6462 lines
219 KiB
C++
6462 lines
219 KiB
C++
/* -*- c++ -*- */
|
|
|
|
/*
|
|
Reprap firmware based on Sprinter and grbl.
|
|
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
This firmware is a mashup between Sprinter and grbl.
|
|
(https://github.com/kliment/Sprinter)
|
|
(https://github.com/simen/grbl/tree)
|
|
|
|
It has preliminary support for Matthew Roberts advance algorithm
|
|
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
|
*/
|
|
|
|
#include "Marlin.h"
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
#include "vector_3.h"
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
#include "qr_solve.h"
|
|
#endif
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
#include "mesh_bed_leveling.h"
|
|
#include "mesh_bed_calibration.h"
|
|
#endif
|
|
|
|
#include "ultralcd.h"
|
|
#include "Configuration_prusa.h"
|
|
#include "planner.h"
|
|
#include "stepper.h"
|
|
#include "temperature.h"
|
|
#include "motion_control.h"
|
|
#include "cardreader.h"
|
|
#include "watchdog.h"
|
|
#include "ConfigurationStore.h"
|
|
#include "language.h"
|
|
#include "pins_arduino.h"
|
|
#include "math.h"
|
|
#include "util.h"
|
|
|
|
|
|
#ifdef BLINKM
|
|
#include "BlinkM.h"
|
|
#include "Wire.h"
|
|
#endif
|
|
|
|
#ifdef ULTRALCD
|
|
#include "ultralcd.h"
|
|
#endif
|
|
|
|
#if NUM_SERVOS > 0
|
|
#include "Servo.h"
|
|
#endif
|
|
|
|
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
#include <SPI.h>
|
|
#endif
|
|
|
|
#define VERSION_STRING "1.0.2"
|
|
|
|
|
|
#include "ultralcd.h"
|
|
|
|
// Macros for bit masks
|
|
#define BIT(b) (1<<(b))
|
|
#define TEST(n,b) (((n)&BIT(b))!=0)
|
|
#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
|
|
|
|
|
|
// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
|
|
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
|
|
|
//Implemented Codes
|
|
//-------------------
|
|
|
|
// PRUSA CODES
|
|
// P F - Returns FW versions
|
|
// P R - Returns revision of printer
|
|
// P Y - Starts filament allignment process for multicolor
|
|
|
|
// G0 -> G1
|
|
// G1 - Coordinated Movement X Y Z E
|
|
// G2 - CW ARC
|
|
// G3 - CCW ARC
|
|
// G4 - Dwell S<seconds> or P<milliseconds>
|
|
// G10 - retract filament according to settings of M207
|
|
// G11 - retract recover filament according to settings of M208
|
|
// G28 - Home all Axis
|
|
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
|
|
// G30 - Single Z Probe, probes bed at current XY location.
|
|
// G31 - Dock sled (Z_PROBE_SLED only)
|
|
// G32 - Undock sled (Z_PROBE_SLED only)
|
|
// G80 - Automatic mesh bed leveling
|
|
// G81 - Print bed profile
|
|
// G90 - Use Absolute Coordinates
|
|
// G91 - Use Relative Coordinates
|
|
// G92 - Set current position to coordinates given
|
|
|
|
// M Codes
|
|
// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
|
|
// M1 - Same as M0
|
|
// M17 - Enable/Power all stepper motors
|
|
// M18 - Disable all stepper motors; same as M84
|
|
// M20 - List SD card
|
|
// M21 - Init SD card
|
|
// M22 - Release SD card
|
|
// M23 - Select SD file (M23 filename.g)
|
|
// M24 - Start/resume SD print
|
|
// M25 - Pause SD print
|
|
// M26 - Set SD position in bytes (M26 S12345)
|
|
// M27 - Report SD print status
|
|
// M28 - Start SD write (M28 filename.g)
|
|
// M29 - Stop SD write
|
|
// M30 - Delete file from SD (M30 filename.g)
|
|
// M31 - Output time since last M109 or SD card start to serial
|
|
// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
|
|
// syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
|
|
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
|
|
// The '#' is necessary when calling from within sd files, as it stops buffer prereading
|
|
// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
|
|
// M80 - Turn on Power Supply
|
|
// M81 - Turn off Power Supply
|
|
// M82 - Set E codes absolute (default)
|
|
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
|
|
// M84 - Disable steppers until next move,
|
|
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
|
|
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
// M92 - Set axis_steps_per_unit - same syntax as G92
|
|
// M104 - Set extruder target temp
|
|
// M105 - Read current temp
|
|
// M106 - Fan on
|
|
// M107 - Fan off
|
|
// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
|
|
// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
|
|
// IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
|
|
// M112 - Emergency stop
|
|
// M114 - Output current position to serial port
|
|
// M115 - Capabilities string
|
|
// M117 - display message
|
|
// M119 - Output Endstop status to serial port
|
|
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
|
|
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
|
|
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
|
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
|
// M140 - Set bed target temp
|
|
// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
|
|
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
|
// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
|
// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
|
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
|
|
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
|
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
|
|
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
|
|
// M206 - set additional homing offset
|
|
// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
|
|
// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
|
|
// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
// M220 S<factor in percent>- set speed factor override percentage
|
|
// M221 S<factor in percent>- set extrude factor override percentage
|
|
// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
|
// M240 - Trigger a camera to take a photograph
|
|
// M250 - Set LCD contrast C<contrast value> (value 0..63)
|
|
// M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
|
// M300 - Play beep sound S<frequency Hz> P<duration ms>
|
|
// M301 - Set PID parameters P I and D
|
|
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
|
|
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
|
|
// M304 - Set bed PID parameters P I and D
|
|
// M400 - Finish all moves
|
|
// M401 - Lower z-probe if present
|
|
// M402 - Raise z-probe if present
|
|
// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
|
|
// M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
|
|
// M406 - Turn off Filament Sensor extrusion control
|
|
// M407 - Displays measured filament diameter
|
|
// M500 - stores parameters in EEPROM
|
|
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
|
|
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
|
|
// M503 - print the current settings (from memory not from EEPROM)
|
|
// M509 - force language selection on next restart
|
|
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
|
|
// M907 - Set digital trimpot motor current using axis codes.
|
|
// M908 - Control digital trimpot directly.
|
|
// M350 - Set microstepping mode.
|
|
// M351 - Toggle MS1 MS2 pins directly.
|
|
|
|
// M928 - Start SD logging (M928 filename.g) - ended by M29
|
|
// M999 - Restart after being stopped by error
|
|
|
|
//Stepper Movement Variables
|
|
|
|
//===========================================================================
|
|
//=============================imported variables============================
|
|
//===========================================================================
|
|
|
|
|
|
//===========================================================================
|
|
//=============================public variables=============================
|
|
//===========================================================================
|
|
#ifdef SDSUPPORT
|
|
CardReader card;
|
|
#endif
|
|
|
|
unsigned long TimeSent = millis();
|
|
unsigned long TimeNow = millis();
|
|
unsigned long PingTime = millis();
|
|
union Data
|
|
{
|
|
byte b[2];
|
|
int value;
|
|
};
|
|
|
|
float homing_feedrate[] = HOMING_FEEDRATE;
|
|
// Currently only the extruder axis may be switched to a relative mode.
|
|
// Other axes are always absolute or relative based on the common relative_mode flag.
|
|
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
|
int feedmultiply=100; //100->1 200->2
|
|
int saved_feedmultiply;
|
|
int extrudemultiply=100; //100->1 200->2
|
|
int extruder_multiply[EXTRUDERS] = {100
|
|
#if EXTRUDERS > 1
|
|
, 100
|
|
#if EXTRUDERS > 2
|
|
, 100
|
|
#endif
|
|
#endif
|
|
};
|
|
|
|
bool is_usb_printing = false;
|
|
bool homing_flag = false;
|
|
|
|
bool temp_cal_active = false;
|
|
|
|
unsigned long kicktime = millis()+100000;
|
|
|
|
unsigned int usb_printing_counter;
|
|
|
|
int lcd_change_fil_state = 0;
|
|
|
|
int feedmultiplyBckp = 100;
|
|
float HotendTempBckp = 0;
|
|
int fanSpeedBckp = 0;
|
|
float pause_lastpos[4];
|
|
unsigned long pause_time = 0;
|
|
|
|
bool mesh_bed_leveling_flag = false;
|
|
|
|
unsigned char lang_selected = 0;
|
|
int8_t FarmMode = 0;
|
|
|
|
bool prusa_sd_card_upload = false;
|
|
|
|
unsigned int status_number = 0;
|
|
|
|
unsigned long total_filament_used;
|
|
unsigned int heating_status;
|
|
unsigned int heating_status_counter;
|
|
bool custom_message;
|
|
bool loading_flag = false;
|
|
unsigned int custom_message_type;
|
|
unsigned int custom_message_state;
|
|
|
|
bool volumetric_enabled = false;
|
|
float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
|
|
#if EXTRUDERS > 1
|
|
, DEFAULT_NOMINAL_FILAMENT_DIA
|
|
#if EXTRUDERS > 2
|
|
, DEFAULT_NOMINAL_FILAMENT_DIA
|
|
#endif
|
|
#endif
|
|
};
|
|
float volumetric_multiplier[EXTRUDERS] = {1.0
|
|
#if EXTRUDERS > 1
|
|
, 1.0
|
|
#if EXTRUDERS > 2
|
|
, 1.0
|
|
#endif
|
|
#endif
|
|
};
|
|
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
|
|
float add_homing[3]={0,0,0};
|
|
|
|
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
|
|
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
|
|
bool axis_known_position[3] = {false, false, false};
|
|
float zprobe_zoffset;
|
|
|
|
// Extruder offset
|
|
#if EXTRUDERS > 1
|
|
#define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
|
|
float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
|
|
#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
|
|
EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
|
|
#endif
|
|
};
|
|
#endif
|
|
|
|
uint8_t active_extruder = 0;
|
|
int fanSpeed=0;
|
|
|
|
#ifdef FWRETRACT
|
|
bool autoretract_enabled=false;
|
|
bool retracted[EXTRUDERS]={false
|
|
#if EXTRUDERS > 1
|
|
, false
|
|
#if EXTRUDERS > 2
|
|
, false
|
|
#endif
|
|
#endif
|
|
};
|
|
bool retracted_swap[EXTRUDERS]={false
|
|
#if EXTRUDERS > 1
|
|
, false
|
|
#if EXTRUDERS > 2
|
|
, false
|
|
#endif
|
|
#endif
|
|
};
|
|
|
|
float retract_length = RETRACT_LENGTH;
|
|
float retract_length_swap = RETRACT_LENGTH_SWAP;
|
|
float retract_feedrate = RETRACT_FEEDRATE;
|
|
float retract_zlift = RETRACT_ZLIFT;
|
|
float retract_recover_length = RETRACT_RECOVER_LENGTH;
|
|
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
|
|
float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
|
|
#endif
|
|
|
|
#ifdef ULTIPANEL
|
|
#ifdef PS_DEFAULT_OFF
|
|
bool powersupply = false;
|
|
#else
|
|
bool powersupply = true;
|
|
#endif
|
|
#endif
|
|
|
|
bool cancel_heatup = false ;
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
//Variables for Filament Sensor input
|
|
float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
|
|
bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
|
|
float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
|
|
signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
|
|
int delay_index1=0; //index into ring buffer
|
|
int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
|
|
float delay_dist=0; //delay distance counter
|
|
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
|
|
#endif
|
|
|
|
const char errormagic[] PROGMEM = "Error:";
|
|
const char echomagic[] PROGMEM = "echo:";
|
|
|
|
//===========================================================================
|
|
//=============================Private Variables=============================
|
|
//===========================================================================
|
|
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
|
float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
|
|
|
|
static float delta[3] = {0.0, 0.0, 0.0};
|
|
|
|
// For tracing an arc
|
|
static float offset[3] = {0.0, 0.0, 0.0};
|
|
static bool home_all_axis = true;
|
|
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
|
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
|
|
|
|
// Determines Absolute or Relative Coordinates.
|
|
// Also there is bool axis_relative_modes[] per axis flag.
|
|
static bool relative_mode = false;
|
|
|
|
// String circular buffer. Commands may be pushed to the buffer from both sides:
|
|
// Chained commands will be pushed to the front, interactive (from LCD menu)
|
|
// and printing commands (from serial line or from SD card) are pushed to the tail.
|
|
// First character of each entry indicates the type of the entry:
|
|
#define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
|
|
// Command in cmdbuffer was sent over USB.
|
|
#define CMDBUFFER_CURRENT_TYPE_USB 1
|
|
// Command in cmdbuffer was read from SDCARD.
|
|
#define CMDBUFFER_CURRENT_TYPE_SDCARD 2
|
|
// Command in cmdbuffer was generated by the UI.
|
|
#define CMDBUFFER_CURRENT_TYPE_UI 3
|
|
// Command in cmdbuffer was generated by another G-code.
|
|
#define CMDBUFFER_CURRENT_TYPE_CHAINED 4
|
|
|
|
// How much space to reserve for the chained commands
|
|
// of type CMDBUFFER_CURRENT_TYPE_CHAINED,
|
|
// which are pushed to the front of the queue?
|
|
// Maximum 5 commands of max length 20 + null terminator.
|
|
#define CMDBUFFER_RESERVE_FRONT (5*21)
|
|
// Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
|
|
static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
|
|
// Head of the circular buffer, where to read.
|
|
static int bufindr = 0;
|
|
// Tail of the buffer, where to write.
|
|
static int bufindw = 0;
|
|
// Number of lines in cmdbuffer.
|
|
static int buflen = 0;
|
|
// Flag for processing the current command inside the main Arduino loop().
|
|
// If a new command was pushed to the front of a command buffer while
|
|
// processing another command, this replaces the command on the top.
|
|
// Therefore don't remove the command from the queue in the loop() function.
|
|
static bool cmdbuffer_front_already_processed = false;
|
|
|
|
// Type of a command, which is to be executed right now.
|
|
#define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
|
|
// String of a command, which is to be executed right now.
|
|
#define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
|
|
|
|
// Enable debugging of the command buffer.
|
|
// Debugging information will be sent to serial line.
|
|
// #define CMDBUFFER_DEBUG
|
|
|
|
static int serial_count = 0; //index of character read from serial line
|
|
static boolean comment_mode = false;
|
|
static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
|
|
|
|
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
|
|
|
|
//static float tt = 0;
|
|
//static float bt = 0;
|
|
|
|
//Inactivity shutdown variables
|
|
static unsigned long previous_millis_cmd = 0;
|
|
unsigned long max_inactive_time = 0;
|
|
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
|
|
|
|
unsigned long starttime=0;
|
|
unsigned long stoptime=0;
|
|
unsigned long _usb_timer = 0;
|
|
|
|
static uint8_t tmp_extruder;
|
|
|
|
|
|
bool Stopped=false;
|
|
|
|
#if NUM_SERVOS > 0
|
|
Servo servos[NUM_SERVOS];
|
|
#endif
|
|
|
|
bool CooldownNoWait = true;
|
|
bool target_direction;
|
|
|
|
//Insert variables if CHDK is defined
|
|
#ifdef CHDK
|
|
unsigned long chdkHigh = 0;
|
|
boolean chdkActive = false;
|
|
#endif
|
|
|
|
//===========================================================================
|
|
//=============================Routines======================================
|
|
//===========================================================================
|
|
|
|
void get_arc_coordinates();
|
|
bool setTargetedHotend(int code);
|
|
|
|
void serial_echopair_P(const char *s_P, float v)
|
|
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char *s_P, double v)
|
|
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char *s_P, unsigned long v)
|
|
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
|
|
#ifdef SDSUPPORT
|
|
#include "SdFatUtil.h"
|
|
int freeMemory() { return SdFatUtil::FreeRam(); }
|
|
#else
|
|
extern "C" {
|
|
extern unsigned int __bss_end;
|
|
extern unsigned int __heap_start;
|
|
extern void *__brkval;
|
|
|
|
int freeMemory() {
|
|
int free_memory;
|
|
|
|
if ((int)__brkval == 0)
|
|
free_memory = ((int)&free_memory) - ((int)&__bss_end);
|
|
else
|
|
free_memory = ((int)&free_memory) - ((int)__brkval);
|
|
|
|
return free_memory;
|
|
}
|
|
}
|
|
#endif //!SDSUPPORT
|
|
|
|
// Pop the currently processed command from the queue.
|
|
// It is expected, that there is at least one command in the queue.
|
|
bool cmdqueue_pop_front()
|
|
{
|
|
if (buflen > 0) {
|
|
#ifdef CMDBUFFER_DEBUG
|
|
SERIAL_ECHOPGM("Dequeing ");
|
|
SERIAL_ECHO(cmdbuffer+bufindr+1);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("Old indices: buflen ");
|
|
SERIAL_ECHO(buflen);
|
|
SERIAL_ECHOPGM(", bufindr ");
|
|
SERIAL_ECHO(bufindr);
|
|
SERIAL_ECHOPGM(", bufindw ");
|
|
SERIAL_ECHO(bufindw);
|
|
SERIAL_ECHOPGM(", serial_count ");
|
|
SERIAL_ECHO(serial_count);
|
|
SERIAL_ECHOPGM(", bufsize ");
|
|
SERIAL_ECHO(sizeof(cmdbuffer));
|
|
SERIAL_ECHOLNPGM("");
|
|
#endif /* CMDBUFFER_DEBUG */
|
|
if (-- buflen == 0) {
|
|
// Empty buffer.
|
|
if (serial_count == 0)
|
|
// No serial communication is pending. Reset both pointers to zero.
|
|
bufindw = 0;
|
|
bufindr = bufindw;
|
|
} else {
|
|
// There is at least one ready line in the buffer.
|
|
// First skip the current command ID and iterate up to the end of the string.
|
|
for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
|
|
// Second, skip the end of string null character and iterate until a nonzero command ID is found.
|
|
for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
|
|
// If the end of the buffer was empty,
|
|
if (bufindr == sizeof(cmdbuffer)) {
|
|
// skip to the start and find the nonzero command.
|
|
for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
|
|
}
|
|
#ifdef CMDBUFFER_DEBUG
|
|
SERIAL_ECHOPGM("New indices: buflen ");
|
|
SERIAL_ECHO(buflen);
|
|
SERIAL_ECHOPGM(", bufindr ");
|
|
SERIAL_ECHO(bufindr);
|
|
SERIAL_ECHOPGM(", bufindw ");
|
|
SERIAL_ECHO(bufindw);
|
|
SERIAL_ECHOPGM(", serial_count ");
|
|
SERIAL_ECHO(serial_count);
|
|
SERIAL_ECHOPGM(" new command on the top: ");
|
|
SERIAL_ECHO(cmdbuffer+bufindr+1);
|
|
SERIAL_ECHOLNPGM("");
|
|
#endif /* CMDBUFFER_DEBUG */
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void cmdqueue_reset()
|
|
{
|
|
while (cmdqueue_pop_front()) ;
|
|
}
|
|
|
|
// How long a string could be pushed to the front of the command queue?
|
|
// If yes, adjust bufindr to the new position, where the new command could be enqued.
|
|
// len_asked does not contain the zero terminator size.
|
|
bool cmdqueue_could_enqueue_front(int len_asked)
|
|
{
|
|
// MAX_CMD_SIZE has to accommodate the zero terminator.
|
|
if (len_asked >= MAX_CMD_SIZE)
|
|
return false;
|
|
// Remove the currently processed command from the queue.
|
|
if (! cmdbuffer_front_already_processed) {
|
|
cmdqueue_pop_front();
|
|
cmdbuffer_front_already_processed = true;
|
|
}
|
|
if (bufindr == bufindw && buflen > 0)
|
|
// Full buffer.
|
|
return false;
|
|
// Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
|
|
int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
|
|
if (bufindw < bufindr) {
|
|
int bufindr_new = bufindr - len_asked - 2;
|
|
// Simple case. There is a contiguous space between the write buffer and the read buffer.
|
|
if (endw <= bufindr_new) {
|
|
bufindr = bufindr_new;
|
|
return true;
|
|
}
|
|
} else {
|
|
// Otherwise the free space is split between the start and end.
|
|
if (len_asked + 2 <= bufindr) {
|
|
// Could fit at the start.
|
|
bufindr -= len_asked + 2;
|
|
return true;
|
|
}
|
|
int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
|
|
if (endw <= bufindr_new) {
|
|
memset(cmdbuffer, 0, bufindr);
|
|
bufindr = bufindr_new;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Could one enqueue a command of lenthg len_asked into the buffer,
|
|
// while leaving CMDBUFFER_RESERVE_FRONT at the start?
|
|
// If yes, adjust bufindw to the new position, where the new command could be enqued.
|
|
// len_asked does not contain the zero terminator size.
|
|
bool cmdqueue_could_enqueue_back(int len_asked)
|
|
{
|
|
// MAX_CMD_SIZE has to accommodate the zero terminator.
|
|
if (len_asked >= MAX_CMD_SIZE)
|
|
return false;
|
|
|
|
if (bufindr == bufindw && buflen > 0)
|
|
// Full buffer.
|
|
return false;
|
|
|
|
if (serial_count > 0) {
|
|
// If there is some data stored starting at bufindw, len_asked is certainly smaller than
|
|
// the allocated data buffer. Try to reserve a new buffer and to move the already received
|
|
// serial data.
|
|
// How much memory to reserve for the commands pushed to the front?
|
|
// End of the queue, when pushing to the end.
|
|
int endw = bufindw + len_asked + 2;
|
|
if (bufindw < bufindr)
|
|
// Simple case. There is a contiguous space between the write buffer and the read buffer.
|
|
return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
|
|
// Otherwise the free space is split between the start and end.
|
|
if (// Could one fit to the end, including the reserve?
|
|
endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
|
|
// Could one fit to the end, and the reserve to the start?
|
|
(endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
|
|
return true;
|
|
// Could one fit both to the start?
|
|
if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
|
|
// Mark the rest of the buffer as used.
|
|
memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
|
|
// and point to the start.
|
|
bufindw = 0;
|
|
return true;
|
|
}
|
|
} else {
|
|
// How much memory to reserve for the commands pushed to the front?
|
|
// End of the queue, when pushing to the end.
|
|
int endw = bufindw + len_asked + 2;
|
|
if (bufindw < bufindr)
|
|
// Simple case. There is a contiguous space between the write buffer and the read buffer.
|
|
return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
|
|
// Otherwise the free space is split between the start and end.
|
|
if (// Could one fit to the end, including the reserve?
|
|
endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
|
|
// Could one fit to the end, and the reserve to the start?
|
|
(endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
|
|
return true;
|
|
// Could one fit both to the start?
|
|
if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
|
|
// Mark the rest of the buffer as used.
|
|
memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
|
|
// and point to the start.
