a8d16d2949
Saves 150 bytes of flash memory
1507 lines
60 KiB
C++
1507 lines
60 KiB
C++
/*
|
|
planner.c - buffers movement commands and manages the acceleration profile plan
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
|
|
|
|
/*
|
|
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
|
|
|
s == speed, a == acceleration, t == time, d == distance
|
|
|
|
Basic definitions:
|
|
|
|
Speed[s_, a_, t_] := s + (a*t)
|
|
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
|
|
|
Distance to reach a specific speed with a constant acceleration:
|
|
|
|
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
|
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
|
|
|
Speed after a given distance of travel with constant acceleration:
|
|
|
|
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
|
m -> Sqrt[2 a d + s^2]
|
|
|
|
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
|
|
|
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
|
|
from initial speed s1 without ever stopping at a plateau:
|
|
|
|
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
|
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
|
|
|
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
|
*/
|
|
|
|
#include "Marlin.h"
|
|
#include "planner.h"
|
|
#include "stepper.h"
|
|
#include "temperature.h"
|
|
#include "ultralcd.h"
|
|
#include "language.h"
|
|
#include "ConfigurationStore.h"
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
#include "mesh_bed_leveling.h"
|
|
#include "mesh_bed_calibration.h"
|
|
#endif
|
|
|
|
#ifdef TMC2130
|
|
#include "tmc2130.h"
|
|
#endif //TMC2130
|
|
|
|
//===========================================================================
|
|
//=============================public variables ============================
|
|
//===========================================================================
|
|
|
|
// Use M203 to override by software
|
|
float* max_feedrate = cs.max_feedrate_normal;
|
|
|
|
|
|
// Use M201 to override by software
|
|
unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
|
|
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
// this holds the required transform to compensate for bed level
|
|
matrix_3x3 plan_bed_level_matrix = {
|
|
1.0, 0.0, 0.0,
|
|
0.0, 1.0, 0.0,
|
|
0.0, 0.0, 1.0,
|
|
};
|
|
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
// The current position of the tool in absolute steps
|
|
long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
|
|
static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
|
|
static float previous_nominal_speed; // Nominal speed of previous path line segment
|
|
static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
|
|
|
|
uint8_t maxlimit_status;
|
|
|
|
#ifdef AUTOTEMP
|
|
float autotemp_max=250;
|
|
float autotemp_min=210;
|
|
float autotemp_factor=0.1;
|
|
bool autotemp_enabled=false;
|
|
#endif
|
|
|
|
unsigned char g_uc_extruder_last_move[3] = {0,0,0};
|
|
|
|
//===========================================================================
|
|
//=================semi-private variables, used in inline functions =====
|
|
//===========================================================================
|
|
block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
|
|
volatile uint8_t block_buffer_head; // Index of the next block to be pushed
|
|
volatile uint8_t block_buffer_tail; // Index of the block to process now
|
|
|
|
#ifdef PLANNER_DIAGNOSTICS
|
|
// Diagnostic function: Minimum number of planned moves since the last
|
|
static uint8_t g_cntr_planner_queue_min = 0;
|
|
#endif /* PLANNER_DIAGNOSTICS */
|
|
|
|
//===========================================================================
|
|
//=============================private variables ============================
|
|
//===========================================================================
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
float extrude_min_temp=EXTRUDE_MINTEMP;
|
|
#endif
|
|
|
|
#ifdef LIN_ADVANCE
|
|
float extruder_advance_K = LA_K_DEF;
|
|
float position_float[NUM_AXIS];
|
|
#endif
|
|
|
|
// Request the next block to start at zero E count
|
|
static bool plan_reset_next_e_queue;
|
|
static bool plan_reset_next_e_sched;
|
|
|
|
// Returns the index of the next block in the ring buffer
|
|
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
|
|
static inline uint8_t next_block_index(uint8_t block_index) {
|
|
if (++ block_index == BLOCK_BUFFER_SIZE)
|
|
block_index = 0;
|
|
return block_index;
|
|
}
|
|
|
|
|
|
// Returns the index of the previous block in the ring buffer
|
|
static inline uint8_t prev_block_index(uint8_t block_index) {
|
|
if (block_index == 0)
|
|
block_index = BLOCK_BUFFER_SIZE;
|
|
-- block_index;
|
|
return block_index;
|
|
}
|
|
|
|
//===========================================================================
|
|
//=============================functions ============================
|
|
//===========================================================================
|
|
|
|
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
|
// given acceleration:
|
|
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
|
|
{
|
|
if (acceleration!=0) {
|
|
return((target_rate*target_rate-initial_rate*initial_rate)/
|
|
(2.0*acceleration));
|
|
}
|
|
else {
|
|
return 0.0; // acceleration was 0, set acceleration distance to 0
|
|
}
|
|
}
|
|
|
|
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
|
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
|
|
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
|
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
|
|
|
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
|
|
{
|
|
if (acceleration!=0) {
|
|
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
|
|
(4.0*acceleration) );
|
|
}
|
|
else {
|
|
return 0.0; // acceleration was 0, set intersection distance to 0
|
|
}
|
|
}
|
|
|
|
// Minimum stepper rate 120Hz.
