Prusa-Firmware/Firmware/Marlin.h
Yuri D'Elia cc96a47e7f Implement temperature model autotuning
Calibrate C/R values via univariate minimization using golden section.
This is done in several passes:

- Bootstrap C by setting an initial high R value
- Calibrate R at the requested working temperature
- Cooldown
- Refine C to the final value
- Estimate R losses for a subset of fan speeds
- Interpolate remaining values to speed-up the process

This results in robust values which are tailored to the current
filtering constants, and avoid having to sample for an extended
time to reach the required resolution.

The refining pass could avoid cooldown if the recording buffer was at
least twice as large, so that we could record both the heating and the
steady-state, saving _considerable_ time.
2022-07-25 17:30:22 +02:00

485 lines
15 KiB
C
Executable File

// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
// License: GPL
#ifndef MARLIN_H
#define MARLIN_H
#include "macros.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include "system_timer.h"
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#include "Timer.h"
extern uint8_t mbl_z_probe_nr;
#ifndef AT90USB
#define HardwareSerial_h // trick to disable the standard HWserial
#endif
#if (ARDUINO >= 100)
# include "Arduino.h"
#else
# include "WProgram.h"
#endif
// Arduino < 1.0.0 does not define this, so we need to do it ourselves
#ifndef analogInputToDigitalPin
# define analogInputToDigitalPin(p) ((p) + A0)
#endif
#ifdef AT90USB
#include "HardwareSerial.h"
#endif
#include "MarlinSerial.h"
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
//#include "WString.h"
#ifdef AT90USB
#ifdef BTENABLED
#define MYSERIAL bt
#else
#define MYSERIAL Serial
#endif // BTENABLED
#else
#define MYSERIAL MSerial
#endif
#include "lcd.h"
#ifdef __cplusplus
extern "C" {
#endif
extern FILE _uartout;
#ifdef __cplusplus
}
#endif
#define uartout (&_uartout)
#define SERIAL_PROTOCOL(x) (MYSERIAL.print(x))
#define SERIAL_PROTOCOL_F(x,y) (MYSERIAL.print(x,y))
#define SERIAL_PROTOCOLPGM(x) (serialprintPGM(PSTR(x)))
#define SERIAL_PROTOCOLRPGM(x) (serialprintPGM((x)))
#define SERIAL_PROTOCOLLN(x) (MYSERIAL.println(x))
#define SERIAL_PROTOCOLLNPGM(x) (serialprintlnPGM(PSTR(x)))
#define SERIAL_PROTOCOLLNRPGM(x) (serialprintlnPGM((x)))
extern const char errormagic[] PROGMEM;
extern const char echomagic[] PROGMEM;
#define SERIAL_ERROR_START (serialprintPGM(errormagic))
#define SERIAL_ERROR(x) SERIAL_PROTOCOL(x)
#define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x)
#define SERIAL_ERRORRPGM(x) SERIAL_PROTOCOLRPGM(x)
#define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x)
#define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
#define SERIAL_ERRORLNRPGM(x) SERIAL_PROTOCOLLNRPGM(x)
#define SERIAL_ECHO_START (serialprintPGM(echomagic))
#define SERIAL_ECHO(x) SERIAL_PROTOCOL(x)
#define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x)
#define SERIAL_ECHORPGM(x) SERIAL_PROTOCOLRPGM(x)
#define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x)
#define SERIAL_ECHOLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
#define SERIAL_ECHOLNRPGM(x) SERIAL_PROTOCOLLNRPGM(x)
#define SERIAL_ECHOPAIR(name,value) (serial_echopair_P(PSTR(name),(value)))
void serial_echopair_P(const char *s_P, float v);
void serial_echopair_P(const char *s_P, double v);
void serial_echopair_P(const char *s_P, unsigned long v);
//Things to write to serial from Program memory. Saves 400 to 2k of RAM.
// Making this FORCE_INLINE is not a good idea when running out of FLASH
// I'd rather skip a few CPU ticks than 5.5KB (!!) of FLASH
void serialprintPGM(const char *str);
//The "ln" variant of the function above.
void serialprintlnPGM(const char *str);
bool is_buffer_empty();
void process_commands();
void ramming();
void manage_inactivity(bool ignore_stepper_queue=false);
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
#define disable_x() { WRITE(X_ENABLE_PIN,!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }
#else
#define enable_x() ;
#define disable_x() ;
#endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
#ifdef Y_DUAL_STEPPER_DRIVERS
#define enable_y() { WRITE(Y_ENABLE_PIN, Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, Y_ENABLE_ON); }
#define disable_y() { WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, !Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
#else
#define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON)
#define disable_y() { WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
#endif
#else
#define enable_y() ;
#define disable_y() ;
#endif
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
#if defined(Z_AXIS_ALWAYS_ON)
#ifdef Z_DUAL_STEPPER_DRIVERS
#define poweron_z() { WRITE(Z_ENABLE_PIN, Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN, Z_ENABLE_ON); }
#define poweroff_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
#else
