Prusa-Firmware/Firmware/stepper.cpp
Voinea Dragos f22b9260ae Fix build
2022-01-30 11:22:44 +00:00

1696 lines
52 KiB
C++

/*
stepper.c - stepper motor driver: executes motion plans using stepper motors
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. */
#include "Marlin.h"
#include "stepper.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
#include "language.h"
#include "cardreader.h"
#include "speed_lookuptable.h"
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
#include <SPI.h>
#endif
#ifdef TMC2130
#include "tmc2130.h"
#endif //TMC2130
#if defined(FILAMENT_SENSOR) && defined(PAT9125)
#include "fsensor.h"
int fsensor_counter; //counter for e-steps
#endif //FILAMENT_SENSOR
#include "mmu.h"
#include "ConfigurationStore.h"
#ifdef DEBUG_STACK_MONITOR
uint16_t SP_min = 0x21FF;
#endif //DEBUG_STACK_MONITOR
/*
* Stepping macros
*/
#define _STEP_PIN_X_AXIS X_STEP_PIN
#define _STEP_PIN_Y_AXIS Y_STEP_PIN
#define _STEP_PIN_Z_AXIS Z_STEP_PIN
#define _STEP_PIN_E_AXIS E0_STEP_PIN
#ifdef DEBUG_XSTEP_DUP_PIN
#define _STEP_PIN_X_DUP_AXIS DEBUG_XSTEP_DUP_PIN
#endif
#ifdef DEBUG_YSTEP_DUP_PIN
#define _STEP_PIN_Y_DUP_AXIS DEBUG_YSTEP_DUP_PIN
#endif
#ifdef Y_DUAL_STEPPER_DRIVERS
#error Y_DUAL_STEPPER_DRIVERS not fully implemented
#define _STEP_PIN_Y2_AXIS Y2_STEP_PIN
#endif
#ifdef Z_DUAL_STEPPER_DRIVERS
#error Z_DUAL_STEPPER_DRIVERS not fully implemented
#define _STEP_PIN_Z2_AXIS Z2_STEP_PIN
#endif
#ifdef TMC2130
#define STEPPER_MINIMUM_PULSE TMC2130_MINIMUM_PULSE
#define STEPPER_SET_DIR_DELAY TMC2130_SET_DIR_DELAY
#define STEPPER_MINIMUM_DELAY TMC2130_MINIMUM_DELAY
#else
#define STEPPER_MINIMUM_PULSE 2
#define STEPPER_SET_DIR_DELAY 100
#define STEPPER_MINIMUM_DELAY delayMicroseconds(STEPPER_MINIMUM_PULSE)
#endif
#ifdef TMC2130_DEDGE_STEPPING
static_assert(TMC2130_MINIMUM_DELAY 1, // this will fail to compile when non-empty
"DEDGE implies/requires an empty TMC2130_MINIMUM_DELAY");
#define STEP_NC_HI(axis) TOGGLE(_STEP_PIN_##axis)
#define STEP_NC_LO(axis) //NOP
#else
#define _STEP_HI_X_AXIS !INVERT_X_STEP_PIN
#define _STEP_LO_X_AXIS INVERT_X_STEP_PIN
#define _STEP_HI_Y_AXIS !INVERT_Y_STEP_PIN
#define _STEP_LO_Y_AXIS INVERT_Y_STEP_PIN
#define _STEP_HI_Z_AXIS !INVERT_Z_STEP_PIN
#define _STEP_LO_Z_AXIS INVERT_Z_STEP_PIN
#define _STEP_HI_E_AXIS !INVERT_E_STEP_PIN
#define _STEP_LO_E_AXIS INVERT_E_STEP_PIN
#define STEP_NC_HI(axis) WRITE_NC(_STEP_PIN_##axis, _STEP_HI_##axis)
#define STEP_NC_LO(axis) WRITE_NC(_STEP_PIN_##axis, _STEP_LO_##axis)
#endif //TMC2130_DEDGE_STEPPING
//===========================================================================
//=============================public variables ============================
//===========================================================================
block_t *current_block; // A pointer to the block currently being traced
bool x_min_endstop = false;
bool x_max_endstop = false;
bool y_min_endstop = false;
bool y_max_endstop = false;
bool z_min_endstop = false;
bool z_max_endstop = false;
//===========================================================================
//=============================private variables ============================
//===========================================================================
//static makes it inpossible to be called from outside of this file by extern.!
// Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output
static dda_isteps_t
counter_x, // Counter variables for the bresenham line tracer
counter_y,
counter_z,
counter_e;
volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block
static uint32_t acceleration_time, deceleration_time;
static uint16_t acc_step_rate; // needed for deccelaration start point
static uint8_t step_loops;
static uint16_t OCR1A_nominal;
static uint8_t step_loops_nominal;
volatile long endstops_trigsteps[3]={0,0,0};
static volatile bool endstop_x_hit=false;
static volatile bool endstop_y_hit=false;
static volatile bool endstop_z_hit=false;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
bool abort_on_endstop_hit = false;
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
#endif
#if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
static bool old_x_max_endstop=false;
#endif
#if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
static bool old_y_max_endstop=false;
#endif
static bool old_x_min_endstop=false;
static bool old_y_min_endstop=false;
static bool old_z_min_endstop=false;
static bool old_z_max_endstop=false;
static bool check_endstops = true;
static bool check_z_endstop = false;
static bool z_endstop_invert = false;
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
#ifdef LIN_ADVANCE
void advance_isr_scheduler();
void advance_isr();
static const uint16_t ADV_NEVER = 0xFFFF;
static const uint8_t ADV_INIT = 0b01; // initialize LA
static const uint8_t ADV_ACC_VARY = 0b10; // varying acceleration phase
static uint16_t nextMainISR;
static uint16_t nextAdvanceISR;
static uint16_t main_Rate;
static uint16_t eISR_Rate;
static uint32_t eISR_Err;
static uint16_t current_adv_steps;
static uint16_t target_adv_steps;
static int8_t e_steps; // scheduled e-steps during each isr loop
static uint8_t e_step_loops; // e-steps to execute at most in each isr loop
static uint8_t e_extruding; // current move is an extrusion move
static int8_t LA_phase; // LA compensation phase
#define _NEXT_ISR(T) main_Rate = nextMainISR = T
#else
#define _NEXT_ISR(T) OCR1A = T
#endif
#ifdef DEBUG_STEPPER_TIMER_MISSED
extern bool stepper_timer_overflow_state;
extern uint16_t stepper_timer_overflow_last;
#endif /* DEBUG_STEPPER_TIMER_MISSED */
//===========================================================================
//=============================functions ============================
//===========================================================================
void checkHitEndstops()
{
if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
if(endstop_x_hit) {
SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/cs.axis_steps_per_unit[X_AXIS]);
// LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("X")));
}
if(endstop_y_hit) {
SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/cs.axis_steps_per_unit[Y_AXIS]);
// LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("Y")));
}
if(endstop_z_hit) {
SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/cs.axis_steps_per_unit[Z_AXIS]);
// LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT),PSTR("Z")));
}
SERIAL_ECHOLN("");
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
if (abort_on_endstop_hit)
{
card.sdprinting = false;
card.closefile();
quickStop();
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
}
#endif
}
}
bool endstops_hit_on_purpose()
{
bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
return hit;
}
bool endstop_z_hit_on_purpose()
{
bool hit = endstop_z_hit;
endstop_z_hit=false;
return hit;
}
bool enable_endstops(bool check)
{
bool old = check_endstops;
check_endstops = check;
return old;
}
bool enable_z_endstop(bool check)
{
bool old = check_z_endstop;
check_z_endstop = check;
endstop_z_hit = false;
return old;
}
void invert_z_endstop(bool endstop_invert)
{
z_endstop_invert = endstop_invert;
}
// __________________________
// /| |\ _________________ ^
// / | | \ /| |\ |
// / | | \ / | | \ s
// / | | | | | \ p
// / | | | | | \ e
// +-----+------------------------+---+--+---------------+----+ e
// | BLOCK 1 | BLOCK 2 | d
//
// time ----->
//
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect) {
#ifdef DEBUG_STACK_MONITOR
uint16_t sp = SPL + 256 * SPH;
if (sp < SP_min) SP_min = sp;
#endif //DEBUG_STACK_MONITOR
#ifdef LIN_ADVANCE
advance_isr_scheduler();
#else
isr();
#endif
// Don't run the ISR faster than possible
// Is there a 8us time left before the next interrupt triggers?
if (OCR1A < TCNT1 + 16) {
#ifdef DEBUG_STEPPER_TIMER_MISSED
// Verify whether the next planned timer interrupt has not been missed already.
// This debugging test takes < 1.125us
// This skews the profiling slightly as the fastest stepper timer
// interrupt repeats at a 100us rate (10kHz).
if (OCR1A + 40 < TCNT1) {
// The interrupt was delayed by more than 20us (which is 1/5th of the 10kHz ISR repeat rate).
// Give a warning.
stepper_timer_overflow_state = true;
stepper_timer_overflow_last = TCNT1 - OCR1A;
// Beep, the beeper will be cleared at the stepper_timer_overflow() called from the main thread.
WRITE(BEEPER, HIGH);
}
#endif
// Fix the next interrupt to be executed after 8us from now.
OCR1A = TCNT1 + 16;
}
}
uint8_t last_dir_bits = 0;
#ifdef BACKLASH_X
uint8_t st_backlash_x = 0;
#endif //BACKLASH_X
#ifdef BACKLASH_Y
uint8_t st_backlash_y = 0;
#endif //BACKLASH_Y
FORCE_INLINE void stepper_next_block()
{
// Anything in the buffer?
//WRITE_NC(LOGIC_ANALYZER_CH2, true);
current_block = plan_get_current_block();
if (current_block != NULL) {
#ifdef BACKLASH_X
if (current_block->steps_x.wide)
{ //X-axis movement
if ((current_block->direction_bits ^ last_dir_bits) & 1)
{
printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 1)?st_backlash_x:-st_backlash_x);
if (current_block->direction_bits & 1)
WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
else
WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
delayMicroseconds(STEPPER_SET_DIR_DELAY);
for (uint8_t i = 0; i < st_backlash_x; i++)
{
STEP_NC_HI(X_AXIS);
STEPPER_MINIMUM_DELAY;
STEP_NC_LO(X_AXIS);
_delay_us(900); // hard-coded jerk! *bad*
}
}
last_dir_bits &= ~1;
last_dir_bits |= current_block->direction_bits & 1;
}
#endif
#ifdef BACKLASH_Y
if (current_block->steps_y.wide)
{ //Y-axis movement
if ((current_block->direction_bits ^ last_dir_bits) & 2)
{
printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 2)?st_backlash_y:-st_backlash_y);
if (current_block->direction_bits & 2)
WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
else
WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
delayMicroseconds(STEPPER_SET_DIR_DELAY);
for (uint8_t i = 0; i < st_backlash_y; i++)
{
STEP_NC_HI(Y_AXIS);
STEPPER_MINIMUM_DELAY;
STEP_NC_LO(Y_AXIS);
_delay_us(900); // hard-coded jerk! *bad*
}
}
last_dir_bits &= ~2;
last_dir_bits |= current_block->direction_bits & 2;
}
#endif
// The busy flag is set by the plan_get_current_block() call.
// current_block->busy = true;
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
deceleration_time = 0;
// Set the nominal step loops to zero to indicate, that the timer value is not known yet.
