Prusa-Firmware/Firmware/tmc2130.cpp
XPila 78f7923ab2 Merge pull request #10 from XPila/MK3
Changed jerks, disabled oversampling, debug code, commands for seting…
2017-07-06 13:07:37 +02:00

466 lines
16 KiB
C++

#include "Marlin.h"
#ifdef HAVE_TMC2130_DRIVERS
#include "tmc2130.h"
#include <SPI.h>
//externals for debuging
extern float current_position[4];
extern void st_get_position_xy(long &x, long &y);
//chipselect pins
uint8_t tmc2130_cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS };
//mode
uint8_t tmc2130_mode = TMC2130_MODE_NORMAL;
//holding currents
uint8_t tmc2130_current_h[4] = TMC2130_CURRENTS_H;
//running currents
uint8_t tmc2130_current_r[4] = TMC2130_CURRENTS_R;
//axis stalled flags
uint8_t tmc2130_axis_stalled[2] = {0, 0};
//last homing stalled
uint8_t tmc2130_LastHomingStalled = 0;
//pwm_ampl
uint8_t tmc2130_pwm_ampl[2] = {TMC2130_PWM_AMPL_XY, TMC2130_PWM_AMPL_XY};
//pwm_grad
uint8_t tmc2130_pwm_grad[2] = {TMC2130_PWM_GRAD_XY, TMC2130_PWM_GRAD_XY};
//pwm_auto
uint8_t tmc2130_pwm_auto[2] = {TMC2130_PWM_AUTO_XY, TMC2130_PWM_AUTO_XY};
//pwm_freq
uint8_t tmc2130_pwm_freq[2] = {TMC2130_PWM_FREQ_XY, TMC2130_PWM_FREQ_XY};
uint8_t sg_homing_axis = 0xff;
uint8_t sg_homing_delay = 0;
uint8_t sg_thrs_x = TMC2130_SG_THRS_X;
uint8_t sg_thrs_y = TMC2130_SG_THRS_Y;
bool skip_debug_msg = false;
//TMC2130 registers
#define TMC2130_REG_GCONF 0x00 // 17 bits
#define TMC2130_REG_GSTAT 0x01 // 3 bits
#define TMC2130_REG_IOIN 0x04 // 8+8 bits
#define TMC2130_REG_IHOLD_IRUN 0x10 // 5+5+4 bits
#define TMC2130_REG_TPOWERDOWN 0x11 // 8 bits
#define TMC2130_REG_TSTEP 0x12 // 20 bits
#define TMC2130_REG_TPWMTHRS 0x13 // 20 bits
#define TMC2130_REG_TCOOLTHRS 0x14 // 20 bits
#define TMC2130_REG_THIGH 0x15 // 20 bits
#define TMC2130_REG_XDIRECT 0x2d // 32 bits
#define TMC2130_REG_VDCMIN 0x33 // 23 bits
#define TMC2130_REG_MSLUT0 0x60 // 32 bits
#define TMC2130_REG_MSLUT1 0x61 // 32 bits
#define TMC2130_REG_MSLUT2 0x62 // 32 bits
#define TMC2130_REG_MSLUT3 0x63 // 32 bits
#define TMC2130_REG_MSLUT4 0x64 // 32 bits
#define TMC2130_REG_MSLUT5 0x65 // 32 bits
#define TMC2130_REG_MSLUT6 0x66 // 32 bits
#define TMC2130_REG_MSLUT7 0x67 // 32 bits
#define TMC2130_REG_MSLUTSEL 0x68 // 32 bits
#define TMC2130_REG_MSLUTSTART 0x69 // 8+8 bits
#define TMC2130_REG_MSCNT 0x6a // 10 bits
#define TMC2130_REG_MSCURACT 0x6b // 9+9 bits
#define TMC2130_REG_CHOPCONF 0x6c // 32 bits
#define TMC2130_REG_COOLCONF 0x6d // 25 bits
#define TMC2130_REG_DCCTRL 0x6e // 24 bits
#define TMC2130_REG_DRV_STATUS 0x6f // 32 bits
#define TMC2130_REG_PWMCONF 0x70 // 22 bits
#define TMC2130_REG_PWM_SCALE 0x71 // 8 bits
#define TMC2130_REG_ENCM_CTRL 0x72 // 2 bits
#define TMC2130_REG_LOST_STEPS 0x73 // 20 bits
uint16_t tmc2130_rd_TSTEP(uint8_t cs);
uint16_t tmc2130_rd_DRV_STATUS(uint8_t chipselect);
void tmc2130_wr_CHOPCONF(uint8_t cs, uint8_t toff = 3, uint8_t hstrt = 4, uint8_t hend = 1, uint8_t fd3 = 0, uint8_t disfdcc = 0, uint8_t rndtf = 0, uint8_t chm = 0, uint8_t tbl = 2, uint8_t vsense = 0, uint8_t vhighfs = 0, uint8_t vhighchm = 0, uint8_t sync = 0, uint8_t mres = 0b0100, uint8_t intpol = 1, uint8_t dedge = 0, uint8_t diss2g = 0);