|
|
#define MINIMAL_STEP_RATE 120
|
|
|
|
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
|
void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
|
|
{
|
|
// These two lines are the only floating point calculations performed in this routine.
|
|
// initial_rate, final_rate in Hz.
|
|
// Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
|
|
// the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
|
|
uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
|
|
uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
|
|
|
|
// Limit minimal step rate (Otherwise the timer will overflow.)
|
|
if (initial_rate < MINIMAL_STEP_RATE)
|
|
initial_rate = MINIMAL_STEP_RATE;
|
|
if (initial_rate > block->nominal_rate)
|
|
initial_rate = block->nominal_rate;
|
|
if (final_rate < MINIMAL_STEP_RATE)
|
|
final_rate = MINIMAL_STEP_RATE;
|
|
if (final_rate > block->nominal_rate)
|
|
final_rate = block->nominal_rate;
|
|
|
|
uint32_t acceleration = block->acceleration_st;
|
|
if (acceleration == 0)
|
|
// Don't allow zero acceleration.
|
|
acceleration = 1;
|
|
// estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
|
|
// (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
|
|
uint32_t initial_rate_sqr = initial_rate*initial_rate;
|
|
//FIXME assert that this result fits a 64bit unsigned int.
|
|
uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
|
|
uint32_t final_rate_sqr = final_rate*final_rate;
|
|
uint32_t acceleration_x2 = acceleration << 1;
|
|
// ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
|
|
uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
|
|
// floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
|
|
uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
|
|
uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
|
|
// Size of Plateau of Nominal Rate.
|
|
uint32_t plateau_steps = 0;
|
|
|
|
#ifdef LIN_ADVANCE
|
|
uint16_t final_adv_steps = 0;
|
|
uint16_t max_adv_steps = 0;
|
|
if (block->use_advance_lead) {
|
|
final_adv_steps = final_rate * block->adv_comp;
|
|
}
|
|
#endif
|
|
|
|
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
|
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
|
// in order to reach the final_rate exactly at the end of this block.
|
|
if (accel_decel_steps < block->step_event_count.wide) {
|
|
plateau_steps = block->step_event_count.wide - accel_decel_steps;
|
|
#ifdef LIN_ADVANCE
|
|
if (block->use_advance_lead)
|
|
max_adv_steps = block->nominal_rate * block->adv_comp;
|
|
#endif
|
|
} else {
|
|
uint32_t acceleration_x4 = acceleration << 2;
|
|
// Avoid negative numbers
|
|
if (final_rate_sqr >= initial_rate_sqr) {
|
|
// accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
|
|
// intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
|
|
// (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
|
|
#if 0
|
|
accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
|
|
#else
|
|
accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
|
|
if (block->step_event_count.wide & 1)
|
|
accelerate_steps += acceleration_x2;
|
|
accelerate_steps /= acceleration_x4;
|
|
accelerate_steps += (block->step_event_count.wide >> 1);
|
|
#endif
|
|
if (accelerate_steps > block->step_event_count.wide)
|
|
accelerate_steps = block->step_event_count.wide;
|
|
} else {
|
|
#if 0
|
|
decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
|
|
#else
|
|
decelerate_steps = initial_rate_sqr - final_rate_sqr;
|
|
if (block->step_event_count.wide & 1)
|
|
decelerate_steps += acceleration_x2;
|
|
decelerate_steps /= acceleration_x4;
|
|
decelerate_steps += (block->step_event_count.wide >> 1);
|
|
#endif
|
|
if (decelerate_steps > block->step_event_count.wide)
|
|
decelerate_steps = block->step_event_count.wide;
|
|
accelerate_steps = block->step_event_count.wide - decelerate_steps;
|
|
}
|
|
|
|
#ifdef LIN_ADVANCE
|
|
if (block->use_advance_lead) {
|
|
if(!accelerate_steps || !decelerate_steps) {
|
|
// accelerate_steps=0: deceleration-only ramp, max_rate is effectively unused
|
|
// decelerate_steps=0: acceleration-only ramp, max_rate _is_ final_rate
|
|
max_adv_steps = final_adv_steps;
|
|
} else {
|
|
float max_rate = sqrt(acceleration_x2 * accelerate_steps + initial_rate_sqr);
|
|
max_adv_steps = max_rate * block->adv_comp;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
|
// This block locks the interrupts globally for 4.38 us,
|
|
// which corresponds to a maximum repeat frequency of 228.57 kHz.
|
|
// This blocking is safe in the context of a 10kHz stepper driver interrupt
|
|
// or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
|
|
if (! block->busy) { // Don't update variables if block is busy.
