Prusa-Firmware/Firmware/LiquidCrystal_Prusa.cpp
Robert Pelnar 30a7530b47 New ML support - lcd optimalization - lcd_menu_statistics
+fix LiquidCrystal_Prusa/createChar
2018-06-11 01:06:47 +02:00

719 lines
18 KiB
C++

#include "LiquidCrystal_Prusa.h"
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "Arduino.h"
// When the display powers up, it is configured as follows:
//
// 1. Display clear
// 2. Function set:
// DL = 1; 8-bit interface data
// N = 0; 1-line display
// F = 0; 5x8 dot character font
// 3. Display on/off control:
// D = 0; Display off
// C = 0; Cursor off
// B = 0; Blinking off
// 4. Entry mode set:
// I/D = 1; Increment by 1
// S = 0; No shift
//
// Note, however, that resetting the Arduino doesn't reset the LCD, so we
// can't assume that it's in that state when a sketch starts (and the
// LiquidCrystal_Prusa constructor is called).
LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t rw, uint8_t enable,
uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7)
{
init(0, rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7);
}
LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t enable,
uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7)
{
init(0, rs, 255, enable, d0, d1, d2, d3, d4, d5, d6, d7);
}
LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t rw, uint8_t enable,
uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3)
{
init(1, rs, rw, enable, d0, d1, d2, d3, 0, 0, 0, 0);
}
LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t enable,
uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3)
{
init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0);
}
void LiquidCrystal_Prusa::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable,
uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7)
{
_rs_pin = rs;
_rw_pin = rw;
_enable_pin = enable;
_data_pins[0] = d0;
_data_pins[1] = d1;
_data_pins[2] = d2;
_data_pins[3] = d3;
_data_pins[4] = d4;
_data_pins[5] = d5;
_data_pins[6] = d6;
_data_pins[7] = d7;
pinMode(_rs_pin, OUTPUT);
// we can save 1 pin by not using RW. Indicate by passing 255 instead of pin#
if (_rw_pin != 255) {
pinMode(_rw_pin, OUTPUT);
}
pinMode(_enable_pin, OUTPUT);
if (fourbitmode)
_displayfunction = LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS;
else
_displayfunction = LCD_8BITMODE | LCD_1LINE | LCD_5x8DOTS;
begin(16, 1);
}
void LiquidCrystal_Prusa::begin(uint8_t cols, uint8_t lines, uint8_t dotsize) {
if (lines > 1) {
_displayfunction |= LCD_2LINE;
}
_numlines = lines;
_currline = 0;
// for some 1 line displays you can select a 10 pixel high font
if ((dotsize != 0) && (lines == 1)) {
_displayfunction |= LCD_5x10DOTS;
}
// SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!
// according to datasheet, we need at least 40ms after power rises above 2.7V
// before sending commands. Arduino can turn on way befer 4.5V so we'll wait 50
delayMicroseconds(50000);
// Now we pull both RS and R/W low to begin commands
digitalWrite(_rs_pin, LOW);
digitalWrite(_enable_pin, LOW);
if (_rw_pin != 255) {
digitalWrite(_rw_pin, LOW);
}
//put the LCD into 4 bit or 8 bit mode
if (! (_displayfunction & LCD_8BITMODE)) {
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02);
} else {
// this is according to the hitachi HD44780 datasheet
// page 45 figure 23
// Send function set command sequence
command(LCD_FUNCTIONSET | _displayfunction);
delayMicroseconds(4500); // wait more than 4.1ms
// second try
command(LCD_FUNCTIONSET | _displayfunction);
delayMicroseconds(150);
// third go
command(LCD_FUNCTIONSET | _displayfunction);
}
// finally, set # lines, font size, etc.