// That means, delay the initialization of nominal step rate and step loops until the steady
// state is reached.
step_loops_nominal = 0;
acc_step_rate = uint16_t(current_block->initial_rate);
acceleration_time = calc_timer(acc_step_rate, step_loops);
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead) {
target_adv_steps = current_block->max_adv_steps;
}
e_steps = 0;
nextAdvanceISR = ADV_NEVER;
LA_phase = -1;
#endif
if (current_block->flag & BLOCK_FLAG_E_RESET) {
count_position[E_AXIS] = 0;
}
if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
counter_x.lo = -(current_block->step_event_count.lo >> 1);
counter_y.lo = counter_x.lo;
counter_z.lo = counter_x.lo;
counter_e.lo = counter_x.lo;
#ifdef LIN_ADVANCE
e_extruding = current_block->steps_e.lo != 0;
#endif
} else {
counter_x.wide = -(current_block->step_event_count.wide >> 1);
counter_y.wide = counter_x.wide;
counter_z.wide = counter_x.wide;
counter_e.wide = counter_x.wide;
#ifdef LIN_ADVANCE
e_extruding = current_block->steps_e.wide != 0;
#endif
}
step_events_completed.wide = 0;
// Set directions.
out_bits = current_block->direction_bits;
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if((out_bits & (1<<X_AXIS))!=0){
WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
count_direction[X_AXIS]=-1;
} else {
WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
count_direction[X_AXIS]=1;
}
if((out_bits & (1<<Y_AXIS))!=0){
WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
count_direction[Y_AXIS]=-1;
} else {
WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
count_direction[Y_AXIS]=1;
}
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
count_direction[Z_AXIS]=-1;
} else { // +direction
WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
count_direction[Z_AXIS]=1;
}
if ((out_bits & (1 << E_AXIS)) != 0) { // -direction
#ifndef LIN_ADVANCE
WRITE(E0_DIR_PIN,
#ifdef SNMM
(mmu_extruder == 0 || mmu_extruder == 2) ? !INVERT_E0_DIR :
#endif // SNMM
INVERT_E0_DIR);
#endif /* LIN_ADVANCE */
count_direction[E_AXIS] = -1;
} else { // +direction
#ifndef LIN_ADVANCE
WRITE(E0_DIR_PIN,
#ifdef SNMM
(mmu_extruder == 0 || mmu_extruder == 2) ? INVERT_E0_DIR :
#endif // SNMM
!INVERT_E0_DIR);
#endif /* LIN_ADVANCE */
count_direction[E_AXIS] = 1;
}
#if defined(FILAMENT_SENSOR) && defined(PAT9125)
fsensor_st_block_begin(count_direction[E_AXIS] < 0);
#endif //FILAMENT_SENSOR
}
else {
_NEXT_ISR(2000); // 1kHz.
#ifdef LIN_ADVANCE
// reset LA state when there's no block
nextAdvanceISR = ADV_NEVER;
e_steps = 0;
// incrementally lose pressure to give a chance for
// a new LA block to be scheduled and recover
if(current_adv_steps)
--current_adv_steps;
#endif
}
//WRITE_NC(LOGIC_ANALYZER_CH2, false);
}
// Check limit switches.
FORCE_INLINE void stepper_check_endstops()
{
if(check_endstops)
{
#ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
#else
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) //-X occurs for -A and -B
#endif
{
#if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
#else
// Normal homing
x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
#endif
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_x_min_endstop = x_min_endstop;
#endif
} else { // +direction
#if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
#else
// Normal homing
x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
#endif
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_x_max_endstop = x_max_endstop;
#endif
}
#ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
#else
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) // -Y occurs for -A and +B
#endif
{
#if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
#else
// Normal homing
y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
#endif
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_y_min_endstop = y_min_endstop;
#endif
} else { // +direction
#if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);
#else
// Normal homing
y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
#endif
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_y_max_endstop = y_max_endstop;
#endif
}
if ((out_bits & (1<<Z_AXIS)) != 0) // -direction
{
#if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
if (! check_z_endstop) {
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
#ifdef TMC2130_STEALTH_Z
if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
else
#endif //TMC2130_STEALTH_Z
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
#else
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_z_min_endstop = z_min_endstop;
}
#endif
} else { // +direction
#if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
#ifdef TMC2130_STEALTH_Z
if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
z_max_endstop = false;
else
#endif //TMC2130_STEALTH_Z
z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
#else
z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_z_max_endstop = z_max_endstop;
#endif
}
}
// Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
#if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
if (check_z_endstop) {
// Check the Z min end-stop no matter what.
// Good for searching for the center of an induction target.
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
#ifdef TMC2130_STEALTH_Z
if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
else
#endif //TMC2130_STEALTH_Z
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
#else
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
if(z_min_endstop && old_z_min_endstop) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_z_min_endstop = z_min_endstop;
}
#endif
}
FORCE_INLINE void stepper_tick_lowres()
{
for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
MSerial.checkRx(); // Check for serial chars.
