Prusa-Firmware/Firmware/temperature.cpp
Yuri D'Elia 4438aa4909 TM: reset fan measuring state when changing speed
Ensure that fan checks are reset and use the new speed at each step of
the calibration.

This also gives extra time to the fan to ramp-up from a cold start,
when a fancheck could previously start right *after* the speed change.

Should fix #3791
2022-12-16 15:31:34 +01:00

2953 lines
87 KiB
C++
Executable File

/*
temperature.c - temperature control
Part of Marlin
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include "temperature.h"
#include "stepper.h"
#include "ultralcd.h"
#include "menu.h"
#include "sound.h"
#include "fancheck.h"
#include "messages.h"
#include "language.h"
#include "SdFatUtil.h"
#include <avr/wdt.h>
#include <util/atomic.h>
#include "adc.h"
#include "ConfigurationStore.h"
#include "Timer.h"
#include "Configuration_prusa.h"
#include "Prusa_farm.h"
#if (ADC_OVRSAMPL != OVERSAMPLENR)
#error "ADC_OVRSAMPL oversampling must match OVERSAMPLENR"
#endif
#ifdef SYSTEM_TIMER_2
#define ENABLE_SOFT_PWM_INTERRUPT() TIMSK2 |= (1<<OCIE2B)
#define DISABLE_SOFT_PWM_INTERRUPT() TIMSK2 &= ~(1<<OCIE2B)
#else //SYSTEM_TIMER_2
#define ENABLE_SOFT_PWM_INTERRUPT() TIMSK0 |= (1<<OCIE0B)
#define DISABLE_SOFT_PWM_INTERRUPT() TIMSK0 &= ~(1<<OCIE0B)
#endif //SYSTEM_TIMER_2
// temperature manager timer configuration
#define TEMP_MGR_INTV 0.27 // seconds, ~3.7Hz
#define TEMP_TIM_PRESCALE 256
#define TEMP_TIM_OCRA_OVF (uint16_t)(TEMP_MGR_INTV / ((long double)TEMP_TIM_PRESCALE / F_CPU))
#define TEMP_TIM_REGNAME(registerbase,number,suffix) _REGNAME(registerbase,number,suffix)
#undef B0 //Necessary hack because of "binary.h" included in "Arduino.h" included in "system_timer.h" included in this file...
#define TCCRxA TEMP_TIM_REGNAME(TCCR, TEMP_TIM, A)
#define TCCRxB TEMP_TIM_REGNAME(TCCR, TEMP_TIM, B)
#define TCCRxC TEMP_TIM_REGNAME(TCCR, TEMP_TIM, C)
#define TCNTx TEMP_TIM_REGNAME(TCNT, TEMP_TIM,)
#define OCRxA TEMP_TIM_REGNAME(OCR, TEMP_TIM, A)
#define TIMSKx TEMP_TIM_REGNAME(TIMSK, TEMP_TIM,)
#define TIFRx TEMP_TIM_REGNAME(TIFR, TEMP_TIM,)
#define TIMERx_COMPA_vect TEMP_TIM_REGNAME(TIMER, TEMP_TIM, _COMPA_vect)
#define CSx0 TEMP_TIM_REGNAME(CS, TEMP_TIM, 0)
#define CSx1 TEMP_TIM_REGNAME(CS, TEMP_TIM, 1)
#define CSx2 TEMP_TIM_REGNAME(CS, TEMP_TIM, 2)
#define WGMx0 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 0)
#define WGMx1 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 1)
#define WGMx2 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 2)
#define WGMx3 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 3)
#define COMxA0 TEMP_TIM_REGNAME(COM, TEMP_TIM, A0)
#define COMxB0 TEMP_TIM_REGNAME(COM, TEMP_TIM, B0)
#define COMxC0 TEMP_TIM_REGNAME(COM, TEMP_TIM, C0)
#define OCIExA TEMP_TIM_REGNAME(OCIE, TEMP_TIM, A)
#define OCFxA TEMP_TIM_REGNAME(OCF, TEMP_TIM, A)
#define TEMP_MGR_INT_FLAG_STATE() (TIFRx & (1<<OCFxA))
#define TEMP_MGR_INT_FLAG_CLEAR() TIFRx |= (1<<OCFxA)
#define TEMP_MGR_INTERRUPT_STATE() (TIMSKx & (1<<OCIExA))
#define ENABLE_TEMP_MGR_INTERRUPT() TIMSKx |= (1<<OCIExA)
#define DISABLE_TEMP_MGR_INTERRUPT() TIMSKx &= ~(1<<OCIExA)
#ifdef TEMP_MODEL
// temperature model interface
#include "temp_model.h"
#endif
//===========================================================================
//=============================public variables============================
//===========================================================================
int target_temperature[EXTRUDERS] = { 0 };
int target_temperature_bed = 0;
int current_temperature_raw[EXTRUDERS] = { 0 };
float current_temperature[EXTRUDERS] = { 0.0 };
#ifdef PINDA_THERMISTOR
uint16_t current_temperature_raw_pinda = 0;
float current_temperature_pinda = 0.0;
#endif //PINDA_THERMISTOR
#ifdef AMBIENT_THERMISTOR
int current_temperature_raw_ambient = 0;
float current_temperature_ambient = 0.0;
#endif //AMBIENT_THERMISTOR
#ifdef VOLT_PWR_PIN
int current_voltage_raw_pwr = 0;
#endif
#ifdef VOLT_BED_PIN
int current_voltage_raw_bed = 0;
#endif
#ifdef IR_SENSOR_ANALOG
uint16_t current_voltage_raw_IR = 0;
#endif //IR_SENSOR_ANALOG
int current_temperature_bed_raw = 0;
float current_temperature_bed = 0.0;
#ifdef PIDTEMP
float _Kp, _Ki, _Kd;
int pid_cycle, pid_number_of_cycles;
static bool pid_tuning_finished = true;
bool pidTuningRunning() {
return !pid_tuning_finished;
}
void preparePidTuning() {
// ensure heaters are disabled before we switch off PID management!
disable_heater();
pid_tuning_finished = false;
}
#endif //PIDTEMP
unsigned char soft_pwm_bed;
#ifdef BABYSTEPPING
volatile int babystepsTodo[3]={0,0,0};
#endif
//===========================================================================
//=============================private variables============================
//===========================================================================
static volatile bool temp_meas_ready = false;
#ifdef PIDTEMP
//static cannot be external:
static float iState_sum[EXTRUDERS] = { 0 };
static float dState_last[EXTRUDERS] = { 0 };
static float pTerm[EXTRUDERS];
static float iTerm[EXTRUDERS];
static float dTerm[EXTRUDERS];
static float pid_error[EXTRUDERS];
static float iState_sum_min[EXTRUDERS];
static float iState_sum_max[EXTRUDERS];
static bool pid_reset[EXTRUDERS];
#endif //PIDTEMP
#ifdef PIDTEMPBED
//static cannot be external:
static float temp_iState_bed = { 0 };
static float temp_dState_bed = { 0 };
static float pTerm_bed;
static float iTerm_bed;
static float dTerm_bed;
static float pid_error_bed;
static float temp_iState_min_bed;
static float temp_iState_max_bed;
#else //PIDTEMPBED
static unsigned long previous_millis_bed_heater;
#endif //PIDTEMPBED
static unsigned char soft_pwm[EXTRUDERS];
#ifdef FAN_SOFT_PWM
unsigned char fanSpeedSoftPwm;
static unsigned char soft_pwm_fan;
#endif
uint8_t fanSpeedBckp = 255;
#if EXTRUDERS > 3
# error Unsupported number of extruders
#elif EXTRUDERS > 2
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
#elif EXTRUDERS > 1
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
#else
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
#endif
// Init min and max temp with extreme values to prevent false errors during startup
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
#ifdef BED_MINTEMP
static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
#endif
#ifdef BED_MAXTEMP
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
#endif
#ifdef AMBIENT_MINTEMP
static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
#endif
#ifdef AMBIENT_MAXTEMP
static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
#endif
static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
static float analog2temp(int raw, uint8_t e);
static float analog2tempBed(int raw);
#ifdef AMBIENT_MAXTEMP
static float analog2tempAmbient(int raw);
#endif
static void updateTemperatures();
enum TempRunawayStates : uint8_t
{
TempRunaway_INACTIVE = 0,
TempRunaway_PREHEAT = 1,
TempRunaway_ACTIVE = 2,
};
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#endif
//===========================================================================
//============================= functions ============================
//===========================================================================
#if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
static uint8_t temp_runaway_status[1 + EXTRUDERS];
static float temp_runaway_target[1 + EXTRUDERS];
static uint32_t temp_runaway_timer[1 + EXTRUDERS];
static uint16_t temp_runaway_error_counter[1 + EXTRUDERS];
static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
static void temp_runaway_stop(bool isPreheat, bool isBed);
#endif
// return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
bool checkAllHotends(void)
{
bool result=false;
for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
return(result);
}
// WARNING: the following function has been marked noinline to avoid a GCC 4.9.2 LTO
// codegen bug causing a stack overwrite issue in process_commands()
void __attribute__((noinline)) PID_autotune(float temp, int extruder, int ncycles)
{
preparePidTuning();
pid_number_of_cycles = ncycles;
float input = 0.0;
pid_cycle=0;
bool heating = true;
unsigned long temp_millis = _millis();
unsigned long t1=temp_millis;
unsigned long t2=temp_millis;
long t_high = 0;
long t_low = 0;
long bias, d;
float Ku, Tu;
float max = 0, min = 10000;
uint8_t safety_check_cycles = 0;
const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
float temp_ambient;
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
unsigned long extruder_autofan_last_check = _millis();
#endif
if ((extruder >= EXTRUDERS)
#if (TEMP_BED_PIN <= -1)
||(extruder < 0)
#endif
){
SERIAL_ECHOLNPGM("PID Autotune failed. Bad extruder number.");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
SERIAL_ECHOLNPGM("PID Autotune start");
if (extruder<0)
{
soft_pwm_bed = (MAX_BED_POWER)/2;
timer02_set_pwm0(soft_pwm_bed << 1);
bias = d = (MAX_BED_POWER)/2;
target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
}
else
{
soft_pwm[extruder] = (PID_MAX)/2;
bias = d = (PID_MAX)/2;
target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
}
for(;;) {
#ifdef WATCHDOG
wdt_reset();
#endif //WATCHDOG
if(temp_meas_ready == true) { // temp sample ready
updateTemperatures();
input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
max=max(max,input);
min=min(min,input);
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
if(_millis() - extruder_autofan_last_check > 2500) {
checkExtruderAutoFans();
extruder_autofan_last_check = _millis();
}
#endif
if(heating == true && input > temp) {
if(_millis() - t2 > 5000) {
heating=false;
if (extruder<0)
{
soft_pwm_bed = (bias - d) >> 1;
timer02_set_pwm0(soft_pwm_bed << 1);
}
else