|
|
bufindw = 0;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#ifdef CMDBUFFER_DEBUG
|
|
static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
|
|
{
|
|
SERIAL_ECHOPGM("Entry nr: ");
|
|
SERIAL_ECHO(nr);
|
|
SERIAL_ECHOPGM(", type: ");
|
|
SERIAL_ECHO(int(*p));
|
|
SERIAL_ECHOPGM(", cmd: ");
|
|
SERIAL_ECHO(p+1);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
|
|
static void cmdqueue_dump_to_serial()
|
|
{
|
|
if (buflen == 0) {
|
|
SERIAL_ECHOLNPGM("The command buffer is empty.");
|
|
} else {
|
|
SERIAL_ECHOPGM("Content of the buffer: entries ");
|
|
SERIAL_ECHO(buflen);
|
|
SERIAL_ECHOPGM(", indr ");
|
|
SERIAL_ECHO(bufindr);
|
|
SERIAL_ECHOPGM(", indw ");
|
|
SERIAL_ECHO(bufindw);
|
|
SERIAL_ECHOLNPGM("");
|
|
int nr = 0;
|
|
if (bufindr < bufindw) {
|
|
for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
|
|
cmdqueue_dump_to_serial_single_line(nr, p);
|
|
// Skip the command.
|
|
for (++p; *p != 0; ++ p);
|
|
// Skip the gaps.
|
|
for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
|
|
}
|
|
} else {
|
|
for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
|
|
cmdqueue_dump_to_serial_single_line(nr, p);
|
|
// Skip the command.
|
|
for (++p; *p != 0; ++ p);
|
|
// Skip the gaps.
|
|
for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
|
|
}
|
|
for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
|
|
cmdqueue_dump_to_serial_single_line(nr, p);
|
|
// Skip the command.
|
|
for (++p; *p != 0; ++ p);
|
|
// Skip the gaps.
|
|
for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
|
|
}
|
|
}
|
|
SERIAL_ECHOLNPGM("End of the buffer.");
|
|
}
|
|
}
|
|
#endif /* CMDBUFFER_DEBUG */
|
|
|
|
//adds an command to the main command buffer
|
|
//thats really done in a non-safe way.
|
|
//needs overworking someday
|
|
// Currently the maximum length of a command piped through this function is around 20 characters
|
|
void enquecommand(const char *cmd, bool from_progmem)
|
|
{
|
|
int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
|
|
// Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
|
|
// If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
|
|
if (cmdqueue_could_enqueue_back(len)) {
|
|
// This is dangerous if a mixing of serial and this happens
|
|
// This may easily be tested: If serial_count > 0, we have a problem.
|
|
cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
|
|
if (from_progmem)
|
|
strcpy_P(cmdbuffer + bufindw + 1, cmd);
|
|
else
|
|
strcpy(cmdbuffer + bufindw + 1, cmd);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHORPGM(MSG_Enqueing);
|
|
SERIAL_ECHO(cmdbuffer + bufindw + 1);
|
|
SERIAL_ECHOLNPGM("\"");
|
|
bufindw += len + 2;
|
|
if (bufindw == sizeof(cmdbuffer))
|
|
bufindw = 0;
|
|
++ buflen;
|
|
#ifdef CMDBUFFER_DEBUG
|
|
cmdqueue_dump_to_serial();
|
|
#endif /* CMDBUFFER_DEBUG */
|
|
} else {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ECHORPGM(MSG_Enqueing);
|
|
if (from_progmem)
|
|
SERIAL_PROTOCOLRPGM(cmd);
|
|
else
|
|
SERIAL_ECHO(cmd);
|
|
SERIAL_ECHOLNPGM("\" failed: Buffer full!");
|
|
#ifdef CMDBUFFER_DEBUG
|
|
cmdqueue_dump_to_serial();
|
|
#endif /* CMDBUFFER_DEBUG */
|
|
}
|
|
}
|
|
|
|
void enquecommand_front(const char *cmd, bool from_progmem)
|
|
{
|
|
int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
|
|
// Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
|
|
if (cmdqueue_could_enqueue_front(len)) {
|
|
cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
|
|
if (from_progmem)
|
|
strcpy_P(cmdbuffer + bufindr + 1, cmd);
|
|
else
|
|
strcpy(cmdbuffer + bufindr + 1, cmd);
|
|
++ buflen;
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM("Enqueing to the front: \"");
|
|
SERIAL_ECHO(cmdbuffer + bufindr + 1);
|
|
SERIAL_ECHOLNPGM("\"");
|
|
#ifdef CMDBUFFER_DEBUG
|
|
cmdqueue_dump_to_serial();
|
|
#endif /* CMDBUFFER_DEBUG */
|
|
} else {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ECHOPGM("Enqueing to the front: \"");
|
|
if (from_progmem)
|
|
SERIAL_PROTOCOLRPGM(cmd);
|
|
else
|
|
SERIAL_ECHO(cmd);
|
|
SERIAL_ECHOLNPGM("\" failed: Buffer full!");
|
|
#ifdef CMDBUFFER_DEBUG
|
|
cmdqueue_dump_to_serial();
|
|
#endif /* CMDBUFFER_DEBUG */
|
|
}
|
|
}
|
|
|
|
// Mark the command at the top of the command queue as new.
|
|
// Therefore it will not be removed from the queue.
|
|
void repeatcommand_front()
|
|
{
|
|
cmdbuffer_front_already_processed = true;
|
|
}
|
|
|
|
bool is_buffer_empty()
|
|
{
|
|
if (buflen == 0) return true;
|
|
else return false;
|
|
}
|
|
|
|
void setup_killpin()
|
|
{
|
|
#if defined(KILL_PIN) && KILL_PIN > -1
|
|
SET_INPUT(KILL_PIN);
|
|
WRITE(KILL_PIN,HIGH);
|
|
#endif
|
|
}
|
|
|
|
// Set home pin
|
|
void setup_homepin(void)
|
|
{
|
|
#if defined(HOME_PIN) && HOME_PIN > -1
|
|
SET_INPUT(HOME_PIN);
|
|
WRITE(HOME_PIN,HIGH);
|
|
#endif
|
|
}
|
|
|
|
void setup_photpin()
|
|
{
|
|
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
|
SET_OUTPUT(PHOTOGRAPH_PIN);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
void setup_powerhold()
|
|
{
|
|
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
SET_OUTPUT(SUICIDE_PIN);
|
|
WRITE(SUICIDE_PIN, HIGH);
|
|
#endif
|
|
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
SET_OUTPUT(PS_ON_PIN);
|
|
#if defined(PS_DEFAULT_OFF)
|
|
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
#else
|
|
WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void suicide()
|
|
{
|
|
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
SET_OUTPUT(SUICIDE_PIN);
|
|
WRITE(SUICIDE_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
void servo_init()
|
|
{
|
|
#if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
|
|
servos[0].attach(SERVO0_PIN);
|
|
#endif
|
|
#if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
|
|
servos[1].attach(SERVO1_PIN);
|
|
#endif
|
|
#if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
|
|
servos[2].attach(SERVO2_PIN);
|
|
#endif
|
|
#if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
|
|
servos[3].attach(SERVO3_PIN);
|
|
#endif
|
|
#if (NUM_SERVOS >= 5)
|
|
#error "TODO: enter initalisation code for more servos"
|
|
#endif
|
|
}
|
|
|
|
static void lcd_language_menu();
|
|
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
|
|
#endif
|
|
|
|
|
|
// Factory reset function
|
|
// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
|
|
// Level input parameter sets depth of reset
|
|
// Quiet parameter masks all waitings for user interact.
|
|
int er_progress = 0;
|
|
void factory_reset(char level, bool quiet)
|
|
{
|
|
lcd_implementation_clear();
|
|
|
|
switch (level) {
|
|
|
|
// Level 0: Language reset
|
|
case 0:
|
|
WRITE(BEEPER, HIGH);
|
|
_delay_ms(100);
|
|
WRITE(BEEPER, LOW);
|
|
|
|
lcd_force_language_selection();
|
|
break;
|
|
|
|
//Level 1: Reset statistics
|
|
case 1:
|
|
WRITE(BEEPER, HIGH);
|
|
_delay_ms(100);
|
|
WRITE(BEEPER, LOW);
|
|
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
|
|
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
|
|
lcd_menu_statistics();
|
|
|
|
break;
|
|
|
|
// Level 2: Prepare for shipping
|
|
case 2:
|
|
//lcd_printPGM(PSTR("Factory RESET"));
|
|
//lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
|
|
|
|
// Force language selection at the next boot up.
|
|
lcd_force_language_selection();
|
|
// Force the "Follow calibration flow" message at the next boot up.
|
|
calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
|
|
farm_no = 0;
|
|
farm_mode == false;
|
|
eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
|
|
EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
|
|
|
|
WRITE(BEEPER, HIGH);
|
|
_delay_ms(100);
|
|
WRITE(BEEPER, LOW);
|
|
//_delay_ms(2000);
|
|
break;
|
|
|
|
// Level 3: erase everything, whole EEPROM will be set to 0xFF
|
|
|
|
case 3:
|
|
lcd_printPGM(PSTR("Factory RESET"));
|
|
lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
|
|
|
|
WRITE(BEEPER, HIGH);
|
|
_delay_ms(100);
|
|
WRITE(BEEPER, LOW);
|
|
|
|
er_progress = 0;
|
|
lcd_print_at_PGM(3, 3, PSTR(" "));
|
|
lcd_implementation_print_at(3, 3, er_progress);
|
|
|
|
// Erase EEPROM
|
|
for (int i = 0; i < 4096; i++) {
|
|
eeprom_write_byte((uint8_t*)i, 0xFF);
|
|
|
|
if (i % 41 == 0) {
|
|
er_progress++;
|
|
lcd_print_at_PGM(3, 3, PSTR(" "));
|
|
lcd_implementation_print_at(3, 3, er_progress);
|
|
lcd_printPGM(PSTR("%"));
|
|
}
|
|
|
|
}
|
|
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
// "Setup" function is called by the Arduino framework on startup.
|
|
// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
|
|
// are initialized by the main() routine provided by the Arduino framework.
|
|
void setup()
|
|
{
|
|
setup_killpin();
|
|
setup_powerhold();
|
|
MYSERIAL.begin(BAUDRATE);
|
|
SERIAL_PROTOCOLLNPGM("start");
|
|
SERIAL_ECHO_START;
|
|
|
|
#if 0
|
|
SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
|
|
for (int i = 0; i < 4096; ++ i) {
|
|
int b = eeprom_read_byte((unsigned char*)i);
|
|
if (b != 255) {
|
|
SERIAL_ECHO(i);
|
|
SERIAL_ECHO(":");
|
|
SERIAL_ECHO(b);
|
|
SERIAL_ECHOLN("");
|
|
}
|
|
}
|
|
SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
|
|
#endif
|
|
|
|
// Check startup - does nothing if bootloader sets MCUSR to 0
|
|
byte mcu = MCUSR;
|
|
if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
|
|
if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
|
|
if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
|
|
if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
|
|
if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
|
|
MCUSR=0;
|
|
|
|
//SERIAL_ECHORPGM(MSG_MARLIN);
|
|
//SERIAL_ECHOLNRPGM(VERSION_STRING);
|
|
|
|
#ifdef STRING_VERSION_CONFIG_H
|
|
#ifdef STRING_CONFIG_H_AUTHOR
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
|
|
SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
|
|
SERIAL_ECHORPGM(MSG_AUTHOR);
|
|
SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
|
|
SERIAL_ECHOPGM("Compiled: ");
|
|
SERIAL_ECHOLNPGM(__DATE__);
|
|
#endif
|
|
#endif
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHORPGM(MSG_FREE_MEMORY);
|
|
SERIAL_ECHO(freeMemory());
|
|
SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
|
|
SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
|
|
lcd_update_enable(false);
|
|
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
|
|
Config_RetrieveSettings();
|
|
SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
|
|
tp_init(); // Initialize temperature loop
|
|
plan_init(); // Initialize planner;
|
|
watchdog_init();
|
|
st_init(); // Initialize stepper, this enables interrupts!
|
|
setup_photpin();
|
|
servo_init();
|
|
// Reset the machine correction matrix.
|
|
// It does not make sense to load the correction matrix until the machine is homed.
|
|
world2machine_reset();
|
|
|
|
lcd_init();
|
|
if (!READ(BTN_ENC))
|
|
{
|
|
_delay_ms(1000);
|
|
if (!READ(BTN_ENC))
|
|
{
|
|
lcd_implementation_clear();
|
|
|
|
|
|
lcd_printPGM(PSTR("Factory RESET"));
|
|
|
|
|
|
SET_OUTPUT(BEEPER);
|
|
WRITE(BEEPER, HIGH);
|
|
|
|
while (!READ(BTN_ENC));
|
|
|
|
WRITE(BEEPER, LOW);
|
|
|
|
|
|
|
|
_delay_ms(2000);
|
|
|
|
char level = reset_menu();
|
|
factory_reset(level, false);
|
|
|
|
switch (level) {
|
|
case 0: _delay_ms(0); break;
|
|
case 1: _delay_ms(0); break;
|
|
case 2: _delay_ms(0); break;
|
|
case 3: _delay_ms(0); break;
|
|
}
|
|
// _delay_ms(100);
|
|
/*
|
|
#ifdef MESH_BED_LEVELING
|
|
_delay_ms(2000);
|
|
|
|
if (!READ(BTN_ENC))
|
|
{
|
|
WRITE(BEEPER, HIGH);
|
|
_delay_ms(100);
|
|
WRITE(BEEPER, LOW);
|
|
_delay_ms(200);
|
|
WRITE(BEEPER, HIGH);
|
|
_delay_ms(100);
|
|
WRITE(BEEPER, LOW);
|
|
|
|
int _z = 0;
|
|
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
|
|
EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
|
|
EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
|
|
EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
|
|
}
|
|
else
|
|
{
|
|
|
|
WRITE(BEEPER, HIGH);
|
|
_delay_ms(100);
|
|
WRITE(BEEPER, LOW);
|
|
}
|
|
#endif // mesh */
|
|
|
|
}
|
|
}
|
|
else
|
|
{
|
|
_delay_ms(1000); // wait 1sec to display the splash screen
|
|
}
|
|
|
|
|
|
|
|
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
|
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
|
|
#endif
|
|
|
|
#ifdef DIGIPOT_I2C
|
|
digipot_i2c_init();
|
|
#endif
|
|
setup_homepin();
|
|
|
|
#if defined(Z_AXIS_ALWAYS_ON)
|
|
enable_z();
|
|
#endif
|
|
farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
|
|
EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
|
|
if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
|
|
if (farm_no == 0xFFFF) farm_no = 0;
|
|
if (farm_mode)
|
|
{
|
|
prusa_statistics(8);
|
|
}
|
|
|
|
// Enable Toshiba FlashAir SD card / WiFi enahanced card.
|
|
card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
|
|
// Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
|
|
// but this times out if a blocking dialog is shown in setup().
|
|
card.initsd();
|
|
|
|
if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
|
|
eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
|
|
eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
|
|
// Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
|
|
// where all the EEPROM entries are set to 0x0ff.
|
|
// Once a firmware boots up, it forces at least a language selection, which changes
|
|
// EEPROM_LANG to number lower than 0x0ff.
|
|
// 1) Set a high power mode.
|
|
eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
|
|
}
|
|
|
|
|
|
// In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
|
|
// If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
|
|
// is being written into the EEPROM, so the update procedure will be triggered only once.
|
|
lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
|
|
if (lang_selected >= LANG_NUM){
|
|
lcd_mylang();
|
|
}
|
|
temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
|
|
if (temp_cal_active == 0xFF) {
|
|
eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
|
|
temp_cal_active = 0;
|
|
}
|
|
check_babystep(); //checking if Z babystep is in allowed range
|
|
|
|
if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
|
|
calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
|
|
// Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
|
|
eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
|
|
// Show the message.
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
|
|
} else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
|
|
// Show the message.
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
|
|
lcd_update_enable(true);
|
|
} else if (calibration_status() == CALIBRATION_STATUS_PINDA && temp_cal_active == true) {
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
|
|
lcd_update_enable(true);
|
|
} else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
|
|
// Show the message.
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
|
|
}
|
|
lcd_update_enable(true);
|
|
|
|
// Store the currently running firmware into an eeprom,
|
|
// so the next time the firmware gets updated, it will know from which version it has been updated.
|
|
update_current_firmware_version_to_eeprom();
|
|
}
|
|
|
|
void trace();
|
|
|
|
#define CHUNK_SIZE 64 // bytes
|
|
#define SAFETY_MARGIN 1
|
|
char chunk[CHUNK_SIZE+SAFETY_MARGIN];
|
|
int chunkHead = 0;
|
|
|
|
int serial_read_stream() {
|
|
|
|
setTargetHotend(0, 0);
|
|
setTargetBed(0);
|
|
|
|
lcd_implementation_clear();
|
|
lcd_printPGM(PSTR(" Upload in progress"));
|
|
|
|
// first wait for how many bytes we will receive
|
|
uint32_t bytesToReceive;
|
|
|
|
// receive the four bytes
|
|
char bytesToReceiveBuffer[4];
|
|
for (int i=0; i<4; i++) {
|
|
int data;
|
|
while ((data = MYSERIAL.read()) == -1) {};
|
|
bytesToReceiveBuffer[i] = data;
|
|
|
|
}
|
|
|
|
// make it a uint32
|
|
memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
|
|
|
|
// we're ready, notify the sender
|
|
MYSERIAL.write('+');
|
|
|
|
// lock in the routine
|
|
uint32_t receivedBytes = 0;
|
|
while (prusa_sd_card_upload) {
|
|
int i;
|
|
for (i=0; i<CHUNK_SIZE; i++) {
|
|
int data;
|
|
|
|
// check if we're not done
|
|
if (receivedBytes == bytesToReceive) {
|
|
break;
|
|
}
|
|
|
|
// read the next byte
|
|
while ((data = MYSERIAL.read()) == -1) {};
|
|
receivedBytes++;
|
|
|
|
// save it to the chunk
|
|
chunk[i] = data;
|
|
}
|
|
|
|
// write the chunk to SD
|
|
card.write_command_no_newline(&chunk[0]);
|
|
|
|
// notify the sender we're ready for more data
|
|
MYSERIAL.write('+');
|
|
|
|
// for safety
|
|
manage_heater();
|
|
|
|
// check if we're done
|
|
if(receivedBytes == bytesToReceive) {
|
|
trace(); // beep
|
|
card.closefile();
|
|
prusa_sd_card_upload = false;
|
|
SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
// The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
|
|
// Before loop(), the setup() function is called by the main() routine.
|
|
void loop()
|
|
{
|
|
bool stack_integrity = true;
|
|
|
|
if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
|
|
{
|
|
is_usb_printing = true;
|
|
usb_printing_counter--;
|
|
_usb_timer = millis();
|
|
}
|
|
if (usb_printing_counter == 0)
|
|
{
|
|
is_usb_printing = false;
|
|
}
|
|
|
|
if (prusa_sd_card_upload)
|
|
{
|
|
//we read byte-by byte
|
|
serial_read_stream();
|
|
} else
|
|
{
|
|
|
|
get_command();
|
|
|
|
#ifdef SDSUPPORT
|
|
card.checkautostart(false);
|
|
#endif
|
|
if(buflen)
|
|
{
|
|
#ifdef SDSUPPORT
|
|
if(card.saving)
|
|
{
|
|
// Saving a G-code file onto an SD-card is in progress.
|
|
// Saving starts with M28, saving until M29 is seen.
|
|
if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
|
|
card.write_command(CMDBUFFER_CURRENT_STRING);
|
|
if(card.logging)
|
|
process_commands();
|
|
else
|
|
SERIAL_PROTOCOLLNRPGM(MSG_OK);
|
|
} else {
|
|
card.closefile();
|
|
SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
|
|
}
|
|
} else {
|
|
process_commands();
|
|
}
|
|
#else
|
|
process_commands();
|
|
#endif //SDSUPPORT
|
|
if (! cmdbuffer_front_already_processed)
|
|
cmdqueue_pop_front();
|
|
cmdbuffer_front_already_processed = false;
|
|
}
|
|
}
|
|
//check heater every n milliseconds
|
|
manage_heater();
|
|
isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
|
|
checkHitEndstops();
|
|
lcd_update();
|
|
}
|
|
|
|
void get_command()
|
|
{
|
|
// Test and reserve space for the new command string.
|
|
if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
|
|
return;
|
|
|
|
bool rx_buffer_full = false; //flag that serial rx buffer is full
|
|
|
|
while (MYSERIAL.available() > 0) {
|
|
if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
|
|
SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
|
|
rx_buffer_full = true; //sets flag that buffer was full
|
|
}
|
|
char serial_char = MYSERIAL.read();
|
|
TimeSent = millis();
|
|
TimeNow = millis();
|
|
|
|
if (serial_char < 0)
|
|
// Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
|
|
// and Marlin does not support such file names anyway.
|
|
// Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
|
|
// to a hang-up of the print process from an SD card.
|
|
continue;
|
|
if(serial_char == '\n' ||
|
|
serial_char == '\r' ||
|
|
(serial_char == ':' && comment_mode == false) ||
|
|
serial_count >= (MAX_CMD_SIZE - 1) )
|
|
{
|
|
if(!serial_count) { //if empty line
|
|
comment_mode = false; //for new command
|
|
return;
|
|
}
|
|
cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
|
|
if(!comment_mode){
|
|
comment_mode = false; //for new command
|
|
if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
|
|
if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
|
|
{
|
|
// Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
|
|
// and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
|
|
gcode_N = (strtol(strchr_pointer+1, NULL, 10));
|
|
if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
|
|
// M110 - set current line number.
|
|
// Line numbers not sent in succession.