// Step in X axis
counter_x.lo += current_block->steps_x.lo;
if (counter_x.lo > 0) {
STEP_NC_HI(X_AXIS);
#ifdef DEBUG_XSTEP_DUP_PIN
STEP_NC_HI(X_DUP_AXIS);
#endif //DEBUG_XSTEP_DUP_PIN
counter_x.lo -= current_block->step_event_count.lo;
count_position[X_AXIS]+=count_direction[X_AXIS];
STEP_NC_LO(X_AXIS);
#ifdef DEBUG_XSTEP_DUP_PIN
STEP_NC_LO(X_DUP_AXIS);
#endif //DEBUG_XSTEP_DUP_PIN
}
// Step in Y axis
counter_y.lo += current_block->steps_y.lo;
if (counter_y.lo > 0) {
STEP_NC_HI(Y_AXIS);
#ifdef DEBUG_YSTEP_DUP_PIN
STEP_NC_HI(Y_DUP_AXIS);
#endif //DEBUG_YSTEP_DUP_PIN
counter_y.lo -= current_block->step_event_count.lo;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
STEP_NC_LO(Y_AXIS);
#ifdef DEBUG_YSTEP_DUP_PIN
STEP_NC_LO(Y_DUP_AXIS);
#endif //DEBUG_YSTEP_DUP_PIN
}
// Step in Z axis
counter_z.lo += current_block->steps_z.lo;
if (counter_z.lo > 0) {
STEP_NC_HI(Z_AXIS);
counter_z.lo -= current_block->step_event_count.lo;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
STEP_NC_LO(Z_AXIS);
}
// Step in E axis
counter_e.lo += current_block->steps_e.lo;
if (counter_e.lo > 0) {
#ifndef LIN_ADVANCE
STEP_NC_HI(E_AXIS);
#endif /* LIN_ADVANCE */
counter_e.lo -= current_block->step_event_count.lo;
count_position[E_AXIS] += count_direction[E_AXIS];
#ifdef LIN_ADVANCE
e_steps += count_direction[E_AXIS];
#else
#ifdef FILAMENT_SENSOR
fsensor_counter += count_direction[E_AXIS];
#endif //FILAMENT_SENSOR
STEP_NC_LO(E_AXIS);
#endif
}
if(++ step_events_completed.lo >= current_block->step_event_count.lo)
break;
}
}
FORCE_INLINE void stepper_tick_highres()
{
for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
MSerial.checkRx(); // Check for serial chars.
// Step in X axis
counter_x.wide += current_block->steps_x.wide;
if (counter_x.wide > 0) {
STEP_NC_HI(X_AXIS);
#ifdef DEBUG_XSTEP_DUP_PIN
STEP_NC_HI(X_DUP_AXIS);
#endif //DEBUG_XSTEP_DUP_PIN
counter_x.wide -= current_block->step_event_count.wide;
count_position[X_AXIS]+=count_direction[X_AXIS];
STEP_NC_LO(X_AXIS);
#ifdef DEBUG_XSTEP_DUP_PIN
STEP_NC_LO(X_DUP_AXIS);
#endif //DEBUG_XSTEP_DUP_PIN
}
// Step in Y axis
counter_y.wide += current_block->steps_y.wide;
if (counter_y.wide > 0) {
STEP_NC_HI(Y_AXIS);
#ifdef DEBUG_YSTEP_DUP_PIN
STEP_NC_HI(Y_DUP_AXIS);
#endif //DEBUG_YSTEP_DUP_PIN
counter_y.wide -= current_block->step_event_count.wide;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
STEP_NC_LO(Y_AXIS);
#ifdef DEBUG_YSTEP_DUP_PIN
STEP_NC_LO(Y_DUP_AXIS);
#endif //DEBUG_YSTEP_DUP_PIN
}
// Step in Z axis
counter_z.wide += current_block->steps_z.wide;
if (counter_z.wide > 0) {
STEP_NC_HI(Z_AXIS);
counter_z.wide -= current_block->step_event_count.wide;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
STEP_NC_LO(Z_AXIS);
}
// Step in E axis
counter_e.wide += current_block->steps_e.wide;
if (counter_e.wide > 0) {
#ifndef LIN_ADVANCE
STEP_NC_HI(E_AXIS);
#endif /* LIN_ADVANCE */
counter_e.wide -= current_block->step_event_count.wide;
count_position[E_AXIS]+=count_direction[E_AXIS];
#ifdef LIN_ADVANCE
e_steps += count_direction[E_AXIS];
#else
#ifdef FILAMENT_SENSOR
fsensor_counter += count_direction[E_AXIS];
#endif //FILAMENT_SENSOR
STEP_NC_LO(E_AXIS);
#endif
}
if(++ step_events_completed.wide >= current_block->step_event_count.wide)
break;
}
}
#ifdef LIN_ADVANCE
// @wavexx: fast uint16_t division for small dividends<5
// q/3 based on "Hacker's delight" formula
FORCE_INLINE uint16_t fastdiv(uint16_t q, uint8_t d)
{
if(d != 3) return q >> (d / 2);
else return ((uint32_t)0xAAAB * q) >> 17;
}
FORCE_INLINE void advance_spread(uint16_t timer)
{
eISR_Err += timer;
uint8_t ticks = 0;
while(eISR_Err >= current_block->advance_rate)
{
++ticks;
eISR_Err -= current_block->advance_rate;
}
if(!ticks)
{
eISR_Rate = timer;
nextAdvanceISR = timer;
return;
}
if (ticks <= 3)
eISR_Rate = fastdiv(timer, ticks + 1);
else
{
// >4 ticks are still possible on slow moves
eISR_Rate = timer / (ticks + 1);
}
nextAdvanceISR = eISR_Rate;
}
#endif
FORCE_INLINE void isr() {
//WRITE_NC(LOGIC_ANALYZER_CH0, true);
//if (UVLO) uvlo();
// If there is no current block, attempt to pop one from the buffer
if (current_block == NULL)
stepper_next_block();
if (current_block != NULL)
{
stepper_check_endstops();
if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
stepper_tick_lowres();
else
stepper_tick_highres();
#ifdef LIN_ADVANCE
if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
uint8_t la_state = 0;
#endif
// Calculate new timer value
// 13.38-14.63us for steady state,
// 25.12us for acceleration / deceleration.
