z_endstop(false);
|
|
go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
|
|
enable_z_endstop(true);
|
|
go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
|
|
update_current_position_xyz();
|
|
if (! endstop_z_hit_on_purpose()) {
|
|
current_position[X_AXIS] = center_old_x;
|
|
goto canceled;
|
|
}
|
|
b = current_position[X_AXIS];
|
|
if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 5) {
|
|
SERIAL_ECHOPGM("Point width too small: ");
|
|
SERIAL_ECHO(b - a);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
// We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
|
|
if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
|
|
// Don't use the new X value.
|
|
current_position[X_AXIS] = center_old_x;
|
|
goto canceled;
|
|
} else {
|
|
// Use the new value, but force the Z axis to go a bit lower.
|
|
point_small = true;
|
|
}
|
|
}
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 5) {
|
|
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
|
|
// Go to the center.
|
|
enable_z_endstop(false);
|
|
current_position[X_AXIS] = 0.5f * (a + b);
|
|
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
|
|
}
|
|
|
|
{
|
|
float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
|
|
float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
|
|
if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
|
|
y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
|
|
if (y1 > Y_MAX_POS)
|
|
y1 = Y_MAX_POS;
|
|
|
|
// Search in the Y direction along a cross.
|
|
enable_z_endstop(false);
|
|
go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
|
|
if (lift_z_on_min_y) {
|
|
// The first row of points are very close to the end stop.
|
|
// Lift the sensor to disengage the trigger. This is necessary because of the sensor hysteresis.
|
|
go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS]+1.5f, homing_feedrate[Z_AXIS] / 60.f);
|
|
// and go back.
|
|
go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS], homing_feedrate[Z_AXIS] / 60.f);
|
|
}
|
|
if (lift_z_on_min_y && (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) {
|
|
// Already triggering before we started the move.
|
|
// Shift the trigger point slightly outwards.
|
|
// a = current_position[Y_AXIS] - 1.5f;
|
|
a = current_position[Y_AXIS];
|
|
} else {
|
|
enable_z_endstop(true);
|
|
go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
|
|
update_current_position_xyz();
|
|
if (! endstop_z_hit_on_purpose()) {
|
|
current_position[Y_AXIS] = center_old_y;
|
|
goto canceled;
|
|
}
|
|
a = current_position[Y_AXIS];
|
|
}
|
|
enable_z_endstop(false);
|
|
go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
|
|
enable_z_endstop(true);
|
|
go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
|
|
update_current_position_xyz();
|
|
if (! endstop_z_hit_on_purpose()) {
|
|
current_position[Y_AXIS] = center_old_y;
|
|
goto canceled;
|
|
}
|
|
b = current_position[Y_AXIS];
|
|
if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
|
|
// We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 5) {
|
|
SERIAL_ECHOPGM("Point height too small: ");
|
|
SERIAL_ECHO(b - a);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
|
|
// Don't use the new Y value.
|
|
current_position[Y_AXIS] = center_old_y;
|
|
goto canceled;
|
|
} else {
|
|
// Use the new value, but force the Z axis to go a bit lower.
|
|
point_small = true;
|
|
}
|
|
}
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 5) {
|
|
debug_output_point(PSTR("top" ), current_position[X_AXIS], a, current_position[Z_AXIS]);
|
|
debug_output_point(PSTR("bottom"), current_position[X_AXIS], b, current_position[Z_AXIS]);
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
|
|
// Go to the center.
|
|
enable_z_endstop(false);
|
|
current_position[Y_AXIS] = 0.5f * (a + b);
|
|
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
|
|
}
|
|
|
|
// If point is small but not too small, then force the Z axis to be lowered a bit,
|
|
// but use the new value. This is important when the initial position was off in one axis,
|
|
// for example if the initial calibration was shifted in the Y axis systematically.
|
|
// Then this first step will center.
|
|
return ! point_small;
|
|
|
|
canceled:
|
|
// Go back to the center.
|
|
enable_z_endstop(false);
|
|
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
|
|
return false;
|
|
}
|
|
#endif //NEW_XYZCAL
|
|
|
|
#ifndef NEW_XYZCAL
|
|
// Searching the front points, where one cannot move the sensor head in front of the sensor point.
|
|
// Searching in a zig-zag movement in a plane for the maximum width of the response.
|
|
// This function may set the current_position[Y_AXIS] below Y_MIN_POS, if the function succeeded.
|
|
// If this function failed, the Y coordinate will never be outside the working space.
|
|
#define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS (8.f)
|
|
#define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y (0.1f)
|
|
inline bool improve_bed_induction_sensor_point3(int verbosity_level)
|
|
{
|
|
float center_old_x = current_position[X_AXIS];
|
|
float center_old_y = current_position[Y_AXIS];
|
|
float a, b;
|
|
bool result = true;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) MYSERIAL.println("Improve bed induction sensor point3");
|
|
#endif // SUPPORT_VERBOSITY
|
|
// Was the sensor point detected too far in the minus Y axis?
|
|
// If yes, the center of the induction point cannot be reached by the machine.
|
|
{
|
|
float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
|
|
float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
|
|
float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
|
|
float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
|
|
float y = y0;
|
|
|
|
if (x0 < X_MIN_POS)
|
|
x0 = X_MIN_POS;
|
|
if (x1 > X_MAX_POS)
|
|
x1 = X_MAX_POS;
|
|
if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
|
|
y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
|
|
if (y1 > Y_MAX_POS)
|
|
y1 = Y_MAX_POS;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOPGM("Initial position: ");
|
|
SERIAL_ECHO(center_old_x);
|
|
SERIAL_ECHOPGM(", ");
|
|
SERIAL_ECHO(center_old_y);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
|
|
// Search in the positive Y direction, until a maximum diameter is found.
|
|
// (the next diameter is smaller than the current one.)
