Prusa-Firmware/Firmware/ConfigurationStore.cpp
bubnikv 78ebd522b6 Removed support for DELTA, SCARA and BARICUDA.
Implemented bed skew calibration by matching a precise physical model
to the measured data using the least squares method.
Rewrote handling of the command buffer to preserve memory
and allow pushing the commands to the front of the queue.
2016-06-23 08:46:15 +02:00

421 lines
13 KiB
C++

#include "Marlin.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
#include "ConfigurationStore.h"
#include "Configuration_prusa.h"
#ifdef MESH_BED_LEVELING
#include "mesh_bed_leveling.h"
#endif
void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size)
{
do
{
eeprom_write_byte((unsigned char*)pos, *value);
pos++;
value++;
}while(--size);
}
#define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size)
{
do
{
*value = eeprom_read_byte((unsigned char*)pos);
pos++;
value++;
}while(--size);
}
#define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))
//======================================================================================
#define EEPROM_OFFSET 100
// IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
// in the functions below, also increment the version number. This makes sure that
// the default values are used whenever there is a change to the data, to prevent
// wrong data being written to the variables.
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
#define EEPROM_VERSION "V13"
#ifdef EEPROM_SETTINGS
void Config_StoreSettings()
{
char ver[4]= "000";
int i=EEPROM_OFFSET;
EEPROM_WRITE_VAR(i,ver); // invalidate data first
EEPROM_WRITE_VAR(i,axis_steps_per_unit);
EEPROM_WRITE_VAR(i,max_feedrate);
EEPROM_WRITE_VAR(i,max_acceleration_units_per_sq_second);
EEPROM_WRITE_VAR(i,acceleration);
EEPROM_WRITE_VAR(i,retract_acceleration);
EEPROM_WRITE_VAR(i,minimumfeedrate);
EEPROM_WRITE_VAR(i,mintravelfeedrate);
EEPROM_WRITE_VAR(i,minsegmenttime);
EEPROM_WRITE_VAR(i,max_xy_jerk);
EEPROM_WRITE_VAR(i,max_z_jerk);
EEPROM_WRITE_VAR(i,max_e_jerk);
EEPROM_WRITE_VAR(i,add_homing);
#ifndef ULTIPANEL
int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
int absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
#endif
EEPROM_WRITE_VAR(i,plaPreheatHotendTemp);
EEPROM_WRITE_VAR(i,plaPreheatHPBTemp);
EEPROM_WRITE_VAR(i,plaPreheatFanSpeed);
EEPROM_WRITE_VAR(i,absPreheatHotendTemp);
EEPROM_WRITE_VAR(i,absPreheatHPBTemp);
EEPROM_WRITE_VAR(i,absPreheatFanSpeed);
EEPROM_WRITE_VAR(i,zprobe_zoffset);
#ifdef PIDTEMP
EEPROM_WRITE_VAR(i,Kp);
EEPROM_WRITE_VAR(i,Ki);
EEPROM_WRITE_VAR(i,Kd);
#else
float dummy = 3000.0f;
EEPROM_WRITE_VAR(i,dummy);
dummy = 0.0f;
EEPROM_WRITE_VAR(i,dummy);
EEPROM_WRITE_VAR(i,dummy);
#endif
#ifndef DOGLCD
int lcd_contrast = 32;
#endif
EEPROM_WRITE_VAR(i,lcd_contrast);
#ifdef FWRETRACT
EEPROM_WRITE_VAR(i,autoretract_enabled);
EEPROM_WRITE_VAR(i,retract_length);
#if EXTRUDERS > 1
EEPROM_WRITE_VAR(i,retract_length_swap);
#endif
EEPROM_WRITE_VAR(i,retract_feedrate);
EEPROM_WRITE_VAR(i,retract_zlift);
EEPROM_WRITE_VAR(i,retract_recover_length);
#if EXTRUDERS > 1
EEPROM_WRITE_VAR(i,retract_recover_length_swap);
#endif
EEPROM_WRITE_VAR(i,retract_recover_feedrate);
#endif
// Save filament sizes
EEPROM_WRITE_VAR(i, volumetric_enabled);
EEPROM_WRITE_VAR(i, filament_size[0]);
#if EXTRUDERS > 1
EEPROM_WRITE_VAR(i, filament_size[1]);
#if EXTRUDERS > 2
EEPROM_WRITE_VAR(i, filament_size[2]);
#endif
#endif
char ver2[4]=EEPROM_VERSION;
i=EEPROM_OFFSET;
EEPROM_WRITE_VAR(i,ver2); // validate data
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Settings Stored");
}
#endif //EEPROM_SETTINGS
#ifndef DISABLE_M503
void Config_PrintSettings()
{ // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Steps per unit:");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M92 X",axis_steps_per_unit[X_AXIS]);
SERIAL_ECHOPAIR(" Y",axis_steps_per_unit[Y_AXIS]);
SERIAL_ECHOPAIR(" Z",axis_steps_per_unit[Z_AXIS]);
SERIAL_ECHOPAIR(" E",axis_steps_per_unit[E_AXIS]);
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M203 X", max_feedrate[X_AXIS]);
SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]);
SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]);
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M201 X" ,max_acceleration_units_per_sq_second[X_AXIS] );
SERIAL_ECHOPAIR(" Y" , max_acceleration_units_per_sq_second[Y_AXIS] );
SERIAL_ECHOPAIR(" Z" ,max_acceleration_units_per_sq_second[Z_AXIS] );
SERIAL_ECHOPAIR(" E" ,max_acceleration_units_per_sq_second[E_AXIS]);
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Acceleration: S=acceleration, T=retract acceleration");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M204 S",acceleration );
SERIAL_ECHOPAIR(" T" ,retract_acceleration);
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M205 S",minimumfeedrate );
SERIAL_ECHOPAIR(" T" ,mintravelfeedrate );
SERIAL_ECHOPAIR(" B" ,minsegmenttime );
SERIAL_ECHOPAIR(" X" ,max_xy_jerk );
SERIAL_ECHOPAIR(" Z" ,max_z_jerk);
SERIAL_ECHOPAIR(" E" ,max_e_jerk);
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Home offset (mm):");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M206 X",add_homing[X_AXIS] );
SERIAL_ECHOPAIR(" Y" ,add_homing[Y_AXIS] );
SERIAL_ECHOPAIR(" Z" ,add_homing[Z_AXIS] );
SERIAL_ECHOLN("");
#ifdef PIDTEMP
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("PID settings:");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M301 P",Kp);
SERIAL_ECHOPAIR(" I" ,unscalePID_i(Ki));
SERIAL_ECHOPAIR(" D" ,unscalePID_d(Kd));
SERIAL_ECHOLN("");
#endif
#ifdef FWRETRACT
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M207 S",retract_length);
SERIAL_ECHOPAIR(" F" ,retract_feedrate*60);
SERIAL_ECHOPAIR(" Z" ,retract_zlift);
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M208 S",retract_recover_length);
SERIAL_ECHOPAIR(" F", retract_recover_feedrate*60);
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M209 S", (unsigned long)(autoretract_enabled ? 1 : 0));
SERIAL_ECHOLN("");
#if EXTRUDERS > 1
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Multi-extruder settings:");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" Swap retract length (mm): ", retract_length_swap);
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" Swap rec. addl. length (mm): ", retract_recover_length_swap);
SERIAL_ECHOLN("");
#endif
SERIAL_ECHO_START;
if (volumetric_enabled) {
SERIAL_ECHOLNPGM("Filament settings:");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
SERIAL_ECHOLN("");
#if EXTRUDERS > 1
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
SERIAL_ECHOLN("");
#if EXTRUDERS > 2
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
SERIAL_ECHOLN("");
#endif
#endif
} else {
SERIAL_ECHOLNPGM("Filament settings: Disabled");
}
#endif
}
#endif
#ifdef EEPROM_SETTINGS
void Config_RetrieveSettings()
{
int i=EEPROM_OFFSET;
char stored_ver[4];
char ver[4]=EEPROM_VERSION;
EEPROM_READ_VAR(i,stored_ver); //read stored version
// SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
if (strncmp(ver,stored_ver,3) == 0)
{
// version number match
EEPROM_READ_VAR(i,axis_steps_per_unit);
EEPROM_READ_VAR(i,max_feedrate);
EEPROM_READ_VAR(i,max_acceleration_units_per_sq_second);
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
reset_acceleration_rates();
EEPROM_READ_VAR(i,acceleration);
EEPROM_READ_VAR(i,retract_acceleration);
EEPROM_READ_VAR(i,minimumfeedrate);
EEPROM_READ_VAR(i,mintravelfeedrate);
EEPROM_READ_VAR(i,minsegmenttime);