{
//WRITE_NC(LOGIC_ANALYZER_CH1, true);
if (step_events_completed.wide <= current_block->accelerate_until) {
// v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += uint16_t(current_block->initial_rate);
// upper limit
if(acc_step_rate > uint16_t(current_block->nominal_rate))
acc_step_rate = current_block->nominal_rate;
// step_rate to timer interval
uint16_t timer = calc_timer(acc_step_rate, step_loops);
_NEXT_ISR(timer);
acceleration_time += timer;
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead) {
if (step_events_completed.wide <= (unsigned long int)step_loops) {
la_state = ADV_INIT | ADV_ACC_VARY;
if (e_extruding && current_adv_steps > target_adv_steps)
target_adv_steps = current_adv_steps;
}
}
#endif
}
else if (step_events_completed.wide > current_block->decelerate_after) {
uint16_t step_rate;
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
if (step_rate > acc_step_rate) { // Check step_rate stays positive
step_rate = uint16_t(current_block->final_rate);
}
else {
step_rate = acc_step_rate - step_rate; // Decelerate from acceleration end point.
// lower limit
if (step_rate < current_block->final_rate)
step_rate = uint16_t(current_block->final_rate);
}
// Step_rate to timer interval.
uint16_t timer = calc_timer(step_rate, step_loops);
_NEXT_ISR(timer);
deceleration_time += timer;
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead) {
if (step_events_completed.wide <= current_block->decelerate_after + step_loops) {
target_adv_steps = current_block->final_adv_steps;
la_state = ADV_INIT | ADV_ACC_VARY;
if (e_extruding && current_adv_steps < target_adv_steps)
target_adv_steps = current_adv_steps;
}
}
#endif
}
else {
if (! step_loops_nominal) {
// Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower
// the initial interrupt blocking.
OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate), step_loops);
step_loops_nominal = step_loops;
#ifdef LIN_ADVANCE
if(current_block->use_advance_lead) {
// Due to E-jerk, there can be discontinuities in pressure state where an
// acceleration or deceleration can be skipped or joined with the previous block.
// If LA was not previously active, re-check the pressure level
la_state = ADV_INIT;
if (e_extruding)
target_adv_steps = current_adv_steps;
}
#endif
}
_NEXT_ISR(OCR1A_nominal);
}
//WRITE_NC(LOGIC_ANALYZER_CH1, false);
}
#ifdef LIN_ADVANCE
// avoid multiple instances or function calls to advance_spread
if (la_state & ADV_INIT) {
LA_phase = -1;
if (current_adv_steps == target_adv_steps) {
// nothing to be done in this phase, cancel any pending eisr
la_state = 0;
nextAdvanceISR = ADV_NEVER;
}
else {
// reset error and iterations per loop for this phase
eISR_Err = current_block->advance_rate;
e_step_loops = current_block->advance_step_loops;
if ((la_state & ADV_ACC_VARY) && e_extruding && (current_adv_steps > target_adv_steps)) {
// LA could reverse the direction of extrusion in this phase
eISR_Err += current_block->advance_rate;
LA_phase = 0;
}
}
}
if (la_state & ADV_INIT || nextAdvanceISR != ADV_NEVER) {
// update timers & phase for the next iteration
advance_spread(main_Rate);
if (LA_phase >= 0) {
if (step_loops == e_step_loops)
LA_phase = (current_block->advance_rate < main_Rate);
else {
// avoid overflow through division. warning: we need to _guarantee_ step_loops
// and e_step_loops are <= 4 due to fastdiv's limit
auto adv_rate_n = fastdiv(current_block->advance_rate, step_loops);
auto main_rate_n = fastdiv(main_Rate, e_step_loops);
LA_phase = (adv_rate_n < main_rate_n);
}
}
}
// Check for serial chars. This executes roughtly inbetween 50-60% of the total runtime of the
// entire isr, making this spot a much better choice than checking during esteps
MSerial.checkRx();
#endif
// If current block is finished, reset pointer
if (step_events_completed.wide >= current_block->step_event_count.wide) {
#if !defined(LIN_ADVANCE) && defined(FILAMENT_SENSOR)
fsensor_st_block_chunk(fsensor_counter);
fsensor_counter = 0;
#endif //FILAMENT_SENSOR
current_block = NULL;
plan_discard_current_block();
}
#if !defined(LIN_ADVANCE) && defined(FILAMENT_SENSOR)
else if ((abs(fsensor_counter) >= fsensor_chunk_len))
{
fsensor_st_block_chunk(fsensor_counter);
fsensor_counter = 0;
}
#endif //FILAMENT_SENSOR
}
#ifdef TMC2130
tmc2130_st_isr();
#endif //TMC2130
//WRITE_NC(LOGIC_ANALYZER_CH0, false);
}
#ifdef LIN_ADVANCE
// Timer interrupt for E. e_steps is set in the main routine.