soft_pwm[extruder] = (bias - d) >> 1;
t1=_millis();
t_high=t1 - t2;
max=temp;
}
}
if(heating == false && input < temp) {
if(_millis() - t1 > 5000) {
heating=true;
t2=_millis();
t_low=t2 - t1;
if(pid_cycle > 0) {
bias += (d*(t_high - t_low))/(t_low + t_high);
bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
else d = bias;
SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
if(pid_cycle > 2) {
Ku = (4.0*d)/(3.14159*(max-min)/2.0);
Tu = ((float)(t_low + t_high)/1000.0);
SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
_Kp = 0.6*Ku;
_Ki = 2*_Kp/Tu;
_Kd = _Kp*Tu/8;
SERIAL_PROTOCOLLNPGM(" Classic PID ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
/*
_Kp = 0.33*Ku;
_Ki = _Kp/Tu;
_Kd = _Kp*Tu/3;
SERIAL_PROTOCOLLNPGM(" Some overshoot ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
_Kp = 0.2*Ku;
_Ki = 2*_Kp/Tu;
_Kd = _Kp*Tu/3;
SERIAL_PROTOCOLLNPGM(" No overshoot ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
*/
}
}
if (extruder<0)
{
soft_pwm_bed = (bias + d) >> 1;
timer02_set_pwm0(soft_pwm_bed << 1);
}
else
soft_pwm[extruder] = (bias + d) >> 1;
pid_cycle++;
min=temp;
}
}
}
if(input > (temp + 20)) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
if(_millis() - temp_millis > 2000) {
int p;
if (extruder<0){
p=soft_pwm_bed;
SERIAL_PROTOCOLPGM("B:");
}else{
p=soft_pwm[extruder];
SERIAL_PROTOCOLPGM("T:");
}
SERIAL_PROTOCOL(input);
SERIAL_PROTOCOLPGM(" @:");
SERIAL_PROTOCOLLN(p);
if (safety_check_cycles == 0) { //save ambient temp
temp_ambient = input;
//SERIAL_ECHOPGM("Ambient T: ");
//MYSERIAL.println(temp_ambient);
safety_check_cycles++;
}
else if (safety_check_cycles < safety_check_cycles_count) { //delay
safety_check_cycles++;
}
else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
safety_check_cycles++;
//SERIAL_ECHOPGM("Time from beginning: ");
//MYSERIAL.print(safety_check_cycles_count * 2);
//SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
//MYSERIAL.println(input - temp_ambient);
if (fabs(input - temp_ambient) < 5.0) {
temp_runaway_stop(false, (extruder<0));
pid_tuning_finished = true;
return;
}
}
temp_millis = _millis();
}
if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
if(pid_cycle > ncycles) {
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
lcd_update(0);
}
}
void updatePID()
{
// TODO: iState_sum_max and PID values should be synchronized for temp_mgr_isr
#ifdef PIDTEMP
for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
}
#endif
#ifdef PIDTEMPBED
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
#endif
}
int getHeaterPower(int heater) {
if (heater<0)
return soft_pwm_bed;
return soft_pwm[heater];
}
// reset PID state after changing target_temperature
void resetPID(uint8_t extruder _UNUSED) {}
enum class TempErrorSource : uint8_t
{
hotend,
bed,
#ifdef AMBIENT_THERMISTOR
ambient,
#endif
};
// thermal error type (in order of decreasing priority!)
enum class TempErrorType : uint8_t
{
max,
min,
preheat,
runaway,
#ifdef TEMP_MODEL
model,
#endif
};
// error state (updated via set_temp_error from isr context)
volatile static union
{
uint8_t v;
struct
{
uint8_t error: 1; // error condition
uint8_t assert: 1; // error is still asserted
uint8_t source: 2; // source
uint8_t index: 1; // source index
uint8_t type: 3; // error type
};
} temp_error_state;
// set the error type from within the temp_mgr isr to be handled in manager_heater
// - immediately disable all heaters and turn on all fans at full speed
// - prevent the user to set temperatures until all errors are cleared
void set_temp_error(TempErrorSource source, uint8_t index, TempErrorType type)
{
// save the original target temperatures for recovery before disabling heaters
if(!temp_error_state.error && !saved_printing) {
saved_bed_temperature = target_temperature_bed;
saved_extruder_temperature = target_temperature[index];
saved_fan_speed = fanSpeed;
}
// keep disabling heaters and keep fans on as long as the condition is asserted
disable_heater();
hotendFanSetFullSpeed();
// set the initial error source to the highest priority error
if(!temp_error_state.error || (uint8_t)type < temp_error_state.type) {
temp_error_state.source = (uint8_t)source;
temp_error_state.index = index;
temp_error_state.type = (uint8_t)type;
}
// always set the error state
temp_error_state.error = true;
temp_error_state.assert = true;
}
bool get_temp_error()
{
return temp_error_state.v;
}
void handle_temp_error();
void manage_heater()
{
#ifdef WATCHDOG
wdt_reset();
#endif //WATCHDOG
// limit execution to the same rate as temp_mgr (low-level fault handling is already handled -
// any remaining error handling is just user-facing and can wait one extra cycle)
if(!temp_meas_ready)
return;
// syncronize temperatures with isr
updateTemperatures();
#ifdef TEMP_MODEL
// handle model warnings first, so not to override the error handler
if(temp_model::warning_state.warning)
temp_model::handle_warning();
#endif
// handle temperature errors
if(temp_error_state.v)
handle_temp_error();
// periodically check fans
checkFans();
#ifdef TEMP_MODEL_DEBUG
temp_model::log_usr();
#endif
}
#define PGM_RD_W(x) (short)pgm_read_word(&x)
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
static float analog2temp(int raw, uint8_t e) {
if(e >= EXTRUDERS)
{
SERIAL_ERROR_START;
SERIAL_ERROR((int)e);
SERIAL_ERRORLNPGM(" - Invalid extruder number !");
kill(NULL, 6);
return 0.0;
}
#ifdef HEATER_0_USES_MAX6675
if (e == 0)
{
return 0.25 * raw;
}
#endif
if(heater_ttbl_map[e] != NULL)
{
float celsius = 0;
uint8_t i;
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
for (i=1; i<heater_ttbllen_map[e]; i++)
{
if (PGM_RD_W((*tt)[i][0]) > raw)
{
celsius = PGM_RD_W((*tt)[i-1][1]) +
(raw - PGM_RD_W((*tt)[i-1][0])) *
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
(float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
return celsius;
}
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
}
// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
static float analog2tempBed(int raw) {
#ifdef BED_USES_THERMISTOR
float celsius = 0;
byte i;
for (i=1; i<BEDTEMPTABLE_LEN; i++)
{
if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
{
celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
(raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
(float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
// temperature offset adjustment
#ifdef BED_OFFSET
float _offset = BED_OFFSET;
float _offset_center = BED_OFFSET_CENTER;
float _offset_start = BED_OFFSET_START;
float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
float _second_koef = (_offset / 2) / (100 - _offset_center);
if (celsius >= _offset_start && celsius <= _offset_center)
{
celsius = celsius + (_first_koef * (celsius - _offset_start));
}
else if (celsius > _offset_center && celsius <= 100)
{
celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
}
else if (celsius > 100)
{
celsius = celsius + _offset;
}
#endif
return celsius;
#elif defined BED_USES_AD595
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
#else
return 0;
#endif
}
#ifdef AMBIENT_THERMISTOR
static float analog2tempAmbient(int raw)
{
float celsius = 0;
byte i;
for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
{
if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
{
celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
(raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
(float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
(float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
return celsius;
}
#endif //AMBIENT_THERMISTOR
void soft_pwm_init()
{
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR=(1<<JTD);
MCUCR=(1<<JTD);
#endif
// Finish init of mult extruder arrays
for(int e = 0; e < EXTRUDERS; e++) {
// populate with the first value
maxttemp[e] = maxttemp[0];
#ifdef PIDTEMP
iState_sum_min[e] = 0.0;
iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
#endif //PIDTEMP
#ifdef PIDTEMPBED
temp_iState_min_bed = 0.0;
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
#endif //PIDTEMPBED
}
#if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
SET_OUTPUT(HEATER_0_PIN);
#endif
#if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
SET_OUTPUT(HEATER_1_PIN);
#endif
#if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
SET_OUTPUT(HEATER_2_PIN);
#endif
#if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
SET_OUTPUT(HEATER_BED_PIN);
#endif
#if defined(FAN_PIN) && (FAN_PIN > -1)
SET_OUTPUT(FAN_PIN);
#ifdef FAST_PWM_FAN
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#ifdef FAN_SOFT_PWM
soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
#endif
#endif
#ifdef HEATER_0_USES_MAX6675
#ifndef SDSUPPORT
SET_OUTPUT(SCK_PIN);
WRITE(SCK_PIN,0);
SET_OUTPUT(MOSI_PIN);
WRITE(MOSI_PIN,1);
SET_INPUT(MISO_PIN);
WRITE(MISO_PIN,1);
#endif
/* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
//Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
pinMode(SS_PIN, OUTPUT);
digitalWrite(SS_PIN,0);
pinMode(MAX6675_SS, OUTPUT);
digitalWrite(MAX6675_SS,1);
#endif
#ifdef HEATER_0_MINTEMP
minttemp[0] = HEATER_0_MINTEMP;
while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
minttemp_raw[0] += OVERSAMPLENR;
#else
minttemp_raw[0] -= OVERSAMPLENR;
#endif
}
#endif //MINTEMP
#ifdef HEATER_0_MAXTEMP
maxttemp[0] = HEATER_0_MAXTEMP;
while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
maxttemp_raw[0] -= OVERSAMPLENR;
#else
maxttemp_raw[0] += OVERSAMPLENR;
#endif
}
#endif //MAXTEMP
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
minttemp[1] = HEATER_1_MINTEMP;
while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
minttemp_raw[1] += OVERSAMPLENR;
#else
minttemp_raw[1] -= OVERSAMPLENR;
#endif
}
#endif // MINTEMP 1
#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
maxttemp[1] = HEATER_1_MAXTEMP;