void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel);
void tmc2130_wr_TPWMTHRS(uint8_t cs, uint32_t val32);
void tmc2130_wr_THIGH(uint8_t cs, uint32_t val32);
uint8_t tmc2130_axis_by_cs(uint8_t cs);
uint8_t tmc2130_mres(uint16_t microstep_resolution);
uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval);
uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval);
uint8_t tmc2130_txrx(uint8_t cs, uint8_t addr, uint32_t wval, uint32_t* rval);
void tmc2130_init()
{
MYSERIAL.print("tmc2130_init mode=");
MYSERIAL.println(tmc2130_mode, DEC);
WRITE(X_TMC2130_CS, HIGH);
WRITE(Y_TMC2130_CS, HIGH);
WRITE(Z_TMC2130_CS, HIGH);
WRITE(E0_TMC2130_CS, HIGH);
SET_OUTPUT(X_TMC2130_CS);
SET_OUTPUT(Y_TMC2130_CS);
SET_OUTPUT(Z_TMC2130_CS);
SET_OUTPUT(E0_TMC2130_CS);
SPI.begin();
for (int i = 0; i < 2; i++) // X Y axes
{
uint8_t mres = tmc2130_mres(TMC2130_USTEPS_XY);
tmc2130_wr_CHOPCONF(tmc2130_cs[i], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_XY, 0, 0);
tmc2130_wr(tmc2130_cs[i], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[i] & 0x1f) << 8) | (tmc2130_current_h[i] & 0x1f));
tmc2130_wr(tmc2130_cs[i], TMC2130_REG_TPOWERDOWN, 0x00000000);
tmc2130_wr(tmc2130_cs[i], TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?0x00000004:0x00000000);
tmc2130_wr_PWMCONF(tmc2130_cs[i], tmc2130_pwm_ampl[i], tmc2130_pwm_grad[i], tmc2130_pwm_freq[i], tmc2130_pwm_auto[i], 0, 0);
tmc2130_wr_TPWMTHRS(tmc2130_cs[i], TMC2130_TPWMTHRS);
//tmc2130_wr_THIGH(tmc2130_cs[i], TMC2130_THIGH);
}
for (int i = 2; i < 3; i++) // Z axis
{
uint8_t mres = tmc2130_mres(TMC2130_USTEPS_Z);
tmc2130_wr_CHOPCONF(tmc2130_cs[i], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_Z, 0, 0);
tmc2130_wr(tmc2130_cs[i], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[i] & 0x1f) << 8) | (tmc2130_current_h[i] & 0x1f));
tmc2130_wr(tmc2130_cs[i], TMC2130_REG_TPOWERDOWN, 0x00000000);
tmc2130_wr(tmc2130_cs[i], TMC2130_REG_GCONF, 0x00000000);
}
for (int i = 3; i < 4; i++) // E axis
{
uint8_t mres = tmc2130_mres(TMC2130_USTEPS_E);
tmc2130_wr_CHOPCONF(tmc2130_cs[i], 3, 5, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, mres, TMC2130_INTPOL_E, 0, 0);
tmc2130_wr(tmc2130_cs[i], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[i] & 0x1f) << 8) | (tmc2130_current_h[i] & 0x1f));
tmc2130_wr(tmc2130_cs[i], TMC2130_REG_TPOWERDOWN, 0x00000000);
tmc2130_wr(tmc2130_cs[i], TMC2130_REG_GCONF, 0x00000000);
}
}
bool tmc2130_update_sg()
{
#if (defined(TMC2130_SG_HOMING) && defined(TMC2130_SG_HOMING_SW))
if ((sg_homing_axis == X_AXIS) || (sg_homing_axis == Y_AXIS))
{
uint8_t cs = tmc2130_cs[sg_homing_axis];
uint16_t tstep = tmc2130_rd_TSTEP(cs);
if (tstep < TMC2130_TCOOLTHRS)
{
if(sg_homing_delay < TMC2130_SG_DELAY) // wait for a few tens microsteps until stallGuard is used //todo: read out microsteps directly, instead of delay counter
sg_homing_delay++;