FORCE_INLINE void advance_isr() {
if (current_adv_steps > target_adv_steps) {
// decompression
if (e_step_loops != 1) {
uint16_t d_steps = current_adv_steps - target_adv_steps;
if (d_steps < e_step_loops)
e_step_loops = d_steps;
}
e_steps -= e_step_loops;
if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
current_adv_steps -= e_step_loops;
}
else if (current_adv_steps < target_adv_steps) {
// compression
if (e_step_loops != 1) {
uint16_t d_steps = target_adv_steps - current_adv_steps;
if (d_steps < e_step_loops)
e_step_loops = d_steps;
}
e_steps += e_step_loops;
if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
current_adv_steps += e_step_loops;
}
if (current_adv_steps == target_adv_steps) {
// advance steps completed
nextAdvanceISR = ADV_NEVER;
}
else {
// schedule another tick
nextAdvanceISR = eISR_Rate;
}
}
FORCE_INLINE void advance_isr_scheduler() {
// Integrate the final timer value, accounting for scheduling adjustments
if(nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
{
if(nextAdvanceISR > OCR1A)
nextAdvanceISR -= OCR1A;
else
nextAdvanceISR = 0;
}
if(nextMainISR > OCR1A)
nextMainISR -= OCR1A;
else
nextMainISR = 0;
// Run main stepping ISR if flagged
if (!nextMainISR)
{
#ifdef LA_DEBUG_LOGIC
WRITE_NC(LOGIC_ANALYZER_CH0, true);
#endif
isr();
#ifdef LA_DEBUG_LOGIC
WRITE_NC(LOGIC_ANALYZER_CH0, false);
#endif
}
// Run the next advance isr if triggered
bool eisr = !nextAdvanceISR;
if (eisr)
{
#ifdef LA_DEBUG_LOGIC
WRITE_NC(LOGIC_ANALYZER_CH1, true);
#endif
advance_isr();
#ifdef LA_DEBUG_LOGIC
WRITE_NC(LOGIC_ANALYZER_CH1, false);
#endif
}
// Tick E steps if any
if (e_steps && (LA_phase < 0 || LA_phase == eisr)) {
uint8_t max_ticks = (eisr? e_step_loops: step_loops);
max_ticks = min(abs(e_steps), max_ticks);
bool rev = (e_steps < 0);
do
{
STEP_NC_HI(E_AXIS);
e_steps += (rev? 1: -1);
STEP_NC_LO(E_AXIS);
#if defined(FILAMENT_SENSOR) && defined(PAT9125)
fsensor_counter += (rev? -1: 1);
#endif
}
while(--max_ticks);
#if defined(FILAMENT_SENSOR) && defined(PAT9125)
if (abs(fsensor_counter) >= fsensor_chunk_len)
{
fsensor_st_block_chunk(fsensor_counter);
fsensor_counter = 0;
}
#endif
}
// Schedule the next closest tick, ignoring advance if scheduled too
// soon in order to avoid skewing the regular stepper acceleration
if (nextAdvanceISR != ADV_NEVER && (nextAdvanceISR + 40) < nextMainISR)
OCR1A = nextAdvanceISR;
else
OCR1A = nextMainISR;
}
#endif // LIN_ADVANCE
void st_init()
{
#ifdef TMC2130
tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
#endif //TMC2130
st_current_init(); //Initialize Digipot Motor Current
microstep_init(); //Initialize Microstepping Pins
//Initialize Dir Pins
#if defined(X_DIR_PIN) && X_DIR_PIN > -1
SET_OUTPUT(X_DIR_PIN);
#endif
#if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
SET_OUTPUT(X2_DIR_PIN);
#endif
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
SET_OUTPUT(Y_DIR_PIN);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
SET_OUTPUT(Y2_DIR_PIN);
#endif
#endif
#if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
SET_OUTPUT(Z_DIR_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
SET_OUTPUT(Z2_DIR_PIN);
#endif
#endif
#if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
SET_OUTPUT(E0_DIR_PIN);
#endif
#if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
SET_OUTPUT(E1_DIR_PIN);
#endif
#if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
SET_OUTPUT(E2_DIR_PIN);
#endif
//Initialize Enable Pins - steppers default to disabled.
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
SET_OUTPUT(X_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
#endif
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
SET_OUTPUT(X2_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
#endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
SET_OUTPUT(Y_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
SET_OUTPUT(Y2_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
#endif
#endif
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
SET_OUTPUT(Z_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
SET_OUTPUT(Z2_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
#endif
#endif
#if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
SET_OUTPUT(E0_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
#endif
#if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
SET_OUTPUT(E1_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
#endif
#if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
SET_OUTPUT(E2_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
#endif
//endstops and pullups
#ifdef TMC2130_SG_HOMING
SET_INPUT(X_TMC2130_DIAG);
WRITE(X_TMC2130_DIAG,HIGH);
SET_INPUT(Y_TMC2130_DIAG);
WRITE(Y_TMC2130_DIAG,HIGH);
SET_INPUT(Z_TMC2130_DIAG);
WRITE(Z_TMC2130_DIAG,HIGH);
SET_INPUT(E0_TMC2130_DIAG);
WRITE(E0_TMC2130_DIAG,HIGH);
#endif
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
#ifdef ENDSTOPPULLUP_XMIN
WRITE(X_MIN_PIN,HIGH);
#endif
#endif
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
#ifdef ENDSTOPPULLUP_YMIN
WRITE(Y_MIN_PIN,HIGH);
#endif
#endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
#ifdef ENDSTOPPULLUP_ZMIN
WRITE(Z_MIN_PIN,HIGH);
#endif
#endif
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
#ifdef ENDSTOPPULLUP_XMAX
WRITE(X_MAX_PIN,HIGH);
#endif
#endif
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
#ifdef ENDSTOPPULLUP_YMAX
WRITE(Y_MAX_PIN,HIGH);
#endif
#endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
#ifdef ENDSTOPPULLUP_ZMAX
WRITE(Z_MAX_PIN,HIGH);
#endif
#endif
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
SET_INPUT(TACH_0);
#ifdef TACH0PULLUP
WRITE(TACH_0, HIGH);
#endif
#endif
//Initialize Step Pins
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
SET_OUTPUT(X_STEP_PIN);
WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);
WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
disable_x();
#endif
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
SET_OUTPUT(X2_STEP_PIN);
WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
disable_x();
#endif
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN);
WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);
WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
SET_OUTPUT(Y2_STEP_PIN);
WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
#endif
disable_y();
#endif
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
SET_OUTPUT(Z_STEP_PIN);
WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
SET_OUTPUT(Z2_STEP_PIN);
WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
#endif
#ifdef PSU_Delta
init_force_z();
#endif // PSU_Delta
disable_z();
#endif
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
SET_OUTPUT(E0_STEP_PIN);
WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
disable_e0();
#endif
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
SET_OUTPUT(E1_STEP_PIN);
WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
disable_e1();
#endif
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
SET_OUTPUT(E2_STEP_PIN);
WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
disable_e2();
#endif
// waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13);
TCCR1B |= (1<<WGM12);
TCCR1A &= ~(1<<WGM11);
TCCR1A &= ~(1<<WGM10);
// output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0);
TCCR1A &= ~(3<<COM1B0);
// Set the timer pre-scaler
// Generally we use a divider of 8, resulting in a 2MHz timer
// frequency on a 16MHz MCU. If you are going to change this, be
// sure to regenerate speed_lookuptable.h with
// create_speed_lookuptable.py
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
// Plan the first interrupt after 8ms from now.