|
|
float dmax = 0.f;
|
|
float xmax1 = 0.f;
|
|
float xmax2 = 0.f;
|
|
for (y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
|
|
enable_z_endstop(false);
|
|
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
|
|
enable_z_endstop(true);
|
|
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
|
|
update_current_position_xyz();
|
|
if (! endstop_z_hit_on_purpose()) {
|
|
continue;
|
|
// SERIAL_PROTOCOLPGM("Failed 1\n");
|
|
// current_position[X_AXIS] = center_old_x;
|
|
// goto canceled;
|
|
}
|
|
a = current_position[X_AXIS];
|
|
enable_z_endstop(false);
|
|
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
|
|
enable_z_endstop(true);
|
|
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
|
|
update_current_position_xyz();
|
|
if (! endstop_z_hit_on_purpose()) {
|
|
continue;
|
|
// SERIAL_PROTOCOLPGM("Failed 2\n");
|
|
// current_position[X_AXIS] = center_old_x;
|
|
// goto canceled;
|
|
}
|
|
b = current_position[X_AXIS];
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 5) {
|
|
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
float d = b - a;
|
|
if (d > dmax) {
|
|
xmax1 = 0.5f * (a + b);
|
|
dmax = d;
|
|
} else if (dmax > 0.) {
|
|
y0 = y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;
|
|
break;
|
|
}
|
|
}
|
|
if (dmax == 0.) {
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level > 0)
|
|
SERIAL_PROTOCOLPGM("failed - not found\n");
|
|
#endif // SUPPORT_VERBOSITY
|
|
current_position[X_AXIS] = center_old_x;
|
|
current_position[Y_AXIS] = center_old_y;
|
|
goto canceled;
|
|
}
|
|
|
|
{
|
|
// Find the positive Y hit. This gives the extreme Y value for the search of the maximum diameter in the -Y direction.
|
|
enable_z_endstop(false);
|
|
go_xy(xmax1, y0 + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);
|
|
enable_z_endstop(true);
|
|
go_xy(xmax1, max(y0 - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);
|
|
update_current_position_xyz();
|
|
if (! endstop_z_hit_on_purpose()) {
|
|
current_position[Y_AXIS] = center_old_y;
|
|
goto canceled;
|
|
}
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 5)
|
|
debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
#endif // SUPPORT_VERBOSITY
|
|
y1 = current_position[Y_AXIS];
|
|
}
|
|
|
|
if (y1 <= y0) {
|
|
// Either the induction sensor is too high, or the induction sensor target is out of reach.
|
|
current_position[Y_AXIS] = center_old_y;
|
|
goto canceled;
|
|
}
|
|
|
|
// Search in the negative Y direction, until a maximum diameter is found.
|
|
dmax = 0.f;
|
|
// if (y0 + 1.f < y1)
|
|
// y1 = y0 + 1.f;
|
|
for (y = y1; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
|
|
enable_z_endstop(false);
|
|
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
|
|
enable_z_endstop(true);
|
|
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
|
|
update_current_position_xyz();
|
|
if (! endstop_z_hit_on_purpose()) {
|
|
continue;
|
|
/*
|
|
current_position[X_AXIS] = center_old_x;
|
|
SERIAL_PROTOCOLPGM("Failed 3\n");
|
|
goto canceled;
|
|
*/
|
|
}
|
|
a = current_position[X_AXIS];
|
|
enable_z_endstop(false);
|
|
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
|
|
enable_z_endstop(true);
|
|
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
|
|
update_current_position_xyz();
|
|
if (! endstop_z_hit_on_purpose()) {
|
|
continue;
|
|
/*
|
|
current_position[X_AXIS] = center_old_x;
|
|
SERIAL_PROTOCOLPGM("Failed 4\n");
|
|
goto canceled;
|
|
*/
|
|
}
|
|
b = current_position[X_AXIS];
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 5) {
|
|
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
float d = b - a;
|
|
if (d > dmax) {
|
|
xmax2 = 0.5f * (a + b);
|
|
dmax = d;
|
|
} else if (dmax > 0.) {
|
|
y1 = y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;
|
|
break;
|
|
}
|
|
}
|
|
float xmax, ymax;
|
|
if (dmax == 0.f) {
|
|
// Only the hit in the positive direction found.
|
|
xmax = xmax1;
|
|
ymax = y0;
|
|
} else {
|
|
// Both positive and negative directions found.
|
|
xmax = xmax2;
|
|
ymax = 0.5f * (y0 + y1);
|
|
for (; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
|
|
enable_z_endstop(false);
|
|
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
|
|
enable_z_endstop(true);
|
|
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
|
|
update_current_position_xyz();
|
|
if (! endstop_z_hit_on_purpose()) {
|
|
continue;
|
|
/*
|
|
current_position[X_AXIS] = center_old_x;
|
|
SERIAL_PROTOCOLPGM("Failed 3\n");
|
|
goto canceled;
|
|
*/
|
|
}
|
|
a = current_position[X_AXIS];
|
|
enable_z_endstop(false);
|
|
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
|
|
enable_z_endstop(true);
|
|
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
|
|
update_current_position_xyz();
|
|
if (! endstop_z_hit_on_purpose()) {
|
|
continue;
|
|
/*
|
|
current_position[X_AXIS] = center_old_x;
|
|
SERIAL_PROTOCOLPGM("Failed 4\n");
|
|
goto canceled;
|
|
*/
|
|
}
|
|
b = current_position[X_AXIS];
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 5) {
|
|
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
float d = b - a;
|
|
if (d > dmax) {
|
|
xmax = 0.5f * (a + b);
|
|
ymax = y;
|
|
dmax = d;
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
// Compare the distance in the Y+ direction with the diameter in the X direction.
|
|
// Find the positive Y hit once again, this time along the Y axis going through the X point with the highest diameter.
|
|
enable_z_endstop(false);
|
|
go_xy(xmax, ymax + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);
|
|
enable_z_endstop(true);
|
|
go_xy(xmax, max(ymax - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);
|
|
update_current_position_xyz();
|
|
if (! endstop_z_hit_on_purpose()) {
|
|
current_position[Y_AXIS] = center_old_y;
|
|
goto canceled;
|
|
}
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 5)
|
|
debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
#endif // SUPPORT_VERBOSITY
|
|
if (current_position[Y_AXIS] - Y_MIN_POS_FOR_BED_CALIBRATION < 0.5f * dmax) {
|
|
// Probably not even a half circle was detected. The induction point is likely too far in the minus Y direction.