|
|
block->accelerate_until = accelerate_steps;
|
|
block->decelerate_after = accelerate_steps+plateau_steps;
|
|
block->initial_rate = initial_rate;
|
|
block->final_rate = final_rate;
|
|
#ifdef LIN_ADVANCE
|
|
block->final_adv_steps = final_adv_steps;
|
|
block->max_adv_steps = max_adv_steps;
|
|
#endif
|
|
}
|
|
CRITICAL_SECTION_END;
|
|
}
|
|
|
|
// Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
|
|
// decceleration within the allotted distance.
|
|
FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
|
|
{
|
|
// assert(decceleration < 0);
|
|
return sqrt(target_velocity*target_velocity-2*decceleration*distance);
|
|
}
|
|
|
|
// Recalculates the motion plan according to the following algorithm:
|
|
//
|
|
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
|
|
// so that:
|
|
// a. The junction jerk is within the set limit
|
|
// b. No speed reduction within one block requires faster deceleration than the one, true constant
|
|
// acceleration.
|
|
// 2. Go over every block in chronological order and dial down junction speed reduction values if
|
|
// a. The speed increase within one block would require faster accelleration than the one, true
|
|
// constant acceleration.
|
|
//
|
|
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
|
|
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
|
|
// the set limit. Finally it will:
|
|
//
|
|
// 3. Recalculate trapezoids for all blocks.
|
|
//
|
|
//FIXME This routine is called 15x every time a new line is added to the planner,
|
|
// therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
|
|
// if the CPU is found lacking computational power.
|
|
//
|
|
// Following sources may be used to optimize the 8-bit AVR code:
|
|
// http://www.mikrocontroller.net/articles/AVR_Arithmetik
|
|
// http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
|
|
//
|
|
// https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
|
|
// https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
|
|
// https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
|
|
//
|
|
// https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
|
|
// https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
|
|
// https://github.com/rekka/avrmultiplication
|
|
//
|
|
// https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
|
|
// https://courses.cit.cornell.edu/ee476/Math/
|
|
// https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
|
|
//
|
|
void planner_recalculate(const float &safe_final_speed)
|
|
{
|
|
// Reverse pass
|
|
// Make a local copy of block_buffer_tail, because the interrupt can alter it
|
|
// by consuming the blocks, therefore shortening the queue.
|
|
uint8_t tail = block_buffer_tail;
|
|
uint8_t block_index;
|
|
block_t *prev, *current, *next;
|
|
|
|
// SERIAL_ECHOLNPGM("planner_recalculate - 1");
|
|
|
|
// At least three blocks are in the queue?
|
|
uint8_t n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
|
|
if (n_blocks >= 3) {
|
|
// Initialize the last tripple of blocks.
|
|
block_index = prev_block_index(block_buffer_head);
|
|
next = block_buffer + block_index;
|
|
current = block_buffer + (block_index = prev_block_index(block_index));
|
|
// No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
|
|
// Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
|
|
// 1) it may already be running at the stepper interrupt,
|
|
// 2) there is no way to limit it when going in the forward direction.
|
|
while (block_index != tail) {
|
|
if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
|
|
// Don't modify the entry velocity of the starting block.
|
|
// Also don't modify the trapezoids before this block, they are finalized already, prepared
|
|
// for the stepper interrupt routine to use them.
|
|
tail = block_index;
|
|
// Update the number of blocks to process.
|
|
n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
|
|
// SERIAL_ECHOLNPGM("START");
|
|
break;
|
|
}
|
|
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
|
|
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
|
|
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
|
|
if (current->entry_speed != current->max_entry_speed) {
|
|
// assert(current->entry_speed < current->max_entry_speed);
|
|
// Entry speed could be increased up to the max_entry_speed, limited by the length of the current
|
|
// segment and the maximum acceleration allowed for this segment.
|
|
// If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
|
|
// Only compute for max allowable speed if block is decelerating and nominal length is false.
|
|
// entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
|
|
// therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
|
|
// together with an assembly 32bit->16bit sqrt function.
|
|
current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
|
|
current->max_entry_speed :
|
|
// min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
|
|
min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
|
|
current->flag |= BLOCK_FLAG_RECALCULATE;
|
|
}
|
|
next = current;
|
|
current = block_buffer + (block_index = prev_block_index(block_index));
|
|
}
|
|
}
|
|
|
|
// SERIAL_ECHOLNPGM("planner_recalculate - 2");
|
|
|
|
// Forward pass and recalculate the trapezoids.
|
|
if (n_blocks >= 2) {
|
|
// Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
|
|
block_index = tail;
|
|
prev = block_buffer + block_index;
|
|
current = block_buffer + (block_index = next_block_index(block_index));
|
|
do {
|
|
// If the previous block is an acceleration block, but it is not long enough to complete the
|
|
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
|
|
// speeds have already been reset, maximized, and reverse planned by reverse planner.
|
|
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
|
|
if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
|
|
float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
|
|
// Check for junction speed change
|
|
if (current->entry_speed != entry_speed) {
|
|
current->entry_speed = entry_speed;
|
|
current->flag |= BLOCK_FLAG_RECALCULATE;
|
|
}
|
|
}
|
|
// Recalculate if current block entry or exit junction speed has changed.