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
|
|
SERIAL_ERRORLN(gcode_LastN);
|
|
//Serial.println(gcode_N);
|
|
FlushSerialRequestResend();
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
|
|
if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
|
|
{
|
|
byte checksum = 0;
|
|
char *p = cmdbuffer+bufindw+1;
|
|
while (p != strchr_pointer)
|
|
checksum = checksum^(*p++);
|
|
if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
|
|
SERIAL_ERRORLN(gcode_LastN);
|
|
FlushSerialRequestResend();
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
// If no errors, remove the checksum and continue parsing.
|
|
*strchr_pointer = 0;
|
|
}
|
|
else
|
|
{
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
|
|
SERIAL_ERRORLN(gcode_LastN);
|
|
FlushSerialRequestResend();
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
|
|
gcode_LastN = gcode_N;
|
|
//if no errors, continue parsing
|
|
} // end of 'N' command
|
|
}
|
|
else // if we don't receive 'N' but still see '*'
|
|
{
|
|
if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
|
|
{
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
|
|
SERIAL_ERRORLN(gcode_LastN);
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
} // end of '*' command
|
|
if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
|
|
if (! IS_SD_PRINTING) {
|
|
usb_printing_counter = 10;
|
|
is_usb_printing = true;
|
|
}
|
|
if (Stopped == true) {
|
|
int gcode = strtol(strchr_pointer+1, NULL, 10);
|
|
if (gcode >= 0 && gcode <= 3) {
|
|
SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
|
|
LCD_MESSAGERPGM(MSG_STOPPED);
|
|
}
|
|
}
|
|
} // end of 'G' command
|
|
|
|
//If command was e-stop process now
|
|
if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
|
|
kill();
|
|
|
|
// Store the current line into buffer, move to the next line.
|
|
cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
|
|
#ifdef CMDBUFFER_DEBUG
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM("Storing a command line to buffer: ");
|
|
SERIAL_ECHO(cmdbuffer+bufindw+1);
|
|
SERIAL_ECHOLNPGM("");
|
|
#endif /* CMDBUFFER_DEBUG */
|
|
bufindw += strlen(cmdbuffer+bufindw+1) + 2;
|
|
if (bufindw == sizeof(cmdbuffer))
|
|
bufindw = 0;
|
|
++ buflen;
|
|
#ifdef CMDBUFFER_DEBUG
|
|
SERIAL_ECHOPGM("Number of commands in the buffer: ");
|
|
SERIAL_ECHO(buflen);
|
|
SERIAL_ECHOLNPGM("");
|
|
#endif /* CMDBUFFER_DEBUG */
|
|
} // end of 'not comment mode'
|
|
serial_count = 0; //clear buffer
|
|
// Don't call cmdqueue_could_enqueue_back if there are no characters waiting
|
|
// in the queue, as this function will reserve the memory.
|
|
if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
|
|
return;
|
|
} // end of "end of line" processing
|
|
else {
|
|
// Not an "end of line" symbol. Store the new character into a buffer.
|
|
if(serial_char == ';') comment_mode = true;
|
|
if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
|
|
}
|
|
} // end of serial line processing loop
|
|
|
|
if(farm_mode){
|
|
TimeNow = millis();
|
|
if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
|
|
cmdbuffer[bufindw+serial_count+1] = 0;
|
|
|
|
bufindw += strlen(cmdbuffer+bufindw+1) + 2;
|
|
if (bufindw == sizeof(cmdbuffer))
|
|
bufindw = 0;
|
|
++ buflen;
|
|
|
|
serial_count = 0;
|
|
|
|
SERIAL_ECHOPGM("TIMEOUT:");
|
|
//memset(cmdbuffer, 0 , sizeof(cmdbuffer));
|
|
return;
|
|
}
|
|
}
|
|
|
|
//add comment
|
|
if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
|
|
rx_buffer_full = false;
|
|
bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
|
|
serial_count = 0;
|
|
}
|
|
|
|
#ifdef SDSUPPORT
|
|
if(!card.sdprinting || serial_count!=0){
|
|
// If there is a half filled buffer from serial line, wait until return before
|
|
// continuing with the serial line.
|
|
return;
|
|
}
|
|
|
|
//'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
|
|
// if it occurs, stop_buffering is triggered and the buffer is ran dry.
|
|
// this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
|
|
|
|
static bool stop_buffering=false;
|
|
if(buflen==0) stop_buffering=false;
|
|
|
|
// Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
|
|
while( !card.eof() && !stop_buffering) {
|
|
int16_t n=card.get();
|
|
char serial_char = (char)n;
|
|
if(serial_char == '\n' ||
|
|
serial_char == '\r' ||
|
|
(serial_char == '#' && comment_mode == false) ||
|
|
(serial_char == ':' && comment_mode == false) ||
|
|
serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
|
|
{
|
|
if(card.eof()){
|
|
SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
|
|
stoptime=millis();
|
|
char time[30];
|
|
unsigned long t=(stoptime-starttime-pause_time)/1000;
|
|
pause_time = 0;
|
|
int hours, minutes;
|
|
minutes=(t/60)%60;
|
|
hours=t/60/60;
|
|
save_statistics(total_filament_used, t);
|
|
sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN(time);
|
|
lcd_setstatus(time);
|
|
card.printingHasFinished();
|
|
card.checkautostart(true);
|
|
|
|
if (farm_mode)
|
|
{
|
|
prusa_statistics(6);
|
|
lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
|
|
}
|
|
|
|
}
|
|
if(serial_char=='#')
|
|
stop_buffering=true;
|
|
|
|
if(!serial_count)
|
|
{
|
|
comment_mode = false; //for new command
|
|
return; //if empty line
|
|
}
|
|
cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
|
|
cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
|
|
++ buflen;
|
|
bufindw += strlen(cmdbuffer+bufindw+1) + 2;
|
|
if (bufindw == sizeof(cmdbuffer))
|
|
bufindw = 0;
|
|
comment_mode = false; //for new command
|
|
serial_count = 0; //clear buffer
|
|
// The following line will reserve buffer space if available.
|
|
if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
if(serial_char == ';') comment_mode = true;
|
|
if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
|
|
}
|
|
}
|
|
|
|
#endif //SDSUPPORT
|
|
}
|
|
|
|
|
|
// Return True if a character was found
|
|
static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
|
|
static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
|
|
static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
|
|
static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
|
|
static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
|
|
static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
|
|
|
|
#define DEFINE_PGM_READ_ANY(type, reader) \
|
|
static inline type pgm_read_any(const type *p) \
|
|
{ return pgm_read_##reader##_near(p); }
|
|
|
|
DEFINE_PGM_READ_ANY(float, float);
|
|
DEFINE_PGM_READ_ANY(signed char, byte);
|
|
|
|
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
|
|
static const PROGMEM type array##_P[3] = \
|
|
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
|
|
static inline type array(int axis) \
|
|
{ return pgm_read_any(&array##_P[axis]); } \
|
|
type array##_ext(int axis) \
|
|
{ return pgm_read_any(&array##_P[axis]); }
|
|
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
|
|
XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
|
|
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
|
|
|
static void axis_is_at_home(int axis) {
|
|
current_position[axis] = base_home_pos(axis) + add_homing[axis];
|
|
min_pos[axis] = base_min_pos(axis) + add_homing[axis];
|
|
max_pos[axis] = base_max_pos(axis) + add_homing[axis];
|
|
}
|
|
|
|
|
|
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
|
|
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
|
|
|
|
|
|
static void setup_for_endstop_move(bool enable_endstops_now = true) {
|
|
saved_feedrate = feedrate;
|
|
saved_feedmultiply = feedmultiply;
|
|
feedmultiply = 100;
|
|
previous_millis_cmd = millis();
|
|
|
|
enable_endstops(enable_endstops_now);
|
|
}
|
|
|
|
static void clean_up_after_endstop_move() {
|
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
enable_endstops(false);
|
|
#endif
|
|
|
|
feedrate = saved_feedrate;
|
|
feedmultiply = saved_feedmultiply;
|
|
previous_millis_cmd = millis();
|
|
}
|
|
|
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
|
|
{
|
|
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
|
|
planeNormal.debug("planeNormal");
|
|
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
//bedLevel.debug("bedLevel");
|
|
|
|
//plan_bed_level_matrix.debug("bed level before");
|
|
//vector_3 uncorrected_position = plan_get_position_mm();
|
|
//uncorrected_position.debug("position before");
|
|
|
|
vector_3 corrected_position = plan_get_position();
|
|
// corrected_position.debug("position after");
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
// put the bed at 0 so we don't go below it.
|
|
current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
|
|
#else // not AUTO_BED_LEVELING_GRID
|
|
|
|
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
|
|
|
|
plan_bed_level_matrix.set_to_identity();
|
|
|
|
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
|
|
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
|
|
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
|
|
|
|
vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
|
|
vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
|
|
vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
|
|
planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
|
|
|
|
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
vector_3 corrected_position = plan_get_position();
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
// put the bed at 0 so we don't go below it.
|
|
current_position[Z_AXIS] = zprobe_zoffset;
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_GRID
|
|
|
|
static void run_z_probe() {
|
|
plan_bed_level_matrix.set_to_identity();
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
// move down until you find the bed
|
|
float zPosition = -10;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
// we have to let the planner know where we are right now as it is not where we said to go.
|
|
zPosition = st_get_position_mm(Z_AXIS);
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
|
|
|
|
// move up the retract distance
|
|
zPosition += home_retract_mm(Z_AXIS);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
// move back down slowly to find bed
|
|
feedrate = homing_feedrate[Z_AXIS]/4;
|
|
zPosition -= home_retract_mm(Z_AXIS) * 2;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
// make sure the planner knows where we are as it may be a bit different than we last said to move to
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
|
|
static void do_blocking_move_to(float x, float y, float z) {
|
|
float oldFeedRate = feedrate;
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
current_position[Z_AXIS] = z;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
feedrate = XY_TRAVEL_SPEED;
|
|
|
|
current_position[X_AXIS] = x;
|
|
current_position[Y_AXIS] = y;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
feedrate = oldFeedRate;
|
|
}
|
|
|
|
static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
|
|
do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
|
|
}
|
|
|
|
|
|
/// Probe bed height at position (x,y), returns the measured z value
|
|
static float probe_pt(float x, float y, float z_before) {
|
|
// move to right place
|
|
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
|
|
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
|
|
|
|
run_z_probe();
|
|
float measured_z = current_position[Z_AXIS];
|
|
|
|
SERIAL_PROTOCOLRPGM(MSG_BED);
|
|
SERIAL_PROTOCOLPGM(" x: ");
|
|
SERIAL_PROTOCOL(x);
|
|
SERIAL_PROTOCOLPGM(" y: ");
|
|
SERIAL_PROTOCOL(y);
|
|
SERIAL_PROTOCOLPGM(" z: ");
|
|
SERIAL_PROTOCOL(measured_z);
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
return measured_z;
|
|
}
|
|
|
|
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
void homeaxis(int axis) {
|
|
#define HOMEAXIS_DO(LETTER) \
|
|
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
|
|
|
|
if (axis==X_AXIS ? HOMEAXIS_DO(X) :
|
|
axis==Y_AXIS ? HOMEAXIS_DO(Y) :
|
|
axis==Z_AXIS ? HOMEAXIS_DO(Z) :
|
|
0) {
|
|
int axis_home_dir = home_dir(axis);
|
|
|
|
current_position[axis] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
|
|
feedrate = homing_feedrate[axis];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
current_position[axis] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
|
|
feedrate = homing_feedrate[axis]/2 ;
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
axis_is_at_home(axis);
|
|
destination[axis] = current_position[axis];
|
|
feedrate = 0.0;
|
|
endstops_hit_on_purpose();
|
|
axis_known_position[axis] = true;
|
|
}
|
|
}
|
|
|
|
void home_xy()
|
|
{
|
|
set_destination_to_current();
|
|
homeaxis(X_AXIS);
|
|
homeaxis(Y_AXIS);
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
endstops_hit_on_purpose();
|
|
}
|
|
|
|
void refresh_cmd_timeout(void)
|
|
{
|
|
previous_millis_cmd = millis();
|
|
}
|
|
|
|
#ifdef FWRETRACT
|
|
void retract(bool retracting, bool swapretract = false) {
|
|
if(retracting && !retracted[active_extruder]) {
|
|
destination[X_AXIS]=current_position[X_AXIS];
|
|
destination[Y_AXIS]=current_position[Y_AXIS];
|
|
destination[Z_AXIS]=current_position[Z_AXIS];
|
|
destination[E_AXIS]=current_position[E_AXIS];
|
|
if (swapretract) {
|
|
current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
|
|
} else {
|
|
current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
|
|
}
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
float oldFeedrate = feedrate;
|
|
feedrate=retract_feedrate*60;
|
|
retracted[active_extruder]=true;
|
|
prepare_move();
|
|
current_position[Z_AXIS]-=retract_zlift;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
prepare_move();
|
|
feedrate = oldFeedrate;
|
|
} else if(!retracting && retracted[active_extruder]) {
|
|
destination[X_AXIS]=current_position[X_AXIS];
|
|
destination[Y_AXIS]=current_position[Y_AXIS];
|
|
destination[Z_AXIS]=current_position[Z_AXIS];
|
|
destination[E_AXIS]=current_position[E_AXIS];
|
|
current_position[Z_AXIS]+=retract_zlift;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
//prepare_move();
|
|
if (swapretract) {
|
|
current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
|
|
} else {
|
|
current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
|
|
}
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
float oldFeedrate = feedrate;
|
|
feedrate=retract_recover_feedrate*60;
|
|
retracted[active_extruder]=false;
|
|
prepare_move();
|
|
feedrate = oldFeedrate;
|
|
}
|
|
} //retract
|
|
#endif //FWRETRACT
|
|
|
|
void trace() {
|
|
tone(BEEPER, 440);
|
|
delay(25);
|
|
noTone(BEEPER);
|
|
delay(20);
|
|
}
|
|
|
|
void ramming() {
|
|
// float tmp[4] = DEFAULT_MAX_FEEDRATE;
|
|
if (current_temperature[0] < 230) {
|
|
//PLA
|
|
|
|
max_feedrate[E_AXIS] = 50;
|
|
//current_position[E_AXIS] -= 8;
|
|
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
//current_position[E_AXIS] += 8;
|
|
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
current_position[E_AXIS] += 5.4;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
|
|
current_position[E_AXIS] += 3.2;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
current_position[E_AXIS] += 3;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
|
|
st_synchronize();
|
|
max_feedrate[E_AXIS] = 80;
|
|
current_position[E_AXIS] -= 82;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
|
|
max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
|
|
current_position[E_AXIS] -= 20;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
|
|
current_position[E_AXIS] += 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
|
|
current_position[E_AXIS] += 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
current_position[E_AXIS] -= 10;
|
|
st_synchronize();
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
current_position[E_AXIS] += 10;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
current_position[E_AXIS] -= 10;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
current_position[E_AXIS] += 10;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
current_position[E_AXIS] -= 10;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
st_synchronize();
|
|
}
|
|
else {
|
|
//ABS
|
|
max_feedrate[E_AXIS] = 50;
|
|
//current_position[E_AXIS] -= 8;
|
|
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
//current_position[E_AXIS] += 8;
|
|
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
current_position[E_AXIS] += 3.1;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
|
|
current_position[E_AXIS] += 3.1;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
|
|
current_position[E_AXIS] += 4;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
/*current_position[X_AXIS] += 23; //delay
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
|
|
current_position[X_AXIS] -= 23; //delay
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay*/
|
|
delay(4700);
|
|
max_feedrate[E_AXIS] = 80;
|
|
current_position[E_AXIS] -= 92;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
|
|
max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
|
|
current_position[E_AXIS] -= 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
current_position[E_AXIS] += 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
|
|
current_position[E_AXIS] -= 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
st_synchronize();
|
|
current_position[E_AXIS] += 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
current_position[E_AXIS] -= 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
current_position[E_AXIS] += 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
current_position[E_AXIS] -= 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
st_synchronize();
|
|
|
|
}
|
|
}
|
|
|
|
void process_commands()
|
|
{
|
|
#ifdef FILAMENT_RUNOUT_SUPPORT
|
|
SET_INPUT(FR_SENS);
|
|
#endif
|
|
|
|
#ifdef CMDBUFFER_DEBUG
|
|
SERIAL_ECHOPGM("Processing a GCODE command: ");
|
|
SERIAL_ECHO(cmdbuffer+bufindr+1);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("In cmdqueue: ");
|
|
SERIAL_ECHO(buflen);
|
|
SERIAL_ECHOLNPGM("");
|
|
#endif /* CMDBUFFER_DEBUG */
|
|
|
|
unsigned long codenum; //throw away variable
|
|
char *starpos = NULL;
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
float x_tmp, y_tmp, z_tmp, real_z;
|
|
#endif
|
|
|
|
// PRUSA GCODES
|
|
|
|
#ifdef SNMM
|
|
float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
|
|
float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
|
|
int8_t SilentMode;
|
|
#endif
|
|
if(code_seen("PRUSA")){
|
|
if (code_seen("Ping")) { //PRUSA Ping
|
|
if (farm_mode) {
|
|
PingTime = millis();
|
|
//MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
|
|
}
|
|
}
|
|
else if (code_seen("PRN")) {
|
|
MYSERIAL.println(status_number);
|
|
|
|
}else if (code_seen("fn")) {
|
|
if (farm_mode) {
|
|
MYSERIAL.println(farm_no);
|
|
}
|
|
else {
|
|
MYSERIAL.println("Not in farm mode.");
|
|
}
|
|
|
|
}else if (code_seen("fv")) {
|
|
// get file version
|
|
#ifdef SDSUPPORT
|
|
card.openFile(strchr_pointer + 3,true);
|
|
while (true) {
|
|
uint16_t readByte = card.get();
|
|
MYSERIAL.write(readByte);
|
|
if (readByte=='\n') {
|
|
break;
|
|
}
|
|
}
|
|
card.closefile();
|
|
|
|
#endif // SDSUPPORT
|
|
|
|
} else if (code_seen("M28")) {
|
|
trace();
|
|
prusa_sd_card_upload = true;
|
|
card.openFile(strchr_pointer+4,false);
|
|
} else if(code_seen("Fir")){
|
|
|
|
SERIAL_PROTOCOLLN(FW_version);
|
|
|
|
} else if(code_seen("Rev")){
|
|
|
|
SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
|
|
|
|
} else if(code_seen("Lang")) {
|
|
lcd_force_language_selection();
|
|
} else if(code_seen("Lz")) {
|
|
EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
|
|
|
|
} else if (code_seen("SERIAL LOW")) {
|
|
MYSERIAL.println("SERIAL LOW");
|
|
MYSERIAL.begin(BAUDRATE);
|
|
return;
|
|
} else if (code_seen("SERIAL HIGH")) {
|
|
MYSERIAL.println("SERIAL HIGH");
|
|
MYSERIAL.begin(1152000);
|
|
return;
|
|
} else if(code_seen("Beat")) {
|
|
// Kick farm link timer
|
|
kicktime = millis();
|
|
|
|
} else if(code_seen("FR")) {
|
|
// Factory full reset
|
|
factory_reset(0,true);
|
|
|
|
}else if(code_seen("Y")) { //filaments adjustment at the beginning of print (for SNMM)
|
|
#ifdef SNMM
|
|
int extr;
|
|
SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); //is silent mode or loud mode set
|
|
lcd_implementation_clear();
|
|
lcd_display_message_fullscreen_P(MSG_FIL_ADJUSTING);
|
|
current_position[Z_AXIS] = 100;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
|
|
digipot_current(2, E_MOTOR_HIGH_CURRENT);
|
|
for (extr = 1; extr < 4; extr++) { //we dont know which filament is in nozzle, but we want to load filament0, so all other filaments must unloaded
|
|
change_extr(extr);
|
|
ramming();
|
|
}
|
|
change_extr(0);
|
|
current_position[E_AXIS] += FIL_LOAD_LENGTH; //loading filament0 into the nozzle
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
|
|
st_synchronize();
|
|
|
|
for (extr = 1; extr < 4; extr++) {
|
|
digipot_current(2, E_MOTOR_LOW_CURRENT); //set lower current for extruder motors
|
|
change_extr(extr);
|
|
current_position[E_AXIS] += (FIL_LOAD_LENGTH + 3 * FIL_RETURN_LENGTH); //adjusting filaments
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
|
|
st_synchronize();
|
|
digipot_current(2, tmp_motor_loud[2]); //set back to normal operation currents
|
|
current_position[E_AXIS] -= FIL_RETURN_LENGTH;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
|
|
st_synchronize();
|
|
}
|
|
|
|
change_extr(0);
|
|
current_position[E_AXIS] += 25;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
|
|
digipot_current(2, E_MOTOR_HIGH_CURRENT);
|
|
ramming();
|
|
if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
|
|
else digipot_current(2, tmp_motor_loud[2]);
|
|
st_synchronize();
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN_FIL_ADJ);
|
|
lcd_implementation_clear();
|
|
lcd_printPGM(MSG_PLEASE_WAIT);
|
|
current_position[Z_AXIS] = 0;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
|
|
st_synchronize();
|
|
lcd_update_enable(true);
|
|
|
|
#endif
|
|
}
|
|
else if (code_seen("SetF")) {
|
|
#ifdef SNMM
|
|
bool not_finished = (eeprom_read_byte((unsigned char*)EEPROM_PRINT_FLAG) != PRINT_FINISHED);
|
|
eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_STARTED);
|
|
if (not_finished) enquecommand_front_P(PSTR("PRUSA Y"));
|
|
#endif
|
|
}
|
|
else if (code_seen("ResF")) {
|
|
#ifdef SNMM
|
|
eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_FINISHED);
|
|
#endif
|
|
}
|
|
//else if (code_seen('Cal')) {
|
|
// lcd_calibration();
|
|
// }
|
|
|
|
}
|
|
else if (code_seen('^')) {
|
|
// nothing, this is a version line
|
|
} else if(code_seen('G'))
|
|
{
|
|
switch((int)code_value())
|
|
{
|
|
case 0: // G0 -> G1
|
|
case 1: // G1
|
|
if(Stopped == false) {
|
|
|
|
#ifdef FILAMENT_RUNOUT_SUPPORT
|
|
|
|
if(READ(FR_SENS)){
|
|
|
|
feedmultiplyBckp=feedmultiply;
|
|
float target[4];
|
|
float lastpos[4];
|
|
target[X_AXIS]=current_position[X_AXIS];
|
|
target[Y_AXIS]=current_position[Y_AXIS];
|
|
target[Z_AXIS]=current_position[Z_AXIS];
|
|
target[E_AXIS]=current_position[E_AXIS];
|
|
lastpos[X_AXIS]=current_position[X_AXIS];
|
|
lastpos[Y_AXIS]=current_position[Y_AXIS];
|
|
lastpos[Z_AXIS]=current_position[Z_AXIS];
|
|
lastpos[E_AXIS]=current_position[E_AXIS];
|
|
//retract by E
|
|
|
|
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
|
|
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
|
|
|
|
|
|
target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
|
|
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
|
|
|
|
target[X_AXIS]= FILAMENTCHANGE_XPOS ;
|
|
|
|
target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
|
|
|
|
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
|
|
|
|
target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
|
|
|
|
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
|
|
|
|
//finish moves
|
|
st_synchronize();
|
|
//disable extruder steppers so filament can be removed
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
delay(100);
|
|
|
|
//LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
|
|
uint8_t cnt=0;
|
|
int counterBeep = 0;
|
|
lcd_wait_interact();
|
|
while(!lcd_clicked()){
|
|
cnt++;
|
|
manage_heater();
|
|
manage_inactivity(true);
|
|
//lcd_update();
|
|
if(cnt==0)
|
|
{
|
|
#if BEEPER > 0
|
|
|
|
if (counterBeep== 500){
|
|
counterBeep = 0;
|
|
|
|
}
|
|
|
|
|
|
SET_OUTPUT(BEEPER);
|
|
if (counterBeep== 0){
|
|
WRITE(BEEPER,HIGH);
|
|
}
|
|
|
|
if (counterBeep== 20){
|
|
WRITE(BEEPER,LOW);
|
|
}
|
|
|
|
|
|
|
|
|
|
counterBeep++;
|
|
#else
|
|
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
|
lcd_buzz(1000/6,100);
|
|
#else
|
|
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
|
|
WRITE(BEEPER,LOW);
|
|
|
|
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
|
|
|
|
|
|
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
|
|
|
|
|
|
|
|
lcd_change_fil_state = 0;
|
|
lcd_loading_filament();
|
|
while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
|
|
|
|
lcd_change_fil_state = 0;
|
|
lcd_alright();
|
|
switch(lcd_change_fil_state){
|
|
|
|
case 2:
|
|
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
|
|
|
|
|
|
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
|
|
lcd_loading_filament();
|
|
break;
|
|
case 3:
|
|
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
lcd_loading_color();
|
|
break;
|
|
|
|
default:
|
|
lcd_change_success();
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
target[E_AXIS]+= 5;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
|
|
|
|
|
|
//current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
|
|
//plan_set_e_position(current_position[E_AXIS]);
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
|
|
|
|
|
|
target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
|
|
|
|
|
|
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
|
|
|
|
|
|
plan_set_e_position(lastpos[E_AXIS]);
|
|
|
|
feedmultiply=feedmultiplyBckp;
|
|
|
|
|
|
|
|
char cmd[9];
|
|
|
|
sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
|
|
enquecommand(cmd);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
get_coordinates(); // For X Y Z E F
|
|
if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
|
|
total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
|
|
}
|
|
#ifdef FWRETRACT
|
|
if(autoretract_enabled)
|
|
if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
|
|
float echange=destination[E_AXIS]-current_position[E_AXIS];
|
|
|
|
if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
|
|
current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
|
|
plan_set_e_position(current_position[E_AXIS]); //AND from the planner
|
|
retract(!retracted);
|
|
return;
|
|
}
|
|
|
|
|
|
}
|
|
#endif //FWRETRACT
|
|
prepare_move();
|
|
//ClearToSend();
|
|
}
|
|
break;
|
|
case 2: // G2 - CW ARC
|
|
if(Stopped == false) {
|
|
get_arc_coordinates();
|
|
prepare_arc_move(true);
|
|
}
|
|
break;
|
|
case 3: // G3 - CCW ARC
|
|
if(Stopped == false) {
|
|
get_arc_coordinates();
|
|
prepare_arc_move(false);
|
|
}
|
|
break;
|
|
case 4: // G4 dwell
|
|
LCD_MESSAGERPGM(MSG_DWELL);
|
|
codenum = 0;
|
|
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
|
|
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
|
|
|
|
st_synchronize();
|
|
codenum += millis(); // keep track of when we started waiting
|
|
previous_millis_cmd = millis();
|
|
while(millis() < codenum) {
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
break;
|
|
#ifdef FWRETRACT
|
|
case 10: // G10 retract
|
|
#if EXTRUDERS > 1
|
|
retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
|
|
retract(true,retracted_swap[active_extruder]);
|
|
#else
|
|
retract(true);
|
|
#endif
|
|
break;
|
|
case 11: // G11 retract_recover
|
|
#if EXTRUDERS > 1
|
|
retract(false,retracted_swap[active_extruder]);
|
|
#else
|
|
retract(false);
|
|
#endif
|
|
break;
|
|
#endif //FWRETRACT
|
|
case 28: //G28 Home all Axis one at a time
|
|
homing_flag = true;
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
|
#endif //ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
|
// For mesh bed leveling deactivate the matrix temporarily
|
|
#ifdef MESH_BED_LEVELING
|
|
mbl.active = 0;
|
|
#endif
|
|
|
|
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
// the planner will not perform any adjustments in the XY plane.