|
|
// First verify, if the measurement has been done at a sufficient height. If no, lower the Z axis a bit.
|
|
if (current_position[Y_AXIS] < ymax || dmax < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 5) {
|
|
SERIAL_ECHOPGM("Partial point diameter too small: ");
|
|
SERIAL_ECHO(dmax);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
result = false;
|
|
} else {
|
|
// Estimate the circle radius from the maximum diameter and height:
|
|
float h = current_position[Y_AXIS] - ymax;
|
|
float r = dmax * dmax / (8.f * h) + 0.5f * h;
|
|
if (r < 0.8f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 5) {
|
|
SERIAL_ECHOPGM("Partial point estimated radius too small: ");
|
|
SERIAL_ECHO(r);
|
|
SERIAL_ECHOPGM(", dmax:");
|
|
SERIAL_ECHO(dmax);
|
|
SERIAL_ECHOPGM(", h:");
|
|
SERIAL_ECHO(h);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
result = false;
|
|
} else {
|
|
// The point may end up outside of the machine working space.
|
|
// That is all right as it helps to improve the accuracy of the measurement point
|
|
// due to averaging.
|
|
// For the y correction, use an average of dmax/2 and the estimated radius.
|
|
r = 0.5f * (0.5f * dmax + r);
|
|
ymax = current_position[Y_AXIS] - r;
|
|
}
|
|
}
|
|
} else {
|
|
// If the diameter of the detected spot was smaller than a minimum allowed,
|
|
// the induction sensor is probably too high. Returning false will force
|
|
// the sensor to be lowered a tiny bit.
|
|
result = xmax >= MIN_BED_SENSOR_POINT_RESPONSE_DMR;
|
|
if (y0 > Y_MIN_POS_FOR_BED_CALIBRATION + 0.2f)
|
|
// Only in case both left and right y tangents are known, use them.
|
|
// If y0 is close to the bed edge, it may not be symmetric to the right tangent.
|
|
ymax = 0.5f * ymax + 0.25f * (y0 + y1);
|
|
}
|
|
}
|
|
|
|
// Go to the center.
|
|
enable_z_endstop(false);
|
|
current_position[X_AXIS] = xmax;
|
|
current_position[Y_AXIS] = ymax;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOPGM("Adjusted position: ");
|
|
SERIAL_ECHO(current_position[X_AXIS]);
|
|
SERIAL_ECHOPGM(", ");
|
|
SERIAL_ECHO(current_position[Y_AXIS]);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
|
|
// Don't clamp current_position[Y_AXIS], because the out-of-reach Y coordinate may actually be true.
|
|
// Only clamp the coordinate to go.
|
|
go_xy(current_position[X_AXIS], max(Y_MIN_POS, current_position[Y_AXIS]), homing_feedrate[X_AXIS] / 60.f);
|
|
// delay_keep_alive(3000);
|
|
}
|
|
|
|
if (result)
|
|
return true;
|
|
// otherwise clamp the Y coordinate
|
|
|
|
canceled:
|
|
// Go back to the center.
|
|
enable_z_endstop(false);
|
|
if (current_position[Y_AXIS] < Y_MIN_POS)
|
|
current_position[Y_AXIS] = Y_MIN_POS;
|
|
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
|
|
return false;
|
|
}
|
|
#endif //NEW_XYZCAL
|
|
|
|
#ifndef NEW_XYZCAL
|
|
// Scan the mesh bed induction points one by one by a left-right zig-zag movement,
|
|
// write the trigger coordinates to the serial line.
|
|
// Useful for visualizing the behavior of the bed induction detector.
|
|
inline void scan_bed_induction_sensor_point()
|
|
{
|
|
float center_old_x = current_position[X_AXIS];
|
|
float center_old_y = current_position[Y_AXIS];
|
|
float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
|
|
float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
|
|
float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
|
|
float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
|
|
float y = y0;
|
|
|
|
if (x0 < X_MIN_POS)
|
|
x0 = X_MIN_POS;
|
|
if (x1 > X_MAX_POS)
|
|
x1 = X_MAX_POS;
|
|
if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
|
|
y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
|
|
if (y1 > Y_MAX_POS)
|
|
y1 = Y_MAX_POS;
|
|
|
|
for (float y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
|
|
enable_z_endstop(false);
|
|
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
|
|
enable_z_endstop(true);
|
|
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
|
|
update_current_position_xyz();
|
|
if (endstop_z_hit_on_purpose())
|
|
debug_output_point(PSTR("left" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
enable_z_endstop(false);
|
|
go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
|
|
enable_z_endstop(true);
|
|
go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
|
|
update_current_position_xyz();
|
|
if (endstop_z_hit_on_purpose())
|
|
debug_output_point(PSTR("right"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
}
|
|
|
|
enable_z_endstop(false);
|
|
current_position[X_AXIS] = center_old_x;
|
|
current_position[Y_AXIS] = center_old_y;
|
|
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
|
|
}
|
|
#endif //NEW_XYZCAL
|
|
|
|
#define MESH_BED_CALIBRATION_SHOW_LCD
|
|
|
|
BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level, uint8_t &too_far_mask)
|
|
{
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
|
|
// Reusing the z_values memory for the measurement cache.
|
|
// 7x7=49 floats, good for 16 (x,y,z) vectors.