while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
maxttemp_raw[1] -= OVERSAMPLENR;
#else
maxttemp_raw[1] += OVERSAMPLENR;
#endif
}
#endif //MAXTEMP 1
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
minttemp[2] = HEATER_2_MINTEMP;
while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
minttemp_raw[2] += OVERSAMPLENR;
#else
minttemp_raw[2] -= OVERSAMPLENR;
#endif
}
#endif //MINTEMP 2
#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
maxttemp[2] = HEATER_2_MAXTEMP;
while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
maxttemp_raw[2] -= OVERSAMPLENR;
#else
maxttemp_raw[2] += OVERSAMPLENR;
#endif
}
#endif //MAXTEMP 2
#ifdef BED_MINTEMP
while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_minttemp_raw += OVERSAMPLENR;
#else
bed_minttemp_raw -= OVERSAMPLENR;
#endif
}
#endif //BED_MINTEMP
#ifdef BED_MAXTEMP
while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_maxttemp_raw -= OVERSAMPLENR;
#else
bed_maxttemp_raw += OVERSAMPLENR;
#endif
}
#endif //BED_MAXTEMP
#ifdef AMBIENT_MINTEMP
while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
#if AMBIENT_RAW_LO_TEMP < AMBIENT_RAW_HI_TEMP
ambient_minttemp_raw += OVERSAMPLENR;
#else
ambient_minttemp_raw -= OVERSAMPLENR;
#endif
}
#endif //AMBIENT_MINTEMP
#ifdef AMBIENT_MAXTEMP
while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
#if AMBIENT_RAW_LO_TEMP < AMBIENT_RAW_HI_TEMP
ambient_maxttemp_raw -= OVERSAMPLENR;
#else
ambient_maxttemp_raw += OVERSAMPLENR;
#endif
}
#endif //AMBIENT_MAXTEMP
timer0_init(); //enables the heatbed timer.
// timer2 already enabled earlier in the code
// now enable the COMPB temperature interrupt
OCR2B = 128;
ENABLE_SOFT_PWM_INTERRUPT();
timer4_init(); //for tone and Hotend fan PWM
}
#if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
{
float __delta;
float __hysteresis = 0;
uint16_t __timeout = 0;
bool temp_runaway_check_active = false;
static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
static uint8_t __preheat_counter[2] = { 0,0};
static uint8_t __preheat_errors[2] = { 0,0};
if (_millis() - temp_runaway_timer[_heater_id] > 2000)
{
#ifdef TEMP_RUNAWAY_BED_TIMEOUT
if (_isbed)
{
__hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
__timeout = TEMP_RUNAWAY_BED_TIMEOUT;
}
#endif
#ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
if (!_isbed)
{
__hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
__timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
}
#endif
temp_runaway_timer[_heater_id] = _millis();
if (_output == 0)
{
temp_runaway_check_active = false;
temp_runaway_error_counter[_heater_id] = 0;
}
if (temp_runaway_target[_heater_id] != _target_temperature)
{
if (_target_temperature > 0)
{
temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
temp_runaway_target[_heater_id] = _target_temperature;
__preheat_start[_heater_id] = _current_temperature;
__preheat_counter[_heater_id] = 0;
}
else
{
temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
temp_runaway_target[_heater_id] = _target_temperature;
}
}
if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
{
__preheat_counter[_heater_id]++;
if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
{
/*SERIAL_ECHOPGM("Heater:");
MYSERIAL.print(_heater_id);
SERIAL_ECHOPGM(" T:");
MYSERIAL.print(_current_temperature);
SERIAL_ECHOPGM(" Tstart:");
MYSERIAL.print(__preheat_start[_heater_id]);
SERIAL_ECHOPGM(" delta:");
MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
//-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
//-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
__delta=2.0;
if(_isbed)
{
__delta=3.0;
if(_current_temperature>90.0) __delta=2.0;
if(_current_temperature>105.0) __delta=0.6;
}
if (_current_temperature - __preheat_start[_heater_id] < __delta) {
__preheat_errors[_heater_id]++;
/*SERIAL_ECHOPGM(" Preheat errors:");
MYSERIAL.println(__preheat_errors[_heater_id]);*/
}
else {
//SERIAL_ECHOLNPGM("");
__preheat_errors[_heater_id] = 0;
}
if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
set_temp_error((_isbed?TempErrorSource::bed:TempErrorSource::hotend), _heater_id, TempErrorType::preheat);
__preheat_start[_heater_id] = _current_temperature;
__preheat_counter[_heater_id] = 0;
}
}
//-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
{
/*SERIAL_ECHOPGM("Heater:");
MYSERIAL.print(_heater_id);
MYSERIAL.println(" ->tempRunaway");*/
temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
temp_runaway_check_active = false;
temp_runaway_error_counter[_heater_id] = 0;
}
if (_output > 0)
{
temp_runaway_check_active = true;
}
if (temp_runaway_check_active)
{
// we are in range
if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
{
temp_runaway_check_active = false;
temp_runaway_error_counter[_heater_id] = 0;
}
else
{
if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
{
temp_runaway_error_counter[_heater_id]++;
if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
set_temp_error((_isbed?TempErrorSource::bed:TempErrorSource::hotend), _heater_id, TempErrorType::runaway);
}
}
}
}
}
static void temp_runaway_stop(bool isPreheat, bool isBed)
{
if(IsStopped() == false) {
if (isPreheat) {
lcd_setalertstatuspgm(isBed? PSTR("BED PREHEAT ERROR") : PSTR("PREHEAT ERROR"), LCD_STATUS_CRITICAL);
SERIAL_ERROR_START;
if (isBed) {
SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HEATBED)");
} else {
SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HOTEND)");
}
} else {
lcd_setalertstatuspgm(isBed? PSTR("BED THERMAL RUNAWAY") : PSTR("THERMAL RUNAWAY"), LCD_STATUS_CRITICAL);
SERIAL_ERROR_START;
if (isBed) {
SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY");
} else {
SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
}
}
prusa_statistics(0);
prusa_statistics(isPreheat? 91 : 90);
}
ThermalStop();
}
#endif
//! signal a temperature error on both the lcd and serial
//! @param type short error abbreviation (PROGMEM)
//! @param e optional extruder index for hotend errors
static void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
{
char msg[LCD_WIDTH];
strcpy_P(msg, PSTR("Err: "));
strcat_P(msg, type);
lcd_setalertstatus(msg, LCD_STATUS_CRITICAL);
SERIAL_ERROR_START;
if(e != EXTRUDERS) {
SERIAL_ERROR((int)e);
SERIAL_ERRORPGM(": ");
}
SERIAL_ERRORPGM("Heaters switched off. ");
SERIAL_ERRORRPGM(type);
SERIAL_ERRORLNPGM(" triggered!");
}
static void max_temp_error(uint8_t e) {
if(IsStopped() == false) {
temp_error_messagepgm(PSTR("MAXTEMP"), e);
prusa_statistics(93);
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
ThermalStop();
#endif
}
static void min_temp_error(uint8_t e) {
static const char err[] PROGMEM = "MINTEMP";
if(IsStopped() == false) {
temp_error_messagepgm(err, e);
prusa_statistics(92);
}
ThermalStop();
}
static void bed_max_temp_error(void) {
if(IsStopped() == false) {
temp_error_messagepgm(PSTR("MAXTEMP BED"));
}
ThermalStop();
}
static void bed_min_temp_error(void) {
static const char err[] PROGMEM = "MINTEMP BED";
if(IsStopped() == false) {
temp_error_messagepgm(err);
}
ThermalStop();
}
#ifdef AMBIENT_THERMISTOR
static void ambient_max_temp_error(void) {
if(IsStopped() == false) {
temp_error_messagepgm(PSTR("MAXTEMP AMB"));
}
ThermalStop();
}
static void ambient_min_temp_error(void) {
if(IsStopped() == false) {
temp_error_messagepgm(PSTR("MINTEMP AMB"));
}
ThermalStop();
}
#endif
#ifdef HEATER_0_USES_MAX6675
#define MAX6675_HEAT_INTERVAL 250
long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
int max6675_temp = 2000;
int read_max6675()
{
if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
return max6675_temp;
max6675_previous_millis = _millis();
max6675_temp = 0;
#ifdef PRR
PRR &= ~(1<<PRSPI);
#elif defined PRR0
PRR0 &= ~(1<<PRSPI);
#endif
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
// enable TT_MAX6675
WRITE(MAX6675_SS, 0);
// ensure 100ns delay - a bit extra is fine
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
// read MSB
SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;);
max6675_temp = SPDR;
max6675_temp <<= 8;
// read LSB
SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;);
max6675_temp |= SPDR;
// disable TT_MAX6675
WRITE(MAX6675_SS, 1);
if (max6675_temp & 4)
{
// thermocouple open
max6675_temp = 2000;
}
else
{
max6675_temp = max6675_temp >> 3;
}
return max6675_temp;
}
#endif
#ifdef BABYSTEPPING
FORCE_INLINE static void applyBabysteps() {
for(uint8_t axis=0;axis<3;axis++)
{
int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
if(curTodo>0)
{
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
babystep(axis,/*fwd*/true);
babystepsTodo[axis]--; //less to do next time
}
}
else
if(curTodo<0)
{
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
babystep(axis,/*fwd*/false);
babystepsTodo[axis]++; //less to do next time
}
}
}
}
#endif //BABYSTEPPING
FORCE_INLINE static void soft_pwm_core()
{
static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
static uint8_t soft_pwm_0;
#ifdef SLOW_PWM_HEATERS
static unsigned char slow_pwm_count = 0;
static unsigned char state_heater_0 = 0;
static unsigned char state_timer_heater_0 = 0;
#endif
#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
static unsigned char soft_pwm_1;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_1 = 0;
static unsigned char state_timer_heater_1 = 0;
#endif
#endif
#if EXTRUDERS > 2
static unsigned char soft_pwm_2;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_2 = 0;
static unsigned char state_timer_heater_2 = 0;
#endif
#endif
#if HEATER_BED_PIN > -1
// @@DR static unsigned char soft_pwm_b;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_b = 0;
static unsigned char state_timer_heater_b = 0;
#endif
#endif
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
static unsigned long raw_filwidth_value = 0; //added for filament width sensor
