Prusa-Firmware/Firmware/mesh_bed_calibration.cpp
bubnikv 6cff4b92ff Automatic bed calibration by searching the 3x3 point matrix.
Fixed a problem with low RAM by re-vamping the langtool.
2016-06-16 14:29:04 +02:00

762 lines
30 KiB
C++

#include "Marlin.h"
#include "Configuration.h"
#include "language_all.h"
#include "mesh_bed_calibration.h"
#include "mesh_bed_leveling.h"
#include "stepper.h"
#include "ultralcd.h"
// #include "qr_solve.h"
extern float home_retract_mm_ext(int axis);
static inline void go_xyz(float x, float y, float z, float fr)
{
plan_buffer_line(x, y, z, current_position[E_AXIS], fr, active_extruder);
st_synchronize();
}
static inline void go_xy(float x, float y, float fr)
{
plan_buffer_line(x, y, current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
st_synchronize();
}
static inline void go_to_current(float fr)
{
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
st_synchronize();
}
static inline void update_current_position_xyz()
{
current_position[X_AXIS] = st_get_position_mm(X_AXIS);
current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
// At the current position, find the Z stop.
inline void find_bed_induction_sensor_point_z()
{
bool endstops_enabled = enable_endstops(true);
bool endstop_z_enabled = enable_z_endstop(false);
// move down until you find the bed
current_position[Z_AXIS] = -10;
go_to_current(homing_feedrate[Z_AXIS]/60);
// we have to let the planner know where we are right now as it is not where we said to go.
update_current_position_xyz();
// move up the retract distance
current_position[Z_AXIS] += home_retract_mm_ext(Z_AXIS);
go_to_current(homing_feedrate[Z_AXIS]/60);
// move back down slowly to find bed
current_position[Z_AXIS] -= home_retract_mm_ext(Z_AXIS) * 2;
go_to_current(homing_feedrate[Z_AXIS]/(4*60));
// we have to let the planner know where we are right now as it is not where we said to go.
update_current_position_xyz();
enable_endstops(endstops_enabled);
enable_z_endstop(endstop_z_enabled);
}
// Search around the current_position[X,Y],
// look for the induction sensor response.
// Adjust the current_position[X,Y,Z] to the center of the target dot and its response Z coordinate.
#define FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS (8.f)
#define FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS (6.f)
#define FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP (1.f)
#define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP (0.5f)
inline bool find_bed_induction_sensor_point_xy()
{
float feedrate = homing_feedrate[X_AXIS] / 60.f;
bool found = false;
{
float x0 = current_position[X_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
float x1 = current_position[X_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
float y0 = current_position[Y_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
float y1 = current_position[Y_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
uint8_t nsteps_y;
uint8_t i;
if (x0 < X_MIN_POS)
x0 = X_MIN_POS;
if (x1 > X_MAX_POS)
x1 = X_MAX_POS;
if (y0 < Y_MIN_POS)
y0 = Y_MIN_POS;
if (y1 > Y_MAX_POS)
y1 = Y_MAX_POS;
nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));
enable_endstops(false);
bool dir_positive = true;
// go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
go_xyz(x0, y0, current_position[Z_AXIS], feedrate);
// Continously lower the Z axis.
endstops_hit_on_purpose();
enable_z_endstop(true);
while (current_position[Z_AXIS] > -10.f) {
// Do nsteps_y zig-zag movements.
current_position[Y_AXIS] = y0;
for (i = 0; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i) {
// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
dir_positive = ! dir_positive;
if (endstop_z_hit_on_purpose())
goto endloop;
}
for (i = 0; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i) {
// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
dir_positive = ! dir_positive;
if (endstop_z_hit_on_purpose())
goto endloop;
}
}
endloop:
// SERIAL_ECHOLN("First hit");
// we have to let the planner know where we are right now as it is not where we said to go.
update_current_position_xyz();
// Search in this plane for the first hit. Zig-zag first in X, then in Y axis.
for (int8_t iter = 0; iter < 3; ++ iter) {
if (iter > 0) {
// Slightly lower the Z axis to get a reliable trigger.
current_position[Z_AXIS] -= 0.02f;
go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
}
// Do nsteps_y zig-zag movements.