else
{
uint16_t sg = tmc2130_rd_DRV_STATUS(cs) & 0x3ff;
if (sg==0)
{
tmc2130_axis_stalled[sg_homing_axis] = true;
tmc2130_LastHomingStalled = true;
}
else
tmc2130_axis_stalled[sg_homing_axis] = false;
}
}
else
tmc2130_axis_stalled[sg_homing_axis] = false;
return true;
}
else
{
tmc2130_axis_stalled[X_AXIS] = false;
tmc2130_axis_stalled[Y_AXIS] = false;
}
#endif
return false;
}
void tmc2130_check_overtemp()
{
const static char TMC_OVERTEMP_MSG[] PROGMEM = "TMC DRIVER OVERTEMP ";
uint8_t cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS };
static uint32_t checktime = 0;
//drivers_disabled[0] = 1; //TEST
if( millis() - checktime > 1000 )
{
//SERIAL_ECHOLNPGM("drv_status:");
for(int i=0;i<4;i++)
{
uint32_t drv_status = 0;
skip_debug_msg = true;
tmc2130_rd(cs[i], TMC2130_REG_DRV_STATUS, &drv_status);
//MYSERIAL.print(drv_status);
//SERIAL_ECHOPGM(" ");
if (drv_status & ((uint32_t)1<<26))
{ // BIT 26 - over temp prewarning ~120C (+-20C)
SERIAL_ERRORRPGM(TMC_OVERTEMP_MSG);
SERIAL_ECHOLN(i);
for(int i=0; i < 4; i++)
tmc2130_wr(tmc2130_cs[i], TMC2130_REG_CHOPCONF, 0x00010000);
kill(TMC_OVERTEMP_MSG);
}
}
//SERIAL_ECHOLNPGM("");
checktime = millis();
}
}
void tmc2130_home_enter(uint8_t axis)
{
MYSERIAL.print("tmc2130_home_enter ");
MYSERIAL.println((int)axis);
#ifdef TMC2130_SG_HOMING
uint8_t cs = tmc2130_cs[axis];
sg_homing_axis = axis;
sg_homing_delay = 0;
tmc2130_axis_stalled[X_AXIS] = false;
tmc2130_axis_stalled[Y_AXIS] = false;
//Configuration to spreadCycle
tmc2130_wr(cs, TMC2130_REG_GCONF, 0x00000000);
tmc2130_wr(cs, TMC2130_REG_COOLCONF, ((axis == X_AXIS)?sg_thrs_x:sg_thrs_y) << 16);
tmc2130_wr(cs, TMC2130_REG_TCOOLTHRS, TMC2130_TCOOLTHRS);
#ifndef TMC2130_SG_HOMING_SW
tmc2130_wr(cs, TMC2130_REG_GCONF, 0x00000080); //stallguard output to DIAG0
#endif
#endif
}
void tmc2130_home_exit()
{
MYSERIAL.println("tmc2130_home_exit ");
MYSERIAL.println((int)sg_homing_axis);
#ifdef TMC2130_SG_HOMING
if ((sg_homing_axis == X_AXIS) || (sg_homing_axis == Y_AXIS))
{
if (tmc2130_mode == TMC2130_MODE_SILENT)
tmc2130_wr(tmc2130_cs[sg_homing_axis], TMC2130_REG_GCONF, 0x00000004); // Configuration back to stealthChop
else
tmc2130_wr(tmc2130_cs[sg_homing_axis], TMC2130_REG_GCONF, 0x00000000);
sg_homing_axis = 0xff;
}
#endif
}
uint8_t tmc2130_didLastHomingStall()
{
uint8_t ret = tmc2130_LastHomingStalled;
tmc2130_LastHomingStalled = false;
return ret;
}
void tmc2130_set_current_h(uint8_t axis, uint8_t current)
{
MYSERIAL.print("tmc2130_set_current_h ");
MYSERIAL.print((int)axis);
MYSERIAL.print(" ");
MYSERIAL.println((int)current);
// if (current > 15) current = 15; //current>15 is unsafe
tmc2130_current_h[axis] = current;
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f));
}
void tmc2130_set_current_r(uint8_t axis, uint8_t current)
{
MYSERIAL.print("tmc2130_set_current_r ");
MYSERIAL.print((int)axis);
MYSERIAL.print(" ");
MYSERIAL.println((int)current);
// if (current > 15) current = 15; //current>15 is unsafe
tmc2130_current_r[axis] = current;