|
|
// Wait for the motors to stop and update the current position with the absolute values.
|
|
world2machine_revert_to_uncorrected();
|
|
|
|
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
|
|
// consumed during the first movements following this statement.
|
|
babystep_undo();
|
|
|
|
saved_feedrate = feedrate;
|
|
saved_feedmultiply = feedmultiply;
|
|
feedmultiply = 100;
|
|
previous_millis_cmd = millis();
|
|
|
|
enable_endstops(true);
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++)
|
|
destination[i] = current_position[i];
|
|
feedrate = 0.0;
|
|
|
|
home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
|
|
|
|
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
|
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
|
homeaxis(Z_AXIS);
|
|
}
|
|
#endif
|
|
|
|
#ifdef QUICK_HOME
|
|
// In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
|
|
if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
|
|
{
|
|
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
|
|
|
|
int x_axis_home_dir = home_dir(X_AXIS);
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
|
feedrate = homing_feedrate[X_AXIS];
|
|
if(homing_feedrate[Y_AXIS]<feedrate)
|
|
feedrate = homing_feedrate[Y_AXIS];
|
|
if (max_length(X_AXIS) > max_length(Y_AXIS)) {
|
|
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
|
|
} else {
|
|
feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
|
|
}
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
axis_is_at_home(X_AXIS);
|
|
axis_is_at_home(Y_AXIS);
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[X_AXIS] = current_position[X_AXIS];
|
|
destination[Y_AXIS] = current_position[Y_AXIS];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
feedrate = 0.0;
|
|
st_synchronize();
|
|
endstops_hit_on_purpose();
|
|
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
current_position[Z_AXIS] = destination[Z_AXIS];
|
|
}
|
|
#endif /* QUICK_HOME */
|
|
|
|
|
|
if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
|
|
homeaxis(X_AXIS);
|
|
|
|
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
|
|
homeaxis(Y_AXIS);
|
|
|
|
if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
|
|
current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
|
|
|
|
if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
|
|
current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
|
|
|
|
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
|
|
#ifndef Z_SAFE_HOMING
|
|
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
|
#if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
|
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
feedrate = max_feedrate[Z_AXIS];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
st_synchronize();
|
|
#endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
|
#ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
|
|
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
|
|
{
|
|
homeaxis(X_AXIS);
|
|
homeaxis(Y_AXIS);
|
|
}
|
|
// 1st mesh bed leveling measurement point, corrected.
|
|
world2machine_initialize();
|
|
world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
|
|
world2machine_reset();
|
|
if (destination[Y_AXIS] < Y_MIN_POS)
|
|
destination[Y_AXIS] = Y_MIN_POS;
|
|
destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
|
|
feedrate = homing_feedrate[Z_AXIS]/10;
|
|
current_position[Z_AXIS] = 0;
|
|
enable_endstops(false);
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
st_synchronize();
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
enable_endstops(true);
|
|
endstops_hit_on_purpose();
|
|
homeaxis(Z_AXIS);
|
|
#else // MESH_BED_LEVELING
|
|
homeaxis(Z_AXIS);
|
|
#endif // MESH_BED_LEVELING
|
|
}
|
|
#else // defined(Z_SAFE_HOMING): Z Safe mode activated.
|
|
if(home_all_axis) {
|
|
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
|
|
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
feedrate = XY_TRAVEL_SPEED/60;
|
|
current_position[Z_AXIS] = 0;
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
st_synchronize();
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
homeaxis(Z_AXIS);
|
|
}
|
|
// Let's see if X and Y are homed and probe is inside bed area.
|
|
if(code_seen(axis_codes[Z_AXIS])) {
|
|
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
|
|
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
|
|
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
|
|
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
|
|
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
|
|
|
|
current_position[Z_AXIS] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
feedrate = max_feedrate[Z_AXIS];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
st_synchronize();
|
|
|
|
homeaxis(Z_AXIS);
|
|
} else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
|
|
LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
|
|
} else {
|
|
LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
|
|
}
|
|
}
|
|
#endif // Z_SAFE_HOMING
|
|
#endif // Z_HOME_DIR < 0
|
|
|
|
if(code_seen(axis_codes[Z_AXIS])) {
|
|
if(code_value_long() != 0) {
|
|
current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
|
|
}
|
|
}
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
|
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
|
|
}
|
|
#endif
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
enable_endstops(false);
|
|
#endif
|
|
|
|
feedrate = saved_feedrate;
|
|
feedmultiply = saved_feedmultiply;
|
|
previous_millis_cmd = millis();
|
|
endstops_hit_on_purpose();
|
|
#ifndef MESH_BED_LEVELING
|
|
// If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
|
|
// Offer the user to load the baby step value, which has been adjusted at the previous print session.
|
|
if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
|
|
lcd_adjust_z();
|
|
#endif
|
|
|
|
// Load the machine correction matrix
|
|
world2machine_initialize();
|
|
// and correct the current_position to match the transformed coordinate system.
|
|
world2machine_update_current();
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
|
|
{
|
|
}
|
|
else
|
|
{
|
|
st_synchronize();
|
|
homing_flag = false;
|
|
// Push the commands to the front of the message queue in the reverse order!
|
|
// There shall be always enough space reserved for these commands.
|
|
// enquecommand_front_P((PSTR("G80")));
|
|
goto case_G80;
|
|
}
|
|
#endif
|
|
|
|
if (farm_mode) { prusa_statistics(20); };
|
|
|
|
homing_flag = false;
|
|
|
|
break;
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
|
{
|
|
#if Z_MIN_PIN == -1
|
|
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
|
|
#endif
|
|
|
|
// Prevent user from running a G29 without first homing in X and Y
|
|
if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
|
|
{
|
|
LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
|
|
break; // abort G29, since we don't know where we are
|
|
}
|
|
|
|
st_synchronize();
|
|
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
|
//vector_3 corrected_position = plan_get_position_mm();
|
|
//corrected_position.debug("position before G29");
|
|
plan_bed_level_matrix.set_to_identity();
|
|
vector_3 uncorrected_position = plan_get_position();
|
|
//uncorrected_position.debug("position durring G29");
|
|
current_position[X_AXIS] = uncorrected_position.x;
|
|
current_position[Y_AXIS] = uncorrected_position.y;
|
|
current_position[Z_AXIS] = uncorrected_position.z;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
setup_for_endstop_move();
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
// probe at the points of a lattice grid
|
|
|
|
int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
|
|
int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
|
|
|
|
|
|
// solve the plane equation ax + by + d = z
|
|
// A is the matrix with rows [x y 1] for all the probed points
|
|
// B is the vector of the Z positions
|
|
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
|
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
|
|
|
// "A" matrix of the linear system of equations
|
|
double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
|
|
// "B" vector of Z points
|
|
double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
|
|
|
|
|
|
int probePointCounter = 0;
|
|
bool zig = true;
|
|
|
|
for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
|
|
{
|
|
int xProbe, xInc;
|
|
if (zig)
|
|
{
|
|
xProbe = LEFT_PROBE_BED_POSITION;
|
|
//xEnd = RIGHT_PROBE_BED_POSITION;
|
|
xInc = xGridSpacing;
|
|
zig = false;
|
|
} else // zag
|
|
{
|
|
xProbe = RIGHT_PROBE_BED_POSITION;
|
|
//xEnd = LEFT_PROBE_BED_POSITION;
|
|
xInc = -xGridSpacing;
|
|
zig = true;
|
|
}
|
|
|
|
for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
|
|
{
|
|
float z_before;
|
|
if (probePointCounter == 0)
|
|
{
|
|
// raise before probing
|
|
z_before = Z_RAISE_BEFORE_PROBING;
|
|
} else
|
|
{
|
|
// raise extruder
|
|
z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
|
|
}
|
|
|
|
float measured_z = probe_pt(xProbe, yProbe, z_before);
|
|
|
|
eqnBVector[probePointCounter] = measured_z;
|
|
|
|
eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
|
|
eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
|
|
eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
|
|
probePointCounter++;
|
|
xProbe += xInc;
|
|
}
|
|
}
|
|
clean_up_after_endstop_move();
|
|
|
|
// solve lsq problem
|
|
double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
|
|
|
|
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
|
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
|
|
SERIAL_PROTOCOLPGM(" b: ");
|
|
SERIAL_PROTOCOL(plane_equation_coefficients[1]);
|
|
SERIAL_PROTOCOLPGM(" d: ");
|
|
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
|
|
|
|
|
|
set_bed_level_equation_lsq(plane_equation_coefficients);
|
|
|
|
free(plane_equation_coefficients);
|
|
|
|
#else // AUTO_BED_LEVELING_GRID not defined
|
|
|
|
// Probe at 3 arbitrary points
|
|
// probe 1
|
|
float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
|
|
|
|
// probe 2
|
|
float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
|
|
|
// probe 3
|
|
float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
|
|
|
clean_up_after_endstop_move();
|
|
|
|
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
|
|
|
|
|
#endif // AUTO_BED_LEVELING_GRID
|
|
st_synchronize();
|
|
|
|
// The following code correct the Z height difference from z-probe position and hotend tip position.
|
|
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
|
// When the bed is uneven, this height must be corrected.
|
|
real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
|
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
z_tmp = current_position[Z_AXIS];
|
|
|
|
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
|
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
break;
|
|
#ifndef Z_PROBE_SLED
|
|
case 30: // G30 Single Z Probe
|
|
{
|
|
st_synchronize();
|
|
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
|
setup_for_endstop_move();
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
run_z_probe();
|
|
SERIAL_PROTOCOLPGM(MSG_BED);
|
|
SERIAL_PROTOCOLPGM(" X: ");
|
|
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
|
|
clean_up_after_endstop_move();
|
|
}
|
|
break;
|
|
#else
|
|
case 31: // dock the sled
|
|
dock_sled(true);
|
|
break;
|
|
case 32: // undock the sled
|
|
dock_sled(false);
|
|
break;
|
|
#endif // Z_PROBE_SLED
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
case 30: // G30 Single Z Probe
|
|
{
|
|
st_synchronize();
|
|
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
|
setup_for_endstop_move();
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
find_bed_induction_sensor_point_z(-10.f, 3);
|
|
SERIAL_PROTOCOLRPGM(MSG_BED);
|
|
SERIAL_PROTOCOLPGM(" X: ");
|
|
MYSERIAL.print(current_position[X_AXIS], 5);
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
MYSERIAL.print(current_position[Y_AXIS], 5);
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
clean_up_after_endstop_move();
|
|
}
|
|
break;
|
|
|
|
|
|
case 76: //PINDA probe temperature calibration
|
|
{
|
|
setTargetBed(PINDA_MIN_T);
|
|
float zero_z;
|
|
int z_shift = 0; //unit: steps
|
|
int t_c; // temperature
|
|
|
|
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
|
// We don't know where we are! HOME!
|
|
// Push the commands to the front of the message queue in the reverse order!
|
|
// There shall be always enough space reserved for these commands.
|
|
repeatcommand_front(); // repeat G76 with all its parameters
|
|
enquecommand_front_P((PSTR("G28 W0")));
|
|
break;
|
|
}
|
|
custom_message = true;
|
|
custom_message_type = 4;
|
|
custom_message_state = 1;
|
|
custom_message = MSG_TEMP_CALIBRATION;
|
|
current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
current_position[Z_AXIS] = 0;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
|
|
while (abs(degBed() - PINDA_MIN_T) > 1 ) delay_keep_alive(1000);
|
|
|
|
//enquecommand_P(PSTR("M190 S50"));
|
|
for (int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
|
|
|
|
current_position[Z_AXIS] = 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
|
|
find_bed_induction_sensor_point_z(-1.f);
|
|
zero_z = current_position[Z_AXIS];
|
|
|
|
//current_position[Z_AXIS]
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("ZERO: ");
|
|
MYSERIAL.print(current_position[Z_AXIS]);
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
for (int i = 0; i<5; i++) {
|
|
custom_message_state = i + 2;
|
|
t_c = 60 + i * 10;
|
|
|
|
setTargetBed(t_c);
|
|
current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
current_position[Z_AXIS] = 0;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
while (degBed() < t_c) delay_keep_alive(1000);
|
|
for (int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
|
|
current_position[Z_AXIS] = 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
find_bed_induction_sensor_point_z(-1.f);
|
|
z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
|
|
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("Temperature: ");
|
|
MYSERIAL.print(t_c);
|
|
SERIAL_ECHOPGM(" Z shift (mm):");
|
|
MYSERIAL.print(current_position[Z_AXIS] - zero_z);
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
|
|
|
|
|
|
}
|
|
custom_message_type = 0;
|
|
custom_message = false;
|
|
|
|
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
|
|
lcd_update_enable(true);
|
|
lcd_update(2);
|
|
|
|
setTargetBed(0); //set bed target temperature back to 0
|
|
|
|
}
|
|
break;
|
|
|
|
#ifdef DIS
|
|
case 77:
|
|
{
|
|
//G77 X200 Y150 XP100 YP15 XO10 Y015
|
|
|
|
//for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
|
|
|
|
|
|
//G77 X232 Y218 XP116 YP109 XO-11 YO0
|
|
|
|
float dimension_x = 40;
|
|
float dimension_y = 40;
|
|
int points_x = 40;
|
|
int points_y = 40;
|
|
float offset_x = 74;
|
|
float offset_y = 33;
|
|
|
|
if (code_seen('X')) dimension_x = code_value();
|
|
if (code_seen('Y')) dimension_y = code_value();
|
|
if (code_seen('XP')) points_x = code_value();
|
|
if (code_seen('YP')) points_y = code_value();
|
|
if (code_seen('XO')) offset_x = code_value();
|
|
if (code_seen('YO')) offset_y = code_value();
|
|
|
|
bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
|
|
|
|
} break;
|
|
|
|
#endif
|
|
|
|
/**
|
|
* G80: Mesh-based Z probe, probes a grid and produces a
|
|
* mesh to compensate for variable bed height
|
|
*
|
|
* The S0 report the points as below
|
|
*
|
|
* +----> X-axis
|
|
* |
|
|
* |
|
|
* v Y-axis
|
|
*
|
|
*/
|
|
|
|
case 80:
|
|
case_G80:
|
|
{
|
|
mesh_bed_leveling_flag = true;
|
|
int8_t verbosity_level = 0;
|
|
static bool run = false;
|
|
|
|
if (code_seen('V')) {
|
|
// Just 'V' without a number counts as V1.
|
|
char c = strchr_pointer[1];
|
|
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
|
|
}
|
|
// Firstly check if we know where we are
|
|
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
|
// We don't know where we are! HOME!
|
|
// Push the commands to the front of the message queue in the reverse order!
|
|
// There shall be always enough space reserved for these commands.
|
|
repeatcommand_front(); // repeat G80 with all its parameters
|
|
enquecommand_front_P((PSTR("G28 W0")));
|
|
break;
|
|
}
|
|
|
|
if (run == false && card.sdprinting == true && temp_cal_active == true) {
|
|
temp_compensation_start();
|
|
run = true;
|
|
repeatcommand_front(); // repeat G80 with all its parameters
|
|
enquecommand_front_P((PSTR("G28 W0")));
|
|
break;
|
|
}
|
|
run = false;
|
|
|
|
// Save custom message state, set a new custom message state to display: Calibrating point 9.
|
|
bool custom_message_old = custom_message;
|
|
unsigned int custom_message_type_old = custom_message_type;
|
|
unsigned int custom_message_state_old = custom_message_state;
|
|
custom_message = true;
|
|
custom_message_type = 1;
|
|
custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
|
|
lcd_update(1);
|
|
|
|
mbl.reset(); //reset mesh bed leveling
|
|
|
|
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
|
|
// consumed during the first movements following this statement.
|
|
babystep_undo();
|
|
|
|
// Cycle through all points and probe them
|
|
// First move up. During this first movement, the babystepping will be reverted.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
|
|
// The move to the first calibration point.
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
|
|
if (verbosity_level >= 1) {
|
|
clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
|
|
}
|
|
// mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
|
|
// Wait until the move is finished.
|
|
st_synchronize();
|
|
|
|
int mesh_point = 0; //index number of calibration point
|
|
|
|
int ix = 0;
|
|
int iy = 0;
|
|
|
|
int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
|
|
int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
|
|
int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
|
|
bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
|
|
if (verbosity_level >= 1) {
|
|
has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
|
|
}
|
|
setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
|
|
const char *kill_message = NULL;
|
|
while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
|
|
if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
|
|
// Get coords of a measuring point.
|
|
ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
|
|
iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
|
|
if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
|
|
float z0 = 0.f;
|
|
if (has_z && mesh_point > 0) {
|
|
uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
|
|
z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
|
|
//#if 0
|
|
if (verbosity_level >= 1) {
|
|
SERIAL_ECHOPGM("Bed leveling, point: ");
|
|
MYSERIAL.print(mesh_point);
|
|
SERIAL_ECHOPGM(", calibration z: ");
|
|
MYSERIAL.print(z0, 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
//#endif
|
|
}
|
|
|
|
// Move Z up to MESH_HOME_Z_SEARCH.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
|
st_synchronize();
|
|
|
|
// Move to XY position of the sensor point.
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
|
|
|
|
|
|
|
|
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
if (verbosity_level >= 1) {
|
|
|
|
SERIAL_PROTOCOL(mesh_point);
|
|
clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
|
|
}
|
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
|
|
st_synchronize();
|
|
|
|
// Go down until endstop is hit
|
|
const float Z_CALIBRATION_THRESHOLD = 1.f;
|
|
if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
|
|
kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
|
|
break;
|
|
}
|
|
if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
|
|
kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
|
|
break;
|
|
}
|
|
if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
|
|
kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
|
|
break;
|
|
}
|
|
|
|
if (verbosity_level >= 10) {
|
|
SERIAL_ECHOPGM("X: ");
|
|
MYSERIAL.print(current_position[X_AXIS], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("Y: ");
|
|
MYSERIAL.print(current_position[Y_AXIS], 5);
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
}
|
|
|
|
if (verbosity_level >= 1) {
|
|
SERIAL_ECHOPGM("mesh bed leveling: ");
|
|
MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
|
|
|
|
custom_message_state--;
|
|
mesh_point++;
|
|
lcd_update(1);
|
|
}
|
|
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
|
|
MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
}
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
|
st_synchronize();
|
|
if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
|
|
kill(kill_message);
|
|
SERIAL_ECHOLNPGM("killed");
|
|
}
|
|
clean_up_after_endstop_move();
|
|
SERIAL_ECHOLNPGM("clean up finished ");
|
|
if(temp_cal_active == true) temp_compensation_apply(); //apply PINDA temperature compensation
|
|
babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
|
|
SERIAL_ECHOLNPGM("babystep applied");
|
|
bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
|
|
|
|
if (verbosity_level >= 1) {
|
|
eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
|
|
}
|
|
|
|
for (uint8_t i = 0; i < 4; ++i) {
|
|
unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
|
|
long correction = 0;
|
|
if (code_seen(codes[i]))
|
|
correction = code_value_long();
|
|
else if (eeprom_bed_correction_valid) {
|
|
unsigned char *addr = (i < 2) ?