float a, b;
enable_endstops(false);
enable_z_endstop(false);
current_position[Y_AXIS] = y0;
go_xy(x0, current_position[Y_AXIS], feedrate);
enable_z_endstop(true);
found = false;
for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {
go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
if (endstop_z_hit_on_purpose()) {
found = true;
break;
}
}
update_current_position_xyz();
if (! found) {
// SERIAL_ECHOLN("Search in Y - not found");
continue;
}
// SERIAL_ECHOLN("Search in Y - found");
a = current_position[Y_AXIS];
enable_z_endstop(false);
current_position[Y_AXIS] = y1;
go_xy(x0, current_position[Y_AXIS], feedrate);
enable_z_endstop(true);
found = false;
for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {
go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
if (endstop_z_hit_on_purpose()) {
found = true;
break;
}
}
update_current_position_xyz();
if (! found) {
// SERIAL_ECHOLN("Search in Y2 - not found");
continue;
}
// SERIAL_ECHOLN("Search in Y2 - found");
b = current_position[Y_AXIS];
current_position[Y_AXIS] = 0.5f * (a + b);
// Search in the X direction along a cross.
found = false;
enable_z_endstop(false);
go_xy(x0, current_position[Y_AXIS], feedrate);
enable_z_endstop(true);
go_xy(x1, current_position[Y_AXIS], feedrate);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
// SERIAL_ECHOLN("Search X span 0 - not found");
continue;
}
// SERIAL_ECHOLN("Search X span 0 - found");
a = current_position[X_AXIS];
enable_z_endstop(false);
go_xy(x1, current_position[Y_AXIS], feedrate);
enable_z_endstop(true);
go_xy(x0, current_position[Y_AXIS], feedrate);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
// SERIAL_ECHOLN("Search X span 1 - not found");
continue;
}
// SERIAL_ECHOLN("Search X span 1 - found");
b = current_position[X_AXIS];
// Go to the center.
enable_z_endstop(false);
current_position[X_AXIS] = 0.5f * (a + b);
go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
found = true;
#if 1
// Search in the Y direction along a cross.
found = false;
enable_z_endstop(false);
go_xy(current_position[X_AXIS], y0, feedrate);
enable_z_endstop(true);
go_xy(current_position[X_AXIS], y1, feedrate);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
// SERIAL_ECHOLN("Search Y2 span 0 - not found");
continue;
}
// SERIAL_ECHOLN("Search Y2 span 0 - found");
a = current_position[Y_AXIS];
enable_z_endstop(false);
go_xy(current_position[X_AXIS], y1, feedrate);
enable_z_endstop(true);
go_xy(current_position[X_AXIS], y0, feedrate);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose()) {
// SERIAL_ECHOLN("Search Y2 span 1 - not found");
continue;
}
// SERIAL_ECHOLN("Search Y2 span 1 - found");
b = current_position[Y_AXIS];
// Go to the center.
enable_z_endstop(false);
current_position[Y_AXIS] = 0.5f * (a + b);
go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
found = true;
#endif
break;
}
}
enable_z_endstop(false);
return found;
}
// Search around the current_position[X,Y,Z].
// It is expected, that the induction sensor is switched on at the current position.
// Look around this center point by painting a star around the point.
inline bool improve_bed_induction_sensor_point()
{
static const float search_radius = 8.f;
bool endstops_enabled = enable_endstops(false);
bool endstop_z_enabled = enable_z_endstop(false);
bool found = false;
float feedrate = homing_feedrate[X_AXIS] / 60.f;
float center_old_x = current_position[X_AXIS];
float center_old_y = current_position[Y_AXIS];
float center_x = 0.f;
float center_y = 0.f;
for (uint8_t iter = 0; iter < 4; ++ iter) {
switch (iter) {
case 0:
destination[X_AXIS] = center_old_x - search_radius * 0.707;
destination[Y_AXIS] = center_old_y - search_radius * 0.707;
break;
case 1:
destination[X_AXIS] = center_old_x + search_radius * 0.707;
destination[Y_AXIS] = center_old_y + search_radius * 0.707;
break;
case 2:
destination[X_AXIS] = center_old_x + search_radius * 0.707;
destination[Y_AXIS] = center_old_y - search_radius * 0.707;
break;
case 3:
default:
destination[X_AXIS] = center_old_x - search_radius * 0.707;
destination[Y_AXIS] = center_old_y + search_radius * 0.707;
break;
}
// Trim the vector from center_old_[x,y] to destination[x,y] by the bed dimensions.