tmc2130_wr(tmc2130_cs[axis], TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((tmc2130_current_r[axis] & 0x1f) << 8) | (tmc2130_current_h[axis] & 0x1f));
}
void tmc2130_print_currents()
{
MYSERIAL.println("tmc2130_print_currents");
MYSERIAL.println("\tH\rR");
MYSERIAL.print("X\t");
MYSERIAL.print((int)tmc2130_current_h[0]);
MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[0]);
MYSERIAL.print("Y\t");
MYSERIAL.print((int)tmc2130_current_h[1]);
MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[1]);
MYSERIAL.print("Z\t");
MYSERIAL.print((int)tmc2130_current_h[2]);
MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[2]);
MYSERIAL.print("E\t");
MYSERIAL.print((int)tmc2130_current_h[3]);
MYSERIAL.print("\t");
MYSERIAL.println((int)tmc2130_current_r[3]);
}
void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl)
{
MYSERIAL.print("tmc2130_set_pwm_ampl ");
MYSERIAL.print((int)axis);
MYSERIAL.print(" ");
MYSERIAL.println((int)pwm_ampl);
tmc2130_pwm_ampl[axis] = pwm_ampl;
if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
}
void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad)
{
MYSERIAL.print("tmc2130_set_pwm_grad ");
MYSERIAL.print((int)axis);
MYSERIAL.print(" ");
MYSERIAL.println((int)pwm_grad);
tmc2130_pwm_grad[axis] = pwm_grad;
if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
tmc2130_wr_PWMCONF(tmc2130_cs[axis], tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
}
uint16_t tmc2130_rd_TSTEP(uint8_t cs)
{
uint32_t val32 = 0;
tmc2130_rd(cs, TMC2130_REG_TSTEP, &val32);
if (val32 & 0x000f0000) return 0xffff;
return val32 & 0xffff;
}
uint16_t tmc2130_rd_DRV_STATUS(uint8_t cs)
{
uint32_t val32 = 0;
tmc2130_rd(cs, TMC2130_REG_DRV_STATUS, &val32);
return val32;
}
void tmc2130_wr_CHOPCONF(uint8_t cs, uint8_t toff, uint8_t hstrt, uint8_t hend, uint8_t fd3, uint8_t disfdcc, uint8_t rndtf, uint8_t chm, uint8_t tbl, uint8_t vsense, uint8_t vhighfs, uint8_t vhighchm, uint8_t sync, uint8_t mres, uint8_t intpol, uint8_t dedge, uint8_t diss2g)
{
uint32_t val = 0;
val |= (uint32_t)(toff & 15);
val |= (uint32_t)(hstrt & 7) << 4;
val |= (uint32_t)(hend & 15) << 7;
val |= (uint32_t)(fd3 & 1) << 11;
val |= (uint32_t)(disfdcc & 1) << 12;
val |= (uint32_t)(rndtf & 1) << 13;
val |= (uint32_t)(chm & 1) << 14;
val |= (uint32_t)(tbl & 3) << 15;
val |= (uint32_t)(vsense & 1) << 17;
val |= (uint32_t)(vhighfs & 1) << 18;
val |= (uint32_t)(vhighchm & 1) << 19;
val |= (uint32_t)(sync & 15) << 20;
val |= (uint32_t)(mres & 15) << 24;
val |= (uint32_t)(intpol & 1) << 28;
val |= (uint32_t)(dedge & 1) << 29;
val |= (uint32_t)(diss2g & 1) << 30;
tmc2130_wr(cs, TMC2130_REG_CHOPCONF, val);
}
//void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl)
void tmc2130_wr_PWMCONF(uint8_t cs, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel)
{
uint32_t val = 0;
val |= (uint32_t)(pwm_ampl & 255);
val |= (uint32_t)(pwm_grad & 255) << 8;
val |= (uint32_t)(pwm_freq & 3) << 16;
val |= (uint32_t)(pwm_auto & 1) << 18;
val |= (uint32_t)(pwm_symm & 1) << 19;