#endif
#ifndef SLOW_PWM_HEATERS
/*
* standard PWM modulation
*/
if (pwm_count == 0)
{
soft_pwm_0 = soft_pwm[0];
if(soft_pwm_0 > 0)
{
WRITE(HEATER_0_PIN,1);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN,1);
#endif
} else WRITE(HEATER_0_PIN,0);
#if EXTRUDERS > 1
soft_pwm_1 = soft_pwm[1];
if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
#endif
#if EXTRUDERS > 2
soft_pwm_2 = soft_pwm[2];
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
#endif
}
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
#if 0 // @@DR vypnuto pro hw pwm bedu
// tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
// teoreticky by se tato cast uz vubec nemusela poustet
if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
{
soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
# ifndef SYSTEM_TIMER_2
// tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
// jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
// 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
// Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
// to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
//if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
# endif //SYSTEM_TIMER_2
}
#endif
#endif
#ifdef FAN_SOFT_PWM
if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
{
soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
}
#endif
if(soft_pwm_0 < pwm_count)
{
WRITE(HEATER_0_PIN,0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN,0);
#endif
}
#if EXTRUDERS > 1
if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
#endif
#if EXTRUDERS > 2
if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
#endif
#if 0 // @@DR
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
//WRITE(HEATER_BED_PIN,0);
}
//WRITE(HEATER_BED_PIN, pwm_count & 1 );
#endif
#endif
#ifdef FAN_SOFT_PWM
if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
#endif
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
#else //ifndef SLOW_PWM_HEATERS
/*
* SLOW PWM HEATERS
*
* for heaters drived by relay
*/
#ifndef MIN_STATE_TIME
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
#endif
if (slow_pwm_count == 0) {
// EXTRUDER 0
soft_pwm_0 = soft_pwm[0];
if (soft_pwm_0 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 0) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 1;
WRITE(HEATER_0_PIN, 1);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 1);
#endif
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 1) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 0;
WRITE(HEATER_0_PIN, 0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 0);
#endif
}
}
#if EXTRUDERS > 1
// EXTRUDER 1
soft_pwm_1 = soft_pwm[1];
if (soft_pwm_1 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 0) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 1;
WRITE(HEATER_1_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 1) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 0;
WRITE(HEATER_1_PIN, 0);
}
}
#endif
#if EXTRUDERS > 2
// EXTRUDER 2
soft_pwm_2 = soft_pwm[2];
if (soft_pwm_2 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 0) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 1;
WRITE(HEATER_2_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 1) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 0;
WRITE(HEATER_2_PIN, 0);
}
}
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// BED
soft_pwm_b = soft_pwm_bed;
if (soft_pwm_b > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 0) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 1;
//WRITE(HEATER_BED_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 1) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 0;
WRITE(HEATER_BED_PIN, 0);
}
}
#endif
} // if (slow_pwm_count == 0)
// EXTRUDER 0
if (soft_pwm_0 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 1) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 0;
WRITE(HEATER_0_PIN, 0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 0);
#endif
}
}
#if EXTRUDERS > 1
// EXTRUDER 1
if (soft_pwm_1 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 1) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 0;
WRITE(HEATER_1_PIN, 0);
}
}
#endif
#if EXTRUDERS > 2
// EXTRUDER 2
if (soft_pwm_2 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 1) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 0;
WRITE(HEATER_2_PIN, 0);
}
}
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// BED
if (soft_pwm_b < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 1) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 0;
WRITE(HEATER_BED_PIN, 0);
}
}
#endif
#ifdef FAN_SOFT_PWM
if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
}
if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
#endif
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
if ((pwm_count % 64) == 0) {
slow_pwm_count++;
slow_pwm_count &= 0x7f;
// Extruder 0
if (state_timer_heater_0 > 0) {
state_timer_heater_0--;
}
#if EXTRUDERS > 1
// Extruder 1
if (state_timer_heater_1 > 0)
state_timer_heater_1--;
#endif
#if EXTRUDERS > 2
// Extruder 2
if (state_timer_heater_2 > 0)
state_timer_heater_2--;
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// Bed
if (state_timer_heater_b > 0)
state_timer_heater_b--;
#endif
} //if ((pwm_count % 64) == 0) {
#endif //ifndef SLOW_PWM_HEATERS
}
FORCE_INLINE static void soft_pwm_isr()
{
lcd_buttons_update();
soft_pwm_core();
#ifdef BABYSTEPPING
applyBabysteps();
#endif //BABYSTEPPING
// Check if a stack overflow happened
if (!SdFatUtil::test_stack_integrity()) stack_error();
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
readFanTach();
#endif //(defined(TACH_0))
}
// Timer2 (originaly timer0) is shared with millies
#ifdef SYSTEM_TIMER_2
ISR(TIMER2_COMPB_vect)
#else //SYSTEM_TIMER_2
ISR(TIMER0_COMPB_vect)
#endif //SYSTEM_TIMER_2
{
DISABLE_SOFT_PWM_INTERRUPT();
NONATOMIC_BLOCK(NONATOMIC_FORCEOFF) {
soft_pwm_isr();
}
ENABLE_SOFT_PWM_INTERRUPT();
}
void check_max_temp_raw()
{
//heater
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
if (current_temperature_raw[0] <= maxttemp_raw[0]) {
#else
if (current_temperature_raw[0] >= maxttemp_raw[0]) {
#endif
set_temp_error(TempErrorSource::hotend, 0, TempErrorType::max);
}
//bed
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
if (current_temperature_bed_raw <= bed_maxttemp_raw) {
#else
if (current_temperature_bed_raw >= bed_maxttemp_raw) {
#endif
set_temp_error(TempErrorSource::bed, 0, TempErrorType::max);
}
#endif
//ambient
#if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
#else
if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
#endif
set_temp_error(TempErrorSource::ambient, 0, TempErrorType::max);
}
#endif
}
//! number of repeating the same state with consecutive step() calls
//! used to slow down text switching
struct alert_automaton_mintemp {
const char *m2;
alert_automaton_mintemp(const char *m2):m2(m2){}
private:
enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
States state = States::Init;
uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
void substep(const char* next_msg, States next_state){
if( repeat == 0 ){
state = next_state; // advance to the next state
lcd_setalertstatuspgm(next_msg, LCD_STATUS_CRITICAL);
repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
} else {
--repeat;
}
}
public:
//! brief state automaton step routine
//! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
//! @param mintemp minimal temperature including hysteresis to check current_temp against
void step(float current_temp, float mintemp){
static const char m1[] PROGMEM = "Please restart";
switch(state){
case States::Init: // initial state - check hysteresis
if( current_temp > mintemp ){
lcd_setalertstatuspgm(m2, LCD_STATUS_CRITICAL);
state = States::TempAboveMintemp;
}
// otherwise keep the Err MINTEMP alert message on the display,
// i.e. do not transfer to state 1
break;
case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
case States::ShowMintemp: // displaying "MINTEMP fixed"
substep(m1, States::ShowPleaseRestart);
break;
case States::ShowPleaseRestart: // displaying "Please restart"
substep(m2, States::ShowMintemp);
break;
}
}
};
static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
void check_min_temp_heater0()
{
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
if (current_temperature_raw[0] >= minttemp_raw[0]) {
#else
if (current_temperature_raw[0] <= minttemp_raw[0]) {
#endif
set_temp_error(TempErrorSource::hotend, 0, TempErrorType::min);
}
}
void check_min_temp_bed()
{
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
if (current_temperature_bed_raw >= bed_minttemp_raw) {
#else
if (current_temperature_bed_raw <= bed_minttemp_raw) {
#endif
set_temp_error(TempErrorSource::bed, 0, TempErrorType::min);
}
}
#ifdef AMBIENT_MINTEMP
void check_min_temp_ambient()
{
#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
#else
if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
#endif
set_temp_error(TempErrorSource::ambient, 0, TempErrorType::min);
}
}
#endif
void handle_temp_error()
{
// relay to the original handler
switch((TempErrorType)temp_error_state.type) {
case TempErrorType::min:
switch((TempErrorSource)temp_error_state.source) {
case TempErrorSource::hotend:
if(temp_error_state.assert) {
min_temp_error(temp_error_state.index);
} else {
// no recovery, just force the user to restart the printer
// which is a safer variant than just continuing printing
// The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
// we shall signalize, that MINTEMP has been fixed
// Code notice: normally the alert_automaton instance would have been placed here
// as static alert_automaton_mintemp alert_automaton_hotend, but
alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
}
break;
case TempErrorSource::bed:
if(temp_error_state.assert) {
bed_min_temp_error();
} else {
// no recovery, just force the user to restart the printer
// which is a safer variant than just continuing printing
alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
}
break;
#ifdef AMBIENT_THERMISTOR
case TempErrorSource::ambient:
ambient_min_temp_error();
break;
#endif
}
break;
case TempErrorType::max:
switch((TempErrorSource)temp_error_state.source) {
case TempErrorSource::hotend:
max_temp_error(temp_error_state.index);
break;
case TempErrorSource::bed:
bed_max_temp_error();
break;
#ifdef AMBIENT_THERMISTOR
case TempErrorSource::ambient:
ambient_max_temp_error();
break;
#endif
}
break;
case TempErrorType::preheat:
case TempErrorType::runaway:
switch((TempErrorSource)temp_error_state.source) {
case TempErrorSource::hotend:
case TempErrorSource::bed:
temp_runaway_stop(
((TempErrorType)temp_error_state.type == TempErrorType::preheat),
((TempErrorSource)temp_error_state.source == TempErrorSource::bed));
break;
#ifdef AMBIENT_THERMISTOR
case TempErrorSource::ambient:
// not needed
break;
#endif
}
break;
#ifdef TEMP_MODEL
case TempErrorType::model:
if(temp_error_state.assert) {
if(IsStopped() == false) {
SERIAL_ECHOLNPGM("TM: error triggered!");
}
ThermalStop(true);
WRITE(BEEPER, HIGH);
} else {
temp_error_state.v = 0;
WRITE(BEEPER, LOW);
menu_unset_block(MENU_BLOCK_THERMAL_ERROR);
// hotend error was transitory and disappeared, re-enable bed
if (!target_temperature_bed)
target_temperature_bed = saved_bed_temperature;
SERIAL_ECHOLNPGM("TM: error cleared");
}
break;
#endif
}
}
#ifdef PIDTEMP
// Apply the scale factors to the PID values
float scalePID_i(float i)
{
return i*PID_dT;
}
float unscalePID_i(float i)
{
return i/PID_dT;
}
float scalePID_d(float d)
{
return d/PID_dT;
}
float unscalePID_d(float d)
{
return d*PID_dT;
}
#endif //PIDTEMP
#ifdef PINDA_THERMISTOR
//! @brief PINDA thermistor detected
//!
//! @retval true firmware should do temperature compensation and allow calibration
//! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
//! @retval true/false when forced via LCD menu Settings->HW Setup->SuperPINDA
//!
bool has_temperature_compensation()
{
#ifdef SUPERPINDA_SUPPORT
#ifdef PINDA_TEMP_COMP
uint8_t pinda_temp_compensation = eeprom_read_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION);
if (pinda_temp_compensation == EEPROM_EMPTY_VALUE) //Unkown PINDA temp compenstation, so check it.
{
#endif //PINDA_TEMP_COMP
return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
#ifdef PINDA_TEMP_COMP
}
else if (pinda_temp_compensation == 0) return true; //Overwritten via LCD menu SuperPINDA [No]
else return false; //Overwritten via LCD menu SuperPINDA [YES]
#endif //PINDA_TEMP_COMP
#else
return true;
#endif
}
#endif //PINDA_THERMISTOR
// RAII helper class to run a code block with temp_mgr_isr disabled
class TempMgrGuard
{
bool temp_mgr_state;
public:
TempMgrGuard() {
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
temp_mgr_state = TEMP_MGR_INTERRUPT_STATE();
DISABLE_TEMP_MGR_INTERRUPT();
}
}
~TempMgrGuard() throw() {
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
if(temp_mgr_state) ENABLE_TEMP_MGR_INTERRUPT();
}
}
};
void temp_mgr_init()
{
// initialize the ADC and start a conversion
adc_init();
adc_start_cycle();
// initialize temperature timer
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
// CTC
TCCRxB &= ~(1<<WGMx3);
TCCRxB |= (1<<WGMx2);
TCCRxA &= ~(1<<WGMx1);
TCCRxA &= ~(1<<WGMx0);
// output mode = 00 (disconnected)
TCCRxA &= ~(3<<COMxA0);
TCCRxA &= ~(3<<COMxB0);
// x/256 prescaler
TCCRxB |= (1<<CSx2);
TCCRxB &= ~(1<<CSx1);
TCCRxB &= ~(1<<CSx0);
// reset counter
TCNTx = 0;
OCRxA = TEMP_TIM_OCRA_OVF;
// clear pending interrupts, enable COMPA
TEMP_MGR_INT_FLAG_CLEAR();
ENABLE_TEMP_MGR_INTERRUPT();
}
}
static void pid_heater(uint8_t e, const float current, const int target)
{
float pid_input;
float pid_output;
#ifdef PIDTEMP
pid_input = current;
#ifndef PID_OPENLOOP
if(target == 0) {
pid_output = 0;
pid_reset[e] = true;
} else {
pid_error[e] = target - pid_input;
if(pid_reset[e]) {
iState_sum[e] = 0.0;
dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
pid_reset[e] = false;
}
#ifndef PonM
pTerm[e] = cs.Kp * pid_error[e];
iState_sum[e] += pid_error[e];
iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
iTerm[e] = cs.Ki * iState_sum[e];
// PID_K1 defined in Configuration.h in the PID settings
#define K2 (1.0-PID_K1)
dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
if (pid_output > PID_MAX) {
if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
pid_output=PID_MAX;
} else if (pid_output < 0) {
if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
pid_output=0;
}
#else // PonM ("Proportional on Measurement" method)
iState_sum[e] += cs.Ki * pid_error[e];
iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
pid_output = constrain(pid_output, 0, PID_MAX);
#endif // PonM
}
dState_last[e] = pid_input;
#else //PID_OPENLOOP
pid_output = constrain(target[e], 0, PID_MAX);
#endif //PID_OPENLOOP
#ifdef PID_DEBUG
SERIAL_ECHO_START;
SERIAL_ECHO(" PID_DEBUG ");
SERIAL_ECHO(e);
SERIAL_ECHO(": Input ");
SERIAL_ECHO(pid_input);
SERIAL_ECHO(" Output ");
SERIAL_ECHO(pid_output);
SERIAL_ECHO(" pTerm ");
SERIAL_ECHO(pTerm[e]);
SERIAL_ECHO(" iTerm ");
SERIAL_ECHO(iTerm[e]);
SERIAL_ECHO(" dTerm ");
SERIAL_ECHOLN(-dTerm[e]);
#endif //PID_DEBUG
#else /* PID off */
pid_output = 0;
if(current[e] < target[e]) {
pid_output = PID_MAX;
}
#endif
// Check if temperature is within the correct range
if((current < maxttemp[e]) && (target != 0))
soft_pwm[e] = (int)pid_output >> 1;
else
soft_pwm[e] = 0;
}
static void pid_bed(const float current, const int target)
{
float pid_input;
float pid_output;
#ifndef PIDTEMPBED
if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
return;
previous_millis_bed_heater = _millis();
#endif
#if TEMP_SENSOR_BED != 0
#ifdef PIDTEMPBED
pid_input = current;
#ifndef PID_OPENLOOP
pid_error_bed = target - pid_input;
pTerm_bed = cs.bedKp * pid_error_bed;
temp_iState_bed += pid_error_bed;
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
iTerm_bed = cs.bedKi * temp_iState_bed;
//PID_K1 defined in Configuration.h in the PID settings
#define K2 (1.0-PID_K1)
dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
temp_dState_bed = pid_input;
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
if (pid_output > MAX_BED_POWER) {
if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output=MAX_BED_POWER;
} else if (pid_output < 0){
if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output=0;
}
#else
pid_output = constrain(target, 0, MAX_BED_POWER);
#endif //PID_OPENLOOP
if(current < BED_MAXTEMP)
{
soft_pwm_bed = (int)pid_output >> 1;
timer02_set_pwm0(soft_pwm_bed << 1);
}
else
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
}
#elif !defined(BED_LIMIT_SWITCHING)
// Check if temperature is within the correct range
if(current < BED_MAXTEMP)
{
if(current >= target)
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
}
else
{
soft_pwm_bed = MAX_BED_POWER>>1;
timer02_set_pwm0(soft_pwm_bed << 1);
}
}
else
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
WRITE(HEATER_BED_PIN,LOW);
}
#else //#ifdef BED_LIMIT_SWITCHING
// Check if temperature is within the correct band
if(current < BED_MAXTEMP)
{
if(current > target + BED_HYSTERESIS)
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
}
else if(current <= target - BED_HYSTERESIS)
{
soft_pwm_bed = MAX_BED_POWER>>1;
timer02_set_pwm0(soft_pwm_bed << 1);
}
}
else
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
WRITE(HEATER_BED_PIN,LOW);
}
#endif //BED_LIMIT_SWITCHING
if(target==0)
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
}
#endif //TEMP_SENSOR_BED
}
// ISR-safe temperatures
static volatile bool adc_values_ready = false;
float current_temperature_isr[EXTRUDERS];
int target_temperature_isr[EXTRUDERS];
float current_temperature_bed_isr;
int target_temperature_bed_isr;
#ifdef PINDA_THERMISTOR
float current_temperature_pinda_isr;
#endif
#ifdef AMBIENT_THERMISTOR
float current_temperature_ambient_isr;
#endif
// ISR callback from adc when sampling finished
void adc_callback()
{
current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
#ifdef PINDA_THERMISTOR
current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
#endif //PINDA_THERMISTOR
#ifdef AMBIENT_THERMISTOR
current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
#endif //AMBIENT_THERMISTOR
#ifdef VOLT_PWR_PIN
current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
#endif
#ifdef VOLT_BED_PIN
current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
#endif
#ifdef IR_SENSOR_ANALOG
current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
#endif //IR_SENSOR_ANALOG
adc_values_ready = true;
}
static void setCurrentTemperaturesFromIsr()
{
for(uint8_t e=0;e<EXTRUDERS;e++)
current_temperature[e] = current_temperature_isr[e];
current_temperature_bed = current_temperature_bed_isr;
#ifdef PINDA_THERMISTOR
current_temperature_pinda = current_temperature_pinda_isr;
#endif
#ifdef AMBIENT_THERMISTOR
current_temperature_ambient = current_temperature_ambient_isr;
#endif
}
static void setIsrTargetTemperatures()
{
for(uint8_t e=0;e<EXTRUDERS;e++)
target_temperature_isr[e] = target_temperature[e];
target_temperature_bed_isr = target_temperature_bed;
}
/* Synchronize temperatures:
- fetch updated values from temp_mgr_isr to current values
- update target temperatures for temp_mgr_isr regulation *if* no temperature error is set
This function is blocking: check temp_meas_ready before calling! */
static void updateTemperatures()
{
TempMgrGuard temp_mgr_guard;
setCurrentTemperaturesFromIsr();
if(!temp_error_state.v) {
// refuse to update target temperatures in any error condition!