|
|
if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
|
|
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
|
calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
|
|
// Reset current only to ensure next trapezoid is computed.
|
|
prev->flag &= ~BLOCK_FLAG_RECALCULATE;
|
|
}
|
|
prev = current;
|
|
current = block_buffer + (block_index = next_block_index(block_index));
|
|
} while (block_index != block_buffer_head);
|
|
}
|
|
|
|
// SERIAL_ECHOLNPGM("planner_recalculate - 3");
|
|
|
|
// Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
|
|
current = block_buffer + prev_block_index(block_buffer_head);
|
|
calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
|
|
current->flag &= ~BLOCK_FLAG_RECALCULATE;
|
|
|
|
// SERIAL_ECHOLNPGM("planner_recalculate - 4");
|
|
}
|
|
|
|
void plan_init() {
|
|
block_buffer_head = 0;
|
|
block_buffer_tail = 0;
|
|
memset(position, 0, sizeof(position)); // clear position
|
|
#ifdef LIN_ADVANCE
|
|
memset(position_float, 0, sizeof(position_float)); // clear position
|
|
#endif
|
|
memset(previous_speed, 0, sizeof(previous_speed));
|
|
previous_nominal_speed = 0.0;
|
|
plan_reset_next_e_queue = false;
|
|
plan_reset_next_e_sched = false;
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef AUTOTEMP
|
|
void getHighESpeed()
|
|
{
|
|
static float oldt=0;
|
|
if(!autotemp_enabled){
|
|
return;
|
|
}
|
|
if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
|
|
return; //do nothing
|
|
}
|
|
|
|
float high=0.0;
|
|
uint8_t block_index = block_buffer_tail;
|
|
|
|
while(block_index != block_buffer_head) {
|
|
if((block_buffer[block_index].steps_x.wide != 0) ||
|
|
(block_buffer[block_index].steps_y.wide != 0) ||
|
|
(block_buffer[block_index].steps_z.wide != 0)) {
|
|
float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
|
|
//se; mm/sec;
|
|
if(se>high)
|
|
{
|
|
high=se;
|
|
}
|
|
}
|
|
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
|
}
|
|
|
|
float g=autotemp_min+high*autotemp_factor;
|
|
float t=g;
|
|
if(t<autotemp_min)
|
|
t=autotemp_min;
|
|
if(t>autotemp_max)
|
|
t=autotemp_max;
|
|
if(oldt>t)
|
|
{
|
|
t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
|
|
}
|
|
oldt=t;
|
|
setTargetHotend0(t);
|
|
}
|
|
#endif
|
|
|
|
bool e_active()
|
|
{
|
|
unsigned char e_active = 0;
|
|
block_t *block;
|
|
if(block_buffer_tail != block_buffer_head)
|
|
{
|
|
uint8_t block_index = block_buffer_tail;
|
|
while(block_index != block_buffer_head)
|
|
{
|
|
block = &block_buffer[block_index];
|
|
if(block->steps_e.wide != 0) e_active++;
|
|
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
|
}
|
|
}
|
|
return (e_active > 0) ? true : false ;
|
|
}
|
|
|
|
void check_axes_activity()
|
|
{
|
|
unsigned char x_active = 0;
|
|
unsigned char y_active = 0;
|
|
unsigned char z_active = 0;
|
|
unsigned char e_active = 0;
|
|
unsigned char tail_fan_speed = fanSpeed;
|
|
block_t *block;
|
|
|
|
if(block_buffer_tail != block_buffer_head)
|
|
{
|
|
uint8_t block_index = block_buffer_tail;
|
|
tail_fan_speed = block_buffer[block_index].fan_speed;
|
|
while(block_index != block_buffer_head)
|
|
{
|
|
block = &block_buffer[block_index];
|
|
if(block->steps_x.wide != 0) x_active++;
|
|
if(block->steps_y.wide != 0) y_active++;
|
|
if(block->steps_z.wide != 0) z_active++;
|
|
if(block->steps_e.wide != 0) e_active++;
|
|
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
|
}
|
|
}
|
|
if((DISABLE_X) && (x_active == 0)) disable_x();
|
|
if((DISABLE_Y) && (y_active == 0)) disable_y();
|
|
if((DISABLE_Z) && (z_active == 0)) disable_z();
|
|
if((DISABLE_E) && (e_active == 0))
|
|
{
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
}
|
|
#if defined(FAN_PIN) && FAN_PIN > -1
|
|
#ifdef FAN_KICKSTART_TIME
|
|
static unsigned long fan_kick_end;
|
|
if (tail_fan_speed) {
|
|
if (fan_kick_end == 0) {
|
|
// Just starting up fan - run at full power.
|
|
fan_kick_end = _millis() + FAN_KICKSTART_TIME;
|
|
tail_fan_speed = 255;
|
|
} else if (fan_kick_end > _millis())
|
|
// Fan still spinning up.