val |= (uint32_t)(freewheel & 3) << 20;
tmc2130_wr(cs, TMC2130_REG_PWMCONF, val);
// tmc2130_wr(cs, TMC2130_REG_PWMCONF, ((uint32_t)(PWMautoScale+PWMfreq) << 16) | ((uint32_t)PWMgrad << 8) | PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq
}
void tmc2130_wr_TPWMTHRS(uint8_t cs, uint32_t val32)
{
tmc2130_wr(cs, TMC2130_REG_TPWMTHRS, val32);
}
void tmc2130_wr_THIGH(uint8_t cs, uint32_t val32)
{
tmc2130_wr(cs, TMC2130_REG_THIGH, val32);
}
uint8_t tmc2130_axis_by_cs(uint8_t cs)
{
switch (cs)
{
case X_TMC2130_CS: return 0;
case Y_TMC2130_CS: return 1;
case Z_TMC2130_CS: return 2;
case E0_TMC2130_CS: return 3;
}
return -1;
}
uint8_t tmc2130_mres(uint16_t microstep_resolution)
{
if (microstep_resolution == 256) return 0b0000;
if (microstep_resolution == 128) return 0b0001;
if (microstep_resolution == 64) return 0b0010;
if (microstep_resolution == 32) return 0b0011;
if (microstep_resolution == 16) return 0b0100;
if (microstep_resolution == 8) return 0b0101;
if (microstep_resolution == 4) return 0b0110;
if (microstep_resolution == 2) return 0b0111;
if (microstep_resolution == 1) return 0b1000;
return 0;
}
uint8_t tmc2130_wr(uint8_t cs, uint8_t addr, uint32_t wval)
{
uint8_t stat = tmc2130_txrx(cs, addr | 0x80, wval, 0);
#ifdef TMC2130_DEBUG_WR
MYSERIAL.print("tmc2130_wr(");
MYSERIAL.print((unsigned char)tmc2130_axis_by_cs(cs), DEC);
MYSERIAL.print(", 0x");
MYSERIAL.print((unsigned char)addr, HEX);
MYSERIAL.print(", 0x");
MYSERIAL.print((unsigned long)wval, HEX);
MYSERIAL.print(")=0x");
MYSERIAL.println((unsigned char)stat, HEX);
#endif //TMC2130_DEBUG_WR
return stat;
}
uint8_t tmc2130_rd(uint8_t cs, uint8_t addr, uint32_t* rval)
{
uint32_t val32 = 0;
uint8_t stat = tmc2130_txrx(cs, addr, 0x00000000, &val32);
if (rval != 0) *rval = val32;
#ifdef TMC2130_DEBUG_RD
if (!skip_debug_msg)
{
MYSERIAL.print("tmc2130_rd(");
MYSERIAL.print((unsigned char)tmc2130_axis_by_cs(cs), DEC);
MYSERIAL.print(", 0x");
MYSERIAL.print((unsigned char)addr, HEX);
MYSERIAL.print(", 0x");
MYSERIAL.print((unsigned long)val32, HEX);
MYSERIAL.print(")=0x");
MYSERIAL.println((unsigned char)stat, HEX);
}
skip_debug_msg = false;
#endif //TMC2130_DEBUG_RD
return stat;
}
uint8_t tmc2130_txrx(uint8_t cs, uint8_t addr, uint32_t wval, uint32_t* rval)
{
//datagram1 - request
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(cs, LOW);
SPI.transfer(addr); // address
SPI.transfer((wval >> 24) & 0xff); // MSB
SPI.transfer((wval >> 16) & 0xff);
SPI.transfer((wval >> 8) & 0xff);
SPI.transfer(wval & 0xff); // LSB
digitalWrite(cs, HIGH);
SPI.endTransaction();
//datagram2 - response
SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
digitalWrite(cs, LOW);
uint8_t stat = SPI.transfer(0); // status
uint32_t val32 = 0;
val32 = SPI.transfer(0); // MSB
val32 = (val32 << 8) | SPI.transfer(0);
val32 = (val32 << 8) | SPI.transfer(0);
val32 = (val32 << 8) | SPI.transfer(0); // LSB
digitalWrite(cs, HIGH);
SPI.endTransaction();
if (rval != 0) *rval = val32;
return stat;
}
#endif //HAVE_TMC2130_DRIVERS