setIsrTargetTemperatures();
}
temp_meas_ready = false;
}
/* Convert raw values into actual temperatures for temp_mgr. The raw values are created in the ADC
interrupt context, while this function runs from temp_mgr_isr which *is* preemptible as
analog2temp is relatively slow */
static void setIsrTemperaturesFromRawValues()
{
for(uint8_t e=0;e<EXTRUDERS;e++)
current_temperature_isr[e] = analog2temp(current_temperature_raw[e], e);
current_temperature_bed_isr = analog2tempBed(current_temperature_bed_raw);
#ifdef PINDA_THERMISTOR
current_temperature_pinda_isr = analog2tempBed(current_temperature_raw_pinda);
#endif
#ifdef AMBIENT_THERMISTOR
current_temperature_ambient_isr = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
#endif
temp_meas_ready = true;
}
static void temp_mgr_pid()
{
for(uint8_t e = 0; e < EXTRUDERS; e++)
pid_heater(e, current_temperature_isr[e], target_temperature_isr[e]);
pid_bed(current_temperature_bed_isr, target_temperature_bed_isr);
}
static void check_temp_runaway()
{
#ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
for(uint8_t e = 0; e < EXTRUDERS; e++)
temp_runaway_check(e+1, target_temperature_isr[e], current_temperature_isr[e], soft_pwm[e], false);
#endif
#ifdef TEMP_RUNAWAY_BED_HYSTERESIS
temp_runaway_check(0, target_temperature_bed_isr, current_temperature_bed_isr, soft_pwm_bed, true);
#endif
}
static void check_temp_raw();
static void temp_mgr_isr()
{
// update *_isr temperatures from raw values for PID regulation
setIsrTemperaturesFromRawValues();
// clear the error assertion flag before checking again
temp_error_state.assert = false;
check_temp_raw(); // check min/max temp using raw values
check_temp_runaway(); // classic temperature hysteresis check
#ifdef TEMP_MODEL
temp_model::check(); // model-based heater check
#ifdef TEMP_MODEL_DEBUG
temp_model::log_isr();
#endif
#endif
// PID regulation
if (pid_tuning_finished)
temp_mgr_pid();
}
ISR(TIMERx_COMPA_vect)
{
// immediately schedule a new conversion
if(adc_values_ready != true) return;
adc_values_ready = false;
adc_start_cycle();
// run temperature management with interrupts enabled to reduce latency
DISABLE_TEMP_MGR_INTERRUPT();
NONATOMIC_BLOCK(NONATOMIC_FORCEOFF) {
temp_mgr_isr();
}
ENABLE_TEMP_MGR_INTERRUPT();
}
void disable_heater()
{
setAllTargetHotends(0);
setTargetBed(0);
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
// propagate all values down the chain
setIsrTargetTemperatures();
temp_mgr_pid();
// we can't call soft_pwm_core directly to toggle the pins as it would require removing the inline
// attribute, so disable each pin individually
#if defined(HEATER_0_PIN) && HEATER_0_PIN > -1 && EXTRUDERS > 0
WRITE(HEATER_0_PIN,LOW);
#endif
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 && EXTRUDERS > 1
WRITE(HEATER_1_PIN,LOW);
#endif
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1 && EXTRUDERS > 2
WRITE(HEATER_2_PIN,LOW);
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// TODO: this doesn't take immediate effect!
timer02_set_pwm0(0);
bedPWMDisabled = 0;
#endif
}
}
static void check_min_temp_raw()
{
static bool bCheckingOnHeater = false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
static bool bCheckingOnBed = false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
static ShortTimer oTimer4minTempHeater;
static ShortTimer oTimer4minTempBed;
#ifdef AMBIENT_THERMISTOR
#ifdef AMBIENT_MINTEMP
// we need to check ambient temperature
check_min_temp_ambient();
#endif
#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
#else
if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
#endif
{
// ambient temperature is low
#endif //AMBIENT_THERMISTOR
// *** 'common' part of code for MK2.5 & MK3
// * nozzle checking
if(target_temperature_isr[active_extruder]>minttemp[active_extruder]) {
// ~ nozzle heating is on
bCheckingOnHeater=bCheckingOnHeater||(current_temperature_isr[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater) {
bCheckingOnHeater=true; // not necessary
check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
}
}
else {
// ~ nozzle heating is off
oTimer4minTempHeater.start();
bCheckingOnHeater=false;
}
// * bed checking
if(target_temperature_bed_isr>BED_MINTEMP) {
// ~ bed heating is on
bCheckingOnBed=bCheckingOnBed||(current_temperature_bed_isr>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed) {
bCheckingOnBed=true; // not necessary
check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
}
}
else {
// ~ bed heating is off
oTimer4minTempBed.start();
bCheckingOnBed=false;
}
// *** end of 'common' part
#ifdef AMBIENT_THERMISTOR
}
else {
// ambient temperature is standard
check_min_temp_heater0();
check_min_temp_bed();
}
#endif //AMBIENT_THERMISTOR
}
static void check_temp_raw()
{
// order is relevant: check_min_temp_raw requires max to be reliable due to
// ambient temperature being used for low handling temperatures
check_max_temp_raw();
check_min_temp_raw();
}
#ifdef TEMP_MODEL
namespace temp_model {
void model_data::reset(uint8_t heater_pwm _UNUSED, uint8_t fan_pwm _UNUSED,
float heater_temp _UNUSED, float ambient_temp _UNUSED)
{
// pre-compute invariant values
C_i = (TEMP_MGR_INTV / C);
warn_s = warn * TEMP_MGR_INTV;
err_s = err * TEMP_MGR_INTV;
// initial values
for(uint8_t i = 0; i != TEMP_MODEL_LAG_SIZE; ++i)
dT_lag_buf[i] = NAN;
dT_lag_idx = 0;
dT_err_prev = 0;
T_prev = NAN;
// clear the initialization flag
flag_bits.uninitialized = false;
}
static constexpr float iir_mul(const float a, const float b, const float f, const float nanv)
{
const float a_ = !isnan(a) ? a : nanv;
return (a_ * (1.f - f)) + (b * f);
}
void model_data::step(uint8_t heater_pwm, uint8_t fan_pwm, float heater_temp, float ambient_temp)
{
constexpr float soft_pwm_inv = 1. / ((1 << 7) - 1);
// input values
const float heater_scale = soft_pwm_inv * heater_pwm;
const float cur_heater_temp = heater_temp;
const float cur_ambient_temp = ambient_temp + Ta_corr;
const float cur_R = R[fan_pwm]; // resistance at current fan power (K/W)
float dP = P * heater_scale; // current power [W]
float dPl = (cur_heater_temp - cur_ambient_temp) / cur_R; // [W] leakage power
float dT = (dP - dPl) * C_i; // expected temperature difference (K)
// filter and lag dT
uint8_t dT_next_idx = (dT_lag_idx == (TEMP_MODEL_LAG_SIZE - 1) ? 0: dT_lag_idx + 1);
float dT_lag = dT_lag_buf[dT_next_idx];
float dT_lag_prev = dT_lag_buf[dT_lag_idx];
float dT_f = iir_mul(dT_lag_prev, dT, TEMP_MODEL_fS, dT);
dT_lag_buf[dT_next_idx] = dT_f;
dT_lag_idx = dT_next_idx;
// calculate and filter dT_err
float dT_err = (cur_heater_temp - T_prev) - dT_lag;
float dT_err_f = iir_mul(dT_err_prev, dT_err, TEMP_MODEL_fE, 0.);
T_prev = cur_heater_temp;
dT_err_prev = dT_err_f;
// check and trigger errors
flag_bits.error = (fabsf(dT_err_f) > err_s);
flag_bits.warning = (fabsf(dT_err_f) > warn_s);
}
// verify calibration status and trigger a model reset if valid
void setup()
{
if(!calibrated()) enabled = false;
data.flag_bits.uninitialized = true;
}
bool calibrated()
{
if(!(data.P >= 0)) return false;
if(!(data.C >= 0)) return false;
if(!(data.Ta_corr != NAN)) return false;
for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i) {
if(!(temp_model::data.R[i] >= 0))
return false;
}
if(!(data.warn != NAN)) return false;
if(!(data.err != NAN)) return false;
return true;
}
void check()
{
if(!enabled) return;
uint8_t heater_pwm = soft_pwm[0];
uint8_t fan_pwm = soft_pwm_fan;
float heater_temp = current_temperature_isr[0];