|
|
tail_fan_speed = 255;
|
|
} else {
|
|
fan_kick_end = 0;
|
|
}
|
|
#endif//FAN_KICKSTART_TIME
|
|
#ifdef FAN_SOFT_PWM
|
|
if (fan_measuring) { //if measurement is currently in process, fanSpeedSoftPwm must remain set to 255, but we must update fanSpeedBckp value
|
|
fanSpeedBckp = tail_fan_speed;
|
|
}
|
|
else {
|
|
fanSpeedSoftPwm = tail_fan_speed;
|
|
}
|
|
//printf_P(PSTR("fanspeedsoftPWM %d \n"), fanSpeedSoftPwm);
|
|
#else
|
|
analogWrite(FAN_PIN,tail_fan_speed);
|
|
#endif//!FAN_SOFT_PWM
|
|
#endif//FAN_PIN > -1
|
|
#ifdef AUTOTEMP
|
|
getHighESpeed();
|
|
#endif
|
|
}
|
|
|
|
bool waiting_inside_plan_buffer_line_print_aborted = false;
|
|
/*
|
|
void planner_abort_soft()
|
|
{
|
|
// Empty the queue.
|
|
while (blocks_queued()) plan_discard_current_block();
|
|
// Relay to planner wait routine, that the current line shall be canceled.
|
|
waiting_inside_plan_buffer_line_print_aborted = true;
|
|
//current_position[i]
|
|
}
|
|
*/
|
|
|
|
#ifdef PLANNER_DIAGNOSTICS
|
|
static inline void planner_update_queue_min_counter()
|
|
{
|
|
uint8_t new_counter = moves_planned();
|
|
if (new_counter < g_cntr_planner_queue_min)
|
|
g_cntr_planner_queue_min = new_counter;
|
|
}
|
|
#endif /* PLANNER_DIAGNOSTICS */
|
|
|
|
extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
|
|
|
|
void planner_abort_hard()
|
|
{
|
|
// Abort the stepper routine and flush the planner queue.
|
|
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
// Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
|
|
// First update the planner's current position in the physical motor steps.
|
|
position[X_AXIS] = st_get_position(X_AXIS);
|
|
position[Y_AXIS] = st_get_position(Y_AXIS);
|
|
position[Z_AXIS] = st_get_position(Z_AXIS);
|
|
position[E_AXIS] = st_get_position(E_AXIS);
|
|
|
|
// Second update the current position of the front end.
|
|
current_position[X_AXIS] = st_get_position_mm(X_AXIS);
|
|
current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
|
|
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
current_position[E_AXIS] = st_get_position_mm(E_AXIS);
|
|
// Apply the mesh bed leveling correction to the Z axis.
|
|
#ifdef MESH_BED_LEVELING
|
|
if (mbl.active) {
|
|
#if 1
|
|
// Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
|
|
// This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
|
|
current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
#else
|
|
// Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
|
|
if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
|
|
current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
else {
|
|
float t = float(step_events_completed) / float(current_block->step_event_count);
|
|
float vec[3] = {
|
|
current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
|
|
current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
|
|
current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
|
|
};
|
|
float pos1[3], pos2[3];
|
|
for (int8_t i = 0; i < 3; ++ i) {
|
|
if (current_block->direction_bits & (1<<i))
|
|
vec[i] = - vec[i];
|
|
pos1[i] = current_position[i] - vec[i] * t;
|
|
pos2[i] = current_position[i] + vec[i] * (1.f - t);
|
|
}
|
|
pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
|
|
pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
|
|
current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
// Clear the planner queue, reset and re-enable the stepper timer.
|
|
quickStop();
|
|
|
|
// Apply inverse world correction matrix.
|
|
machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
memcpy(destination, current_position, sizeof(destination));
|
|
#ifdef LIN_ADVANCE
|
|
memcpy(position_float, current_position, sizeof(position_float));
|
|
#endif
|
|
// Resets planner junction speeds. Assumes start from rest.
|
|
previous_nominal_speed = 0.0;
|
|
memset(previous_speed, 0, sizeof(previous_speed));
|
|
|
|
plan_reset_next_e_queue = false;
|
|
plan_reset_next_e_sched = false;
|
|
|
|
// Relay to planner wait routine, that the current line shall be canceled.
|
|
waiting_inside_plan_buffer_line_print_aborted = true;
|
|
}
|
|
|
|
void plan_buffer_line_curposXYZE(float feed_rate) {
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder );
|
|
}
|
|
|
|
void plan_buffer_line_destinationXYZE(float feed_rate) {
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_rate, active_extruder);
|
|
}
|
|
|
|
void plan_set_position_curposXYZE(){
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
|
|
float junction_deviation = 0.1;
|
|
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
|
|
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
|
// calculation the caller must also provide the physical length of the line in millimeters.
