Prusa-Firmware/Firmware/fsensor.cpp
2018-03-29 17:50:43 +02:00

292 lines
7.5 KiB
C++

#include "Marlin.h"
#ifdef PAT9125
#include "fsensor.h"
#include "pat9125.h"
#include "stepper.h"
#include "planner.h"
#include "fastio.h"
#include "cmdqueue.h"
//#include "LiquidCrystal_Prusa.h"
//extern LiquidCrystal_Prusa lcd;
#define FSENSOR_ERR_MAX 5 //filament sensor max error count
#define FSENSOR_INT_PIN 63 //filament sensor interrupt pin PK1
#define FSENSOR_INT_PIN_MSK 0x02 //filament sensor interrupt pin mask (bit1)
#define FSENSOR_CHUNK_LEN 280 //filament sensor chunk length in steps
extern void stop_and_save_print_to_ram(float z_move, float e_move);
extern void restore_print_from_ram_and_continue(float e_move);
extern int8_t FSensorStateMenu;
void fsensor_stop_and_save_print()
{
stop_and_save_print_to_ram(0, 0); //XYZE - no change
}
void fsensor_restore_print_and_continue()
{
restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
}
//uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
uint8_t fsensor_int_pin_old = 0;
int16_t fsensor_chunk_len = FSENSOR_CHUNK_LEN;
bool fsensor_enabled = true;
bool fsensor_not_responding = false;
//bool fsensor_ignore_error = true;
bool fsensor_M600 = false;
uint8_t fsensor_err_cnt = 0;
int16_t fsensor_st_cnt = 0;
uint8_t fsensor_log = 1;
//autoload enable/disable flag
bool fsensor_autoload_enabled = false;
uint16_t fsensor_autoload_y = 0;
uint8_t fsensor_autoload_c = 0;
uint32_t fsensor_autoload_last_millis = 0;
uint8_t fsensor_autoload_sum = 0;
void fsensor_block()
{
fsensor_enabled = false;
}
void fsensor_unblock() {
fsensor_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FSENSOR) == 0x01);
}
bool fsensor_enable()
{
// puts_P(PSTR("fsensor_enable\n"));
int pat9125 = pat9125_init();
// printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
if (pat9125)
fsensor_not_responding = false;
else
fsensor_not_responding = true;
fsensor_enabled = pat9125?true:false;
// fsensor_ignore_error = true;
fsensor_M600 = false;
fsensor_err_cnt = 0;
eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled?0x01:0x00);
FSensorStateMenu = fsensor_enabled?1:0;
return fsensor_enabled;
}
void fsensor_disable()
{
// puts_P(PSTR("fsensor_disable\n"));
fsensor_enabled = false;
eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
FSensorStateMenu = 0;
}
void pciSetup(byte pin)
{
*digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
}
void fsensor_setup_interrupt()
{
// uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
// uint8_t fsensor_int_pcmsk = digitalPinToPCMSKbit(pin);
// uint8_t fsensor_int_pcicr = digitalPinToPCICRbit(pin);
pinMode(FSENSOR_INT_PIN, OUTPUT);
digitalWrite(FSENSOR_INT_PIN, LOW);
fsensor_int_pin_old = 0;
pciSetup(FSENSOR_INT_PIN);
}
void fsensor_autoload_check_start(void)
{
// puts_P(PSTR("fsensor_autoload_check_start\n"));
pat9125_update_y(); //update sensor
fsensor_autoload_y = pat9125_y; //save current y value
fsensor_autoload_c = 0; //reset number of changes counter
fsensor_autoload_sum = 0;
fsensor_autoload_last_millis = millis();
fsensor_autoload_enabled = true;
fsensor_err_cnt = 0;
}
void fsensor_autoload_check_stop(void)
{
// puts_P(PSTR("fsensor_autoload_check_stop\n"));
fsensor_autoload_sum = 0;
fsensor_autoload_enabled = false;
fsensor_err_cnt = 0;
}
bool fsensor_check_autoload(void)
{
uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
if ((millis() - fsensor_autoload_last_millis) < 25) return false;