EEPROM_READ_VAR(i,max_xy_jerk);
EEPROM_READ_VAR(i,max_z_jerk);
EEPROM_READ_VAR(i,max_e_jerk);
EEPROM_READ_VAR(i,add_homing);
#ifndef ULTIPANEL
int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed;
int absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
#endif
EEPROM_READ_VAR(i,plaPreheatHotendTemp);
EEPROM_READ_VAR(i,plaPreheatHPBTemp);
EEPROM_READ_VAR(i,plaPreheatFanSpeed);
EEPROM_READ_VAR(i,absPreheatHotendTemp);
EEPROM_READ_VAR(i,absPreheatHPBTemp);
EEPROM_READ_VAR(i,absPreheatFanSpeed);
EEPROM_READ_VAR(i,zprobe_zoffset);
#ifndef PIDTEMP
float Kp,Ki,Kd;
#endif
// do not need to scale PID values as the values in EEPROM are already scaled
EEPROM_READ_VAR(i,Kp);
EEPROM_READ_VAR(i,Ki);
EEPROM_READ_VAR(i,Kd);
#ifndef DOGLCD
int lcd_contrast;
#endif
EEPROM_READ_VAR(i,lcd_contrast);
#ifdef FWRETRACT
EEPROM_READ_VAR(i,autoretract_enabled);
EEPROM_READ_VAR(i,retract_length);
#if EXTRUDERS > 1
EEPROM_READ_VAR(i,retract_length_swap);
#endif
EEPROM_READ_VAR(i,retract_feedrate);
EEPROM_READ_VAR(i,retract_zlift);
EEPROM_READ_VAR(i,retract_recover_length);
#if EXTRUDERS > 1
EEPROM_READ_VAR(i,retract_recover_length_swap);
#endif
EEPROM_READ_VAR(i,retract_recover_feedrate);
#endif
EEPROM_READ_VAR(i, volumetric_enabled);
EEPROM_READ_VAR(i, filament_size[0]);
#if EXTRUDERS > 1
EEPROM_READ_VAR(i, filament_size[1]);
#if EXTRUDERS > 2
EEPROM_READ_VAR(i, filament_size[2]);
#endif
#endif
calculate_volumetric_multipliers();
// Call updatePID (similar to when we have processed M301)
updatePID();
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Stored settings retrieved");
}
else
{
Config_ResetDefault();
}
#ifdef EEPROM_CHITCHAT
Config_PrintSettings();
#endif
}
#endif
void Config_ResetDefault()
{
float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT;
float tmp2[]=DEFAULT_MAX_FEEDRATE;
long tmp3[]=DEFAULT_MAX_ACCELERATION;
for (short i=0;i<4;i++)
{
axis_steps_per_unit[i]=tmp1[i];
max_feedrate[i]=tmp2[i];
max_acceleration_units_per_sq_second[i]=tmp3[i];
}
// steps per sq second need to be updated to agree with the units per sq second
reset_acceleration_rates();
acceleration=DEFAULT_ACCELERATION;
retract_acceleration=DEFAULT_RETRACT_ACCELERATION;
minimumfeedrate=DEFAULT_MINIMUMFEEDRATE;
minsegmenttime=DEFAULT_MINSEGMENTTIME;
mintravelfeedrate=DEFAULT_MINTRAVELFEEDRATE;
max_xy_jerk=DEFAULT_XYJERK;
max_z_jerk=DEFAULT_ZJERK;
max_e_jerk=DEFAULT_EJERK;
add_homing[X_AXIS] = add_homing[Y_AXIS] = add_homing[Z_AXIS] = 0;
#ifdef ULTIPANEL
plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
#endif
#ifdef ENABLE_AUTO_BED_LEVELING
zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
#endif
#ifdef DOGLCD
lcd_contrast = DEFAULT_LCD_CONTRAST;
#endif
#ifdef PIDTEMP
Kp = DEFAULT_Kp;
Ki = scalePID_i(DEFAULT_Ki);
Kd = scalePID_d(DEFAULT_Kd);
// call updatePID (similar to when we have processed M301)
updatePID();
#ifdef PID_ADD_EXTRUSION_RATE
Kc = DEFAULT_Kc;
#endif//PID_ADD_EXTRUSION_RATE
#endif//PIDTEMP
#ifdef FWRETRACT
autoretract_enabled = false;
retract_length = RETRACT_LENGTH;
#if EXTRUDERS > 1
retract_length_swap = RETRACT_LENGTH_SWAP;
#endif
retract_feedrate = RETRACT_FEEDRATE;
retract_zlift = RETRACT_ZLIFT;
retract_recover_length = RETRACT_RECOVER_LENGTH;
#if EXTRUDERS > 1
retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
#endif
retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
#endif
volumetric_enabled = false;
filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA;
#if EXTRUDERS > 1
filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA;
#if EXTRUDERS > 2
filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA;
#endif
#endif
calculate_volumetric_multipliers();
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
}