|
|
((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
|
|
((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
|
|
correction = eeprom_read_int8(addr);
|
|
}
|
|
if (correction == 0)
|
|
continue;
|
|
float offset = float(correction) * 0.001f;
|
|
if (fabs(offset) > 0.101f) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ECHOPGM("Excessive bed leveling correction: ");
|
|
SERIAL_ECHO(offset);
|
|
SERIAL_ECHOLNPGM(" microns");
|
|
}
|
|
else {
|
|
switch (i) {
|
|
case 0:
|
|
for (uint8_t row = 0; row < 3; ++row) {
|
|
mbl.z_values[row][1] += 0.5f * offset;
|
|
mbl.z_values[row][0] += offset;
|
|
}
|
|
break;
|
|
case 1:
|
|
for (uint8_t row = 0; row < 3; ++row) {
|
|
mbl.z_values[row][1] += 0.5f * offset;
|
|
mbl.z_values[row][2] += offset;
|
|
}
|
|
break;
|
|
case 2:
|
|
for (uint8_t col = 0; col < 3; ++col) {
|
|
mbl.z_values[1][col] += 0.5f * offset;
|
|
mbl.z_values[0][col] += offset;
|
|
}
|
|
break;
|
|
case 3:
|
|
for (uint8_t col = 0; col < 3; ++col) {
|
|
mbl.z_values[1][col] += 0.5f * offset;
|
|
mbl.z_values[2][col] += offset;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
SERIAL_ECHOLNPGM("Bed leveling correction finished");
|
|
mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
|
|
SERIAL_ECHOLNPGM("Upsample finished");
|
|
mbl.active = 1; //activate mesh bed leveling
|
|
SERIAL_ECHOLNPGM("Mesh bed leveling activated");
|
|
go_home_with_z_lift();
|
|
SERIAL_ECHOLNPGM("Go home finished");
|
|
//unretract (after PINDA preheat retraction)
|
|
if (card.sdprinting == true && degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true) {
|
|
current_position[E_AXIS] += DEFAULT_RETRACTION;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
|
|
}
|
|
// Restore custom message state
|
|
custom_message = custom_message_old;
|
|
custom_message_type = custom_message_type_old;
|
|
custom_message_state = custom_message_state_old;
|
|
mesh_bed_leveling_flag = false;
|
|
lcd_update(2);
|
|
|
|
}
|
|
break;
|
|
|
|
/**
|
|
* G81: Print mesh bed leveling status and bed profile if activated
|
|
*/
|
|
case 81:
|
|
if (mbl.active) {
|
|
SERIAL_PROTOCOLPGM("Num X,Y: ");
|
|
SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
|
|
SERIAL_PROTOCOLPGM(",");
|
|
SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
|
|
SERIAL_PROTOCOLPGM("\nZ search height: ");
|
|
SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
|
|
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
|
|
for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
|
|
for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
|
|
}
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
}
|
|
}
|
|
else
|
|
SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
|
|
break;
|
|
|
|
#if 0
|
|
/**
|
|
* G82: Single Z probe at current location
|
|
*
|
|
* WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
|
|
*
|
|
*/
|
|
case 82:
|
|
SERIAL_PROTOCOLLNPGM("Finding bed ");
|
|
setup_for_endstop_move();
|
|
find_bed_induction_sensor_point_z();
|
|
clean_up_after_endstop_move();
|
|
SERIAL_PROTOCOLPGM("Bed found at: ");
|
|
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
break;
|
|
|
|
/**
|
|
* G83: Prusa3D specific: Babystep in Z and store to EEPROM
|
|
*/
|
|
case 83:
|
|
{
|
|
int babystepz = code_seen('S') ? code_value() : 0;
|
|
int BabyPosition = code_seen('P') ? code_value() : 0;
|
|
|
|
if (babystepz != 0) {
|
|
//FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
|
|
// Is the axis indexed starting with zero or one?
|
|
if (BabyPosition > 4) {
|
|
SERIAL_PROTOCOLLNPGM("Index out of bounds");
|
|
}else{
|
|
// Save it to the eeprom
|
|
babystepLoadZ = babystepz;
|
|
EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
|
|
// adjust the Z
|
|
babystepsTodoZadd(babystepLoadZ);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
break;
|
|
/**
|
|
* G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
|
|
*/
|
|
case 84:
|
|
babystepsTodoZsubtract(babystepLoadZ);
|
|
// babystepLoadZ = 0;
|
|
break;
|
|
|
|
/**
|
|
* G85: Prusa3D specific: Pick best babystep
|
|
*/
|
|
case 85:
|
|
lcd_pick_babystep();
|
|
break;
|
|
#endif
|
|
|
|
/**
|
|
* G86: Prusa3D specific: Disable babystep correction after home.
|
|
* This G-code will be performed at the start of a calibration script.
|
|
*/
|
|
case 86:
|
|
calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
|
|
break;
|
|
/**
|
|
* G87: Prusa3D specific: Enable babystep correction after home
|
|
* This G-code will be performed at the end of a calibration script.
|
|
*/
|
|
case 87:
|
|
calibration_status_store(CALIBRATION_STATUS_PINDA);
|
|
break;
|
|
|
|
/**
|
|
* G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
|
|
*/
|
|
case 88:
|
|
break;
|
|
|
|
|
|
#endif // ENABLE_MESH_BED_LEVELING
|
|
|
|
|
|
case 90: // G90
|
|
relative_mode = false;
|
|
break;
|
|
case 91: // G91
|
|
relative_mode = true;
|
|
break;
|
|
case 92: // G92
|
|
if(!code_seen(axis_codes[E_AXIS]))
|
|
st_synchronize();
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i])) {
|
|
if(i == E_AXIS) {
|
|
current_position[i] = code_value();
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
}
|
|
else {
|
|
current_position[i] = code_value()+add_homing[i];
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 98: //activate farm mode
|
|
farm_mode = 1;
|
|
PingTime = millis();
|
|
eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
|
|
break;
|
|
|
|
case 99: //deactivate farm mode
|
|
farm_mode = 0;
|
|
lcd_printer_connected();
|
|
eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
|
|
lcd_update(2);
|
|
break;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
} // end if(code_seen('G'))
|
|
|
|
else if(code_seen('M'))
|
|
{
|
|
int index;
|
|
for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
|
|
|
|
/*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
|
|
if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
|
|
SERIAL_ECHOLNPGM("Invalid M code");
|
|
} else
|
|
switch((int)code_value())
|
|
{
|
|
#ifdef ULTIPANEL
|
|
|
|
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
|
|
case 1: // M1 - Conditional stop - Wait for user button press on LCD
|
|
{
|
|
char *src = strchr_pointer + 2;
|
|
|
|
codenum = 0;
|
|
|
|
bool hasP = false, hasS = false;
|
|
if (code_seen('P')) {
|
|
codenum = code_value(); // milliseconds to wait
|
|
hasP = codenum > 0;
|
|
}
|
|
if (code_seen('S')) {
|
|
codenum = code_value() * 1000; // seconds to wait
|
|
hasS = codenum > 0;
|
|
}
|
|
starpos = strchr(src, '*');
|
|
if (starpos != NULL) *(starpos) = '\0';
|
|
while (*src == ' ') ++src;
|
|
if (!hasP && !hasS && *src != '\0') {
|
|
lcd_setstatus(src);
|
|
} else {
|
|
LCD_MESSAGERPGM(MSG_USERWAIT);
|
|
}
|
|
|
|
lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
|
|
st_synchronize();
|
|
previous_millis_cmd = millis();
|
|
if (codenum > 0){
|
|
codenum += millis(); // keep track of when we started waiting
|
|
while(millis() < codenum && !lcd_clicked()){
|
|
manage_heater();
|
|
manage_inactivity(true);
|
|
lcd_update();
|
|
}
|
|
lcd_ignore_click(false);
|
|
}else{
|
|
if (!lcd_detected())
|
|
break;
|
|
while(!lcd_clicked()){
|
|
manage_heater();
|
|
manage_inactivity(true);
|
|
lcd_update();
|
|
}
|
|
}
|
|
if (IS_SD_PRINTING)
|
|
LCD_MESSAGERPGM(MSG_RESUMING);
|
|
else
|
|
LCD_MESSAGERPGM(WELCOME_MSG);
|
|
}
|
|
break;
|
|
#endif
|
|
case 17:
|
|
LCD_MESSAGERPGM(MSG_NO_MOVE);
|
|
enable_x();
|
|
enable_y();
|
|
enable_z();
|
|
enable_e0();
|
|
enable_e1();
|
|
enable_e2();
|
|
break;
|
|
|
|
#ifdef SDSUPPORT
|
|
case 20: // M20 - list SD card
|
|
SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
|
|
card.ls();
|
|
SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
|
|
break;
|
|
case 21: // M21 - init SD card
|
|
|
|
card.initsd();
|
|
|
|
break;
|
|
case 22: //M22 - release SD card
|
|
card.release();
|
|
|
|
break;
|
|
case 23: //M23 - Select file
|
|
starpos = (strchr(strchr_pointer + 4,'*'));
|
|
if(starpos!=NULL)
|
|
*(starpos)='\0';
|
|
card.openFile(strchr_pointer + 4,true);
|
|
break;
|
|
case 24: //M24 - Start SD print
|
|
card.startFileprint();
|
|
starttime=millis();
|
|
break;
|
|
case 25: //M25 - Pause SD print
|
|
card.pauseSDPrint();
|
|
break;
|
|
case 26: //M26 - Set SD index
|
|
if(card.cardOK && code_seen('S')) {
|
|
card.setIndex(code_value_long());
|
|
}
|
|
break;
|
|
case 27: //M27 - Get SD status
|
|
card.getStatus();
|
|
break;
|
|
case 28: //M28 - Start SD write
|
|
starpos = (strchr(strchr_pointer + 4,'*'));
|
|
if(starpos != NULL){
|
|
char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
|
|
strchr_pointer = strchr(npos,' ') + 1;
|
|
*(starpos) = '\0';
|
|
}
|
|
card.openFile(strchr_pointer+4,false);
|
|
break;
|
|
case 29: //M29 - Stop SD write
|
|
//processed in write to file routine above
|
|
//card,saving = false;
|
|
break;
|
|
case 30: //M30 <filename> Delete File
|
|
if (card.cardOK){
|
|
card.closefile();
|
|
starpos = (strchr(strchr_pointer + 4,'*'));
|
|
if(starpos != NULL){
|
|
char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
|
|
strchr_pointer = strchr(npos,' ') + 1;
|
|
*(starpos) = '\0';
|
|
}
|
|
card.removeFile(strchr_pointer + 4);
|
|
}
|
|
break;
|
|
case 32: //M32 - Select file and start SD print
|
|
{
|
|
if(card.sdprinting) {
|
|
st_synchronize();
|
|
|
|
}
|
|
starpos = (strchr(strchr_pointer + 4,'*'));
|
|
|
|
char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
|
|
if(namestartpos==NULL)
|
|
{
|
|
namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
|
|
}
|
|
else
|
|
namestartpos++; //to skip the '!'
|
|
|
|
if(starpos!=NULL)
|
|
*(starpos)='\0';
|
|
|
|
bool call_procedure=(code_seen('P'));
|
|
|
|
if(strchr_pointer>namestartpos)
|
|
call_procedure=false; //false alert, 'P' found within filename
|
|
|
|
if( card.cardOK )
|
|
{
|
|
card.openFile(namestartpos,true,!call_procedure);
|
|
if(code_seen('S'))
|
|
if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
|
|
card.setIndex(code_value_long());
|
|
card.startFileprint();
|
|
if(!call_procedure)
|
|
starttime=millis(); //procedure calls count as normal print time.
|
|
}
|
|
} break;
|
|
case 928: //M928 - Start SD write
|
|
starpos = (strchr(strchr_pointer + 5,'*'));
|
|
if(starpos != NULL){
|
|
char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
|
|
strchr_pointer = strchr(npos,' ') + 1;
|
|
*(starpos) = '\0';
|
|
}
|
|
card.openLogFile(strchr_pointer+5);
|
|
break;
|
|
|
|
#endif //SDSUPPORT
|
|
|
|
case 31: //M31 take time since the start of the SD print or an M109 command
|
|
{
|
|
stoptime=millis();
|
|
char time[30];
|
|
unsigned long t=(stoptime-starttime)/1000;
|
|
int sec,min;
|
|
min=t/60;
|
|
sec=t%60;
|
|
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN(time);
|
|
lcd_setstatus(time);
|
|
autotempShutdown();
|
|
}
|
|
break;
|
|
case 42: //M42 -Change pin status via gcode
|
|
if (code_seen('S'))
|
|
{
|
|
int pin_status = code_value();
|
|
int pin_number = LED_PIN;
|
|
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
|
|
pin_number = code_value();
|
|
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
|
|
{
|
|
if (sensitive_pins[i] == pin_number)
|
|
{
|
|
pin_number = -1;
|
|
break;
|
|
}
|
|
}
|
|
#if defined(FAN_PIN) && FAN_PIN > -1
|
|
if (pin_number == FAN_PIN)
|
|
fanSpeed = pin_status;
|
|
#endif
|
|
if (pin_number > -1)
|
|
{
|
|
pinMode(pin_number, OUTPUT);
|
|
digitalWrite(pin_number, pin_status);
|
|
analogWrite(pin_number, pin_status);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
|
|
|
|
// Reset the baby step value and the baby step applied flag.
|
|
calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
|
|
eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
|
|
|
|
// Reset the skew and offset in both RAM and EEPROM.
|
|
reset_bed_offset_and_skew();
|
|
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
// the planner will not perform any adjustments in the XY plane.
|
|
// Wait for the motors to stop and update the current position with the absolute values.
|
|
world2machine_revert_to_uncorrected();
|
|
break;
|
|
|
|
case 45: // M45: Prusa3D: bed skew and offset with manual Z up
|
|
{
|
|
// Only Z calibration?
|
|
bool onlyZ = code_seen('Z');
|
|
|
|
if (!onlyZ) {
|
|
setTargetBed(0);
|
|
setTargetHotend(0, 0);
|
|
setTargetHotend(0, 1);
|
|
setTargetHotend(0, 2);
|
|
adjust_bed_reset(); //reset bed level correction
|
|
}
|
|
|
|
// Disable the default update procedure of the display. We will do a modal dialog.
|
|
lcd_update_enable(false);
|
|
// Let the planner use the uncorrected coordinates.
|
|
mbl.reset();
|
|
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
// the planner will not perform any adjustments in the XY plane.
|
|
// Wait for the motors to stop and update the current position with the absolute values.
|
|
world2machine_revert_to_uncorrected();
|
|
// Reset the baby step value applied without moving the axes.
|
|
babystep_reset();
|
|
// Mark all axes as in a need for homing.
|
|
memset(axis_known_position, 0, sizeof(axis_known_position));
|
|
|
|
// Let the user move the Z axes up to the end stoppers.
|
|
if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
|
|
refresh_cmd_timeout();
|
|
if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
|
|
lcd_wait_for_cool_down();
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
|
|
lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
|
|
lcd_implementation_print_at(0, 2, 1);
|
|
lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
|
|
}
|
|
|
|
// Move the print head close to the bed.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
st_synchronize();
|
|
|
|
// Home in the XY plane.
|
|
set_destination_to_current();
|
|
setup_for_endstop_move();
|
|
home_xy();
|
|
|
|
int8_t verbosity_level = 0;
|
|
if (code_seen('V')) {
|
|
// Just 'V' without a number counts as V1.
|
|
char c = strchr_pointer[1];
|
|
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
|
|
}
|
|
|
|
if (onlyZ) {
|
|
clean_up_after_endstop_move();
|
|
// Z only calibration.
|
|
// Load the machine correction matrix
|
|
world2machine_initialize();
|
|
// and correct the current_position to match the transformed coordinate system.
|
|
world2machine_update_current();
|
|
//FIXME
|
|
bool result = sample_mesh_and_store_reference();
|
|
if (result) {
|
|
if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
|
|
// Shipped, the nozzle height has been set already. The user can start printing now.
|
|
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
|
|
// babystep_apply();
|
|
}
|
|
} else {
|
|
// Reset the baby step value and the baby step applied flag.
|
|
calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
|
|
eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
|
|
// Complete XYZ calibration.
|
|
BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
|
|
uint8_t point_too_far_mask = 0;
|
|
clean_up_after_endstop_move();
|
|
// Print head up.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
st_synchronize();
|
|
if (result >= 0) {
|
|
// Second half: The fine adjustment.
|
|
// Let the planner use the uncorrected coordinates.
|
|
mbl.reset();
|
|
world2machine_reset();
|
|
// Home in the XY plane.
|
|
setup_for_endstop_move();
|
|
home_xy();
|
|
result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
|
|
clean_up_after_endstop_move();
|
|
// Print head up.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
st_synchronize();
|
|
// if (result >= 0) babystep_apply();
|
|
}
|
|
lcd_bed_calibration_show_result(result, point_too_far_mask);
|
|
if (result >= 0) {
|
|
// Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
|
|
calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
|
|
}
|
|
}
|
|
} else {
|
|
// Timeouted.
|
|
}
|
|
lcd_update_enable(true);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
case 46:
|
|
{
|
|
// M46: Prusa3D: Show the assigned IP address.
|
|
uint8_t ip[4];
|
|
bool hasIP = card.ToshibaFlashAir_GetIP(ip);
|
|
if (hasIP) {
|
|
SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
|
|
SERIAL_ECHO(int(ip[0]));
|
|
SERIAL_ECHOPGM(".");
|
|
SERIAL_ECHO(int(ip[1]));
|
|
SERIAL_ECHOPGM(".");
|
|
SERIAL_ECHO(int(ip[2]));
|
|
SERIAL_ECHOPGM(".");
|
|
SERIAL_ECHO(int(ip[3]));
|
|
SERIAL_ECHOLNPGM("");
|
|
} else {
|
|
SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
|
|
}
|
|
break;
|
|
}
|
|
*/
|
|
|
|
case 47:
|
|
// M47: Prusa3D: Show end stops dialog on the display.
|
|
lcd_diag_show_end_stops();
|
|
break;
|
|
|
|
#if 0
|
|
case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
|
|
{
|
|
// Disable the default update procedure of the display. We will do a modal dialog.
|
|
lcd_update_enable(false);
|
|
// Let the planner use the uncorrected coordinates.
|
|
mbl.reset();
|
|
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
// the planner will not perform any adjustments in the XY plane.
|
|
// Wait for the motors to stop and update the current position with the absolute values.
|
|
world2machine_revert_to_uncorrected();
|
|
// Move the print head close to the bed.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
st_synchronize();
|
|
// Home in the XY plane.
|
|
set_destination_to_current();
|
|
setup_for_endstop_move();
|
|
home_xy();
|
|
int8_t verbosity_level = 0;
|
|
if (code_seen('V')) {
|
|
// Just 'V' without a number counts as V1.
|
|
char c = strchr_pointer[1];
|
|
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
|
|
}
|
|
bool success = scan_bed_induction_points(verbosity_level);
|
|
clean_up_after_endstop_move();
|
|
// Print head up.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
st_synchronize();
|
|
lcd_update_enable(true);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
// M48 Z-Probe repeatability measurement function.
|
|
//
|
|
// Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
|
|
//
|
|
// This function assumes the bed has been homed. Specificaly, that a G28 command
|
|
// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
|
|
// Any information generated by a prior G29 Bed leveling command will be lost and need to be
|
|
// regenerated.
|
|
//
|
|
// The number of samples will default to 10 if not specified. You can use upper or lower case
|
|
// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
|
|
// N for its communication protocol and will get horribly confused if you send it a capital N.
|
|
//
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
#ifdef Z_PROBE_REPEATABILITY_TEST
|
|
|
|
case 48: // M48 Z-Probe repeatability
|
|
{
|
|
#if Z_MIN_PIN == -1
|
|
#error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
|
|
#endif
|
|
|
|
double sum=0.0;
|
|
double mean=0.0;
|
|
double sigma=0.0;
|
|
double sample_set[50];
|
|
int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
|
|
double X_current, Y_current, Z_current;
|
|
double X_probe_location, Y_probe_location, Z_start_location, ext_position;
|
|
|
|
if (code_seen('V') || code_seen('v')) {
|
|
verbose_level = code_value();
|
|
if (verbose_level<0 || verbose_level>4 ) {
|
|
SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
|
|
goto Sigma_Exit;
|
|
}
|
|
}
|
|
|
|
if (verbose_level > 0) {
|
|
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
|
|
SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
|
|
}
|
|
|
|
if (code_seen('n')) {
|
|
n_samples = code_value();
|
|
if (n_samples<4 || n_samples>50 ) {
|
|
SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
|
|
goto Sigma_Exit;
|
|
}
|
|
}
|
|
|
|
X_current = X_probe_location = st_get_position_mm(X_AXIS);
|
|
Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
|
|
Z_current = st_get_position_mm(Z_AXIS);
|
|
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
|
ext_position = st_get_position_mm(E_AXIS);
|
|
|
|
if (code_seen('X') || code_seen('x') ) {
|
|
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
|
|
SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
|
|
goto Sigma_Exit;
|
|
}
|
|
}
|
|
|
|
if (code_seen('Y') || code_seen('y') ) {
|
|
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
|
|
SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
|
|
goto Sigma_Exit;
|
|
}
|
|
}
|
|
|
|
if (code_seen('L') || code_seen('l') ) {
|
|
n_legs = code_value();
|
|
if ( n_legs==1 )
|
|
n_legs = 2;
|
|
if ( n_legs<0 || n_legs>15 ) {
|
|
SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
|
|
goto Sigma_Exit;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Do all the preliminary setup work. First raise the probe.
|
|
//
|
|
|
|
st_synchronize();
|
|
plan_bed_level_matrix.set_to_identity();
|
|
plan_buffer_line( X_current, Y_current, Z_start_location,
|
|
ext_position,
|
|
homing_feedrate[Z_AXIS]/60,
|
|
active_extruder);
|
|
st_synchronize();
|
|
|
|
//
|
|
// Now get everything to the specified probe point So we can safely do a probe to
|
|
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
|
|
// use that as a starting point for each probe.
|
|
//
|
|
if (verbose_level > 2)
|
|
SERIAL_PROTOCOL("Positioning probe for the test.\n");
|
|
|
|
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
ext_position,
|
|
homing_feedrate[X_AXIS]/60,
|
|
active_extruder);
|
|
st_synchronize();
|
|
|
|
current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
|
|
current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
|
|
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
|
|
|
|
//
|
|
// OK, do the inital probe to get us close to the bed.