float vx = destination[X_AXIS] - center_old_x;
float vy = destination[Y_AXIS] - center_old_y;
float l = sqrt(vx*vx+vy*vy);
float t;
if (destination[X_AXIS] < X_MIN_POS) {
// Exiting the bed at xmin.
t = (center_x - X_MIN_POS) / l;
destination[X_AXIS] = X_MIN_POS;
destination[Y_AXIS] = center_old_y + t * vy;
} else if (destination[X_AXIS] > X_MAX_POS) {
// Exiting the bed at xmax.
t = (X_MAX_POS - center_x) / l;
destination[X_AXIS] = X_MAX_POS;
destination[Y_AXIS] = center_old_y + t * vy;
}
if (destination[Y_AXIS] < Y_MIN_POS) {
// Exiting the bed at ymin.
t = (center_y - Y_MIN_POS) / l;
destination[X_AXIS] = center_old_x + t * vx;
destination[Y_AXIS] = Y_MIN_POS;
} else if (destination[Y_AXIS] > Y_MAX_POS) {
// Exiting the bed at xmax.
t = (Y_MAX_POS - center_y) / l;
destination[X_AXIS] = center_old_x + t * vx;
destination[Y_AXIS] = Y_MAX_POS;
}
// Move away from the measurement point.
enable_endstops(false);
go_xy(destination[X_AXIS], destination[Y_AXIS], feedrate);
// Move towards the measurement point, until the induction sensor triggers.
enable_endstops(true);
go_xy(center_old_x, center_old_y, feedrate);
update_current_position_xyz();
center_x += current_position[X_AXIS];
center_y += current_position[Y_AXIS];
}
// Calculate the new center, move to the new center.
center_x /= 4.f;
center_y /= 4.f;
current_position[X_AXIS] = center_x;
current_position[Y_AXIS] = center_y;
enable_endstops(false);
go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
enable_endstops(endstops_enabled);
enable_z_endstop(endstop_z_enabled);
return found;
}
// Search around the current_position[X,Y,Z].
// It is expected, that the induction sensor is switched on at the current position.
// Look around this center point by painting a star around the point.
#define IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS (8.f)
inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y)
{
float center_old_x = current_position[X_AXIS];
float center_old_y = current_position[Y_AXIS];
float a, b;
enable_endstops(false);
{
float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
if (x0 < X_MIN_POS)
x0 = X_MIN_POS;
if (x1 > X_MAX_POS)
x1 = X_MAX_POS;
// Search in the X direction along a cross.
enable_z_endstop(false);
go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose())
return false;
a = current_position[X_AXIS];
enable_z_endstop(false);
go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose())
return false;
b = current_position[X_AXIS];
// Go to the center.
enable_z_endstop(false);
current_position[X_AXIS] = 0.5f * (a + b);
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
}
{
float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
if (y0 < Y_MIN_POS)
y0 = Y_MIN_POS;
if (y1 > Y_MAX_POS)
y1 = Y_MAX_POS;
// Search in the Y direction along a cross.
enable_z_endstop(false);
go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
if (lift_z_on_min_y) {
// The first row of points are very close to the end stop.
// Lift the sensor to disengage the trigger. This is necessary because of the sensor hysteresis.
go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS]+5.f, homing_feedrate[Z_AXIS] / 60.f);
// and go back.
go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS], homing_feedrate[Z_AXIS] / 60.f);
}
if (lift_z_on_min_y && (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) {
// Already triggering before we started the move.