|
|
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, uint8_t extruder, const float* gcode_target)
|
|
{
|
|
// Calculate the buffer head after we push this byte
|
|
uint8_t next_buffer_head = next_block_index(block_buffer_head);
|
|
|
|
// If the buffer is full: good! That means we are well ahead of the robot.
|
|
// Rest here until there is room in the buffer.
|
|
waiting_inside_plan_buffer_line_print_aborted = false;
|
|
if (block_buffer_tail == next_buffer_head) {
|
|
do {
|
|
manage_heater();
|
|
// Vojtech: Don't disable motors inside the planner!
|
|
manage_inactivity(false);
|
|
lcd_update(0);
|
|
} while (block_buffer_tail == next_buffer_head);
|
|
if (waiting_inside_plan_buffer_line_print_aborted) {
|
|
// Inside the lcd_update(0) routine the print has been aborted.
|
|
// Cancel the print, do not plan the current line this routine is waiting on.
|
|
#ifdef PLANNER_DIAGNOSTICS
|
|
planner_update_queue_min_counter();
|
|
#endif /* PLANNER_DIAGNOSTICS */
|
|
return;
|
|
}
|
|
}
|
|
#ifdef PLANNER_DIAGNOSTICS
|
|
planner_update_queue_min_counter();
|
|
#endif /* PLANNER_DIAGNOSTICS */
|
|
|
|
// Prepare to set up new block
|
|
block_t *block = &block_buffer[block_buffer_head];
|
|
|
|
// Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
|
|
block->busy = false;
|
|
|
|
// Set sdlen for calculating sd position
|
|
block->sdlen = 0;
|
|
|
|
// Save original destination of the move
|
|
if (gcode_target)
|
|
memcpy(block->gcode_target, gcode_target, sizeof(block_t::gcode_target));
|
|
else
|
|
{
|
|
block->gcode_target[X_AXIS] = x;
|
|
block->gcode_target[Y_AXIS] = y;
|
|
block->gcode_target[Z_AXIS] = z;
|
|
block->gcode_target[E_AXIS] = e;
|
|
}
|
|
|
|
// Save the global feedrate at scheduling time
|
|
block->gcode_feedrate = feedrate;
|
|
|
|
// Reset the starting E position when requested
|
|
if (plan_reset_next_e_queue)
|
|
{
|
|
position[E_AXIS] = 0;
|
|
#ifdef LIN_ADVANCE
|
|
position_float[E_AXIS] = 0;
|
|
#endif
|
|
|
|
// the block might still be discarded later, but we need to ensure the lower-level
|
|
// count_position is also reset correctly for consistent results!
|
|
plan_reset_next_e_queue = false;
|
|
plan_reset_next_e_sched = true;
|
|
}
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
// Apply the machine correction matrix.
|
|
{
|
|
#if 0
|
|
SERIAL_ECHOPGM("Planner, current position - servos: ");
|
|
MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
SERIAL_ECHOPGM("Planner, target position, initial: ");
|
|
MYSERIAL.print(x, 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(y, 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
SERIAL_ECHOPGM("Planner, world2machine: ");
|
|
MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("Planner, offset: ");
|
|
MYSERIAL.print(world2machine_shift[0], 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(world2machine_shift[1], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
#endif
|
|
|
|
world2machine(x, y);
|
|
|
|
#if 0
|
|
SERIAL_ECHOPGM("Planner, target position, corrected: ");
|
|
MYSERIAL.print(x, 5);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(y, 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
#endif
|
|
}
|
|
|
|
// The target position of the tool in absolute steps
|
|
// Calculate target position in absolute steps
|
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
|
long target[4];
|
|
target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
|
|
target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
|
|
#ifdef MESH_BED_LEVELING
|
|
if (mbl.active){
|
|
target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
|
|
}else{
|
|
target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
|
|
}
|
|
#else
|
|
target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
|
|
#endif // ENABLE_MESH_BED_LEVELING
|
|
target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
|
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
if(target[E_AXIS]!=position[E_AXIS])
|
|
{
|
|
if(degHotend(active_extruder)<extrude_min_temp)
|
|
{
|
|
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
|
#ifdef LIN_ADVANCE
|
|
position_float[E_AXIS] = e;
|
|
#endif
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
|
|
}
|
|
|
|
#ifdef PREVENT_LENGTHY_EXTRUDE
|
|
if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
|
|
{
|
|
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
|
#ifdef LIN_ADVANCE
|
|
position_float[E_AXIS] = e;
|
|
#endif
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
// Number of steps for each axis
|
|
#ifndef COREXY
|
|
// default non-h-bot planning
|
|
block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
|
|
block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
|
|
#else
|
|
// corexy planning
|
|
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
|
block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
|
|
block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
|
|
#endif
|
|
block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
|
|
block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
|
|
block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
|
|
|
|
// Bail if this is a zero-length block
|
|
if (block->step_event_count.wide <= dropsegments)
|
|
{
|
|
#ifdef PLANNER_DIAGNOSTICS
|
|
planner_update_queue_min_counter();
|
|
#endif /* PLANNER_DIAGNOSTICS */
|
|
return;
|
|
}
|
|
|
|
block->fan_speed = fanSpeed;
|
|
|
|
// Compute direction bits for this block
|
|
block->direction_bits = 0;
|
|
#ifndef COREXY
|
|
if (target[X_AXIS] < position[X_AXIS])
|
|
{
|
|
block->direction_bits |= (1<<X_AXIS);
|
|
}
|
|
if (target[Y_AXIS] < position[Y_AXIS])
|
|
{
|
|
block->direction_bits |= (1<<Y_AXIS);
|
|
}
|
|
#else
|
|
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