|
|
float *pts = &mbl.z_values[0][0];
|
|
float *vec_x = pts + 2 * 4;
|
|
float *vec_y = vec_x + 2;
|
|
float *cntr = vec_y + 2;
|
|
memset(pts, 0, sizeof(float) * 7 * 7);
|
|
uint8_t iteration = 0;
|
|
BedSkewOffsetDetectionResultType result;
|
|
|
|
// SERIAL_ECHOLNPGM("find_bed_offset_and_skew verbosity level: ");
|
|
// SERIAL_ECHO(int(verbosity_level));
|
|
// SERIAL_ECHOPGM("");
|
|
|
|
#ifdef NEW_XYZCAL
|
|
{
|
|
#else //NEW_XYZCAL
|
|
while (iteration < 3) {
|
|
#endif //NEW_XYZCAL
|
|
|
|
SERIAL_ECHOPGM("Iteration: ");
|
|
MYSERIAL.println(int(iteration + 1));
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOLNPGM("Vectors: ");
|
|
|
|
SERIAL_ECHOPGM("vec_x[0]:");
|
|
MYSERIAL.print(vec_x[0], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("vec_x[1]:");
|
|
MYSERIAL.print(vec_x[1], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("vec_y[0]:");
|
|
MYSERIAL.print(vec_y[0], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("vec_y[1]:");
|
|
MYSERIAL.print(vec_y[1], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("cntr[0]:");
|
|
MYSERIAL.print(cntr[0], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("cntr[1]:");
|
|
MYSERIAL.print(cntr[1], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
|
|
uint8_t next_line;
|
|
lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1), next_line);
|
|
if (next_line > 3)
|
|
next_line = 3;
|
|
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
|
|
|
|
// Collect the rear 2x3 points.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH + FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP * iteration * 0.3;
|
|
for (int k = 0; k < 4; ++k) {
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
|
|
lcd_set_cursor(0, next_line);
|
|
lcd_print(k + 1);
|
|
lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
|
|
|
|
if (iteration > 0) {
|
|
lcd_puts_at_P(0, next_line + 1, _i("Iteration "));////MSG_FIND_BED_OFFSET_AND_SKEW_ITERATION c=20 r=0
|
|
lcd_print(int(iteration + 1));
|
|
}
|
|
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
|
|
float *pt = pts + k * 2;
|
|
// Go up to z_initial.
|
|
|
|
go_to_current(homing_feedrate[Z_AXIS] / 60.f);
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
// Go to Y0, wait, then go to Y-4.
|
|
current_position[Y_AXIS] = 0.f;
|
|
go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
|
SERIAL_ECHOLNPGM("At Y0");
|
|
delay_keep_alive(5000);
|
|
current_position[Y_AXIS] = Y_MIN_POS;
|
|
go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
|
SERIAL_ECHOLNPGM("At Y-4");
|
|
delay_keep_alive(5000);
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
// Go to the measurement point position.
|
|
//if (iteration == 0) {
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2);
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2 + 1);
|
|
/*}
|
|
else {
|
|
// if first iteration failed, count corrected point coordinates as initial
|
|
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
|
|
|
current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points_4 + k * 2) + vec_y[0] * pgm_read_float(bed_ref_points_4 + k * 2 + 1) + cntr[0];
|
|
current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points_4 + k * 2) + vec_y[1] * pgm_read_float(bed_ref_points_4 + k * 2 + 1) + cntr[1];
|
|
|
|
// The calibration points are very close to the min Y.
|
|
if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
|
|
current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
|
|
|
|
}*/
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOPGM("current_position[X_AXIS]:");
|
|
MYSERIAL.print(current_position[X_AXIS], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("current_position[Y_AXIS]:");
|
|
MYSERIAL.print(current_position[Y_AXIS], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("current_position[Z_AXIS]:");
|
|
MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
|
|
go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 10)
|
|
delay_keep_alive(3000);
|
|
#endif // SUPPORT_VERBOSITY
|
|
if (!find_bed_induction_sensor_point_xy(verbosity_level))
|
|
return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
|
|
#ifndef NEW_XYZCAL
|
|
#ifndef HEATBED_V2
|
|
|
|
if (k == 0 || k == 1) {
|
|
// Improve the position of the 1st row sensor points by a zig-zag movement.
|
|
find_bed_induction_sensor_point_z();
|
|
int8_t i = 4;
|
|
for (;;) {
|
|
if (improve_bed_induction_sensor_point3(verbosity_level))
|
|
break;
|
|
if (--i == 0)
|
|
return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
|
|
// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
|
|
current_position[Z_AXIS] -= 0.025f;
|
|
enable_endstops(false);
|
|
enable_z_endstop(false);
|
|
go_to_current(homing_feedrate[Z_AXIS]);
|
|
}
|
|
if (i == 0)
|
|
// not found
|
|
return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
|
|
}
|
|
#endif //HEATBED_V2
|
|
#endif
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 10)
|
|
delay_keep_alive(3000);
|
|
#endif // SUPPORT_VERBOSITY
|
|
// Save the detected point position and then clamp the Y coordinate, which may have been estimated
|
|
// to lie outside the machine working space.
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOLNPGM("Measured:");
|
|
MYSERIAL.println(current_position[X_AXIS]);
|
|
MYSERIAL.println(current_position[Y_AXIS]);
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
pt[0] = (pt[0] * iteration) / (iteration + 1);
|
|
pt[0] += (current_position[X_AXIS]/(iteration + 1)); //count average
|
|
pt[1] = (pt[1] * iteration) / (iteration + 1);
|
|
pt[1] += (current_position[Y_AXIS] / (iteration + 1));
|
|
|
|
|
|
//pt[0] += current_position[X_AXIS];
|
|
//if(iteration > 0) pt[0] = pt[0] / 2;
|
|
|
|
//pt[1] += current_position[Y_AXIS];
|
|
//if (iteration > 0) pt[1] = pt[1] / 2;
|
|
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("pt[0]:");
|
|
MYSERIAL.println(pt[0]);
|
|
SERIAL_ECHOPGM("pt[1]:");
|
|
MYSERIAL.println(pt[1]);
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
|
|
if (current_position[Y_AXIS] < Y_MIN_POS)
|
|
current_position[Y_AXIS] = Y_MIN_POS;
|
|
// Start searching for the other points at 3mm above the last point.
|
|
current_position[Z_AXIS] += 3.f + FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP * iteration * 0.3;
|
|
//cntr[0] += pt[0];
|
|
//cntr[1] += pt[1];
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 10 && k == 0) {
|
|
// Show the zero. Test, whether the Y motor skipped steps.
|
|
current_position[Y_AXIS] = MANUAL_Y_HOME_POS;
|
|
go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
|
delay_keep_alive(3000);
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
delay_keep_alive(0); //manage_heater, reset watchdog, manage inactivity
|
|
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
|
|
delay_keep_alive(3000);
|
|
for (int8_t mesh_point = 0; mesh_point < 4; ++mesh_point) {
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
// Go to the measurement point.