|
|
// Then retrace the right amount and use that in subsequent probes
|
|
//
|
|
|
|
setup_for_endstop_move();
|
|
run_z_probe();
|
|
|
|
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
|
|
|
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
ext_position,
|
|
homing_feedrate[X_AXIS]/60,
|
|
active_extruder);
|
|
st_synchronize();
|
|
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
|
|
for( n=0; n<n_samples; n++) {
|
|
|
|
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
|
|
|
|
if ( n_legs) {
|
|
double radius=0.0, theta=0.0, x_sweep, y_sweep;
|
|
int rotational_direction, l;
|
|
|
|
rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
|
|
radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
|
|
theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
|
|
|
|
//SERIAL_ECHOPAIR("starting radius: ",radius);
|
|
//SERIAL_ECHOPAIR(" theta: ",theta);
|
|
//SERIAL_ECHOPAIR(" direction: ",rotational_direction);
|
|
//SERIAL_PROTOCOLLNPGM("");
|
|
|
|
for( l=0; l<n_legs-1; l++) {
|
|
if (rotational_direction==1)
|
|
theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
|
|
else
|
|
theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
|
|
|
|
radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
|
|
if ( radius<0.0 )
|
|
radius = -radius;
|
|
|
|
X_current = X_probe_location + cos(theta) * radius;
|
|
Y_current = Y_probe_location + sin(theta) * radius;
|
|
|
|
if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
|
|
X_current = X_MIN_POS;
|
|
if ( X_current>X_MAX_POS)
|
|
X_current = X_MAX_POS;
|
|
|
|
if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
|
|
Y_current = Y_MIN_POS;
|
|
if ( Y_current>Y_MAX_POS)
|
|
Y_current = Y_MAX_POS;
|
|
|
|
if (verbose_level>3 ) {
|
|
SERIAL_ECHOPAIR("x: ", X_current);
|
|
SERIAL_ECHOPAIR("y: ", Y_current);
|
|
SERIAL_PROTOCOLLNPGM("");
|
|
}
|
|
|
|
do_blocking_move_to( X_current, Y_current, Z_current );
|
|
}
|
|
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
|
|
}
|
|
|
|
setup_for_endstop_move();
|
|
run_z_probe();
|
|
|
|
sample_set[n] = current_position[Z_AXIS];
|
|
|
|
//
|
|
// Get the current mean for the data points we have so far
|
|
//
|
|
sum=0.0;
|
|
for( j=0; j<=n; j++) {
|
|
sum = sum + sample_set[j];
|
|
}
|
|
mean = sum / (double (n+1));
|
|
//
|
|
// Now, use that mean to calculate the standard deviation for the
|
|
// data points we have so far
|
|
//
|
|
|
|
sum=0.0;
|
|
for( j=0; j<=n; j++) {
|
|
sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
|
|
}
|
|
sigma = sqrt( sum / (double (n+1)) );
|
|
|
|
if (verbose_level > 1) {
|
|
SERIAL_PROTOCOL(n+1);
|
|
SERIAL_PROTOCOL(" of ");
|
|
SERIAL_PROTOCOL(n_samples);
|
|
SERIAL_PROTOCOLPGM(" z: ");
|
|
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
|
|
}
|
|
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOL(" mean: ");
|
|
SERIAL_PROTOCOL_F(mean,6);
|
|
|
|
SERIAL_PROTOCOL(" sigma: ");
|
|
SERIAL_PROTOCOL_F(sigma,6);
|
|
}
|
|
|
|
if (verbose_level > 0)
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
|
|
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
}
|
|
|
|
delay(1000);
|
|
|
|
clean_up_after_endstop_move();
|
|
|
|
// enable_endstops(true);
|
|
|
|
if (verbose_level > 0) {
|
|
SERIAL_PROTOCOLPGM("Mean: ");
|
|
SERIAL_PROTOCOL_F(mean, 6);
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
}
|
|
|
|
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
SERIAL_PROTOCOLPGM("\n\n");
|
|
|
|
Sigma_Exit:
|
|
break;
|
|
}
|
|
#endif // Z_PROBE_REPEATABILITY_TEST
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
case 104: // M104
|
|
if(setTargetedHotend(104)){
|
|
break;
|
|
}
|
|
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
|
|
setWatch();
|
|
break;
|
|
case 112: // M112 -Emergency Stop
|
|
kill();
|
|
break;
|
|
case 140: // M140 set bed temp
|
|
if (code_seen('S')) setTargetBed(code_value());
|
|
break;
|
|
case 105 : // M105
|
|
if(setTargetedHotend(105)){
|
|
break;
|
|
}
|
|
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
|
|
SERIAL_PROTOCOLPGM("ok T:");
|
|
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
|
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
SERIAL_PROTOCOLPGM(" B:");
|
|
SERIAL_PROTOCOL_F(degBed(),1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(degTargetBed(),1);
|
|
#endif //TEMP_BED_PIN
|
|
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
SERIAL_PROTOCOLPGM(" T");
|
|
SERIAL_PROTOCOL(cur_extruder);
|
|
SERIAL_PROTOCOLPGM(":");
|
|
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
|
|
}
|
|
#else
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
|
|
#endif
|
|
|
|
SERIAL_PROTOCOLPGM(" @:");
|
|
#ifdef EXTRUDER_WATTS
|
|
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
|
|
SERIAL_PROTOCOLPGM("W");
|
|
#else
|
|
SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
|
|
#endif
|
|
|
|
SERIAL_PROTOCOLPGM(" B@:");
|
|
#ifdef BED_WATTS
|
|
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
|
|
SERIAL_PROTOCOLPGM("W");
|
|
#else
|
|
SERIAL_PROTOCOL(getHeaterPower(-1));
|
|
#endif
|
|
|
|
#ifdef SHOW_TEMP_ADC_VALUES
|
|
{float raw = 0.0;
|
|
|
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
SERIAL_PROTOCOLPGM(" ADC B:");
|
|
SERIAL_PROTOCOL_F(degBed(),1);
|
|
SERIAL_PROTOCOLPGM("C->");
|
|
raw = rawBedTemp();
|
|
SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
|
|
SERIAL_PROTOCOLPGM(" Rb->");
|
|
SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
|
|
SERIAL_PROTOCOLPGM(" Rxb->");
|
|
SERIAL_PROTOCOL_F(raw, 5);
|
|
#endif
|
|
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
SERIAL_PROTOCOLPGM(" T");
|
|
SERIAL_PROTOCOL(cur_extruder);
|
|
SERIAL_PROTOCOLPGM(":");
|
|
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
|
SERIAL_PROTOCOLPGM("C->");
|
|
raw = rawHotendTemp(cur_extruder);
|
|
SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
|
|
SERIAL_PROTOCOLPGM(" Rt");
|
|
SERIAL_PROTOCOL(cur_extruder);
|
|
SERIAL_PROTOCOLPGM("->");
|
|
SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
|
|
SERIAL_PROTOCOLPGM(" Rx");
|
|
SERIAL_PROTOCOL(cur_extruder);
|
|
SERIAL_PROTOCOLPGM("->");
|
|
SERIAL_PROTOCOL_F(raw, 5);
|
|
}}
|
|
#endif
|
|
SERIAL_PROTOCOLLN("");
|
|
return;
|
|
break;
|
|
case 109:
|
|
{// M109 - Wait for extruder heater to reach target.
|
|
if(setTargetedHotend(109)){
|
|
break;
|
|
}
|
|
LCD_MESSAGERPGM(MSG_HEATING);
|
|
heating_status = 1;
|
|
if (farm_mode) { prusa_statistics(1); };
|
|
|
|
#ifdef AUTOTEMP
|
|
autotemp_enabled=false;
|
|
#endif
|
|
if (code_seen('S')) {
|
|
setTargetHotend(code_value(), tmp_extruder);
|
|
CooldownNoWait = true;
|
|
} else if (code_seen('R')) {
|
|
setTargetHotend(code_value(), tmp_extruder);
|
|
CooldownNoWait = false;
|
|
}
|
|
#ifdef AUTOTEMP
|
|
if (code_seen('S')) autotemp_min=code_value();
|
|
if (code_seen('B')) autotemp_max=code_value();
|
|
if (code_seen('F'))
|
|
{
|
|
autotemp_factor=code_value();
|
|
autotemp_enabled=true;
|
|
}
|
|
#endif
|
|
|
|
setWatch();
|
|
codenum = millis();
|
|
|
|
/* See if we are heating up or cooling down */
|
|
target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
|
|
|
|
cancel_heatup = false;
|
|
|
|
wait_for_heater(codenum); //loops until target temperature is reached
|
|
|
|
LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
|
|
heating_status = 2;
|
|
if (farm_mode) { prusa_statistics(2); };
|
|
|
|
//starttime=millis();
|
|
previous_millis_cmd = millis();
|
|
}
|
|
break;
|
|
case 190: // M190 - Wait for bed heater to reach target.
|
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
LCD_MESSAGERPGM(MSG_BED_HEATING);
|
|
heating_status = 3;
|
|
if (farm_mode) { prusa_statistics(1); };
|
|
if (code_seen('S'))
|
|
{
|
|
setTargetBed(code_value());
|
|
CooldownNoWait = true;
|
|
}
|
|
else if (code_seen('R'))
|
|
{
|
|
setTargetBed(code_value());
|
|
CooldownNoWait = false;
|
|
}
|
|
codenum = millis();
|
|
|
|
cancel_heatup = false;
|
|
target_direction = isHeatingBed(); // true if heating, false if cooling
|
|
|
|
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
|
|
{
|
|
if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
|
|
{
|
|
if (!farm_mode) {
|
|
float tt = degHotend(active_extruder);
|
|
SERIAL_PROTOCOLPGM("T:");
|
|
SERIAL_PROTOCOL(tt);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL((int)active_extruder);
|
|
SERIAL_PROTOCOLPGM(" B:");
|
|
SERIAL_PROTOCOL_F(degBed(), 1);
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
codenum = millis();
|
|
|
|
}
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
LCD_MESSAGERPGM(MSG_BED_DONE);
|
|
heating_status = 4;
|
|
|
|
previous_millis_cmd = millis();
|
|
#endif
|
|
break;
|
|
|
|
#if defined(FAN_PIN) && FAN_PIN > -1
|
|
case 106: //M106 Fan On
|
|
if (code_seen('S')){
|
|
fanSpeed=constrain(code_value(),0,255);
|
|
}
|
|
else {
|
|
fanSpeed=255;
|
|
}
|
|
break;
|
|
case 107: //M107 Fan Off
|
|
fanSpeed = 0;
|
|
break;
|
|
#endif //FAN_PIN
|
|
|
|
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
case 80: // M80 - Turn on Power Supply
|
|
SET_OUTPUT(PS_ON_PIN); //GND
|
|
WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
|
|
|
// If you have a switch on suicide pin, this is useful
|
|
// if you want to start another print with suicide feature after
|
|
// a print without suicide...
|
|
#if defined SUICIDE_PIN && SUICIDE_PIN > -1
|
|
SET_OUTPUT(SUICIDE_PIN);
|
|
WRITE(SUICIDE_PIN, HIGH);
|
|
#endif
|
|
|
|
#ifdef ULTIPANEL
|
|
powersupply = true;
|
|
LCD_MESSAGERPGM(WELCOME_MSG);
|
|
lcd_update();
|
|
#endif
|
|
break;
|
|
#endif
|
|
|
|
case 81: // M81 - Turn off Power Supply
|
|
disable_heater();
|
|
st_synchronize();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
finishAndDisableSteppers();
|
|
fanSpeed = 0;
|
|
delay(1000); // Wait a little before to switch off
|
|
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
st_synchronize();
|
|
suicide();
|
|
#elif defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
SET_OUTPUT(PS_ON_PIN);
|
|
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
#endif
|
|
#ifdef ULTIPANEL
|
|
powersupply = false;
|
|
LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
|
|
|
|
/*
|
|
MACHNAME = "Prusa i3"
|
|
MSGOFF = "Vypnuto"
|
|
"Prusai3"" ""vypnuto""."
|
|
|
|
"Prusa i3"" "MSG_ALL[lang_selected][50]"."
|
|
*/
|
|
lcd_update();
|
|
#endif
|
|
break;
|
|
|
|
case 82:
|
|
axis_relative_modes[3] = false;
|
|
break;
|
|
case 83:
|
|
axis_relative_modes[3] = true;
|
|
break;
|
|
case 18: //compatibility
|
|
case 84: // M84
|
|
if(code_seen('S')){
|
|
stepper_inactive_time = code_value() * 1000;
|
|
}
|
|
else
|
|
{
|
|
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
|
|
if(all_axis)
|
|
{
|
|
st_synchronize();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
finishAndDisableSteppers();
|
|
}
|
|
else
|
|
{
|
|
st_synchronize();
|
|
if(code_seen('X')) disable_x();
|
|
if(code_seen('Y')) disable_y();
|
|
if(code_seen('Z')) disable_z();
|
|
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
|
|
if(code_seen('E')) {
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
break;
|
|
case 85: // M85
|
|
if(code_seen('S')) {
|
|
max_inactive_time = code_value() * 1000;
|
|
}
|
|
break;
|
|
case 92: // M92
|
|
for(int8_t i=0; i < NUM_AXIS; i++)
|
|
{
|
|
if(code_seen(axis_codes[i]))
|
|
{
|
|
if(i == 3) { // E
|
|
float value = code_value();
|
|
if(value < 20.0) {
|
|
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
|
|
max_jerk[E_AXIS] *= factor;
|
|
max_feedrate[i] *= factor;
|
|
axis_steps_per_sqr_second[i] *= factor;
|
|
}
|
|
axis_steps_per_unit[i] = value;
|
|
}
|
|
else {
|
|
axis_steps_per_unit[i] = code_value();
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case 115: // M115
|
|
if (code_seen('V')) {
|
|
// Report the Prusa version number.
|
|
SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
|
|
} else if (code_seen('U')) {
|
|
// Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
|
|
// pause the print and ask the user to upgrade the firmware.
|
|
show_upgrade_dialog_if_version_newer(++ strchr_pointer);
|
|
} else {
|
|
SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
|
|
}
|
|
break;
|
|
case 117: // M117 display message
|
|
starpos = (strchr(strchr_pointer + 5,'*'));
|
|
if(starpos!=NULL)
|
|
*(starpos)='\0';
|
|
lcd_setstatus(strchr_pointer + 5);
|
|
break;
|
|
case 114: // M114
|
|
SERIAL_PROTOCOLPGM("X:");
|
|
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Y:");
|
|
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Z:");
|
|
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL(current_position[E_AXIS]);
|
|
|
|
SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
|
|
SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Y:");
|
|
SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Z:");
|
|
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
|
|
|
|
SERIAL_PROTOCOLLN("");
|
|
break;
|
|
case 120: // M120
|
|
enable_endstops(false) ;
|
|
break;
|
|
case 121: // M121
|
|
enable_endstops(true) ;
|
|
break;
|
|
case 119: // M119
|
|
SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
|
|
SERIAL_PROTOCOLLN("");
|
|
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
|
SERIAL_PROTOCOLRPGM(MSG_X_MIN);
|
|
if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
}else{
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
}
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
|
SERIAL_PROTOCOLRPGM(MSG_X_MAX);
|
|
if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
}else{
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
}
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
|
SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
|
|
if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
}else{
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
}
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
|
SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
|
|
if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
}else{
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
}
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
|
SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
|
|
if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
}else{
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
}
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
|
SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
|
|
if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
}else{
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
}
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
break;
|
|
//TODO: update for all axis, use for loop
|
|
#ifdef BLINKM
|
|
case 150: // M150
|
|
{
|
|
byte red;
|
|
byte grn;
|
|
byte blu;
|
|
|
|
if(code_seen('R')) red = code_value();
|
|
if(code_seen('U')) grn = code_value();
|
|
if(code_seen('B')) blu = code_value();
|
|
|
|
SendColors(red,grn,blu);
|
|
}
|
|
break;
|
|
#endif //BLINKM
|
|
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
{
|
|
|
|
tmp_extruder = active_extruder;
|
|
if(code_seen('T')) {
|
|
tmp_extruder = code_value();
|
|
if(tmp_extruder >= EXTRUDERS) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
|
|
break;
|
|
}
|
|
}
|
|
|
|
float area = .0;
|
|
if(code_seen('D')) {
|
|
float diameter = (float)code_value();
|
|
if (diameter == 0.0) {
|
|
// setting any extruder filament size disables volumetric on the assumption that
|
|
// slicers either generate in extruder values as cubic mm or as as filament feeds
|
|
// for all extruders
|
|
volumetric_enabled = false;
|
|
} else {
|
|
filament_size[tmp_extruder] = (float)code_value();
|
|
// make sure all extruders have some sane value for the filament size
|
|
filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
|
|
#if EXTRUDERS > 1
|
|
filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
|
|
#if EXTRUDERS > 2
|
|
filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
|
|
#endif
|
|
#endif
|
|
volumetric_enabled = true;
|
|
}
|
|
} else {
|
|
//reserved for setting filament diameter via UFID or filament measuring device
|
|
break;
|
|
}
|
|
calculate_volumetric_multipliers();
|
|
}
|
|
break;
|
|
case 201: // M201
|
|
for(int8_t i=0; i < NUM_AXIS; i++)
|
|
{
|
|
if(code_seen(axis_codes[i]))
|
|
{
|
|
max_acceleration_units_per_sq_second[i] = code_value();
|
|
}
|
|
}
|
|
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
|
reset_acceleration_rates();
|
|
break;
|
|
#if 0 // Not used for Sprinter/grbl gen6
|
|
case 202: // M202
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
|
}
|
|
break;
|
|
#endif
|
|
case 203: // M203 max feedrate mm/sec
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
|
|
}
|
|
break;
|
|
case 204: // M204 acclereration S normal moves T filmanent only moves
|
|
{
|
|
if(code_seen('S')) acceleration = code_value() ;
|
|
if(code_seen('T')) retract_acceleration = code_value() ;
|
|
}
|
|
break;
|
|
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
|
{
|
|
if(code_seen('S')) minimumfeedrate = code_value();
|
|
if(code_seen('T')) mintravelfeedrate = code_value();
|
|
if(code_seen('B')) minsegmenttime = code_value() ;
|
|
if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
|
|
if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
|
|
if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
|
|
if(code_seen('E')) max_jerk[E_AXIS] = code_value();
|
|
}
|
|
break;
|
|
case 206: // M206 additional homing offset
|
|
for(int8_t i=0; i < 3; i++)
|
|
{
|
|
if(code_seen(axis_codes[i])) add_homing[i] = code_value();
|
|
}
|
|
break;
|
|
#ifdef FWRETRACT
|
|
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
|
|
{
|
|
if(code_seen('S'))
|
|
{
|
|
retract_length = code_value() ;
|
|
}
|
|
if(code_seen('F'))
|
|
{
|
|
retract_feedrate = code_value()/60 ;
|
|
}
|
|
if(code_seen('Z'))
|
|
{
|
|
retract_zlift = code_value() ;
|
|
}
|
|
}break;
|
|
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
|
{
|
|
if(code_seen('S'))
|
|
{
|
|
retract_recover_length = code_value() ;
|
|
}
|
|
if(code_seen('F'))
|
|
{
|
|
retract_recover_feedrate = code_value()/60 ;
|
|
}
|
|
}break;
|
|
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
{
|
|
if(code_seen('S'))
|
|
{
|
|
int t= code_value() ;
|
|
switch(t)
|
|
{
|
|
case 0:
|
|
{
|
|
autoretract_enabled=false;
|
|
retracted[0]=false;
|
|
#if EXTRUDERS > 1
|
|
retracted[1]=false;
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
retracted[2]=false;
|
|
#endif
|
|
}break;
|
|
case 1:
|
|
{
|
|
autoretract_enabled=true;
|
|
retracted[0]=false;
|
|
#if EXTRUDERS > 1
|
|
retracted[1]=false;
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
retracted[2]=false;
|
|
#endif
|
|
}break;
|
|
default:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
|
|
SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
|
|
SERIAL_ECHOLNPGM("\"");
|
|
}
|
|
}
|
|
|
|
}break;
|
|
#endif // FWRETRACT
|
|
#if EXTRUDERS > 1
|
|
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
{
|
|
if(setTargetedHotend(218)){
|
|
break;
|
|
}
|
|
if(code_seen('X'))
|
|
{
|
|
extruder_offset[X_AXIS][tmp_extruder] = code_value();
|
|
}
|
|
if(code_seen('Y'))
|
|
{
|
|
extruder_offset[Y_AXIS][tmp_extruder] = code_value();
|
|
}
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
|
|
for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
|
|
{
|
|
SERIAL_ECHO(" ");
|
|
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
|
|
SERIAL_ECHO(",");
|
|
SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
|
|
}
|
|
SERIAL_ECHOLN("");
|
|
}break;
|
|
#endif
|
|
case 220: // M220 S<factor in percent>- set speed factor override percentage
|
|
{
|
|
if(code_seen('S'))
|
|
{
|
|
feedmultiply = code_value() ;
|
|
}
|
|
}
|
|
break;
|
|
case 221: // M221 S<factor in percent>- set extrude factor override percentage
|
|
{
|
|
if(code_seen('S'))
|
|
{
|
|
int tmp_code = code_value();
|
|
if (code_seen('T'))
|
|
{
|
|
if(setTargetedHotend(221)){
|
|
break;
|
|
}
|
|
extruder_multiply[tmp_extruder] = tmp_code;
|
|
}
|
|
else
|
|
{
|
|
extrudemultiply = tmp_code ;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
|
{
|
|
if(code_seen('P')){
|
|
int pin_number = code_value(); // pin number
|
|
int pin_state = -1; // required pin state - default is inverted
|
|
|
|
if(code_seen('S')) pin_state = code_value(); // required pin state
|
|
|
|
if(pin_state >= -1 && pin_state <= 1){
|
|
|
|
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
|
|
{
|
|
if (sensitive_pins[i] == pin_number)
|
|
{
|
|
pin_number = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pin_number > -1)
|
|
{
|
|
int target = LOW;
|
|
|
|
st_synchronize();
|
|
|
|
pinMode(pin_number, INPUT);
|
|
|
|
switch(pin_state){
|
|
case 1:
|
|
target = HIGH;
|
|
break;
|
|
|
|
case 0:
|
|
target = LOW;
|
|
break;
|
|
|
|
case -1:
|
|
target = !digitalRead(pin_number);
|
|
break;
|
|
}
|
|
|
|
while(digitalRead(pin_number) != target){
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
#if NUM_SERVOS > 0
|
|
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
|
{
|
|
int servo_index = -1;
|
|
int servo_position = 0;
|
|
if (code_seen('P'))
|
|
servo_index = code_value();
|
|
if (code_seen('S')) {
|
|
servo_position = code_value();
|
|
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
|
|
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
servos[servo_index].attach(0);
|
|
#endif
|
|
servos[servo_index].write(servo_position);
|
|
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
|
servos[servo_index].detach();
|
|
#endif
|
|
}
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO("Servo ");
|
|
SERIAL_ECHO(servo_index);
|
|
SERIAL_ECHOLN(" out of range");
|
|
}
|
|
}
|
|
else if (servo_index >= 0) {
|
|
SERIAL_PROTOCOL(MSG_OK);