|
{
|
|
block->direction_bits |= (1<<X_AXIS);
|
|
}
|
|
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
|
{
|
|
block->direction_bits |= (1<<Y_AXIS);
|
|
}
|
|
#endif
|
|
if (target[Z_AXIS] < position[Z_AXIS])
|
|
{
|
|
block->direction_bits |= (1<<Z_AXIS);
|
|
}
|
|
if (target[E_AXIS] < position[E_AXIS])
|
|
{
|
|
block->direction_bits |= (1<<E_AXIS);
|
|
}
|
|
|
|
block->active_extruder = extruder;
|
|
|
|
//enable active axes
|
|
#ifdef COREXY
|
|
if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
|
|
{
|
|
enable_x();
|
|
enable_y();
|
|
}
|
|
#else
|
|
if(block->steps_x.wide != 0) enable_x();
|
|
if(block->steps_y.wide != 0) enable_y();
|
|
#endif
|
|
if(block->steps_z.wide != 0) enable_z();
|
|
|
|
// Enable extruder(s)
|
|
if(block->steps_e.wide != 0)
|
|
{
|
|
if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
|
|
{
|
|
|
|
if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
|
|
if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
|
|
if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
|
|
|
|
switch(extruder)
|
|
{
|
|
case 0:
|
|
enable_e0();
|
|
g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
|
|
|
|
if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
|
|
if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
|
|
break;
|
|
case 1:
|
|
enable_e1();
|
|
g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
|
|
|
|
if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
|
|
if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
|
|
break;
|
|
case 2:
|
|
enable_e2();
|
|
g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
|
|
|
|
if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
|
|
if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
|
|
break;
|
|
}
|
|
}
|
|
else //enable all
|
|
{
|
|
enable_e0();
|
|
enable_e1();
|
|
enable_e2();
|
|
}
|
|
}
|
|
|
|
if (block->steps_e.wide == 0)
|
|
{
|
|
if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;
|
|
}
|
|
else
|
|
{
|
|
if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;
|
|
}
|
|
|
|
/* This part of the code calculates the total length of the movement.
|
|
For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
|
|
But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
|
|
and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
|
|
So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
|
|
Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
|
|
*/
|
|
#ifndef COREXY
|
|
float delta_mm[4];
|
|
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
|
|
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
|
|
#else
|
|
float delta_mm[6];
|
|
delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
|
|
delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
|
|
delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
|
|
delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
|
|
#endif
|
|
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
|
|
delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
|
|
if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
|
|
{
|
|
block->millimeters = fabs(delta_mm[E_AXIS]);
|
|
}
|
|
else
|
|
{
|
|
#ifndef COREXY
|
|
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
|
|
#else
|
|
block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
|
|
#endif
|
|
}
|
|
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
|
|
|
|
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
|
|
float inverse_second = feed_rate * inverse_millimeters;
|
|
|
|
uint8_t moves_queued = moves_planned();
|
|
|
|
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
|
|
#ifdef SLOWDOWN
|
|
//FIXME Vojtech: Why moves_queued > 1? Why not >=1?
|
|
// Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
|
|
if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
|
|
// segment time in micro seconds
|
|
unsigned long segment_time = lround(1000000.0/inverse_second);
|
|
if (segment_time < cs.minsegmenttime)
|
|
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
|
inverse_second=1000000.0/(segment_time+lround(2*(cs.minsegmenttime-segment_time)/moves_queued));
|
|
}
|
|
#endif // SLOWDOWN
|
|
|
|
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
|
|
block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
|
|
|
|
// Calculate and limit speed in mm/sec for each axis
|
|
float current_speed[4];
|
|
float speed_factor = 1.0; //factor <=1 do decrease speed
|
|
for(int i=0; i < 4; i++)
|
|
{
|
|
current_speed[i] = delta_mm[i] * inverse_second;
|
|
if(fabs(current_speed[i]) > max_feedrate[i])
|
|
{
|
|
speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
|
|
}
|
|
}
|
|
|
|
// Correct the speed
|
|
if( speed_factor < 1.0)
|
|
{
|
|
for(unsigned char i=0; i < 4; i++)
|
|
{
|
|
current_speed[i] *= speed_factor;
|
|
}
|
|
block->nominal_speed *= speed_factor;
|
|
block->nominal_rate *= speed_factor;
|
|
}
|
|
|
|
#ifdef LIN_ADVANCE
|
|
float e_D_ratio = 0;
|
|
#endif
|
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
|
// block->step_event_count ... event count of the fastest axis
|
|
// block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
|
|
float steps_per_mm = block->step_event_count.wide/block->millimeters;
|
|
if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
|
|
{
|
|
block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
|
#ifdef LIN_ADVANCE
|
|
block->use_advance_lead = false;
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
float acceleration = (block->steps_e.wide == 0? cs.travel_acceleration: cs.acceleration);
|
|
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
|
|
|
#ifdef LIN_ADVANCE
|
|
/**
|
|
* Use LIN_ADVANCE within this block if all these are true:
|
|
*
|
|
* extruder_advance_K : There is an advance factor set.