command(LCD_FUNCTIONSET | _displayfunction);
delayMicroseconds(60);
// turn the display on with no cursor or blinking default
_displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF;
display();
delayMicroseconds(60);
// clear it off
clear();
delayMicroseconds(3000);
// Initialize to default text direction (for romance languages)
_displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT;
// set the entry mode
command(LCD_ENTRYMODESET | _displaymode);
delayMicroseconds(60);
_escape[0] = 0;
}
void LiquidCrystal_Prusa::begin_noclear(uint8_t cols, uint8_t lines, uint8_t dotsize) {
if (lines > 1) {
_displayfunction |= LCD_2LINE;
}
_numlines = lines;
_currline = 0;
// for some 1 line displays you can select a 10 pixel high font
if ((dotsize != 0) && (lines == 1)) {
_displayfunction |= LCD_5x10DOTS;
}
// SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!
// according to datasheet, we need at least 40ms after power rises above 2.7V
// before sending commands. Arduino can turn on way befer 4.5V so we'll wait 50
delayMicroseconds(50000);
// Now we pull both RS and R/W low to begin commands
digitalWrite(_rs_pin, LOW);
digitalWrite(_enable_pin, LOW);
if (_rw_pin != 255) {
digitalWrite(_rw_pin, LOW);
}
//put the LCD into 4 bit or 8 bit mode
if (! (_displayfunction & LCD_8BITMODE)) {
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02);
} else {
// this is according to the hitachi HD44780 datasheet
// page 45 figure 23
// Send function set command sequence
command(LCD_FUNCTIONSET | _displayfunction);
delayMicroseconds(4500); // wait more than 4.1ms
// second try
command(LCD_FUNCTIONSET | _displayfunction);
delayMicroseconds(150);
// third go
command(LCD_FUNCTIONSET | _displayfunction);
}
// finally, set # lines, font size, etc.
command(LCD_FUNCTIONSET | _displayfunction);
delayMicroseconds(60);
// turn the display on with no cursor or blinking default
_displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF;
display();
delayMicroseconds(60);
// clear it off
//clear();
home();
delayMicroseconds(1600);
// Initialize to default text direction (for romance languages)
_displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT;
// set the entry mode
command(LCD_ENTRYMODESET | _displaymode);
delayMicroseconds(60);
setCursor(8,0);
print(" ");
setCursor(8,1);
print(" ");
setCursor(6,2);
print(" ");
}
/********** high level commands, for the user! */
void LiquidCrystal_Prusa::clear()
{
command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
delayMicroseconds(1600); // this command takes a long time
}
void LiquidCrystal_Prusa::home()
{
command(LCD_RETURNHOME); // set cursor position to zero
delayMicroseconds(1600); // this command takes a long time!
}
void LiquidCrystal_Prusa::setCursor(uint8_t col, uint8_t row)
{
int row_offsets[] = { 0x00, 0x40, 0x14, 0x54 };
if ( row >= _numlines ) {
row = _numlines-1; // we count rows starting w/0
}
_currline = row;
command(LCD_SETDDRAMADDR | (col + row_offsets[row]));
}
// Turn the display on/off (quickly)
void LiquidCrystal_Prusa::noDisplay() {
_displaycontrol &= ~LCD_DISPLAYON;
command(LCD_DISPLAYCONTROL | _displaycontrol);
}
void LiquidCrystal_Prusa::display() {
_displaycontrol |= LCD_DISPLAYON;
command(LCD_DISPLAYCONTROL | _displaycontrol);
}
// Turns the underline cursor on/off
void LiquidCrystal_Prusa::noCursor() {
_displaycontrol &= ~LCD_CURSORON;
command(LCD_DISPLAYCONTROL | _displaycontrol);
}
void LiquidCrystal_Prusa::cursor() {
_displaycontrol |= LCD_CURSORON;
command(LCD_DISPLAYCONTROL | _displaycontrol);
}
// Turn on and off the blinking cursor
void LiquidCrystal_Prusa::noBlink() {