#define poweron_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON)
#define poweroff_z() {}
#endif
#else
#ifdef Z_DUAL_STEPPER_DRIVERS
#define poweron_z() { WRITE(Z_ENABLE_PIN, Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN, Z_ENABLE_ON); }
#define poweroff_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
#else
#define poweron_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON)
#define poweroff_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
#endif
#endif
#else
#define poweron_z() {}
#define poweroff_z() {}
#endif
#ifndef PSU_Delta
#define enable_z() poweron_z()
#define disable_z() poweroff_z()
#else
void init_force_z();
void check_force_z();
void enable_force_z();
void disable_force_z();
#define enable_z() enable_force_z()
#define disable_z() disable_force_z()
#endif // PSU_Delta
//#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
//#ifdef Z_DUAL_STEPPER_DRIVERS
//#define enable_z() { WRITE(Z_ENABLE_PIN, Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN, Z_ENABLE_ON); }
//#define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
//#else
//#define enable_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON)
//#define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
//#endif
//#else
//#define enable_z() ;
//#define disable_z() ;
//#endif
#if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
#define enable_e0() WRITE(E0_ENABLE_PIN, E_ENABLE_ON)
#define disable_e0() WRITE(E0_ENABLE_PIN,!E_ENABLE_ON)
#else
#define enable_e0() /* nothing */
#define disable_e0() /* nothing */
#endif
#if (EXTRUDERS > 1) && defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
#define enable_e1() WRITE(E1_ENABLE_PIN, E_ENABLE_ON)
#define disable_e1() WRITE(E1_ENABLE_PIN,!E_ENABLE_ON)
#else
#define enable_e1() /* nothing */
#define disable_e1() /* nothing */
#endif
#if (EXTRUDERS > 2) && defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
#define enable_e2() WRITE(E2_ENABLE_PIN, E_ENABLE_ON)
#define disable_e2() WRITE(E2_ENABLE_PIN,!E_ENABLE_ON)
#else
#define enable_e2() /* nothing */
#define disable_e2() /* nothing */
#endif
#define FARM_FILAMENT_COLOR_NONE 99;
enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
#define X_AXIS_MASK 1
#define Y_AXIS_MASK 2
#define Z_AXIS_MASK 4
#define E_AXIS_MASK 8
#define X_HEAD_MASK 16
#define Y_HEAD_MASK 32
void FlushSerialRequestResend();
void ClearToSend();
void update_currents();
void get_coordinates();
void prepare_move();
void kill(const char *full_screen_message = NULL, unsigned char id = 0);
void finishAndDisableSteppers();
void UnconditionalStop(); // Stop heaters, motion and clear current print status
void Stop(); // Emergency stop used by overtemp functions which allows recovery
bool IsStopped(); // Returns true if the print has been stopped
//put an ASCII command at the end of the current buffer, read from flash
#define enquecommand_P(cmd) enquecommand(cmd, true)
//put an ASCII command at the begin of the current buffer, read from flash
#define enquecommand_front_P(cmd) enquecommand_front(cmd, true)
void prepare_arc_move(bool isclockwise);
void clamp_to_software_endstops(float target[3]);
void refresh_cmd_timeout(void);
#ifdef FAST_PWM_FAN
void setPwmFrequency(uint8_t pin, int val);
#endif
enum class HeatingStatus : uint8_t
{
NO_HEATING = 0,
EXTRUDER_HEATING = 1,
EXTRUDER_HEATING_COMPLETE = 2,
BED_HEATING = 3,
BED_HEATING_COMPLETE = 4,
};
extern HeatingStatus heating_status;
extern bool fans_check_enabled;
extern float homing_feedrate[];
extern uint8_t axis_relative_modes;
extern float feedrate;
extern int feedmultiply;
extern int extrudemultiply; // Sets extrude multiply factor (in percent) for all extruders
extern int extruder_multiply[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
extern float extruder_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern float current_position[NUM_AXIS] ;
extern float destination[NUM_AXIS] ;
extern float min_pos[3];
extern float max_pos[3];
extern bool axis_known_position[3];
extern int fanSpeed;
extern uint8_t newFanSpeed;
extern int8_t lcd_change_fil_state;
extern float default_retraction;
#ifdef TMC2130
void homeaxis(uint8_t axis, uint8_t cnt = 1, uint8_t* pstep = 0);
#else
void homeaxis(uint8_t axis, uint8_t cnt = 1);
#endif //TMC2130
#ifdef FWRETRACT
extern bool retracted[EXTRUDERS];
extern float retract_length_swap;
extern float retract_recover_length_swap;
#endif
extern uint8_t host_keepalive_interval;
extern unsigned long starttime;
extern unsigned long stoptime;
extern ShortTimer usb_timer;
extern bool homing_flag;
extern bool loading_flag;
extern unsigned long total_filament_used;
void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time);
extern uint8_t status_number;
extern uint8_t heating_status_counter;
extern unsigned long PingTime;
extern bool no_response;
extern uint8_t important_status;
extern uint8_t saved_filament_type;
extern bool fan_state[2];
extern int fan_edge_counter[2];
extern int fan_speed[2];
