Prusa-Firmware/Firmware/mesh_bed_leveling.h
bubnikv 6cff4b92ff Automatic bed calibration by searching the 3x3 point matrix.
Fixed a problem with low RAM by re-vamping the langtool.
2016-06-16 14:29:04 +02:00

125 lines
3.7 KiB
C++

#include "Marlin.h"
#ifdef MESH_BED_LEVELING
#define MEAS_NUM_X_DIST (float(MESH_MAX_X - MESH_MIN_X)/float(MESH_MEAS_NUM_X_POINTS - 1))
#define MEAS_NUM_Y_DIST (float(MESH_MAX_Y - MESH_MIN_Y)/float(MESH_MEAS_NUM_Y_POINTS - 1))
#define MESH_X_DIST (float(MESH_MAX_X - MESH_MIN_X)/float(MESH_NUM_X_POINTS - 1))
#define MESH_Y_DIST (float(MESH_MAX_Y - MESH_MIN_Y)/float(MESH_NUM_Y_POINTS - 1))
class mesh_bed_leveling {
public:
uint8_t active;
float z_values[MESH_NUM_Y_POINTS][MESH_NUM_X_POINTS];
mesh_bed_leveling();
void reset();
#if MESH_NUM_X_POINTS>=5 && MESH_NUM_Y_POINTS>=5 && (MESH_NUM_X_POINTS&1)==1 && (MESH_NUM_Y_POINTS&1)==1
void upsample_3x3();
#endif
static float get_x(int i) { return float(MESH_MIN_X) + float(MESH_X_DIST) * float(i); }
static float get_y(int i) { return float(MESH_MIN_Y) + float(MESH_Y_DIST) * float(i); }
// Measurement point for the Z probe.
// If use_default=true, then the default positions for a correctly built printer are used.
// Otherwise a correction matrix is pulled from the EEPROM if available.
static void get_meas_xy(int ix, int iy, float &x, float &y, bool use_default);
void set_z(int ix, int iy, float z) { z_values[iy][ix] = z; }
int select_x_index(float x) {
int i = 1;
while (x > get_x(i) && i < MESH_NUM_X_POINTS - 1) i++;
return i - 1;
}
int select_y_index(float y) {
int i = 1;
while (y > get_y(i) && i < MESH_NUM_Y_POINTS - 1) i++;
return i - 1;
}
float get_z(float x, float y) {
int i, j;
float s, t;
#if MESH_NUM_X_POINTS==3 && MESH_NUM_Y_POINTS==3
#define MESH_MID_X (0.5f*(MESH_MIN_X+MESH_MAX_X))
#define MESH_MID_Y (0.5f*(MESH_MIN_Y+MESH_MAX_Y))
if (x < MESH_MID_X) {
i = 0;
s = (x - MESH_MIN_X) / MESH_X_DIST;
if (s > 1.f)
s = 1.f;
} else {
i = 1;
s = (x - MESH_MID_X) / MESH_X_DIST;
if (s < 0)
s = 0;
}
if (y < MESH_MID_Y) {
j = 0;
t = (y - MESH_MIN_Y) / MESH_Y_DIST;
if (t > 1.f)
t = 1.f;
} else {
j = 1;
t = (y - MESH_MID_Y) / MESH_Y_DIST;
if (t < 0)
t = 0;
}
#else
i = int(floor((x - MESH_MIN_X) / MESH_X_DIST));
if (i < 0) {
i = 0;
s = (x - MESH_MIN_X) / MESH_X_DIST;
if (s > 1.f)
s = 1.f;
}
else if (i > MESH_NUM_X_POINTS - 2) {
i = MESH_NUM_X_POINTS - 2;
s = (x - get_x(i)) / MESH_X_DIST;
if (s < 0)
s = 0;
} else {
s = (x - get_x(i)) / MESH_X_DIST;
if (s < 0)
s = 0;
else if (s > 1.f)
s = 1.f;
}
j = int(floor((y - MESH_MIN_Y) / MESH_Y_DIST));
if (j < 0) {
j = 0;
t = (y - MESH_MIN_Y) / MESH_Y_DIST;
if (t > 1.f)
t = 1.f;
} else if (j > MESH_NUM_Y_POINTS - 2) {
j = MESH_NUM_Y_POINTS - 2;
t = (y - get_y(j)) / MESH_Y_DIST;
if (t < 0)
t = 0;
} else {
t = (y - get_y(j)) / MESH_Y_DIST;
if (t < 0)
t = 0;
else if (t > 1.f)
t = 1.f;
}
#endif /* MESH_NUM_X_POINTS==3 && MESH_NUM_Y_POINTS==3 */
float si = 1.f-s;
float z0 = si * z_values[j ][i] + s * z_values[j ][i+1];
float z1 = si * z_values[j+1][i] + s * z_values[j+1][i+1];
return (1.f-t) * z0 + t * z1;
}
};
extern mesh_bed_leveling mbl;
#endif // MESH_BED_LEVELING