_displaycontrol &= ~LCD_BLINKON;
command(LCD_DISPLAYCONTROL | _displaycontrol);
}
void LiquidCrystal_Prusa::blink() {
_displaycontrol |= LCD_BLINKON;
command(LCD_DISPLAYCONTROL | _displaycontrol);
}
// These commands scroll the display without changing the RAM
void LiquidCrystal_Prusa::scrollDisplayLeft(void) {
command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVELEFT);
}
void LiquidCrystal_Prusa::scrollDisplayRight(void) {
command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVERIGHT);
}
// This is for text that flows Left to Right
void LiquidCrystal_Prusa::leftToRight(void) {
_displaymode |= LCD_ENTRYLEFT;
command(LCD_ENTRYMODESET | _displaymode);
}
// This is for text that flows Right to Left
void LiquidCrystal_Prusa::rightToLeft(void) {
_displaymode &= ~LCD_ENTRYLEFT;
command(LCD_ENTRYMODESET | _displaymode);
}
// This will 'right justify' text from the cursor
void LiquidCrystal_Prusa::autoscroll(void) {
_displaymode |= LCD_ENTRYSHIFTINCREMENT;
command(LCD_ENTRYMODESET | _displaymode);
}
// This will 'left justify' text from the cursor
void LiquidCrystal_Prusa::noAutoscroll(void) {
_displaymode &= ~LCD_ENTRYSHIFTINCREMENT;
command(LCD_ENTRYMODESET | _displaymode);
}
// Allows us to fill the first 8 CGRAM locations
// with custom characters
void LiquidCrystal_Prusa::createChar(uint8_t location, uint8_t charmap[]) {
location &= 0x7; // we only have 8 locations 0-7
command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
send(charmap[i], HIGH);
}
/*********** mid level commands, for sending data/cmds */
inline void LiquidCrystal_Prusa::command(uint8_t value) {
send(value, LOW);
}
inline size_t LiquidCrystal_Prusa::write(uint8_t value) {
if (value == '\n')
{
if (_currline > 3) _currline = -1;
setCursor(0, _currline + 1); // LF
return 1;
}
if (_escape[0] || (value == 0x1b))
return escape_write(value);
send(value, HIGH);
return 1; // assume sucess
}
//Supported VT100 escape codes:
//EraseScreen "\x1b[2J"
//CursorHome "\x1b[%d;%dH"
//CursorShow "\x1b[?25h"
//CursorHide "\x1b[?25l"
inline size_t LiquidCrystal_Prusa::escape_write(uint8_t chr)
{
#define escape_cnt (_escape[0]) //escape character counter
#define is_num_msk (_escape[1]) //numeric character bit mask
#define chr_is_num (is_num_msk & 0x01) //current character is numeric
#define e_2_is_num (is_num_msk & 0x04) //escape char 2 is numeric
#define e_3_is_num (is_num_msk & 0x08) //...
#define e_4_is_num (is_num_msk & 0x10)
#define e_5_is_num (is_num_msk & 0x20)
#define e_6_is_num (is_num_msk & 0x40)
#define e_7_is_num (is_num_msk & 0x80)
#define e2_num (_escape[2] - '0') //number from character 2
#define e3_num (_escape[3] - '0') //number from character 3
#define e23_num (10*e2_num+e3_num) //number from characters 2 and 3
#define e4_num (_escape[4] - '0') //number from character 4
#define e5_num (_escape[5] - '0') //number from character 5
#define e45_num (10*e4_num+e5_num) //number from characters 4 and 5
#define e6_num (_escape[6] - '0') //number from character 6
#define e56_num (10*e5_num+e6_num) //number from characters 5 and 6
if (escape_cnt > 1) // escape length > 1 = "\x1b["
{
_escape[escape_cnt] = chr; // store current char
if ((chr >= '0') && (chr <= '9')) // char is numeric
is_num_msk |= (1 | (1 << escape_cnt)); //set mask
else
is_num_msk &= ~1; //clear mask
}
switch (escape_cnt++)
{
case 0:
if (chr == 0x1b) return 1; // escape = "\x1b"
break;
case 1:
is_num_msk = 0x00; // reset 'is number' bit mask
if (chr == '[') return 1; // escape = "\x1b["
break;
case 2:
switch (chr)
{
case '2': return 1; // escape = "\x1b[2"
case '?': return 1; // escape = "\x1b[?"