|
|
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
|
current_position[X_AXIS] = pts[mesh_point * 2];
|
|
current_position[Y_AXIS] = pts[mesh_point * 2 + 1];
|
|
go_to_current(homing_feedrate[X_AXIS] / 60);
|
|
delay_keep_alive(3000);
|
|
}
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
if (pts[1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
|
|
too_far_mask |= 1 << 1; //front center point is out of reach
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("WARNING: Front point not reachable. Y coordinate:");
|
|
MYSERIAL.print(pts[1]);
|
|
SERIAL_ECHOPGM(" < ");
|
|
MYSERIAL.println(Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
|
|
}
|
|
result = calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);
|
|
delay_keep_alive(0); //manage_heater, reset watchdog, manage inactivity
|
|
|
|
if (result >= 0) {
|
|
world2machine_update(vec_x, vec_y, cntr);
|
|
#if 1
|
|
// Fearlessly store the calibration values into the eeprom.
|
|
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 0), cntr[0]);
|
|
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 4), cntr[1]);
|
|
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 0), vec_x[0]);
|
|
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 4), vec_x[1]);
|
|
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 0), vec_y[0]);
|
|
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 4), vec_y[1]);
|
|
#endif
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 10) {
|
|
// Length of the vec_x
|
|
float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
|
|
SERIAL_ECHOLNPGM("X vector length:");
|
|
MYSERIAL.println(l);
|
|
|
|
// Length of the vec_y
|
|
l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);
|
|
SERIAL_ECHOLNPGM("Y vector length:");
|
|
MYSERIAL.println(l);
|
|
// Zero point correction
|
|
l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);
|
|
SERIAL_ECHOLNPGM("Zero point correction:");
|
|
MYSERIAL.println(l);
|
|
|
|
// vec_x and vec_y shall be nearly perpendicular.
|
|
l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];
|
|
SERIAL_ECHOLNPGM("Perpendicularity");
|
|
MYSERIAL.println(fabs(l));
|
|
SERIAL_ECHOLNPGM("Saving bed calibration vectors to EEPROM");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
// Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
|
|
world2machine_update_current();
|
|
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
|
|
delay_keep_alive(3000);
|
|
for (int8_t mesh_point = 0; mesh_point < 9; ++mesh_point) {
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
// Go to the measurement point.
|
|
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points + mesh_point * 2);
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + mesh_point * 2 + 1);
|
|
go_to_current(homing_feedrate[X_AXIS] / 60);
|
|
delay_keep_alive(3000);
|
|
}
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
return result;
|
|
}
|
|
if (result == BED_SKEW_OFFSET_DETECTION_FITTING_FAILED && too_far_mask == 2) return result; //if fitting failed and front center point is out of reach, terminate calibration and inform user
|
|
iteration++;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#ifndef NEW_XYZCAL
|
|
BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level, uint8_t &too_far_mask)
|
|
{
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
|
|
// Mask of the first three points. Are they too far?
|
|
too_far_mask = 0;
|
|
|
|
// Reusing the z_values memory for the measurement cache.
|
|
// 7x7=49 floats, good for 16 (x,y,z) vectors.
|
|
float *pts = &mbl.z_values[0][0];
|
|
float *vec_x = pts + 2 * 9;
|
|
float *vec_y = vec_x + 2;
|
|
float *cntr = vec_y + 2;
|
|
memset(pts, 0, sizeof(float) * 7 * 7);
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 10) SERIAL_ECHOLNPGM("Improving bed offset and skew");
|
|
#endif // SUPPORT_VERBOSITY
|
|
// Cache the current correction matrix.
|
|
world2machine_initialize();
|
|
vec_x[0] = world2machine_rotation_and_skew[0][0];
|
|
vec_x[1] = world2machine_rotation_and_skew[1][0];
|
|
vec_y[0] = world2machine_rotation_and_skew[0][1];
|
|
vec_y[1] = world2machine_rotation_and_skew[1][1];
|
|
cntr[0] = world2machine_shift[0];
|
|
cntr[1] = world2machine_shift[1];
|
|
// and reset the correction matrix, so the planner will not do anything.
|
|
world2machine_reset();
|
|
|
|
bool endstops_enabled = enable_endstops(false);
|
|
bool endstop_z_enabled = enable_z_endstop(false);
|
|
|
|
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
|
|
uint8_t next_line;
|
|
lcd_display_message_fullscreen_P(_i("Improving bed calibration point"), next_line);////MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1 c=60 r=0
|
|
if (next_line > 3)
|
|
next_line = 3;
|
|
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
|
|
|
|
// Collect a matrix of 9x9 points.
|
|
BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
|
|
for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
// Print the decrasing ID of the measurement point.
|
|
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
|
|
lcd_print_at(0, next_line, mesh_point+1);
|
|
lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));////MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 c=14 r=0
|
|
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
|
|
|
|
// Move up.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
enable_endstops(false);
|
|
enable_z_endstop(false);
|
|
go_to_current(homing_feedrate[Z_AXIS]/60);
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
// Go to Y0, wait, then go to Y-4.
|
|
current_position[Y_AXIS] = 0.f;
|
|
go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
|
SERIAL_ECHOLNPGM("At Y0");
|
|
delay_keep_alive(5000);
|
|
current_position[Y_AXIS] = Y_MIN_POS;
|
|
go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
|
SERIAL_ECHOLNPGM("At Y_MIN_POS");
|
|
delay_keep_alive(5000);
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
// Go to the measurement point.
|
|
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
|
current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[0];
|
|
current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[1];
|
|
// The calibration points are very close to the min Y.
|
|
if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION){
|
|
current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOPGM("Calibration point ");
|
|
SERIAL_ECHO(mesh_point);
|
|
SERIAL_ECHOPGM("lower than Ymin. Y coordinate clamping was used.");
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
go_to_current(homing_feedrate[X_AXIS]/60);
|
|
// Find its Z position by running the normal vertical search.