// Handling multiple extruders pins
extern uint8_t active_extruder;
//Long pause
extern unsigned long pause_time;
extern unsigned long start_pause_print;
extern unsigned long t_fan_rising_edge;
extern bool mesh_bed_leveling_flag;
// save/restore printing
extern bool saved_printing;
extern uint8_t saved_printing_type;
#define PRINTING_TYPE_SD 0
#define PRINTING_TYPE_USB 1
#define PRINTING_TYPE_NONE 2
//save/restore printing in case that mmu is not responding
extern bool mmu_print_saved;
//estimated time to end of the print
extern uint8_t print_percent_done_normal;
extern uint8_t print_percent_done_silent;
extern uint16_t print_time_remaining_normal;
extern uint16_t print_time_remaining_silent;
extern uint16_t print_time_to_change_normal;
extern uint16_t print_time_to_change_silent;
#define PRINT_TIME_REMAINING_INIT 0xffff
extern uint16_t mcode_in_progress;
extern uint16_t gcode_in_progress;
extern LongTimer safetyTimer;
#define PRINT_PERCENT_DONE_INIT 0xff
#define PRINTER_ACTIVE (IS_SD_PRINTING || usb_timer.running() || isPrintPaused || (custom_message_type == CustomMsg::TempCal) || saved_printing || (lcd_commands_type == LcdCommands::Layer1Cal) || mmu_print_saved || homing_flag || mesh_bed_leveling_flag)
//! Beware - mcode_in_progress is set as soon as the command gets really processed,
//! which is not the same as posting the M600 command into the command queue
//! There can be a considerable lag between posting M600 and its real processing which might result
//! in posting multiple M600's into the command queue
//! Instead, the fsensor uses another state variable :( , which is set to true, when the M600 command is enqued
//! and is reset to false when the fsensor returns into its filament runout finished handler
//! I'd normally change this macro, but who knows what would happen in the MMU :)
#define CHECK_FSENSOR ((IS_SD_PRINTING || usb_timer.running()) && (mcode_in_progress != 600) && !saved_printing && e_active())
extern void calculate_extruder_multipliers();
// Similar to the default Arduino delay function,
// but it keeps the background tasks running.
extern void delay_keep_alive(unsigned int ms);
extern void check_babystep();
extern void long_pause();
extern void crashdet_stop_and_save_print();
#ifdef HEATBED_ANALYSIS
void d_setup();
float d_ReadData();
void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y);
void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y);
#endif //HEATBED_ANALYSIS
float temp_comp_interpolation(float temperature);
void show_fw_version_warnings();
uint8_t check_printer_version();
#ifdef PINDA_THERMISTOR
float temp_compensation_pinda_thermistor_offset(float temperature_pinda);
#endif //PINDA_THERMISTOR
void serialecho_temperatures();
bool check_commands();
void uvlo_();
void uvlo_tiny();
void recover_print(uint8_t automatic);
void setup_uvlo_interrupt();
#if defined(TACH_1) && TACH_1 >-1
void setup_fan_interrupt();
#endif
extern bool recover_machine_state_after_power_panic();
extern void restore_print_from_eeprom(bool mbl_was_active);
extern void position_menu();
extern void print_world_coordinates();
extern void print_physical_coordinates();
extern void print_mesh_bed_leveling_table();
extern void stop_and_save_print_to_ram(float z_move, float e_move);
extern void restore_print_from_ram_and_continue(float e_move);
extern void cancel_saved_printing();
//estimated time to end of the print
extern uint8_t calc_percent_done();
// States for managing Marlin and host communication
// Marlin sends messages if blocked or busy
/*enum MarlinBusyState {
NOT_BUSY, // Not in a handler
IN_HANDLER, // Processing a GCode
IN_PROCESS, // Known to be blocking command input (as in G29)
PAUSED_FOR_USER, // Blocking pending any input
PAUSED_FOR_INPUT // Blocking pending text input (concept)
};*/
#define NOT_BUSY 1
#define IN_HANDLER 2
#define IN_PROCESS 3
#define PAUSED_FOR_USER 4
#define PAUSED_FOR_INPUT 5
#define KEEPALIVE_STATE(n) do { busy_state = n;} while (0)
extern void host_keepalive();
extern void host_autoreport();
//extern MarlinBusyState busy_state;
extern int8_t busy_state;
#ifdef TMC2130
#define FORCE_HIGH_POWER_START force_high_power_mode(true)
#define FORCE_HIGH_POWER_END force_high_power_mode(false)
void force_high_power_mode(bool start_high_power_section);
#endif //TMC2130
// G-codes
bool gcode_M45(bool onlyZ, int8_t verbosity_level);
void gcode_M114();
#if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
void gcode_M123();
#endif //FANCHECK and TACH_0 and TACH_1
void gcode_M701();
#define UVLO !(PINE & (1<<4))
void proc_commands();
void M600_load_filament();
void M600_load_filament_movements();
void M600_wait_for_user(float HotendTempBckp);
void M600_check_state(float nozzle_temp);
void load_filament_final_feed();
void marlin_wait_for_click();
void raise_z_above(float target, bool plan=true);
extern "C" void softReset();
void stack_error();
extern uint32_t IP_address;
#endif