OCR1A = 0x4000;
TCNT1 = 0;
#ifdef LIN_ADVANCE
#ifdef LA_DEBUG_LOGIC
LOGIC_ANALYZER_CH0_ENABLE;
LOGIC_ANALYZER_CH1_ENABLE;
WRITE_NC(LOGIC_ANALYZER_CH0, false);
WRITE_NC(LOGIC_ANALYZER_CH1, false);
#endif
// Initialize state for the linear advance scheduler
nextMainISR = 0;
nextAdvanceISR = ADV_NEVER;
main_Rate = ADV_NEVER;
current_adv_steps = 0;
#endif
enable_endstops(true); // Start with endstops active. After homing they can be disabled
ENABLE_STEPPER_DRIVER_INTERRUPT();
sei();
}
void st_reset_timer()
{
// Clear a possible pending interrupt on OCR1A overflow.
TIFR1 |= 1 << OCF1A;
// Reset the counter.
TCNT1 = 0;
// Wake up after 1ms from now.
OCR1A = 2000;
#ifdef LIN_ADVANCE
nextMainISR = 0;
if(nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
nextAdvanceISR = 0;
#endif
}
// Block until all buffered steps are executed
void st_synchronize()
{
while(blocks_queued())
{
#ifdef TMC2130
manage_heater();
// Vojtech: Don't disable motors inside the planner!
if (!tmc2130_update_sg())
{
manage_inactivity(true);
lcd_update(0);
}
#else //TMC2130
manage_heater();
// Vojtech: Don't disable motors inside the planner!
manage_inactivity(true);
lcd_update(0);
#endif //TMC2130
}
}
void st_set_position(const long &x, const long &y, const long &z, const long &e)
{
CRITICAL_SECTION_START;
// Copy 4x4B.
// This block locks the interrupts globally for 4.56 us,
// which corresponds to a maximum repeat frequency of 219.18 kHz.
// This blocking is safe in the context of a 10kHz stepper driver interrupt
// or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
count_position[X_AXIS] = x;
count_position[Y_AXIS] = y;
count_position[Z_AXIS] = z;
count_position[E_AXIS] = e;
CRITICAL_SECTION_END;
}
void st_set_e_position(const long &e)
{
CRITICAL_SECTION_START;
count_position[E_AXIS] = e;
CRITICAL_SECTION_END;
}
long st_get_position(uint8_t axis)
{
long count_pos;
CRITICAL_SECTION_START;
count_pos = count_position[axis];
CRITICAL_SECTION_END;
return count_pos;
}
void st_get_position_xy(long &x, long &y)
{
CRITICAL_SECTION_START;
x = count_position[X_AXIS];
y = count_position[Y_AXIS];
CRITICAL_SECTION_END;
}
float st_get_position_mm(uint8_t axis)
{
float steper_position_in_steps = st_get_position(axis);
return steper_position_in_steps / cs.axis_steps_per_unit[axis];
}
void quickStop()
{
DISABLE_STEPPER_DRIVER_INTERRUPT();
while (blocks_queued()) plan_discard_current_block();
current_block = NULL;
#ifdef LIN_ADVANCE
nextAdvanceISR = ADV_NEVER;
current_adv_steps = 0;
#endif
st_reset_timer();
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
#ifdef BABYSTEPPING
void babystep(const uint8_t axis,const bool direction)
{
// MUST ONLY BE CALLED BY A ISR as stepper pins are manipulated directly.
// note: when switching direction no delay is inserted at the end when the
// original is restored. We assume enough time passes as the function
// returns and the stepper is manipulated again (to avoid dead times)
switch(axis)
{
case X_AXIS:
{
enable_x();
uint8_t old_x_dir_pin = READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
uint8_t new_x_dir_pin = (INVERT_X_DIR)^direction;
//setup new step
if (new_x_dir_pin != old_x_dir_pin) {
WRITE_NC(X_DIR_PIN, new_x_dir_pin);
delayMicroseconds(STEPPER_SET_DIR_DELAY);
}
//perform step
STEP_NC_HI(X_AXIS);
#ifdef DEBUG_XSTEP_DUP_PIN
STEP_NC_HI(X_DUP_AXIS);
#endif
STEPPER_MINIMUM_DELAY;
STEP_NC_LO(X_AXIS);
#ifdef DEBUG_XSTEP_DUP_PIN
STEP_NC_LO(X_DUP_AXIS);
#endif
//get old pin state back.
WRITE_NC(X_DIR_PIN, old_x_dir_pin);
}
break;
case Y_AXIS:
{
enable_y();
uint8_t old_y_dir_pin = READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
uint8_t new_y_dir_pin = (INVERT_Y_DIR)^direction;
//setup new step
if (new_y_dir_pin != old_y_dir_pin) {
WRITE_NC(Y_DIR_PIN, new_y_dir_pin);
delayMicroseconds(STEPPER_SET_DIR_DELAY);
}
//perform step
STEP_NC_HI(Y_AXIS);
#ifdef DEBUG_YSTEP_DUP_PIN
STEP_NC_HI(Y_DUP_AXIS);
#endif
STEPPER_MINIMUM_DELAY;
STEP_NC_LO(Y_AXIS);
#ifdef DEBUG_YSTEP_DUP_PIN
STEP_NC_LO(Y_DUP_AXIS);
#endif
//get old pin state back.