|
|
SERIAL_PROTOCOL(" Servo ");
|
|
SERIAL_PROTOCOL(servo_index);
|
|
SERIAL_PROTOCOL(": ");
|
|
SERIAL_PROTOCOL(servos[servo_index].read());
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
}
|
|
break;
|
|
#endif // NUM_SERVOS > 0
|
|
|
|
#if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
|
|
case 300: // M300
|
|
{
|
|
int beepS = code_seen('S') ? code_value() : 110;
|
|
int beepP = code_seen('P') ? code_value() : 1000;
|
|
if (beepS > 0)
|
|
{
|
|
#if BEEPER > 0
|
|
tone(BEEPER, beepS);
|
|
delay(beepP);
|
|
noTone(BEEPER);
|
|
#elif defined(ULTRALCD)
|
|
lcd_buzz(beepS, beepP);
|
|
#elif defined(LCD_USE_I2C_BUZZER)
|
|
lcd_buzz(beepP, beepS);
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
delay(beepP);
|
|
}
|
|
}
|
|
break;
|
|
#endif // M300
|
|
|
|
#ifdef PIDTEMP
|
|
case 301: // M301
|
|
{
|
|
if(code_seen('P')) Kp = code_value();
|
|
if(code_seen('I')) Ki = scalePID_i(code_value());
|
|
if(code_seen('D')) Kd = scalePID_d(code_value());
|
|
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
if(code_seen('C')) Kc = code_value();
|
|
#endif
|
|
|
|
updatePID();
|
|
SERIAL_PROTOCOLRPGM(MSG_OK);
|
|
SERIAL_PROTOCOL(" p:");
|
|
SERIAL_PROTOCOL(Kp);
|
|
SERIAL_PROTOCOL(" i:");
|
|
SERIAL_PROTOCOL(unscalePID_i(Ki));
|
|
SERIAL_PROTOCOL(" d:");
|
|
SERIAL_PROTOCOL(unscalePID_d(Kd));
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
SERIAL_PROTOCOL(" c:");
|
|
//Kc does not have scaling applied above, or in resetting defaults
|
|
SERIAL_PROTOCOL(Kc);
|
|
#endif
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
break;
|
|
#endif //PIDTEMP
|
|
#ifdef PIDTEMPBED
|
|
case 304: // M304
|
|
{
|
|
if(code_seen('P')) bedKp = code_value();
|
|
if(code_seen('I')) bedKi = scalePID_i(code_value());
|
|
if(code_seen('D')) bedKd = scalePID_d(code_value());
|
|
|
|
updatePID();
|
|
SERIAL_PROTOCOLRPGM(MSG_OK);
|
|
SERIAL_PROTOCOL(" p:");
|
|
SERIAL_PROTOCOL(bedKp);
|
|
SERIAL_PROTOCOL(" i:");
|
|
SERIAL_PROTOCOL(unscalePID_i(bedKi));
|
|
SERIAL_PROTOCOL(" d:");
|
|
SERIAL_PROTOCOL(unscalePID_d(bedKd));
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
break;
|
|
#endif //PIDTEMP
|
|
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
|
{
|
|
#ifdef CHDK
|
|
|
|
SET_OUTPUT(CHDK);
|
|
WRITE(CHDK, HIGH);
|
|
chdkHigh = millis();
|
|
chdkActive = true;
|
|
|
|
#else
|
|
|
|
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
|
const uint8_t NUM_PULSES=16;
|
|
const float PULSE_LENGTH=0.01524;
|
|
for(int i=0; i < NUM_PULSES; i++) {
|
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
_delay_ms(PULSE_LENGTH);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
_delay_ms(PULSE_LENGTH);
|
|
}
|
|
delay(7.33);
|
|
for(int i=0; i < NUM_PULSES; i++) {
|
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
_delay_ms(PULSE_LENGTH);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
_delay_ms(PULSE_LENGTH);
|
|
}
|
|
#endif
|
|
#endif //chdk end if
|
|
}
|
|
break;
|
|
#ifdef DOGLCD
|
|
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
|
|
{
|
|
if (code_seen('C')) {
|
|
lcd_setcontrast( ((int)code_value())&63 );
|
|
}
|
|
SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
|
SERIAL_PROTOCOL(lcd_contrast);
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
case 302: // allow cold extrudes, or set the minimum extrude temperature
|
|
{
|
|
float temp = .0;
|
|
if (code_seen('S')) temp=code_value();
|
|
set_extrude_min_temp(temp);
|
|
}
|
|
break;
|
|
#endif
|
|
case 303: // M303 PID autotune
|
|
{
|
|
float temp = 150.0;
|
|
int e=0;
|
|
int c=5;
|
|
if (code_seen('E')) e=code_value();
|
|
if (e<0)
|
|
temp=70;
|
|
if (code_seen('S')) temp=code_value();
|
|
if (code_seen('C')) c=code_value();
|
|
PID_autotune(temp, e, c);
|
|
}
|
|
break;
|
|
case 400: // M400 finish all moves
|
|
{
|
|
st_synchronize();
|
|
}
|
|
break;
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
|
|
{
|
|
#if (FILWIDTH_PIN > -1)
|
|
if(code_seen('N')) filament_width_nominal=code_value();
|
|
else{
|
|
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
|
|
SERIAL_PROTOCOLLN(filament_width_nominal);
|
|
}
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
case 405: //M405 Turn on filament sensor for control
|
|
{
|
|
|
|
|
|
if(code_seen('D')) meas_delay_cm=code_value();
|
|
|
|
if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
|
|
meas_delay_cm = MAX_MEASUREMENT_DELAY;
|
|
|
|
if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
|
|
{
|
|
int temp_ratio = widthFil_to_size_ratio();
|
|
|
|
for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
|
|
measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
|
|
}
|
|
delay_index1=0;
|
|
delay_index2=0;
|
|
}
|
|
|
|
filament_sensor = true ;
|
|
|
|
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
//SERIAL_PROTOCOL(filament_width_meas);
|
|
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
|
//SERIAL_PROTOCOL(extrudemultiply);
|
|
}
|
|
break;
|
|
|
|
case 406: //M406 Turn off filament sensor for control
|
|
{
|
|
filament_sensor = false ;
|
|
}
|
|
break;
|
|
|
|
case 407: //M407 Display measured filament diameter
|
|
{
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
SERIAL_PROTOCOLLN(filament_width_meas);
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
case 500: // M500 Store settings in EEPROM
|
|
{
|
|
Config_StoreSettings();
|
|
}
|
|
break;
|
|
case 501: // M501 Read settings from EEPROM
|
|
{
|
|
Config_RetrieveSettings();
|
|
}
|
|
break;
|
|
case 502: // M502 Revert to default settings
|
|
{
|
|
Config_ResetDefault();
|
|
}
|
|
break;
|
|
case 503: // M503 print settings currently in memory
|
|
{
|
|
Config_PrintSettings();
|
|
}
|
|
break;
|
|
case 509: //M509 Force language selection
|
|
{
|
|
lcd_force_language_selection();
|
|
SERIAL_ECHO_START;
|
|
SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
|
|
}
|
|
break;
|
|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
case 540:
|
|
{
|
|
if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
|
|
{
|
|
float value;
|
|
if (code_seen('Z'))
|
|
{
|
|
value = code_value();
|
|
if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
|
|
{
|
|
zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
else
|
|
{
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
|
|
SERIAL_ECHORPGM(MSG_Z_MIN);
|
|
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
|
|
SERIAL_ECHORPGM(MSG_Z_MAX);
|
|
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
|
|
SERIAL_ECHO(-zprobe_zoffset);
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
break;
|
|
}
|
|
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
|
|
#ifdef FILAMENTCHANGEENABLE
|
|
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
{
|
|
st_synchronize();
|
|
float target[4];
|
|
float lastpos[4];
|
|
|
|
if (farm_mode)
|
|
|
|
{
|
|
|
|
prusa_statistics(22);
|
|
|
|
}
|
|
|
|
feedmultiplyBckp=feedmultiply;
|
|
int8_t TooLowZ = 0;
|
|
|
|
target[X_AXIS]=current_position[X_AXIS];
|
|
target[Y_AXIS]=current_position[Y_AXIS];
|
|
target[Z_AXIS]=current_position[Z_AXIS];
|
|
target[E_AXIS]=current_position[E_AXIS];
|
|
lastpos[X_AXIS]=current_position[X_AXIS];
|
|
lastpos[Y_AXIS]=current_position[Y_AXIS];
|
|
lastpos[Z_AXIS]=current_position[Z_AXIS];
|
|
lastpos[E_AXIS]=current_position[E_AXIS];
|
|
|
|
//Restract extruder
|
|
if(code_seen('E'))
|
|
{
|
|
target[E_AXIS]+= code_value();
|
|
}
|
|
else
|
|
{
|
|
#ifdef FILAMENTCHANGE_FIRSTRETRACT
|
|
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
|
|
#endif
|
|
}
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
|
|
//Lift Z
|
|
if(code_seen('Z'))
|
|
{
|
|
target[Z_AXIS]+= code_value();
|
|
}
|
|
else
|
|
{
|
|
#ifdef FILAMENTCHANGE_ZADD
|
|
target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
|
|
if(target[Z_AXIS] < 10){
|
|
target[Z_AXIS]+= 10 ;
|
|
TooLowZ = 1;
|
|
}else{
|
|
TooLowZ = 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
}
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
|
|
|
|
//Move XY to side
|
|
if(code_seen('X'))
|
|
{
|
|
target[X_AXIS]+= code_value();
|
|
}
|
|
else
|
|
{
|
|
#ifdef FILAMENTCHANGE_XPOS
|
|
target[X_AXIS]= FILAMENTCHANGE_XPOS ;
|
|
#endif
|
|
}
|
|
if(code_seen('Y'))
|
|
{
|
|
target[Y_AXIS]= code_value();
|
|
}
|
|
else
|
|
{
|
|
#ifdef FILAMENTCHANGE_YPOS
|
|
target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
|
|
#endif
|
|
}
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
|
|
|
|
// Unload filament
|
|
if(code_seen('L'))
|
|
{
|
|
target[E_AXIS]+= code_value();
|
|
}
|
|
else
|
|
{
|
|
#ifdef FILAMENTCHANGE_FINALRETRACT
|
|
target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
|
|
#endif
|
|
}
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
|
|
//finish moves
|
|
st_synchronize();
|
|
//disable extruder steppers so filament can be removed
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
delay(100);
|
|
|
|
//Wait for user to insert filament
|
|
uint8_t cnt=0;
|
|
int counterBeep = 0;
|
|
lcd_wait_interact();
|
|
while(!lcd_clicked()){
|
|
cnt++;
|
|
manage_heater();
|
|
manage_inactivity(true);
|
|
if(cnt==0)
|
|
{
|
|
#if BEEPER > 0
|
|
if (counterBeep== 500){
|
|
counterBeep = 0;
|
|
}
|
|
SET_OUTPUT(BEEPER);
|
|
if (counterBeep== 0){
|
|
WRITE(BEEPER,HIGH);
|
|
}
|
|
if (counterBeep== 20){
|
|
WRITE(BEEPER,LOW);
|
|
}
|
|
counterBeep++;
|
|
#else
|
|
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
|
lcd_buzz(1000/6,100);
|
|
#else
|
|
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
//Filament inserted
|
|
|
|
WRITE(BEEPER,LOW);
|
|
|
|
//Feed the filament to the end of nozzle quickly
|
|
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
|
|
|
|
//Extrude some filament
|
|
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
|
|
|
|
|
|
|
|
|
|
//Wait for user to check the state
|
|
lcd_change_fil_state = 0;
|
|
lcd_loading_filament();
|
|
while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
|
|
lcd_change_fil_state = 0;
|
|
lcd_alright();
|
|
switch(lcd_change_fil_state){
|
|
|
|
// Filament failed to load so load it again
|
|
case 2:
|
|
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
|
|
|
|
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
|
|
|
|
lcd_loading_filament();
|
|
break;
|
|
|
|
// Filament loaded properly but color is not clear
|
|
case 3:
|
|
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
lcd_loading_color();
|
|
break;
|
|
|
|
// Everything good
|
|
default:
|
|
lcd_change_success();
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
//Not let's go back to print
|
|
|
|
//Feed a little of filament to stabilize pressure
|
|
target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
|
|
|
|
//Retract
|
|
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
|
|
|
|
|
|
//plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
|
|
|
|
//Move XY back
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
|
|
|
|
//Move Z back
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
|
|
|
|
|
|
target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
|
|
|
|
//Unretract
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
|
|
//Set E position to original
|
|
plan_set_e_position(lastpos[E_AXIS]);
|
|
|
|
//Recover feed rate
|
|
feedmultiply=feedmultiplyBckp;
|
|
char cmd[9];
|
|
sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
|
|
enquecommand(cmd);
|
|
|
|
|
|
}
|
|
break;
|
|
#endif //FILAMENTCHANGEENABLE
|
|
case 601: {
|
|
if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
|
|
}
|
|
break;
|
|
|
|
case 602: {
|
|
if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
|
|
}
|
|
break;
|
|
|
|
case 907: // M907 Set digital trimpot motor current using axis codes.
|
|
{
|
|
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
|
|
if(code_seen('B')) digipot_current(4,code_value());
|
|
if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
|
|
#endif
|
|
#ifdef MOTOR_CURRENT_PWM_XY_PIN
|
|
if(code_seen('X')) digipot_current(0, code_value());
|
|
#endif
|
|
#ifdef MOTOR_CURRENT_PWM_Z_PIN
|
|
if(code_seen('Z')) digipot_current(1, code_value());
|
|
#endif
|
|
#ifdef MOTOR_CURRENT_PWM_E_PIN
|
|
if(code_seen('E')) digipot_current(2, code_value());
|
|
#endif
|
|
#ifdef DIGIPOT_I2C
|
|
// this one uses actual amps in floating point
|
|
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
|
|
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
|
for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
|
|
#endif
|
|
}
|
|
break;
|
|
case 908: // M908 Control digital trimpot directly.
|
|
{
|
|
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
uint8_t channel,current;
|
|
if(code_seen('P')) channel=code_value();
|
|
if(code_seen('S')) current=code_value();
|
|
digitalPotWrite(channel, current);
|
|
#endif
|
|
}
|
|
break;
|
|
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
{
|
|
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
|
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
|
|
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
|
|
if(code_seen('B')) microstep_mode(4,code_value());
|
|
microstep_readings();
|
|
#endif
|
|
}
|
|
break;
|
|
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
|
{
|
|
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
|
if(code_seen('S')) switch((int)code_value())
|
|
{
|
|
case 1:
|
|
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
|
|
if(code_seen('B')) microstep_ms(4,code_value(),-1);
|
|
break;
|
|
case 2:
|
|
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
|
|
if(code_seen('B')) microstep_ms(4,-1,code_value());
|
|
break;
|
|
}
|
|
microstep_readings();
|
|
#endif
|
|
}
|
|
break;
|
|
case 701: //M701: load filament
|
|
{
|
|
enable_z();
|
|
custom_message = true;
|
|
custom_message_type = 2;
|
|
|
|
lcd_setstatuspgm(MSG_LOADING_FILAMENT);
|
|
current_position[E_AXIS] += 70;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
|
|
|
|
current_position[E_AXIS] += 25;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
|
|
st_synchronize();
|
|
|
|
if (!farm_mode && loading_flag) {
|
|
bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
|
|
|
|
while (!clean) {
|
|
lcd_update_enable(true);
|
|
lcd_update(2);
|
|
current_position[E_AXIS] += 25;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
|
|
st_synchronize();
|
|
clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
|
|
}
|
|
}
|
|
lcd_update_enable(true);
|
|
lcd_update(2);
|
|
lcd_setstatuspgm(WELCOME_MSG);
|
|
disable_z();
|
|
loading_flag = false;
|
|
custom_message = false;
|
|
custom_message_type = 0;
|
|
}
|
|
break;
|
|
case 702:
|
|
{
|
|
custom_message = true;
|
|
custom_message_type = 2;
|
|
lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
|
|
current_position[E_AXIS] += 3;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
|
|
current_position[E_AXIS] -= 80;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
|
|
st_synchronize();
|
|
lcd_setstatuspgm(WELCOME_MSG);
|
|
custom_message = false;
|
|
custom_message_type = 0;
|
|
|
|
}
|
|
break;
|
|
|
|
case 999: // M999: Restart after being stopped
|
|
Stopped = false;
|
|
lcd_reset_alert_level();
|
|
gcode_LastN = Stopped_gcode_LastN;
|
|
FlushSerialRequestResend();
|
|
break;
|
|
default: SERIAL_ECHOLNPGM("Invalid M code.");
|
|
}
|
|
|
|
} // end if(code_seen('M')) (end of M codes)
|
|
|
|
else if(code_seen('T'))
|
|
{
|
|
int index;
|
|
for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
|
|
|
|
if (*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') {
|
|
SERIAL_ECHOLNPGM("Invalid T code.");
|
|
}
|
|
else {
|
|
tmp_extruder = code_value();
|
|
#ifdef SNMM
|
|
|
|
st_synchronize();
|
|
delay(100);
|
|
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
|
|
pinMode(E_MUX0_PIN, OUTPUT);
|
|
pinMode(E_MUX1_PIN, OUTPUT);
|
|
pinMode(E_MUX2_PIN, OUTPUT);
|
|
|
|
delay(100);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO("T:");
|
|
SERIAL_ECHOLN((int)tmp_extruder);
|
|
switch (tmp_extruder) {
|
|
case 1:
|
|
WRITE(E_MUX0_PIN, HIGH);
|
|
WRITE(E_MUX1_PIN, LOW);
|
|
WRITE(E_MUX2_PIN, LOW);
|
|
|
|
break;
|
|
case 2:
|
|
WRITE(E_MUX0_PIN, LOW);
|
|
WRITE(E_MUX1_PIN, HIGH);
|
|
WRITE(E_MUX2_PIN, LOW);
|
|
|
|
break;
|
|
case 3:
|
|
WRITE(E_MUX0_PIN, HIGH);
|
|
WRITE(E_MUX1_PIN, HIGH);
|
|
WRITE(E_MUX2_PIN, LOW);
|
|
|
|
break;
|
|
default:
|
|
WRITE(E_MUX0_PIN, LOW);
|
|
WRITE(E_MUX1_PIN, LOW);
|
|
WRITE(E_MUX2_PIN, LOW);
|
|
|
|
break;
|
|
}
|
|
delay(100);
|
|
|
|
#else
|
|
if (tmp_extruder >= EXTRUDERS) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM("T");
|
|
SERIAL_PROTOCOLLN((int)tmp_extruder);
|
|
SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
|
|
}
|
|
else {
|
|
boolean make_move = false;
|
|
if (code_seen('F')) {
|
|
make_move = true;
|
|
next_feedrate = code_value();
|
|
if (next_feedrate > 0.0) {
|
|
feedrate = next_feedrate;
|
|
}
|
|
}
|
|
#if EXTRUDERS > 1
|
|
if (tmp_extruder != active_extruder) {
|
|
// Save current position to return to after applying extruder offset
|
|
memcpy(destination, current_position, sizeof(destination));
|
|
// Offset extruder (only by XY)
|
|
int i;
|
|
for (i = 0; i < 2; i++) {
|
|
current_position[i] = current_position[i] -
|
|
extruder_offset[i][active_extruder] +
|
|
extruder_offset[i][tmp_extruder];
|
|
}
|
|
// Set the new active extruder and position
|
|
active_extruder = tmp_extruder;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
// Move to the old position if 'F' was in the parameters
|
|
if (make_move && Stopped == false) {
|
|
prepare_move();
|
|
}
|
|
}
|
|
#endif
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
|
|
SERIAL_PROTOCOLLN((int)active_extruder);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
} // end if(code_seen('T')) (end of T codes)
|
|
|
|
else
|
|
{
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
|
|
SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
|
|
SERIAL_ECHOLNPGM("\"");
|
|
}
|
|
|
|
ClearToSend();
|
|
}
|
|
|
|
void FlushSerialRequestResend()
|
|
{
|
|
//char cmdbuffer[bufindr][100]="Resend:";
|
|
MYSERIAL.flush();
|
|
SERIAL_PROTOCOLRPGM(MSG_RESEND);
|
|
SERIAL_PROTOCOLLN(gcode_LastN + 1);
|
|
ClearToSend();
|
|
}
|
|
|
|
// Confirm the execution of a command, if sent from a serial line.
|
|
// Execution of a command from a SD card will not be confirmed.
|
|
void ClearToSend()
|
|
{
|
|
previous_millis_cmd = millis();
|
|
if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
|
|
SERIAL_PROTOCOLLNRPGM(MSG_OK);
|
|
}
|
|
|
|
void get_coordinates()
|
|
{
|
|
bool seen[4]={false,false,false,false};
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i]))
|
|
{
|
|
destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
|
|
seen[i]=true;
|
|
}
|
|
else destination[i] = current_position[i]; //Are these else lines really needed?
|
|
}
|
|
if(code_seen('F')) {
|
|
next_feedrate = code_value();
|
|
if(next_feedrate > 0.0) feedrate = next_feedrate;
|
|
}
|
|
}
|
|
|
|
void get_arc_coordinates()
|
|
{
|
|
#ifdef SF_ARC_FIX
|
|
bool relative_mode_backup = relative_mode;
|
|
relative_mode = true;
|
|
#endif
|
|
get_coordinates();
|
|
#ifdef SF_ARC_FIX
|
|
relative_mode=relative_mode_backup;
|
|
#endif
|
|
|
|
if(code_seen('I')) {
|
|
offset[0] = code_value();
|
|
}
|
|
else {
|
|
offset[0] = 0.0;
|
|
}
|
|
if(code_seen('J')) {
|
|
offset[1] = code_value();
|
|
}
|
|
else {
|
|
offset[1] = 0.0;
|
|
}
|
|
}
|
|
|
|
void clamp_to_software_endstops(float target[3])
|
|
{
|
|
world2machine_clamp(target[0], target[1]);
|
|
|
|
// Clamp the Z coordinate.
|
|
if (min_software_endstops) {
|
|
float negative_z_offset = 0;
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
|
|
#endif
|
|
if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
|
|
}
|
|
if (max_software_endstops) {
|
|
if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
|
|
}
|
|
}
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
|
|
float dx = x - current_position[X_AXIS];
|
|
float dy = y - current_position[Y_AXIS];
|
|
float dz = z - current_position[Z_AXIS];
|
|
int n_segments = 0;
|
|
|
|
if (mbl.active) {
|
|
float len = abs(dx) + abs(dy);
|
|
if (len > 0)
|
|
// Split to 3cm segments or shorter.
|
|
n_segments = int(ceil(len / 30.f));
|
|
}
|
|
|
|
if (n_segments > 1) {
|
|
float de = e - current_position[E_AXIS];
|
|
for (int i = 1; i < n_segments; ++ i) {
|
|
float t = float(i) / float(n_segments);
|
|
plan_buffer_line(
|
|
current_position[X_AXIS] + t * dx,
|
|
current_position[Y_AXIS] + t * dy,
|
|
current_position[Z_AXIS] + t * dz,
|
|
current_position[E_AXIS] + t * de,
|
|
feed_rate, extruder);
|
|
}
|
|
}
|
|
// The rest of the path.
|
|
plan_buffer_line(x, y, z, e, feed_rate, extruder);
|
|
current_position[X_AXIS] = x;
|
|
current_position[Y_AXIS] = y;
|
|
current_position[Z_AXIS] = z;
|
|
current_position[E_AXIS] = e;
|
|
}
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
void prepare_move()
|
|
{
|
|
clamp_to_software_endstops(destination);
|
|
previous_millis_cmd = millis();
|
|
|
|
// Do not use feedmultiply for E or Z only moves
|
|
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
}
|
|
else {
|
|
#ifdef MESH_BED_LEVELING
|
|
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
|
|
#else
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
|
|
#endif
|
|
}
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
current_position[i] = destination[i];
|
|
}
|
|
}
|
|
|
|
void prepare_arc_move(char isclockwise) {
|
|
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
|
|
|
|
// Trace the arc
|
|
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
// motion control system might still be processing the action and the real tool position
|
|
// in any intermediate location.