float ambient_temp = current_temperature_ambient_isr;
// check if a reset is required to seed the model: this needs to be done with valid
// ADC values, so we can't do that directly in init()
if(data.flag_bits.uninitialized)
data.reset(heater_pwm, fan_pwm, heater_temp, ambient_temp);
// step the model
data.step(heater_pwm, fan_pwm, heater_temp, ambient_temp);
// handle errors
if(data.flag_bits.error)
set_temp_error(TempErrorSource::hotend, 0, TempErrorType::model);
// handle warning conditions as lower-priority but with greater feedback
warning_state.assert = data.flag_bits.warning;
if(warning_state.assert) {
warning_state.warning = true;
warning_state.dT_err = temp_model::data.dT_err_prev;
}
}
void handle_warning()
{
// update values
float warn = data.warn;
float dT_err;
{
TempMgrGuard temp_mgr_guard;
dT_err = warning_state.dT_err;
}
dT_err /= TEMP_MGR_INTV; // per-sample => K/s
printf_P(PSTR("TM: error |%f|>%f\n"), (double)dT_err, (double)warn);
static bool first = true;
if(warning_state.assert) {
if (first) {
if(warn_beep) {
lcd_setalertstatuspgm(_T(MSG_THERMAL_ANOMALY), LCD_STATUS_INFO);
WRITE(BEEPER, HIGH);
}
} else {
if(warn_beep) TOGGLE(BEEPER);
}
} else {
// warning cleared, reset state
warning_state.warning = false;
if(warn_beep) WRITE(BEEPER, LOW);
first = true;
}
}
#ifdef TEMP_MODEL_DEBUG
void log_usr()
{
if(!log_buf.enabled) return;
uint8_t counter = log_buf.entry.counter;
if (counter == log_buf.serial) return;
int8_t delta_ms;
uint8_t cur_pwm;
// avoid strict-aliasing warnings
union { float cur_temp; uint32_t cur_temp_b; };
union { float cur_amb; uint32_t cur_amb_b; };
{
TempMgrGuard temp_mgr_guard;
delta_ms = log_buf.entry.delta_ms;
counter = log_buf.entry.counter;
cur_pwm = log_buf.entry.cur_pwm;
cur_temp = log_buf.entry.cur_temp;
cur_amb = log_buf.entry.cur_amb;
}
uint8_t d = counter - log_buf.serial;
log_buf.serial = counter;
printf_P(PSTR("TML %d %d %x %lx %lx\n"), (unsigned)d - 1, (int)delta_ms + 1,
(int)cur_pwm, (unsigned long)cur_temp_b, (unsigned long)cur_amb_b);
}
void log_isr()
{
if(!log_buf.enabled) return;
uint32_t stamp = _millis();
uint8_t delta_ms = stamp - log_buf.entry.stamp - (uint32_t)(TEMP_MGR_INTV * 1000);
log_buf.entry.stamp = stamp;
++log_buf.entry.counter;
log_buf.entry.delta_ms = delta_ms;
log_buf.entry.cur_pwm = soft_pwm[0];
log_buf.entry.cur_temp = current_temperature_isr[0];
log_buf.entry.cur_amb = current_temperature_ambient_isr;
}
#endif
} // namespace temp_model
static void temp_model_reset_enabled(bool enabled)
{
TempMgrGuard temp_mgr_guard;
temp_model::enabled = enabled;
temp_model::valid = enabled;
temp_model::data.flag_bits.uninitialized = true;
}
void temp_model_set_enabled(bool enabled)
{
// set the enabled flag
{
TempMgrGuard temp_mgr_guard;
temp_model::enabled = enabled;
temp_model::setup();
temp_model::valid = true;
}
// verify that the model has been enabled
if(enabled && !temp_model::enabled) {
SERIAL_ECHOLNPGM("TM: invalid parameters, cannot enable");
temp_model::valid = false;
}
}
bool temp_model_valid()
{
return temp_model::valid;
}
void temp_model_set_warn_beep(bool enabled)
{
temp_model::warn_beep = enabled;
}
void temp_model_set_params(float C, float P, float Ta_corr, float warn, float err)
{
TempMgrGuard temp_mgr_guard;
if(!isnan(C) && C > 0) temp_model::data.C = C;
if(!isnan(P) && P > 0) temp_model::data.P = P;
if(!isnan(Ta_corr)) temp_model::data.Ta_corr = Ta_corr;
if(!isnan(err) && err > 0) temp_model::data.err = err;
if(!isnan(warn) && warn > 0) temp_model::data.warn = warn;
// ensure warn <= err
if (temp_model::data.warn > temp_model::data.err)
temp_model::data.warn = temp_model::data.err;
temp_model::setup();
}
void temp_model_set_resistance(uint8_t index, float R)
{
if(index >= TEMP_MODEL_R_SIZE || R <= 0)
return;
TempMgrGuard temp_mgr_guard;
temp_model::data.R[index] = R;
temp_model::setup();
}
void temp_model_report_settings()
{
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Temperature Model settings:");
for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)
printf_P(PSTR("%S M310 I%u R%.2f\n"), echomagic, (unsigned)i, (double)temp_model::data.R[i]);
printf_P(PSTR("%S M310 P%.2f C%.2f S%u B%u E%.2f W%.2f T%.2f\n"),
echomagic, (double)temp_model::data.P, (double)temp_model::data.C,
(unsigned)temp_model::enabled, (unsigned)temp_model::warn_beep,
(double)temp_model::data.err, (double)temp_model::data.warn,
(double)temp_model::data.Ta_corr);
}
void temp_model_reset_settings()
{
TempMgrGuard temp_mgr_guard;
temp_model::data.P = TEMP_MODEL_P;
temp_model::data.C = TEMP_MODEL_C;
temp_model::data.R[0] = TEMP_MODEL_R;
for(uint8_t i = 1; i != TEMP_MODEL_R_SIZE; ++i)
temp_model::data.R[i] = NAN;
temp_model::data.Ta_corr = TEMP_MODEL_Ta_corr;
temp_model::data.warn = TEMP_MODEL_W;
temp_model::data.err = TEMP_MODEL_E;
temp_model::warn_beep = true;
temp_model::enabled = false;
temp_model::valid = false;
}
void temp_model_load_settings()
{
static_assert(TEMP_MODEL_R_SIZE == 16); // ensure we don't desync with the eeprom table
TempMgrGuard temp_mgr_guard;
temp_model::enabled = eeprom_read_byte((uint8_t*)EEPROM_TEMP_MODEL_ENABLE);
temp_model::data.P = eeprom_read_float((float*)EEPROM_TEMP_MODEL_P);
temp_model::data.C = eeprom_read_float((float*)EEPROM_TEMP_MODEL_C);
for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)
temp_model::data.R[i] = eeprom_read_float((float*)EEPROM_TEMP_MODEL_R + i);
temp_model::data.Ta_corr = eeprom_read_float((float*)EEPROM_TEMP_MODEL_Ta_corr);
temp_model::data.warn = eeprom_read_float((float*)EEPROM_TEMP_MODEL_W);
temp_model::data.err = eeprom_read_float((float*)EEPROM_TEMP_MODEL_E);
if(!temp_model::calibrated()) {
SERIAL_ECHOLNPGM("TM: stored calibration invalid, resetting");
temp_model_reset_settings();
}
temp_model::setup();
}
void temp_model_save_settings()
{
eeprom_update_byte((uint8_t*)EEPROM_TEMP_MODEL_ENABLE, temp_model::enabled);
eeprom_update_float((float*)EEPROM_TEMP_MODEL_P, temp_model::data.P);
eeprom_update_float((float*)EEPROM_TEMP_MODEL_C, temp_model::data.C);
for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)
eeprom_update_float((float*)EEPROM_TEMP_MODEL_R + i, temp_model::data.R[i]);
eeprom_update_float((float*)EEPROM_TEMP_MODEL_Ta_corr, temp_model::data.Ta_corr);
eeprom_update_float((float*)EEPROM_TEMP_MODEL_W, temp_model::data.warn);
eeprom_update_float((float*)EEPROM_TEMP_MODEL_E, temp_model::data.err);
}
namespace temp_model_cal {
// set current fan speed for both front/backend
static __attribute__((noinline)) void set_fan_speed(uint8_t fan_speed)
{
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
// reset the fan measuring state due to missing hysteresis handling on the checking side
fan_measuring = false;
extruder_autofan_last_check = _millis();
#endif
fanSpeed = fan_speed;
#ifdef FAN_SOFT_PWM
fanSpeedSoftPwm = fan_speed;
#endif
}
static void waiting_handler()
{
manage_heater();
host_keepalive();
host_autoreport();
checkFans();
lcd_update(0);
}
static void wait(unsigned ms)
{
unsigned long mark = _millis() + ms;
while(_millis() < mark) {
if(temp_error_state.v) break;
waiting_handler();
}
}
static void __attribute__((noinline)) wait_temp()
{
while(current_temperature[0] < (target_temperature[0] - TEMP_HYSTERESIS)) {
if(temp_error_state.v) break;
waiting_handler();
}
}
static void cooldown(float temp)
{
uint8_t old_speed = fanSpeed;
set_fan_speed(255);
while(current_temperature[0] >= temp) {
if(temp_error_state.v) break;
float ambient = current_temperature_ambient + temp_model::data.Ta_corr;