WRITE_NC(Y_DIR_PIN, old_y_dir_pin);
}
break;
case Z_AXIS:
{
enable_z();
uint8_t old_z_dir_pin = READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
uint8_t new_z_dir_pin = (INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z;
//setup new step
if (new_z_dir_pin != old_z_dir_pin) {
WRITE_NC(Z_DIR_PIN, new_z_dir_pin);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE_NC(Z2_DIR_PIN, new_z_dir_pin);
#endif
delayMicroseconds(STEPPER_SET_DIR_DELAY);
}
//perform step
STEP_NC_HI(Z_AXIS);
#ifdef Z_DUAL_STEPPER_DRIVERS
STEP_NC_HI(Z2_AXIS);
#endif
STEPPER_MINIMUM_DELAY;
STEP_NC_LO(Z_AXIS);
#ifdef Z_DUAL_STEPPER_DRIVERS
STEP_NC_LO(Z2_AXIS);
#endif
//get old pin state back.
if (new_z_dir_pin != old_z_dir_pin) {
WRITE_NC(Z_DIR_PIN, old_z_dir_pin);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE_NC(Z2_DIR_PIN, old_z_dir_pin);
#endif
}
}
break;
default: break;
}
}
#endif //BABYSTEPPING
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
{
digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
SPI.transfer(address); // send in the address and value via SPI:
SPI.transfer(value);
digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
//_delay(10);
}
#endif
void st_current_init() //Initialize Digipot Motor Current
{
#ifdef MOTOR_CURRENT_PWM_XY_PIN
uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
SilentModeMenu = SilentMode;
SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
if((SilentMode == SILENT_MODE_OFF) || (farm_mode) ){
motor_current_setting[0] = motor_current_setting_loud[0];
motor_current_setting[1] = motor_current_setting_loud[1];
motor_current_setting[2] = motor_current_setting_loud[2];
}else{
motor_current_setting[0] = motor_current_setting_silent[0];
motor_current_setting[1] = motor_current_setting_silent[1];
motor_current_setting[2] = motor_current_setting_silent[2];
}
st_current_set(0, motor_current_setting[0]);
st_current_set(1, motor_current_setting[1]);
st_current_set(2, motor_current_setting[2]);
//Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
#endif
}
#ifdef MOTOR_CURRENT_PWM_XY_PIN
void st_current_set(uint8_t driver, int current)
{
if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
}
#else //MOTOR_CURRENT_PWM_XY_PIN
void st_current_set(uint8_t, int ){}
#endif //MOTOR_CURRENT_PWM_XY_PIN
void microstep_init()
{
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
SET_OUTPUT(E1_MS1_PIN);
SET_OUTPUT(E1_MS2_PIN);
#endif
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
const uint8_t microstep_modes[] = MICROSTEP_MODES;
SET_OUTPUT(X_MS1_PIN);
SET_OUTPUT(X_MS2_PIN);
SET_OUTPUT(Y_MS1_PIN);
SET_OUTPUT(Y_MS2_PIN);
SET_OUTPUT(Z_MS1_PIN);
SET_OUTPUT(Z_MS2_PIN);
SET_OUTPUT(E0_MS1_PIN);
SET_OUTPUT(E0_MS2_PIN);
for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
#endif
}
#ifndef TMC2130
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
{
if(ms1 > -1) switch(driver)
{
case 0: WRITE( X_MS1_PIN,ms1); break;
case 1: WRITE( Y_MS1_PIN,ms1); break;
case 2: WRITE( Z_MS1_PIN,ms1); break;
case 3: WRITE(E0_MS1_PIN,ms1); break;
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
case 4: WRITE(E1_MS1_PIN,ms1); break;
#endif
}
if(ms2 > -1) switch(driver)
{
case 0: WRITE( X_MS2_PIN,ms2); break;
case 1: WRITE( Y_MS2_PIN,ms2); break;
case 2: WRITE( Z_MS2_PIN,ms2); break;
case 3: WRITE(E0_MS2_PIN,ms2); break;
#if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
case 4: WRITE(E1_MS2_PIN,ms2); break;
#endif
}
}
void microstep_mode(uint8_t driver, uint8_t stepping_mode)
{
switch(stepping_mode)
{
case 1: microstep_ms(driver,MICROSTEP1); break;
case 2: microstep_ms(driver,MICROSTEP2); break;
case 4: microstep_ms(driver,MICROSTEP4); break;
case 8: microstep_ms(driver,MICROSTEP8); break;
case 16: microstep_ms(driver,MICROSTEP16); break;
}
}
void microstep_readings()
{
SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
SERIAL_PROTOCOLPGM("X: ");
SERIAL_PROTOCOL( READ(X_MS1_PIN));
SERIAL_PROTOCOLLN( READ(X_MS2_PIN));
SERIAL_PROTOCOLPGM("Y: ");
SERIAL_PROTOCOL( READ(Y_MS1_PIN));
SERIAL_PROTOCOLLN( READ(Y_MS2_PIN));
SERIAL_PROTOCOLPGM("Z: ");
SERIAL_PROTOCOL( READ(Z_MS1_PIN));
SERIAL_PROTOCOLLN( READ(Z_MS2_PIN));
SERIAL_PROTOCOLPGM("E0: ");
SERIAL_PROTOCOL( READ(E0_MS1_PIN));
SERIAL_PROTOCOLLN( READ(E0_MS2_PIN));
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
SERIAL_PROTOCOLPGM("E1: ");
SERIAL_PROTOCOL( READ(E1_MS1_PIN));
SERIAL_PROTOCOLLN( READ(E1_MS2_PIN));
#endif
}
#endif //TMC2130
#if defined(FILAMENT_SENSOR) && defined(PAT9125)
void st_reset_fsensor()
{
CRITICAL_SECTION_START;
fsensor_counter = 0;
CRITICAL_SECTION_END;
}
#endif //FILAMENT_SENSOR