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 10)
|
|
delay_keep_alive(3000);
|
|
#endif // SUPPORT_VERBOSITY
|
|
find_bed_induction_sensor_point_z();
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 10)
|
|
delay_keep_alive(3000);
|
|
#endif // SUPPORT_VERBOSITY
|
|
// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
|
|
current_position[Z_AXIS] -= 0.025f;
|
|
// Improve the point position by searching its center in a current plane.
|
|
int8_t n_errors = 3;
|
|
for (int8_t iter = 0; iter < 8; ) {
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level > 20) {
|
|
SERIAL_ECHOPGM("Improving bed point ");
|
|
SERIAL_ECHO(mesh_point);
|
|
SERIAL_ECHOPGM(", iteration ");
|
|
SERIAL_ECHO(iter);
|
|
SERIAL_ECHOPGM(", z");
|
|
MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
bool found = false;
|
|
if (mesh_point < 2) {
|
|
// Because the sensor cannot move in front of the first row
|
|
// of the sensor points, the y position cannot be measured
|
|
// by a cross center method.
|
|
// Use a zig-zag search for the first row of the points.
|
|
found = improve_bed_induction_sensor_point3(verbosity_level);
|
|
} else {
|
|
switch (method) {
|
|
case 0: found = improve_bed_induction_sensor_point(); break;
|
|
case 1: found = improve_bed_induction_sensor_point2(mesh_point < 2, verbosity_level); break;
|
|
default: break;
|
|
}
|
|
}
|
|
if (found) {
|
|
if (iter > 3) {
|
|
// Average the last 4 measurements.
|
|
pts[mesh_point*2 ] += current_position[X_AXIS];
|
|
pts[mesh_point*2+1] += current_position[Y_AXIS];
|
|
}
|
|
if (current_position[Y_AXIS] < Y_MIN_POS)
|
|
current_position[Y_AXIS] = Y_MIN_POS;
|
|
++ iter;
|
|
} else if (n_errors -- == 0) {
|
|
// Give up.
|
|
result = BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
|
|
goto canceled;
|
|
} else {
|
|
// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
|
|
current_position[Z_AXIS] -= 0.05f;
|
|
enable_endstops(false);
|
|
enable_z_endstop(false);
|
|
go_to_current(homing_feedrate[Z_AXIS]);
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 5) {
|
|
SERIAL_ECHOPGM("Improving bed point ");
|
|
SERIAL_ECHO(mesh_point);
|
|
SERIAL_ECHOPGM(", iteration ");
|
|
SERIAL_ECHO(iter);
|
|
SERIAL_ECHOPGM(" failed. Lowering z to ");
|
|
MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
}
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 10)
|
|
delay_keep_alive(3000);
|
|
#endif // SUPPORT_VERBOSITY
|
|
}
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
|
|
// Average the last 4 measurements.
|
|
for (int8_t i = 0; i < 8; ++ i)
|
|
pts[i] *= (1.f/4.f);
|
|
|
|
enable_endstops(false);
|
|
enable_z_endstop(false);
|
|
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 5) {
|
|
// Test the positions. Are the positions reproducible?
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
// Go to the measurement point.
|
|
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
|
current_position[X_AXIS] = pts[mesh_point*2];
|
|
current_position[Y_AXIS] = pts[mesh_point*2+1];
|
|
if (verbosity_level >= 10) {
|
|
go_to_current(homing_feedrate[X_AXIS]/60);
|
|
delay_keep_alive(3000);
|
|
}
|
|
SERIAL_ECHOPGM("Final measured bed point ");
|
|
SERIAL_ECHO(mesh_point);
|
|
SERIAL_ECHOPGM(": ");
|
|
MYSERIAL.print(current_position[X_AXIS], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(current_position[Y_AXIS], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
|
|
{
|
|
// First fill in the too_far_mask from the measured points.
|
|
for (uint8_t mesh_point = 0; mesh_point < 2; ++ mesh_point)
|
|
if (pts[mesh_point * 2 + 1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
|
|
too_far_mask |= 1 << mesh_point;
|
|
result = calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);
|
|
if (result < 0) {
|
|
SERIAL_ECHOLNPGM("Calculation of the machine skew and offset failed.");
|
|
goto canceled;
|
|
}
|
|
// In case of success, update the too_far_mask from the calculated points.
|
|
for (uint8_t mesh_point = 0; mesh_point < 2; ++ mesh_point) {
|
|
float y = vec_x[1] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[1];
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("Distance from min:");
|
|
MYSERIAL.print(y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("y:");
|
|
MYSERIAL.print(y);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
|
|
too_far_mask |= 1 << mesh_point;
|
|
}
|
|
}
|
|
|
|
world2machine_update(vec_x, vec_y, cntr);
|
|
#if 1
|
|
// Fearlessly store the calibration values into the eeprom.
|
|
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
|
|
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);
|
|
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);
|
|
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);
|
|
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);
|
|
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);
|
|
#endif
|
|
|
|
// Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
|
|
world2machine_update_current();
|
|
|
|
enable_endstops(false);
|
|
enable_z_endstop(false);
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 5) {
|
|
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
|
|
delay_keep_alive(3000);
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
// Go to the measurement point.
|
|
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points_4+mesh_point*2);
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4+mesh_point*2+1);
|
|
if (verbosity_level >= 10) {
|
|
go_to_current(homing_feedrate[X_AXIS]/60);
|
|
delay_keep_alive(3000);
|
|
}
|
|
{
|
|
float x, y;
|
|
world2machine(current_position[X_AXIS], current_position[Y_AXIS], x, y);
|
|
SERIAL_ECHOPGM("Final calculated bed point ");
|
|
SERIAL_ECHO(mesh_point);
|
|
SERIAL_ECHOPGM(": ");
|
|
MYSERIAL.print(x, 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(y, 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
}
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
|
|
if(!sample_z())
|
|
goto canceled;
|
|
|
|
enable_endstops(endstops_enabled);
|
|
enable_z_endstop(endstop_z_enabled);
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
return result;
|
|
|
|
canceled:
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
// Print head up.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
go_to_current(homing_feedrate[Z_AXIS]/60);
|
|
// Store the identity matrix to EEPROM.