if(current_temperature[0] < (ambient + TEMP_HYSTERESIS)) {
// do not get stuck waiting very close to ambient temperature
break;
}
waiting_handler();
}
set_fan_speed(old_speed);
}
static uint16_t record(uint16_t samples = REC_BUFFER_SIZE) {
TempMgrGuard temp_mgr_guard;
uint16_t pos = 0;
while(pos < samples) {
if(!TEMP_MGR_INT_FLAG_STATE()) {
// temperatures not ready yet, just manage heaters while waiting to reduce jitter
manage_heater();
continue;
}
TEMP_MGR_INT_FLAG_CLEAR();
// manually repeat what the regular isr would do
if(adc_values_ready != true) continue;
adc_values_ready = false;
adc_start_cycle();
temp_mgr_isr();
// stop recording for an hard error condition
if(temp_error_state.v)
return 0;
// record a new entry
rec_entry& entry = rec_buffer[pos];
entry.temp = current_temperature_isr[0];
entry.pwm = soft_pwm[0];
++pos;
// it's now safer to give regular serial/lcd updates a shot
waiting_handler();
}
return pos;
}
static float cost_fn(uint16_t samples, float* const var, float v, uint8_t fan_pwm, float ambient)
{
*var = v;
temp_model::data.reset(rec_buffer[0].pwm, fan_pwm, rec_buffer[0].temp, ambient);
float err = 0;
uint16_t cnt = 0;
for(uint16_t i = 1; i < samples; ++i) {
temp_model::data.step(rec_buffer[i].pwm, fan_pwm, rec_buffer[i].temp, ambient);
float err_v = temp_model::data.dT_err_prev;
if(!isnan(err_v)) {
err += err_v * err_v;
++cnt;
}
}
return cnt ? (err / cnt) : NAN;
}
constexpr float GOLDEN_RATIO = 0.6180339887498949;
static void update_section(float points[2], const float bounds[2])
{
float d = GOLDEN_RATIO * (bounds[1] - bounds[0]);
points[0] = bounds[0] + d;
points[1] = bounds[1] - d;
}
static float estimate(uint16_t samples,
float* const var, float min, float max,
float thr, uint16_t max_itr,
uint8_t fan_pwm, float ambient)
{
// during estimation we alter the model values without an extra copy to conserve memory
// so we cannot keep the main checker active until a value has been found
bool was_enabled = temp_model::enabled;
temp_model_reset_enabled(false);
float orig = *var;
float e = NAN;
float points[2];
float bounds[2] = {min, max};
update_section(points, bounds);
for(uint8_t it = 0; it != max_itr; ++it) {
float c1 = cost_fn(samples, var, points[0], fan_pwm, ambient);
float c2 = cost_fn(samples, var, points[1], fan_pwm, ambient);
bool dir = (c2 < c1);
bounds[dir] = points[!dir];
update_section(points, bounds);
float x = points[!dir];
e = (1-GOLDEN_RATIO) * fabsf((bounds[0]-bounds[1]) / x);
printf_P(PSTR("TM iter:%u v:%.2f e:%.3f\n"), it, x, e);
if(e < thr) {
if(x == min || x == max) {
// real value likely outside of the search boundaries
break;
}
*var = x;
temp_model_reset_enabled(was_enabled);
return e;
}
}
SERIAL_ECHOLNPGM("TM estimation did not converge");
*var = orig;
temp_model_reset_enabled(was_enabled);
return NAN;
}
static bool autotune(int16_t cal_temp)
{
uint16_t samples;
float e;
char tm_message[20];
// bootstrap C/R values without fan
set_fan_speed(0);
for(uint8_t i = 0; i != 2; ++i) {
const char* PROGMEM verb = (i == 0? PSTR("initial"): PSTR("refine"));
target_temperature[0] = 0;
if(current_temperature[0] >= TEMP_MODEL_CAL_Tl) {
//!01234567890123456789|
//!TM: cool down <50C |
sprintf_P(tm_message, PSTR("TM: cool down <%dC"), TEMP_MODEL_CAL_Tl);
lcd_setstatus_serial(tm_message);
cooldown(TEMP_MODEL_CAL_Tl);
wait(10000);
}
//!01234567890123456789|
//!TM: initial R est. |
//!TM: refine R est. |
sprintf_P(tm_message, PSTR("TM: %S C est."), verb);
lcd_setstatus_serial(tm_message);
target_temperature[0] = cal_temp;
samples = record();
if(temp_error_state.v || !samples)
return true;
// we need a high R value for the initial C guess
if(isnan(temp_model::data.R[0]))
temp_model::data.R[0] = TEMP_MODEL_Rh;
e = estimate(samples, &temp_model::data.C,
TEMP_MODEL_Cl, TEMP_MODEL_Ch, TEMP_MODEL_C_thr, TEMP_MODEL_C_itr,
0, current_temperature_ambient);
if(isnan(e))
return true;
wait_temp();
if(i) break; // we don't need to refine R
wait(30000); // settle PID regulation
//!01234567890123456789|
//!TM: initial R 230C |
//!TM: refine R 230C |
sprintf_P(tm_message, PSTR("TM: %S R %dC"), verb, cal_temp);
lcd_setstatus_serial(tm_message);
samples = record();
if(temp_error_state.v || !samples)
return true;
e = estimate(samples, &temp_model::data.R[0],
TEMP_MODEL_Rl, TEMP_MODEL_Rh, TEMP_MODEL_R_thr, TEMP_MODEL_R_itr,
0, current_temperature_ambient);
if(isnan(e))
return true;
}
// Estimate fan losses at regular intervals, starting from full speed to avoid low-speed
// kickstart issues, although this requires us to wait more for the PID stabilization.
// Normally exhibits logarithmic behavior with the stock fan+shroud, so the shorter interval
// at lower speeds is helpful to increase the resolution of the interpolation.
set_fan_speed(255);
wait(30000);
for(int8_t i = TEMP_MODEL_R_SIZE - 1; i > 0; i -= TEMP_MODEL_CAL_R_STEP) {
uint8_t speed = 256 / TEMP_MODEL_R_SIZE * (i + 1) - 1;
set_fan_speed(speed);
wait(10000);
//!01234567890123456789|
//!TM: R[15] estimat. |
sprintf_P(tm_message, PSTR("TM: R[%u] estimat."), (unsigned)i);
lcd_setstatus_serial(tm_message);
samples = record();
if(temp_error_state.v || !samples)
return true;
// a fixed fan pwm (the norminal value) is used here, as soft_pwm_fan will be modified
// during fan measurements and we'd like to include that skew during normal operation.
e = estimate(samples, &temp_model::data.R[i],
TEMP_MODEL_Rl, temp_model::data.R[0], TEMP_MODEL_R_thr, TEMP_MODEL_R_itr,
i, current_temperature_ambient);
if(isnan(e))
return true;
}
// interpolate remaining steps to speed-up calibration
// TODO: verify that the sampled values are monotically increasing?
int8_t next = TEMP_MODEL_R_SIZE - 1;
for(uint8_t i = TEMP_MODEL_R_SIZE - 2; i != 0; --i) {
if(!((TEMP_MODEL_R_SIZE - i - 1) % TEMP_MODEL_CAL_R_STEP)) {
next = i;
continue;
}
int8_t prev = next - TEMP_MODEL_CAL_R_STEP;
if(prev < 0) prev = 0;
float f = (float)(i - prev) / TEMP_MODEL_CAL_R_STEP;
float d = (temp_model::data.R[next] - temp_model::data.R[prev]);
temp_model::data.R[i] = temp_model::data.R[prev] + d * f;
}
return false;
}
} // namespace temp_model_cal
void temp_model_autotune(int16_t temp, bool selftest)
{
char tm_message[20];
if(moves_planned() || printer_active()) {
//!01234567890123456789|
//!TM: Cal. NOT ILDE |
sprintf_P(tm_message, PSTR("TM: Cal. NOT IDLE"));
lcd_setstatus_serial(tm_message);
return;
}
// lockout the printer during calibration
KEEPALIVE_STATE(IN_PROCESS);
menu_set_block(MENU_BLOCK_TEMP_MODEL_AUTOTUNE);
lcd_return_to_status();
// set the model checking state during self-calibration
bool was_enabled = temp_model::enabled;
temp_model_reset_enabled(selftest);
SERIAL_ECHOLNPGM("TM: calibration start");
bool err = temp_model_cal::autotune(temp > 0 ? temp : TEMP_MODEL_CAL_Th);
// always reset temperature
disable_heater();
if(err) {
//!01234567890123456789|
//!TM: calibr. failed! |
sprintf_P(tm_message, PSTR("TM: calibr. failed!"));
lcd_setstatus_serial(tm_message);
if(temp_error_state.v)
temp_model_cal::set_fan_speed(255);
} else {
lcd_setstatuspgm(MSG_WELCOME);
temp_model_cal::set_fan_speed(0);
temp_model_set_enabled(was_enabled);
temp_model_report_settings();
}
lcd_consume_click();
menu_unset_block(MENU_BLOCK_TEMP_MODEL_AUTOTUNE);
}
#ifdef TEMP_MODEL_DEBUG
void temp_model_log_enable(bool enable)
{
if(enable) {
TempMgrGuard temp_mgr_guard;
temp_model::log_buf.entry.stamp = _millis();
}
temp_model::log_buf.enabled = enable;
}
#endif
#endif