// Shift the trigger point slightly outwards.
a = current_position[Y_AXIS] - 1.5f;
} else {
enable_z_endstop(true);
go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose())
return false;
a = current_position[Y_AXIS];
}
enable_z_endstop(false);
go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
enable_z_endstop(true);
go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
update_current_position_xyz();
if (! endstop_z_hit_on_purpose())
return false;
b = current_position[Y_AXIS];
// Go to the center.
enable_z_endstop(false);
current_position[Y_AXIS] = 0.5f * (a + b);
go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
}
return true;
}
#define MESH_BED_CALIBRATION_SHOW_LCD
bool find_bed_offset_and_skew()
{
// Reusing the z_values memory for the measurement cache.
// 7x7=49 floats, good for 16 (x,y,z) vectors.
float *pts = &mbl.z_values[0][0];
float *vec_x = pts + 3 * 4;
float *vec_y = vec_x + 3;
float *cntr = vec_y + 3;
memset(pts, 0, sizeof(float) * 7 * 7);
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
lcd_implementation_clear();
lcd_print_at_PGM(0, 0, MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
// Collect the rear 2x3 points.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
for (int k = 0; k < 4; ++ k) {
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
lcd_print_at_PGM(0, 1, MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
lcd_implementation_print(k+1);
lcd_print_at_PGM(0, 2, MSG_FIND_BED_OFFSET_AND_SKEW_LINE3);
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
int i, j;
switch (k) {
case 0: i = 1; j = 0; break;
case 1: i = 2; j = 1; break;
case 2: i = 1; j = 2; break;
case 3: i = 0; j = 1; break;
}
float *pt = pts + k * 3;
// Go up to z_initial.
go_to_current(homing_feedrate[Z_AXIS] / 60.f);
// Go to the measurement point position.
mbl.get_meas_xy(i, j, current_position[X_AXIS], current_position[Y_AXIS], true); // use default, uncorrected coordinates
go_to_current(homing_feedrate[X_AXIS] / 60.f);
if (! find_bed_induction_sensor_point_xy())
return false;
find_bed_induction_sensor_point_z();
pt[0] = current_position[X_AXIS];
pt[1] = current_position[Y_AXIS];
pt[2] = current_position[Z_AXIS];
// Start searching for the other points at 3mm above the last point.
current_position[Z_AXIS] += 3.f;
cntr[0] += pt[0];
cntr[1] += pt[1];
cntr[2] += pt[2];
}
// Average the X and Y vectors. They may not be perpendicular, if the printer is built incorrectly.
{
float len;
// Average the center point.
cntr[0] *= 1.f/4.f;
cntr[1] *= 1.f/4.f;
cntr[2] *= 1.f/4.f;
// Average the X vector.
vec_x[0] = (pts[3 * 1 + 0] - pts[3 * 3 + 0]) / 2.f;
vec_x[1] = (pts[3 * 1 + 1] - pts[3 * 3 + 1]) / 2.f;
len = sqrt(vec_x[0]*vec_x[0] + vec_x[1]*vec_x[1]);
if (0) {
// if (len < MEAS_NUM_X_DIST) {
// Scale the vector up to MEAS_NUM_X_DIST lenght.
float factor = MEAS_NUM_X_DIST / len;
vec_x[0] *= factor;
vec_x[0] *= factor;
} else {
// The vector is longer than MEAS_NUM_X_DIST. The X/Y axes are skewed.
// Verify the maximum skew?
}
// Average the Y vector.
vec_y[0] = (pts[3 * 2 + 0] - pts[3 * 0 + 0]) / 2.f;
vec_y[1] = (pts[3 * 2 + 1] - pts[3 * 0 + 1]) / 2.f;
len = sqrt(vec_y[0]*vec_y[0] + vec_y[1]*vec_y[1]);
if (0) {
// if (len < MEAS_NUM_Y_DIST) {
// Scale the vector up to MEAS_NUM_X_DIST lenght.
float factor = MEAS_NUM_Y_DIST / len;
vec_y[1] *= factor;
vec_y[1] *= factor;
} else {
// The vector is longer than MEAS_NUM_X_DIST. The X/Y axes are skewed.
// Verify the maximum skew?
}
// Fearlessly store the calibration values into the eeprom.