|
|
reset_bed_offset_and_skew();
|
|
enable_endstops(endstops_enabled);
|
|
enable_z_endstop(endstop_z_enabled);
|
|
return result;
|
|
}
|
|
#endif //NEW_XYZCAL
|
|
|
|
bool sample_z() {
|
|
bool sampled = true;
|
|
//make space
|
|
current_position[Z_AXIS] += 150;
|
|
go_to_current(homing_feedrate[Z_AXIS] / 60);
|
|
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate, active_extruder););
|
|
|
|
lcd_show_fullscreen_message_and_wait_P(_T(MSG_PLACE_STEEL_SHEET));
|
|
|
|
// Sample Z heights for the mesh bed leveling.
|
|
// In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
|
|
if (!sample_mesh_and_store_reference()) sampled = false;
|
|
|
|
return sampled;
|
|
}
|
|
|
|
void go_home_with_z_lift()
|
|
{
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
// Go home.
|
|
// First move up to a safe height.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
go_to_current(homing_feedrate[Z_AXIS]/60);
|
|
// Second move to XY [0, 0].
|
|
current_position[X_AXIS] = X_MIN_POS+0.2;
|
|
current_position[Y_AXIS] = Y_MIN_POS+0.2;
|
|
// Clamp to the physical coordinates.
|
|
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
go_to_current(homing_feedrate[X_AXIS]/60);
|
|
// Third move up to a safe height.
|
|
current_position[Z_AXIS] = Z_MIN_POS;
|
|
go_to_current(homing_feedrate[Z_AXIS]/60);
|
|
}
|
|
|
|
// Sample the 9 points of the bed and store them into the EEPROM as a reference.
|
|
// When calling this function, the X, Y, Z axes should be already homed,
|
|
// and the world2machine correction matrix should be active.
|
|
// Returns false if the reference values are more than 3mm far away.
|
|
bool sample_mesh_and_store_reference()
|
|
{
|
|
bool endstops_enabled = enable_endstops(false);
|
|
bool endstop_z_enabled = enable_z_endstop(false);
|
|
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
|
|
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
|
|
uint8_t next_line;
|
|
lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1), next_line);
|
|
if (next_line > 3)
|
|
next_line = 3;
|
|
// display "point xx of yy"
|
|
lcd_set_cursor(0, next_line);
|
|
lcd_print(1);
|
|
lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
|
|
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
|
|
|
|
// Sample Z heights for the mesh bed leveling.
|
|
// In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
|
|
{
|
|
// The first point defines the reference.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
go_to_current(homing_feedrate[Z_AXIS]/60);
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
|
|
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
go_to_current(homing_feedrate[X_AXIS]/60);
|
|
memcpy(destination, current_position, sizeof(destination));
|
|
enable_endstops(true);
|
|
homeaxis(Z_AXIS);
|
|
|
|
#ifdef TMC2130
|
|
if (!axis_known_position[Z_AXIS] && (READ(Z_TMC2130_DIAG) != 0)) //Z crash
|
|
{
|
|
kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
|
|
return false;
|
|
}
|
|
#endif //TMC2130
|
|
|
|
enable_endstops(false);
|
|
if (!find_bed_induction_sensor_point_z()) //Z crash or deviation > 50um
|
|
{
|
|
kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
|
|
return false;
|
|
}
|
|
mbl.set_z(0, 0, current_position[Z_AXIS]);
|
|
}
|
|
for (int8_t mesh_point = 1; mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS; ++ mesh_point) {
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
// Print the decrasing ID of the measurement point.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
go_to_current(homing_feedrate[Z_AXIS]/60);
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
|
|
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
go_to_current(homing_feedrate[X_AXIS]/60);
|
|
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
|
|
// display "point xx of yy"
|
|
lcd_set_cursor(0, next_line);
|
|
lcd_print(mesh_point+1);
|
|
lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
|
|
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
|
|
if (!find_bed_induction_sensor_point_z()) //Z crash or deviation > 50um
|
|
{
|
|
kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
|
|
return false;
|
|
}
|
|
// Get cords of measuring point
|
|
int8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
|
|
int8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
|
|
if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
|
|
mbl.set_z(ix, iy, current_position[Z_AXIS]);
|
|
}
|
|
{
|
|
// Verify the span of the Z values.
|
|
float zmin = mbl.z_values[0][0];
|
|
float zmax = zmin;
|
|
for (int8_t j = 0; j < 3; ++ j)
|
|
for (int8_t i = 0; i < 3; ++ i) {
|
|
zmin = min(zmin, mbl.z_values[j][i]);
|
|
zmax = max(zmax, mbl.z_values[j][i]);
|
|
}
|
|
if (zmax - zmin > 3.f) {
|
|
// The span of the Z offsets is extreme. Give up.
|
|
// Homing failed on some of the points.
|
|
SERIAL_PROTOCOLLNPGM("Exreme span of the Z values!");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Store the correction values to EEPROM.
|
|
// Offsets of the Z heiths of the calibration points from the first point.
|
|
// The offsets are saved as 16bit signed int, scaled to tenths of microns.
|
|
{
|
|
uint16_t addr = EEPROM_BED_CALIBRATION_Z_JITTER;
|
|
for (int8_t j = 0; j < 3; ++ j)
|
|
for (int8_t i = 0; i < 3; ++ i) {
|
|
if (i == 0 && j == 0)
|
|
continue;
|
|
float dif = mbl.z_values[j][i] - mbl.z_values[0][0];
|
|
int16_t dif_quantized = int16_t(floor(dif * 100.f + 0.5f));
|
|
eeprom_update_word((uint16_t*)addr, *reinterpret_cast<uint16_t*>(&dif_quantized));
|
|
#if 0
|
|
{
|
|
uint16_t z_offset_u = eeprom_read_word((uint16_t*)addr);
|
|
float dif2 = *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
|
|
|
|
SERIAL_ECHOPGM("Bed point ");
|
|
SERIAL_ECHO(i);
|
|
SERIAL_ECHOPGM(",");
|
|
SERIAL_ECHO(j);
|
|
SERIAL_ECHOPGM(", differences: written ");
|
|
MYSERIAL.print(dif, 5);
|
|
SERIAL_ECHOPGM(", read: ");
|
|
MYSERIAL.print(dif2, 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif
|
|
addr += 2;
|
|
}
|
|
}
|
|
|
|
mbl.upsample_3x3();
|
|
mbl.active = true;
|
|
|
|
go_home_with_z_lift();
|
|
|
|
enable_endstops(endstops_enabled);
|
|
enable_z_endstop(endstop_z_enabled);
|
|
return true;
|
|
}
|
|
|
|
#ifndef NEW_XYZCAL
|
|
bool scan_bed_induction_points(int8_t verbosity_level)
|
|
{
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
|
|
// Reusing the z_values memory for the measurement cache.