default:
if (chr_is_num) return 1; // escape = "\x1b[%1d"
}
break;
case 3:
switch (_escape[2])
{
case '?': // escape = "\x1b[?"
if (chr == '2') return 1; // escape = "\x1b[?2"
break;
case '2':
if (chr == 'J') // escape = "\x1b[2J"
{ clear(); _currline = 0; break; } // EraseScreen
default:
if (e_2_is_num && // escape = "\x1b[%1d"
((chr == ';') || // escape = "\x1b[%1d;"
chr_is_num)) // escape = "\x1b[%2d"
return 1;
}
break;
case 4:
switch (_escape[2])
{
case '?': // "\x1b[?"
if ((_escape[3] == '2') && (chr == '5')) return 1; // escape = "\x1b[?25"
break;
default:
if (e_2_is_num) // escape = "\x1b[%1d"
{
if ((_escape[3] == ';') && chr_is_num) return 1; // escape = "\x1b[%1d;%1d"
else if (e_3_is_num && (chr == ';')) return 1; // escape = "\x1b[%2d;"
}
}
break;
case 5:
switch (_escape[2])
{
case '?':
if ((_escape[3] == '2') && (_escape[4] == '5')) // escape = "\x1b[?25"
switch (chr)
{
case 'h': // escape = "\x1b[?25h"
void cursor(); // CursorShow
break;
case 'l': // escape = "\x1b[?25l"
noCursor(); // CursorHide
break;
}
break;
default:
if (e_2_is_num) // escape = "\x1b[%1d"
{
if ((_escape[3] == ';') && e_4_is_num) // escape = "\x1b%1d;%1dH"
{
if (chr == 'H') // escape = "\x1b%1d;%1dH"
setCursor(e4_num, e2_num); // CursorHome
else if (chr_is_num)
return 1; // escape = "\x1b%1d;%2d"
}
else if (e_3_is_num && (_escape[4] == ';') && chr_is_num)
return 1; // escape = "\x1b%2d;%1d"
}
}
break;
case 6:
if (e_2_is_num) // escape = "\x1b[%1d"
{
if ((_escape[3] == ';') && e_4_is_num && e_5_is_num && (chr == 'H')) // escape = "\x1b%1d;%2dH"
setCursor(e45_num, e2_num); // CursorHome
else if (e_3_is_num && (_escape[4] == ';') && e_5_is_num) // escape = "\x1b%2d;%1d"
{
if (chr == 'H') // escape = "\x1b%2d;%1dH"
setCursor(e5_num, e23_num); // CursorHome
else if (chr_is_num) // "\x1b%2d;%2d"
return 1;
}
}
break;
case 7:
if (e_2_is_num && e_3_is_num && (_escape[4] == ';')) // "\x1b[%2d;"
if (e_5_is_num && e_6_is_num && (chr == 'H')) // "\x1b[%2d;%2dH"
setCursor(e56_num, e23_num); // CursorHome
break;
}
escape_cnt = 0; // reset escape
end:
return 1; // assume sucess
}
/************ low level data pushing commands **********/
// write either command or data, with automatic 4/8-bit selection
void LiquidCrystal_Prusa::send(uint8_t value, uint8_t mode) {
digitalWrite(_rs_pin, mode);
// if there is a RW pin indicated, set it low to Write
if (_rw_pin != 255) {
digitalWrite(_rw_pin, LOW);
}
if (_displayfunction & LCD_8BITMODE) {
write8bits(value);
} else {
write4bits(value>>4);
write4bits(value);
}
}
void LiquidCrystal_Prusa::pulseEnable(void) {
digitalWrite(_enable_pin, LOW);
delayMicroseconds(1);
digitalWrite(_enable_pin, HIGH);
delayMicroseconds(1); // enable pulse must be >450ns
digitalWrite(_enable_pin, LOW);
delayMicroseconds(100); // commands need > 37us to settle
}
void LiquidCrystal_Prusa::write4bits(uint8_t value) {
for (int i = 0; i < 4; i++) {
pinMode(_data_pins[i], OUTPUT);
digitalWrite(_data_pins[i], (value >> i) & 0x01);