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);
#if 0
SERIAL_ECHOLN("Calibration done.");
SERIAL_ECHO("Center: ");
SERIAL_ECHO(cntr[0]);
SERIAL_ECHO(",");
SERIAL_ECHO(cntr[1]);
SERIAL_ECHO(", x: ");
SERIAL_ECHO(vec_x[0]);
SERIAL_ECHO(",");
SERIAL_ECHO(vec_x[1]);
SERIAL_ECHO(", y: ");
SERIAL_ECHO(vec_y[0]);
SERIAL_ECHO(",");
SERIAL_ECHO(vec_y[1]);
SERIAL_ECHOLN("");
#endif
}
return true;
}
bool improve_bed_offset_and_skew(int8_t method)
{
// Reusing the z_values memory for the measurement cache.
// 7x7=49 floats, good for 16 (x,y,z) vectors.
float *pts = &mbl.z_values[0][0];
float *vec_x = pts + 2 * 9;
float *vec_y = vec_x + 2;
float *cntr = vec_y + 2;
memset(pts, 0, sizeof(float) * 7 * 7);
bool endstops_enabled = enable_endstops(false);
bool endstop_z_enabled = enable_z_endstop(false);
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
lcd_implementation_clear();
lcd_print_at_PGM(0, 0, MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1);
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
// Collect a matrix of 9x9 points.
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
int ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
int iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
// Print the decrasing ID of the measurement point.
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
lcd_print_at_PGM(0, 1, MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2);
lcd_implementation_print_at(7, 1, mesh_point+1);
lcd_print_at_PGM(0, 2, MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3);
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
// Move up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
enable_endstops(false);
enable_z_endstop(false);
go_to_current(homing_feedrate[Z_AXIS]/60);
// Go to the measurement point.
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false);
go_to_current(homing_feedrate[X_AXIS]/60);
// Find its Z position by running the normal vertical search.
// delay_keep_alive(3000);
find_bed_induction_sensor_point_z();
// delay_keep_alive(3000);
// Improve the point position by searching its center in a current plane.
int8_t n_errors = 3;
for (int8_t iter = 0; iter < 4; ++ iter) {
bool found = false;
switch (method) {
case 0: found = improve_bed_induction_sensor_point(); break;
case 1: found = improve_bed_induction_sensor_point2(iy == 0); break;
default: break;
}
if (! found) {
if (n_errors -- == 0) {
// Give up.
goto canceled;
} else {
// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
current_position[Z_AXIS] -= 0.025f;
enable_endstops(false);
enable_z_endstop(false);
go_to_current(homing_feedrate[Z_AXIS]);
}
}
}
// delay_keep_alive(3000);
float *pt = pts + 2 * (ix + iy * 3);
pt[0] = current_position[X_AXIS];
pt[1] = current_position[Y_AXIS];
cntr[0] += pt[0];
cntr[1] += pt[1];
}
// Average the X and Y vectors. They may not be perpendicular, if the printer is built incorrectly.
// Average the center point.
cntr[0] *= 1.f/9.f;
cntr[1] *= 1.f/9.f;
// Average the X vector.
vec_x[0] = (pts[2 * 2 + 0] - pts[2 * 0 + 0] + pts[2 * 5 + 0] - pts[2 * 3 + 0] + pts[2 * 8 + 0] - pts[2 * 6 + 0]) / 6.f;
vec_x[1] = (pts[2 * 2 + 1] - pts[2 * 0 + 1] + pts[2 * 5 + 1] - pts[2 * 3 + 1] + pts[2 * 8 + 1] - pts[2 * 6 + 1]) / 6.f;
// Average the Y vector.
vec_y[0] = (pts[2 * 6 + 0] - pts[2 * 0 + 0] + pts[2 * 7 + 0] - pts[2 * 1 + 0] + pts[2 * 8 + 0] - pts[2 * 2 + 0]) / 6.f;
vec_y[1] = (pts[2 * 6 + 1] - pts[2 * 0 + 1] + pts[2 * 7 + 1] - pts[2 * 1 + 1] + pts[2 * 8 + 1] - pts[2 * 2 + 1]) / 6.f;
#if 1
// Fearlessly store the calibration values into the eeprom.
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);
#endif
#if 0
// and let us know the result.