fsensor_autoload_last_millis = millis();
pat9125_update_y(); //update sensor
int16_t dy = fsensor_autoload_y - pat9125_y;
if (dy) //? y value is different
{
if (dy < 0) //? delta-y value is positive (inserting)
{
fsensor_autoload_sum -= dy;
fsensor_autoload_c += 3; //increment change counter by 3
}
else if (fsensor_autoload_c > 1)
fsensor_autoload_c -= 2; //decrement change counter by 2
fsensor_autoload_y = pat9125_y; //save current value
}
else if (fsensor_autoload_c > 0)
fsensor_autoload_c--;
if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
// if (fsensor_autoload_c != fsensor_autoload_c_old)
// printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
return true;
return false;
}
ISR(PCINT2_vect)
{
// puts("PCINT2\n");
if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return;
fsensor_int_pin_old = PINK;
static bool _lock = false;
if (_lock) return;
_lock = true;
// return;
int st_cnt = fsensor_st_cnt;
fsensor_st_cnt = 0;
sei();
/* *digitalPinToPCMSK(fsensor_int_pin) &= ~bit(digitalPinToPCMSKbit(fsensor_int_pin));
digitalWrite(fsensor_int_pin, HIGH);
*digitalPinToPCMSK(fsensor_int_pin) |= bit(digitalPinToPCMSKbit(fsensor_int_pin));*/
if (!pat9125_update_y())
{
#ifdef DEBUG_FSENSOR_LOG
puts_P(PSTR("pat9125 not responding.\n"));
#endif //DEBUG_FSENSOR_LOG
fsensor_disable();
fsensor_not_responding = true;
}
if (st_cnt != 0)
{
#ifdef DEBUG_FSENSOR_LOG
if (fsensor_log)
{
MYSERIAL.print("cnt=");
MYSERIAL.print(st_cnt, DEC);
MYSERIAL.print(" dy=");
MYSERIAL.print(pat9125_y, DEC);
}
#endif //DEBUG_FSENSOR_LOG
if (st_cnt != 0)
{
if( (pat9125_y == 0) || ((pat9125_y > 0) && (st_cnt < 0)) || ((pat9125_y < 0) && (st_cnt > 0)))
{ //invalid movement
if (st_cnt > 0) //only positive movements
fsensor_err_cnt++;
#ifdef DEBUG_FSENSOR_LOG
if (fsensor_log)
{
MYSERIAL.print("\tNG ! err=");
MYSERIAL.println(fsensor_err_cnt, DEC);
}
#endif //DEBUG_FSENSOR_LOG
}
else
{ //propper movement
if (fsensor_err_cnt > 0)
fsensor_err_cnt--;
// fsensor_err_cnt = 0;
#ifdef DEBUG_FSENSOR_LOG
if (fsensor_log)
{
MYSERIAL.print("\tOK err=");
MYSERIAL.println(fsensor_err_cnt, DEC);
}
#endif //DEBUG_FSENSOR_LOG
}
}
else
{ //no movement
#ifdef DEBUG_FSENSOR_LOG
if (fsensor_log)
MYSERIAL.println("\tOK 0");
#endif //DEBUG_FSENSOR_LOG
}
}
pat9125_y = 0;
_lock = false;
return;
}
void fsensor_st_block_begin(block_t* bl)
{
if (!fsensor_enabled) return;
if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
{
if (_READ(63)) _WRITE(63, LOW);
else _WRITE(63, HIGH);
}
// PINK |= FSENSOR_INT_PIN_MSK; //toggle pin
// _WRITE(fsensor_int_pin, LOW);
}
void fsensor_st_block_chunk(block_t* bl, int cnt)
{
if (!fsensor_enabled) return;
fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
{
if (_READ(63)) _WRITE(63, LOW);
else _WRITE(63, HIGH);
}
// PINK |= FSENSOR_INT_PIN_MSK; //toggle pin
// _WRITE(fsensor_int_pin, LOW);
}
void fsensor_update()
{
if (!fsensor_enabled) return;
if (fsensor_err_cnt > FSENSOR_ERR_MAX)
{
fsensor_stop_and_save_print();
fsensor_err_cnt = 0;
enquecommand_front_P((PSTR("G1 E-3 F200")));
process_commands();
cmdqueue_pop_front();
st_synchronize();
enquecommand_front_P((PSTR("G1 E3 F200")));
process_commands();
cmdqueue_pop_front();
st_synchronize();
if (fsensor_err_cnt == 0)
{
fsensor_restore_print_and_continue();
}
else
{
eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
enquecommand_front_P((PSTR("M600")));
fsensor_M600 = true;
fsensor_enabled = false;
}
}
}
#endif //PAT9125