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
current_position[i] = destination[i];
|
|
}
|
|
previous_millis_cmd = millis();
|
|
}
|
|
|
|
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
|
|
|
#if defined(FAN_PIN)
|
|
#if CONTROLLERFAN_PIN == FAN_PIN
|
|
#error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
|
|
#endif
|
|
#endif
|
|
|
|
unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
|
|
unsigned long lastMotorCheck = 0;
|
|
|
|
void controllerFan()
|
|
{
|
|
if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
|
|
{
|
|
lastMotorCheck = millis();
|
|
|
|
if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
|
|
#if EXTRUDERS > 2
|
|
|| !READ(E2_ENABLE_PIN)
|
|
#endif
|
|
#if EXTRUDER > 1
|
|
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|
|
|| !READ(X2_ENABLE_PIN)
|
|
#endif
|
|
|| !READ(E1_ENABLE_PIN)
|
|
#endif
|
|
|| !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
|
|
{
|
|
lastMotor = millis(); //... set time to NOW so the fan will turn on
|
|
}
|
|
|
|
if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
|
|
{
|
|
digitalWrite(CONTROLLERFAN_PIN, 0);
|
|
analogWrite(CONTROLLERFAN_PIN, 0);
|
|
}
|
|
else
|
|
{
|
|
// allows digital or PWM fan output to be used (see M42 handling)
|
|
digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
|
|
analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef TEMP_STAT_LEDS
|
|
static bool blue_led = false;
|
|
static bool red_led = false;
|
|
static uint32_t stat_update = 0;
|
|
|
|
void handle_status_leds(void) {
|
|
float max_temp = 0.0;
|
|
if(millis() > stat_update) {
|
|
stat_update += 500; // Update every 0.5s
|
|
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
max_temp = max(max_temp, degHotend(cur_extruder));
|
|
max_temp = max(max_temp, degTargetHotend(cur_extruder));
|
|
}
|
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
max_temp = max(max_temp, degTargetBed());
|
|
max_temp = max(max_temp, degBed());
|
|
#endif
|
|
if((max_temp > 55.0) && (red_led == false)) {
|
|
digitalWrite(STAT_LED_RED, 1);
|
|
digitalWrite(STAT_LED_BLUE, 0);
|
|
red_led = true;
|
|
blue_led = false;
|
|
}
|
|
if((max_temp < 54.0) && (blue_led == false)) {
|
|
digitalWrite(STAT_LED_RED, 0);
|
|
digitalWrite(STAT_LED_BLUE, 1);
|
|
red_led = false;
|
|
blue_led = true;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
|
|
{
|
|
|
|
#if defined(KILL_PIN) && KILL_PIN > -1
|
|
static int killCount = 0; // make the inactivity button a bit less responsive
|
|
const int KILL_DELAY = 10000;
|
|
#endif
|
|
|
|
if(buflen < (BUFSIZE-1)){
|
|
get_command();
|
|
}
|
|
|
|
if( (millis() - previous_millis_cmd) > max_inactive_time )
|
|
if(max_inactive_time)
|
|
kill();
|
|
if(stepper_inactive_time) {
|
|
if( (millis() - previous_millis_cmd) > stepper_inactive_time )
|
|
{
|
|
if(blocks_queued() == false && ignore_stepper_queue == false) {
|
|
disable_x();
|
|
// SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
|
|
disable_y();
|
|
disable_z();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
|
|
if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
|
|
{
|
|
chdkActive = false;
|
|
WRITE(CHDK, LOW);
|
|
}
|
|
#endif
|
|
|
|
#if defined(KILL_PIN) && KILL_PIN > -1
|
|
|
|
// Check if the kill button was pressed and wait just in case it was an accidental
|
|
// key kill key press
|
|
// -------------------------------------------------------------------------------
|
|
if( 0 == READ(KILL_PIN) )
|
|
{
|
|
killCount++;
|
|
}
|
|
else if (killCount > 0)
|
|
{
|
|
killCount--;
|
|
}
|
|
// Exceeded threshold and we can confirm that it was not accidental
|
|
// KILL the machine
|
|
// ----------------------------------------------------------------
|
|
if ( killCount >= KILL_DELAY)
|
|
{
|
|
kill();
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
|
controllerFan(); //Check if fan should be turned on to cool stepper drivers down
|
|
#endif
|
|
#ifdef EXTRUDER_RUNOUT_PREVENT
|
|
if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
|
|
if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
|
|
{
|
|
bool oldstatus=READ(E0_ENABLE_PIN);
|
|
enable_e0();
|
|
float oldepos=current_position[E_AXIS];
|
|
float oldedes=destination[E_AXIS];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
|
|
destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
|
|
EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
|
|
current_position[E_AXIS]=oldepos;
|
|
destination[E_AXIS]=oldedes;
|
|
plan_set_e_position(oldepos);
|
|
previous_millis_cmd=millis();
|
|
st_synchronize();
|
|
WRITE(E0_ENABLE_PIN,oldstatus);
|
|
}
|
|
#endif
|
|
#ifdef TEMP_STAT_LEDS
|
|
handle_status_leds();
|
|
#endif
|
|
check_axes_activity();
|
|
}
|
|
|
|
void kill(const char *full_screen_message)
|
|
{
|
|
cli(); // Stop interrupts
|
|
disable_heater();
|
|
|
|
disable_x();
|
|
// SERIAL_ECHOLNPGM("kill - disable Y");
|
|
disable_y();
|
|
disable_z();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
|
|
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
pinMode(PS_ON_PIN,INPUT);
|
|
#endif
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
|
|
if (full_screen_message != NULL) {
|
|
SERIAL_ERRORLNRPGM(full_screen_message);
|
|
lcd_display_message_fullscreen_P(full_screen_message);
|
|
} else {
|
|
LCD_ALERTMESSAGERPGM(MSG_KILLED);
|
|
}
|
|
|
|
// FMC small patch to update the LCD before ending
|
|
sei(); // enable interrupts
|
|
for ( int i=5; i--; lcd_update())
|
|
{
|
|
delay(200);
|
|
}
|
|
cli(); // disable interrupts
|
|
suicide();
|
|
while(1) { /* Intentionally left empty */ } // Wait for reset
|
|
}
|
|
|
|
void Stop()
|
|
{
|
|
disable_heater();
|
|
if(Stopped == false) {
|
|
Stopped = true;
|
|
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
|
|
LCD_MESSAGERPGM(MSG_STOPPED);
|
|
}
|
|
}
|
|
|
|
bool IsStopped() { return Stopped; };
|
|
|
|
#ifdef FAST_PWM_FAN
|
|
void setPwmFrequency(uint8_t pin, int val)
|
|
{
|
|
val &= 0x07;
|
|
switch(digitalPinToTimer(pin))
|
|
{
|
|
|
|
#if defined(TCCR0A)
|
|
case TIMER0A:
|
|
case TIMER0B:
|
|
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
|
|
// TCCR0B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR1A)
|
|
case TIMER1A:
|
|
case TIMER1B:
|
|
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
// TCCR1B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR2)
|
|
case TIMER2:
|
|
case TIMER2:
|
|
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
TCCR2 |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR2A)
|
|
case TIMER2A:
|
|
case TIMER2B:
|
|
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
|
|
TCCR2B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR3A)
|
|
case TIMER3A:
|
|
case TIMER3B:
|
|
case TIMER3C:
|
|
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
|
|
TCCR3B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR4A)
|
|
case TIMER4A:
|
|
case TIMER4B:
|
|
case TIMER4C:
|
|
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
|
|
TCCR4B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR5A)
|
|
case TIMER5A:
|
|
case TIMER5B:
|
|
case TIMER5C:
|
|
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
|
|
TCCR5B |= val;
|
|
break;
|
|
#endif
|
|
|
|
}
|
|
}
|
|
#endif //FAST_PWM_FAN
|
|
|
|
bool setTargetedHotend(int code){
|
|
tmp_extruder = active_extruder;
|
|
if(code_seen('T')) {
|
|
tmp_extruder = code_value();
|
|
if(tmp_extruder >= EXTRUDERS) {
|
|
SERIAL_ECHO_START;
|
|
switch(code){
|
|
case 104:
|
|
SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
|
|
break;
|
|
case 105:
|
|
SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
|
|
break;
|
|
case 109:
|
|
SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
|
|
break;
|
|
case 218:
|
|
SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
|
|
break;
|
|
case 221:
|
|
SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
|
|
break;
|
|
}
|
|
SERIAL_PROTOCOLLN((int)tmp_extruder);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
|
|
{
|
|
if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
|
|
{
|
|
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
|
|
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
|
|
}
|
|
|
|
unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
|
|
unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
|
|
|
|
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
|
|
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
|
|
|
|
total_filament_used = 0;
|
|
|
|
}
|
|
|
|
float calculate_volumetric_multiplier(float diameter) {
|
|
float area = .0;
|
|
float radius = .0;
|
|
|
|
radius = diameter * .5;
|
|
if (! volumetric_enabled || radius == 0) {
|
|
area = 1;
|
|
}
|
|
else {
|
|
area = M_PI * pow(radius, 2);
|
|
}
|
|
|
|
return 1.0 / area;
|
|
}
|
|
|
|
void calculate_volumetric_multipliers() {
|
|
volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
|
|
#if EXTRUDERS > 1
|
|
volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
|
|
#if EXTRUDERS > 2
|
|
volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void delay_keep_alive(unsigned int ms)
|
|
{
|
|
for (;;) {
|
|
manage_heater();
|
|
// Manage inactivity, but don't disable steppers on timeout.
|
|
manage_inactivity(true);
|
|
lcd_update();
|
|
if (ms == 0)
|
|
break;
|
|
else if (ms >= 50) {
|
|
delay(50);
|
|
ms -= 50;
|
|
} else {
|
|
delay(ms);
|
|
ms = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void wait_for_heater(long codenum) {
|
|
|
|
#ifdef TEMP_RESIDENCY_TIME
|
|
long residencyStart;
|
|
residencyStart = -1;
|
|
/* continue to loop until we have reached the target temp
|
|
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
|
|
while ((!cancel_heatup) && ((residencyStart == -1) ||
|
|
(residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
|
|
#else
|
|
while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
|
|
#endif //TEMP_RESIDENCY_TIME
|
|
if ((millis() - codenum) > 1000UL)
|
|
{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
|
|
if (!farm_mode) {
|
|
SERIAL_PROTOCOLPGM("T:");
|
|
SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL((int)tmp_extruder);
|
|
|
|
#ifdef TEMP_RESIDENCY_TIME
|
|
SERIAL_PROTOCOLPGM(" W:");
|
|
if (residencyStart > -1)
|
|
{
|
|
codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
|
|
SERIAL_PROTOCOLLN(codenum);
|
|
}
|
|
else
|
|
{
|
|
SERIAL_PROTOCOLLN("?");
|
|
}
|
|
}
|
|
#else
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
codenum = millis();
|
|
}
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
#ifdef TEMP_RESIDENCY_TIME
|
|
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
|
|
or when current temp falls outside the hysteresis after target temp was reached */
|
|
if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
|
|
(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
|
|
(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
|
|
{
|
|
residencyStart = millis();
|
|
}
|
|
#endif //TEMP_RESIDENCY_TIME
|
|
}
|
|
}
|
|
|
|
void check_babystep() {
|
|
int babystep_z;
|
|
EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
|
|
if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
|
|
babystep_z = 0; //if babystep value is out of min max range, set it to 0
|
|
SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
|
|
EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
|
|
lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
|
|
lcd_update_enable(true);
|
|
}
|
|
}
|
|
#ifdef DIS
|
|
void d_setup()
|
|
{
|
|
pinMode(D_DATACLOCK, INPUT_PULLUP);
|
|
pinMode(D_DATA, INPUT_PULLUP);
|
|
pinMode(D_REQUIRE, OUTPUT);
|
|
digitalWrite(D_REQUIRE, HIGH);
|
|
}
|
|
|
|
|
|
float d_ReadData()
|
|
{
|
|
int digit[13];
|
|
String mergeOutput;
|
|
float output;
|
|
|
|
digitalWrite(D_REQUIRE, HIGH);
|
|
for (int i = 0; i<13; i++)
|
|
{
|
|
for (int j = 0; j < 4; j++)
|
|
{
|
|
while (digitalRead(D_DATACLOCK) == LOW) {}
|
|
while (digitalRead(D_DATACLOCK) == HIGH) {}
|
|
bitWrite(digit[i], j, digitalRead(D_DATA));
|
|
}
|
|
}
|
|
|
|
digitalWrite(D_REQUIRE, LOW);
|
|
mergeOutput = "";
|
|
output = 0;
|
|
for (int r = 5; r <= 10; r++) //Merge digits
|
|
{
|
|
mergeOutput += digit[r];
|
|
}
|
|
output = mergeOutput.toFloat();
|
|
|
|
if (digit[4] == 8) //Handle sign
|
|
{
|
|
output *= -1;
|
|
}
|
|
|
|
for (int i = digit[11]; i > 0; i--) //Handle floating point
|
|
{
|
|
output /= 10;
|
|
}
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
|
|
int t1 = 0;
|
|
int t_delay = 0;
|
|
int digit[13];
|
|
int m;
|
|
char str[3];
|
|
//String mergeOutput;
|
|
char mergeOutput[15];
|
|
float output;
|
|
|
|
int mesh_point = 0; //index number of calibration point
|
|
float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
|
|
float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
float mesh_home_z_search = 4;
|
|
float row[x_points_num];
|
|
int ix = 0;
|
|
int iy = 0;
|
|
|
|
char* filename_wldsd = "wldsd.txt";
|
|
char data_wldsd[70];
|
|
char numb_wldsd[10];
|
|
|
|
d_setup();
|
|
|
|
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
|
// We don't know where we are! HOME!
|
|
// Push the commands to the front of the message queue in the reverse order!
|
|
// There shall be always enough space reserved for these commands.
|
|
repeatcommand_front(); // repeat G80 with all its parameters
|
|
|
|
enquecommand_front_P((PSTR("G28 W0")));
|
|
enquecommand_front_P((PSTR("G1 Z5")));
|
|
return;
|
|
}
|
|
bool custom_message_old = custom_message;
|
|
unsigned int custom_message_type_old = custom_message_type;
|
|
unsigned int custom_message_state_old = custom_message_state;
|
|
custom_message = true;
|
|
custom_message_type = 1;
|
|
custom_message_state = (x_points_num * y_points_num) + 10;
|
|
lcd_update(1);
|
|
|
|
mbl.reset();
|
|
babystep_undo();
|
|
|
|
card.openFile(filename_wldsd, false);
|
|
|
|
current_position[Z_AXIS] = mesh_home_z_search;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
|
|
|
|
int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
|
|
int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
|
|
int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
|
|
|
|
setup_for_endstop_move(false);
|
|
|
|
SERIAL_PROTOCOLPGM("Num X,Y: ");
|
|
SERIAL_PROTOCOL(x_points_num);
|
|
SERIAL_PROTOCOLPGM(",");
|
|
SERIAL_PROTOCOL(y_points_num);
|
|
SERIAL_PROTOCOLPGM("\nZ search height: ");
|
|
SERIAL_PROTOCOL(mesh_home_z_search);
|
|
SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
|
|
SERIAL_PROTOCOL(x_dimension);
|
|
SERIAL_PROTOCOLPGM(",");
|
|
SERIAL_PROTOCOL(y_dimension);
|
|
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
|
|
|
|
while (mesh_point != x_points_num * y_points_num) {
|
|
ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
|
|
iy = mesh_point / x_points_num;
|
|
if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
|
|
float z0 = 0.f;
|
|
current_position[Z_AXIS] = mesh_home_z_search;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
|
st_synchronize();
|
|
|
|
|
|
current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
|
|
current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
|
|
st_synchronize();
|
|
|
|
if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
|
|
break;
|
|
card.closefile();
|
|
}
|
|
|
|
|
|
//memset(numb_wldsd, 0, sizeof(numb_wldsd));
|
|
//dtostrf(d_ReadData(), 8, 5, numb_wldsd);
|
|
//strcat(data_wldsd, numb_wldsd);
|
|
|
|
|
|
|
|
//MYSERIAL.println(data_wldsd);
|
|
//delay(1000);
|
|
//delay(3000);
|
|
//t1 = millis();
|
|
|
|
//while (digitalRead(D_DATACLOCK) == LOW) {}
|
|
//while (digitalRead(D_DATACLOCK) == HIGH) {}
|
|
memset(digit, 0, sizeof(digit));
|
|
//cli();
|
|
digitalWrite(D_REQUIRE, LOW);
|
|
|
|
for (int i = 0; i<13; i++)
|
|
{
|
|
//t1 = millis();
|
|
for (int j = 0; j < 4; j++)
|
|
{
|
|
while (digitalRead(D_DATACLOCK) == LOW) {}
|
|
while (digitalRead(D_DATACLOCK) == HIGH) {}
|
|
bitWrite(digit[i], j, digitalRead(D_DATA));
|
|
}
|
|
//t_delay = (millis() - t1);
|
|
//SERIAL_PROTOCOLPGM(" ");
|
|
//SERIAL_PROTOCOL_F(t_delay, 5);
|
|
//SERIAL_PROTOCOLPGM(" ");
|
|
}
|
|
//sei();
|
|
digitalWrite(D_REQUIRE, HIGH);
|
|
mergeOutput[0] = '\0';
|
|
output = 0;
|
|
for (int r = 5; r <= 10; r++) //Merge digits
|
|
{
|
|
sprintf(str, "%d", digit[r]);
|
|
strcat(mergeOutput, str);
|
|
}
|
|
|
|
output = atof(mergeOutput);
|
|
|
|
if (digit[4] == 8) //Handle sign
|
|
{
|
|
output *= -1;
|
|
}
|
|
|
|
for (int i = digit[11]; i > 0; i--) //Handle floating point
|
|
{
|
|
output *= 0.1;
|
|
}
|
|
|
|
|
|
//output = d_ReadData();
|
|
|
|
//row[ix] = current_position[Z_AXIS];
|
|
|
|
memset(data_wldsd, 0, sizeof(data_wldsd));
|
|
|
|
for (int i = 0; i <3; i++) {
|
|
memset(numb_wldsd, 0, sizeof(numb_wldsd));
|
|
dtostrf(current_position[i], 8, 5, numb_wldsd);
|
|
strcat(data_wldsd, numb_wldsd);
|
|
strcat(data_wldsd, ";");
|
|
|
|
}
|
|
memset(numb_wldsd, 0, sizeof(numb_wldsd));
|
|
dtostrf(output, 8, 5, numb_wldsd);
|
|
strcat(data_wldsd, numb_wldsd);
|
|
//strcat(data_wldsd, ";");
|
|
card.write_command(data_wldsd);
|
|
|
|
|
|
//row[ix] = d_ReadData();
|
|
|
|
row[ix] = output; // current_position[Z_AXIS];
|
|
|
|
if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
|
|
for (int i = 0; i < x_points_num; i++) {
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
SERIAL_PROTOCOL_F(row[i], 5);
|
|
|
|
|
|
}
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
}
|
|
custom_message_state--;
|
|
mesh_point++;
|
|
lcd_update(1);
|
|
|
|
}
|
|
card.closefile();
|
|
|
|
}
|
|
#endif
|
|
|
|
void temp_compensation_start() {
|
|
custom_message = true;
|
|
custom_message_type = 5;
|
|
if (degHotend(active_extruder)>EXTRUDE_MINTEMP) current_position[E_AXIS] -= DEFAULT_RETRACTION;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
|
|
|
|
current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
current_position[Z_AXIS] = 0;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
|
|
while (fabs(degBed() - target_temperature_bed) > 3) delay_keep_alive(1000);
|
|
|
|
for(int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
|
|
|
|
custom_message_type = 0;
|
|
custom_message = false;
|
|
}
|
|
|
|
void temp_compensation_apply() {
|
|
int i_add;
|
|
int compensation_value;
|
|
int z_shift = 0;
|
|
float z_shift_mm;
|
|
|
|
if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
|
|
if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 50 && target_temperature_bed <= 100) {
|
|
i_add = (target_temperature_bed - 60) / 10;
|
|
EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
|
|
z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
|
|
}
|
|
else {
|
|
//interpolation
|
|
z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
|
|
}
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
SERIAL_PROTOCOLPGM("Z shift applied:");
|
|
MYSERIAL.print(z_shift_mm);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
|
|
st_synchronize();
|
|
plan_set_z_position(current_position[Z_AXIS]);
|
|
}
|
|
else {
|
|
//message that we have no temp compensation data ?
|
|
}
|
|
}
|
|
|
|
float temp_comp_interpolation(float inp_temperature) {
|
|
|
|
//cubic spline interpolation
|
|
|
|
int n, i, j, k;
|
|
float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], p, m[10][10] = { 0 }, temp;
|
|
int shift[10];
|
|
int temp_C[10];
|
|
|
|
p = inp_temperature;
|
|
n = 6; //number of measured points
|
|
|
|
shift[0] = 0;
|
|
for (i = 0; i < n; i++) {
|
|
//scanf_s("%f%f", &x[i], &f[i]);
|
|
if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
|
|
temp_C[i] = 50 + i * 10; //temperature in C
|
|
|
|
x[i] = (float)temp_C[i];
|
|
f[i] = (float)shift[i];
|
|
}
|
|
|
|
|
|
|
|
for (i = n - 1; i>0; i--) {
|
|
F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
|
|
h[i - 1] = x[i] - x[i - 1];
|
|
}
|
|
//*********** formation of h, s , f matrix **************
|
|
for (i = 1; i<n - 1; i++) {
|
|
m[i][i] = 2 * (h[i - 1] + h[i]);
|
|
if (i != 1) {
|
|
m[i][i - 1] = h[i - 1];
|
|
m[i - 1][i] = h[i - 1];
|
|
}
|
|
m[i][n - 1] = 6 * (F[i + 1] - F[i]);
|
|
}
|
|
//*********** forward elimination **************
|
|
for (i = 1; i<n - 2; i++) {
|
|
temp = (m[i + 1][i] / m[i][i]);
|
|
for (j = 1; j <= n - 1; j++)
|
|
m[i + 1][j] -= temp*m[i][j];
|
|
}
|
|
//*********** backward substitution *********
|
|
for (i = n - 2; i>0; i--) {
|
|
sum = 0;
|
|
for (j = i; j <= n - 2; j++)
|
|
sum += m[i][j] * s[j];
|
|
s[i] = (m[i][n - 1] - sum) / m[i][i];
|
|
}
|
|
|
|
for (i = 0; i<n - 1; i++)
|
|
if (x[i] <= p&&p <= x[i + 1]) {
|
|
a = (s[i + 1] - s[i]) / (6 * h[i]);
|
|
b = s[i] / 2;
|
|
c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
|
|
d = f[i];
|
|
sum = a*pow((p - x[i]), 3) + b*pow((p - x[i]), 2) + c*(p - x[i]) + d;
|
|
}
|
|
|
|
return sum;
|
|
|
|
}
|
|
|
|
void long_pause() //long pause print
|
|
{
|
|
st_synchronize();
|
|
|
|
//save currently set parameters to global variables
|
|
saved_feedmultiply = feedmultiply;
|
|
HotendTempBckp = degTargetHotend(active_extruder);
|
|
fanSpeedBckp = fanSpeed;
|
|
pause_time += (millis() - starttime);
|
|
|
|
|
|
//save position
|
|
pause_lastpos[X_AXIS] = current_position[X_AXIS];
|
|
pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
|
|
pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
|
|
pause_lastpos[E_AXIS] = current_position[E_AXIS];
|
|
|
|
//retract
|
|
current_position[E_AXIS] -= PAUSE_RETRACT;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
|
|
|
|
//lift z
|
|
current_position[Z_AXIS] += Z_PAUSE_LIFT;
|
|
if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
|
|
|
|
//set nozzle target temperature to 0
|
|
setTargetHotend(0, 0);
|
|
setTargetHotend(0, 1);
|
|
setTargetHotend(0, 2);
|
|
|
|
//Move XY to side
|
|
current_position[X_AXIS] = X_PAUSE_POS;
|
|
current_position[Y_AXIS] = Y_PAUSE_POS;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
|
|
|
|
// Turn off the print fan
|
|
fanSpeed = 0;
|
|
|
|
st_synchronize();
|
|
} |