|
|
// 7x7=49 floats, good for 16 (x,y,z) vectors.
|
|
float *pts = &mbl.z_values[0][0];
|
|
float *vec_x = pts + 2 * 9;
|
|
float *vec_y = vec_x + 2;
|
|
float *cntr = vec_y + 2;
|
|
memset(pts, 0, sizeof(float) * 7 * 7);
|
|
|
|
// Cache the current correction matrix.
|
|
world2machine_initialize();
|
|
vec_x[0] = world2machine_rotation_and_skew[0][0];
|
|
vec_x[1] = world2machine_rotation_and_skew[1][0];
|
|
vec_y[0] = world2machine_rotation_and_skew[0][1];
|
|
vec_y[1] = world2machine_rotation_and_skew[1][1];
|
|
cntr[0] = world2machine_shift[0];
|
|
cntr[1] = world2machine_shift[1];
|
|
// and reset the correction matrix, so the planner will not do anything.
|
|
world2machine_reset();
|
|
|
|
bool endstops_enabled = enable_endstops(false);
|
|
bool endstop_z_enabled = enable_z_endstop(false);
|
|
|
|
// Collect a matrix of 9x9 points.
|
|
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
|
|
// Move up.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
enable_endstops(false);
|
|
enable_z_endstop(false);
|
|
go_to_current(homing_feedrate[Z_AXIS]/60);
|
|
// Go to the measurement point.
|
|
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
|
current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[0];
|
|
current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
|
|
// The calibration points are very close to the min Y.
|
|
if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
|
|
current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
|
|
go_to_current(homing_feedrate[X_AXIS]/60);
|
|
find_bed_induction_sensor_point_z();
|
|
scan_bed_induction_sensor_point();
|
|
}
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
|
|
enable_endstops(false);
|
|
enable_z_endstop(false);
|
|
|
|
// Don't let the manage_inactivity() function remove power from the motors.
|
|
refresh_cmd_timeout();
|
|
|
|
enable_endstops(endstops_enabled);
|
|
enable_z_endstop(endstop_z_enabled);
|
|
return true;
|
|
}
|
|
#endif //NEW_XYZCAL
|
|
|
|
// Shift a Z axis by a given delta.
|
|
// To replace loading of the babystep correction.
|
|
static void shift_z(float delta)
|
|
{
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - delta, current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
st_synchronize();
|
|
plan_set_z_position(current_position[Z_AXIS]);
|
|
}
|
|
|
|
#define BABYSTEP_LOADZ_BY_PLANNER
|
|
|
|
// Number of baby steps applied
|
|
static int babystepLoadZ = 0;
|
|
|
|
void babystep_load()
|
|
{
|
|
babystepLoadZ = 0;
|
|
// Apply Z height correction aka baby stepping before mesh bed leveling gets activated.
|
|
if (calibration_status() < CALIBRATION_STATUS_LIVE_ADJUST)
|
|
{
|
|
check_babystep(); //checking if babystep is in allowed range, otherwise setting babystep to 0
|
|
|
|
// End of G80: Apply the baby stepping value.
|
|
EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystepLoadZ);
|
|
|
|
#if 0
|
|
SERIAL_ECHO("Z baby step: ");
|
|
SERIAL_ECHO(babystepLoadZ);
|
|
SERIAL_ECHO(", current Z: ");
|
|
SERIAL_ECHO(current_position[Z_AXIS]);
|
|
SERIAL_ECHO("correction: ");
|
|
SERIAL_ECHO(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
|
|
SERIAL_ECHOLN("");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void babystep_apply()
|
|
{
|
|
babystep_load();
|
|
#ifdef BABYSTEP_LOADZ_BY_PLANNER
|
|
shift_z(- float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
|
|
#else
|
|
babystepsTodoZadd(babystepLoadZ);
|
|
#endif /* BABYSTEP_LOADZ_BY_PLANNER */
|
|
}
|
|
|
|
void babystep_undo()
|
|
{
|
|
#ifdef BABYSTEP_LOADZ_BY_PLANNER
|
|
shift_z(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
|
|
#else
|
|
babystepsTodoZsubtract(babystepLoadZ);
|
|
#endif /* BABYSTEP_LOADZ_BY_PLANNER */
|
|
babystepLoadZ = 0;
|
|
}
|
|
|
|
void babystep_reset()
|
|
{
|
|
babystepLoadZ = 0;
|
|
}
|
|
|
|
void count_xyz_details(float (&distanceMin)[2]) {
|
|
float cntr[2] = {
|
|
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 0)),
|
|
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 4))
|
|
};
|
|
float vec_x[2] = {
|
|
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 0)),
|
|
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 4))
|
|
};
|
|
float vec_y[2] = {
|
|
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 0)),
|
|
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 4))
|
|
};
|
|
#if 0
|
|
a2 = -1 * asin(vec_y[0] / MACHINE_AXIS_SCALE_Y);
|
|
a1 = asin(vec_x[1] / MACHINE_AXIS_SCALE_X);
|
|
angleDiff = fabs(a2 - a1);
|
|
#endif
|
|
for (uint8_t mesh_point = 0; mesh_point < 2; ++mesh_point) {
|
|
float y = vec_x[1] * pgm_read_float(bed_ref_points_4 + mesh_point * 2) + vec_y[1] * pgm_read_float(bed_ref_points_4 + mesh_point * 2 + 1) + cntr[1];
|
|
distanceMin[mesh_point] = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
|
|
}
|
|
}
|
|
|