}
pulseEnable();
}
void LiquidCrystal_Prusa::write8bits(uint8_t value) {
for (int i = 0; i < 8; i++) {
pinMode(_data_pins[i], OUTPUT);
digitalWrite(_data_pins[i], (value >> i) & 0x01);
}
pulseEnable();
}
void LiquidCrystal_Prusa::print(const char* s)
{
while (*s) write(*(s++));
}
void LiquidCrystal_Prusa::print(char c, int base)
{
print((long) c, base);
}
void LiquidCrystal_Prusa::print(unsigned char b, int base)
{
print((unsigned long) b, base);
}
void LiquidCrystal_Prusa::print(int n, int base)
{
print((long) n, base);
}
void LiquidCrystal_Prusa::print(unsigned int n, int base)
{
print((unsigned long) n, base);
}
void LiquidCrystal_Prusa::print(long n, int base)
{
if (base == 0) {
write(n);
} else if (base == 10) {
if (n < 0) {
print('-');
n = -n;
}
printNumber(n, 10);
} else {
printNumber(n, base);
}
}
void LiquidCrystal_Prusa::print(unsigned long n, int base)
{
if (base == 0) write(n);
else printNumber(n, base);
}
void LiquidCrystal_Prusa::print(double n, int digits)
{
printFloat(n, digits);
}
void LiquidCrystal_Prusa::println(void)
{
print('\r');
print('\n');
}
/*void LiquidCrystal_Prusa::println(const String &s)
{
print(s);
println();
}*/
void LiquidCrystal_Prusa::println(const char c[])
{
print(c);
println();
}
void LiquidCrystal_Prusa::println(char c, int base)
{
print(c, base);
println();
}
void LiquidCrystal_Prusa::println(unsigned char b, int base)
{
print(b, base);
println();
}
void LiquidCrystal_Prusa::println(int n, int base)
{
print(n, base);
println();
}
void LiquidCrystal_Prusa::println(unsigned int n, int base)
{
print(n, base);
println();
}
void LiquidCrystal_Prusa::println(long n, int base)
{
print(n, base);
println();
}
void LiquidCrystal_Prusa::println(unsigned long n, int base)
{
print(n, base);
println();
}
void LiquidCrystal_Prusa::println(double n, int digits)
{
print(n, digits);
println();
}
void LiquidCrystal_Prusa::printNumber(unsigned long n, uint8_t base)
{
unsigned char buf[8 * sizeof(long)]; // Assumes 8-bit chars.
unsigned long i = 0;
if (n == 0) {
print('0');
return;
}
while (n > 0) {
buf[i++] = n % base;
n /= base;
}
for (; i > 0; i--)
print((char) (buf[i - 1] < 10 ?
'0' + buf[i - 1] :
'A' + buf[i - 1] - 10));
}
void LiquidCrystal_Prusa::printFloat(double number, uint8_t digits)
{
// Handle negative numbers
if (number < 0.0)
{
print('-');
number = -number;
}
// Round correctly so that print(1.999, 2) prints as "2.00"
double rounding = 0.5;
for (uint8_t i=0; i<digits; ++i)
rounding /= 10.0;
number += rounding;
// Extract the integer part of the number and print it
unsigned long int_part = (unsigned long)number;
double remainder = number - (double)int_part;
print(int_part);
// Print the decimal point, but only if there are digits beyond
if (digits > 0)
print(".");
// Extract digits from the remainder one at a time
while (digits-- > 0)
{
remainder *= 10.0;
int toPrint = int(remainder);
print(toPrint);
remainder -= toPrint;
}
}