SERIAL_ECHOLN("Calibration done.");
SERIAL_ECHO("Center: ");
SERIAL_ECHO(cntr[0]);
SERIAL_ECHO(",");
SERIAL_ECHO(cntr[1]);
SERIAL_ECHO(", x: ");
SERIAL_ECHO(vec_x[0]);
SERIAL_ECHO(",");
SERIAL_ECHO(vec_x[1]);
SERIAL_ECHO(", y: ");
SERIAL_ECHO(vec_y[0]);
SERIAL_ECHO(",");
SERIAL_ECHO(vec_y[1]);
SERIAL_ECHOLN("");
#endif
enable_endstops(endstops_enabled);
enable_z_endstop(endstop_z_enabled);
return true;
canceled:
enable_endstops(endstops_enabled);
enable_z_endstop(endstop_z_enabled);
return false;
}
void reset_bed_offset_and_skew()
{
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+0), 0x0FFFFFFFF);
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+4), 0x0FFFFFFFF);
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +0), 0x0FFFFFFFF);
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +4), 0x0FFFFFFFF);
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +0), 0x0FFFFFFFF);
eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +4), 0x0FFFFFFFF);
}
static const float[9][2] PROGMEM bed_points = {
};
bool calculate_machine_skew_and_offset_LS(
// Matrix of 9 2D points (18 floats)
float *pts,
// Resulting correction matrix.
float *vec_x,
float *vec_y,
float *cntr,
// Temporary values, 49-18-(2*3)=25 floats
float *temp
{
{
// Create covariance matrix for A, collect the right hand side b.
float A[3][3] = { 0.f };
float b[3] = { 0.f };
float acc;
for (uint8_t r = 0; r < 3; ++ r) {
for (uint8_t c = 0; c < 3; ++ c) {
acc = 0;
for (uint8_t i = 0; i < 9; ++ i) {
float a = (r == 2) ? 1.f : pts[2 * i + r];
float b = (c == 2) ? 1.f : pts[2 * i + c];
acc += a * b;
}
A[r][c] = acc;
}
acc = 0.f;
for (uint8_t i = 0; i < 9; ++ i) {
float a = (r == 2) ? 1.f : pts[2 * i + r];
float b = pgm_read_float(&coeff2[i][0]);
acc += a * b;
}
b[r] = acc;
}
// Solve the linear equation for ax, bx, cx.
float x[3] = { 0.f };
for (uint8_t iter = 0; iter < 100; ++ iter) {
x[0] = (b[0] - A[1] * x[1] - A[2] * x[2]) / A[0];
x[1] = (b[1] - A[0] * x[0] - A[2] * x[2]) / A[1];
x[2] = (b[2] - A[0] * x[0] - A[1] * x[1]) / A[2];
}
// Store the result to the output variables.
vec_x[0] = x[0];
vec_y[0] = x[1];
cntr[0] = x[2];
// Recalculate b for the y values.
for (uint8_t r = 0; r < 3; ++ r) {
acc = 0.f;
for (uint8_t i = 0; i < 9; ++ i) {
float a = (r == 2) ? 1.f : pts[2 * i + r];
float b = pgm_read_float(&coeff2[i][1]);
acc += a * b;
}
b[r] = acc;
}
// Solve the linear equation for ay, by, cy.
x[0] = 0.f, x[1] = 0.f; x[2] = 0.f;
for (uint8_t iter = 0; iter < 100; ++ iter) {
x[0] = (b[0] - A[1] * x[1] - A[2] * x[2]) / A[0];
x[1] = (b[1] - A[0] * x[0] - A[2] * x[2]) / A[1];
x[2] = (b[2] - A[0] * x[0] - A[1] * x[1]) / A[2];
}
// Store the result to the output variables.
vec_x[1] = x[0];
vec_y[1] = x[1];
cntr[1] = x[2];
}
// Normalize the vectors. We expect, that the machine axes may be skewed a bit, but the distances are correct.
// l shall be very close to 1 already.
float l = sqrt(vec_x[0]*vec_x[0] + vec_x[1] * vec_x[1]);
vec_x[0] /= l;
vec_x[1] /= l;
l = sqrt(vec_y[0]*vec_y[0] + vec_y[1] * vec_y[1]);
vec_y[0] /= l;
vec_y[1] /= l;
// Invert the transformation matrix made of vec_x, vec_y and cntr.
}