|
|
* delta_mm[E_AXIS] >= 0 : Extruding or traveling, but _not_ retracting.
|
|
* |delta_mm[Z_AXIS]| < 0.5 : Z is only moved for leveling (_not_ for priming)
|
|
*/
|
|
block->use_advance_lead = extruder_advance_K > 0
|
|
&& delta_mm[E_AXIS] >= 0
|
|
&& abs(delta_mm[Z_AXIS]) < 0.5;
|
|
if (block->use_advance_lead) {
|
|
#ifdef LA_FLOWADJ
|
|
// M221/FLOW should change uniformly the extrusion thickness
|
|
float delta_e = (e - position_float[E_AXIS]) / extruder_multiplier[extruder];
|
|
#else
|
|
// M221/FLOW only adjusts for an incorrect source diameter
|
|
float delta_e = (e - position_float[E_AXIS]);
|
|
#endif
|
|
float delta_D = sqrt(sq(x - position_float[X_AXIS])
|
|
+ sq(y - position_float[Y_AXIS])
|
|
+ sq(z - position_float[Z_AXIS]));
|
|
|
|
// all extrusion moves with LA require a compression which is proportional to the
|
|
// extrusion_length to distance ratio (e/D)
|
|
e_D_ratio = delta_e / delta_D;
|
|
|
|
// Check for unusual high e_D ratio to detect if a retract move was combined with the last
|
|
// print move due to min. steps per segment. Never execute this with advance! This assumes
|
|
// no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print
|
|
// 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
|
|
if (e_D_ratio > 3.0)
|
|
block->use_advance_lead = false;
|
|
else if (e_D_ratio > 0) {
|
|
const float max_accel_per_s2 = cs.max_jerk[E_AXIS] / (extruder_advance_K * e_D_ratio);
|
|
if (cs.acceleration > max_accel_per_s2) {
|
|
block->acceleration_st = ceil(max_accel_per_s2 * steps_per_mm);
|
|
#ifdef LA_DEBUG
|
|
SERIAL_ECHOLNPGM("LA: Block acceleration limited due to max E-jerk");
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Limit acceleration per axis
|
|
//FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
|
|
if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
|
|
{ block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; }
|
|
if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
|
|
{ block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; }
|
|
if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
|
|
{ block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; }
|
|
if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
|
|
{ block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; }
|
|
}
|
|
// Acceleration of the segment, in mm/sec^2
|
|
block->acceleration = block->acceleration_st / steps_per_mm;
|
|
|
|
#if 0
|
|
// Oversample diagonal movements by a power of 2 up to 8x
|
|
// to achieve more accurate diagonal movements.
|
|
uint8_t bresenham_oversample = 1;
|
|
for (uint8_t i = 0; i < 3; ++ i) {
|
|
if (block->nominal_rate >= 5000) // 5kHz
|
|
break;
|
|
block->nominal_rate << 1;
|
|
bresenham_oversample << 1;
|
|
block->step_event_count << 1;
|
|
}
|
|
if (bresenham_oversample > 1)
|
|
// Lower the acceleration steps/sec^2 to account for the oversampling.
|
|
block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
|
|
#endif
|
|
|
|
block->acceleration_rate = ((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
|
|
|
|
// Start with a safe speed.
|
|
// Safe speed is the speed, from which the machine may halt to stop immediately.
|
|
float safe_speed = block->nominal_speed;
|
|
bool limited = false;
|
|
for (uint8_t axis = 0; axis < 4; ++ axis) {
|
|
float jerk = fabs(current_speed[axis]);
|
|
if (jerk > cs.max_jerk[axis]) {
|
|
// The actual jerk is lower, if it has been limited by the XY jerk.
|
|
if (limited) {
|
|
// Spare one division by a following gymnastics:
|
|
// Instead of jerk *= safe_speed / block->nominal_speed,
|
|
// multiply max_jerk[axis] by the divisor.
|
|
jerk *= safe_speed;
|
|
float mjerk = cs.max_jerk[axis] * block->nominal_speed;
|
|
if (jerk > mjerk) {
|
|
safe_speed *= mjerk / jerk;
|
|
limited = true;
|
|
}
|
|
} else {
|
|
safe_speed = cs.max_jerk[axis];
|
|
limited = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reset the block flag.
|
|
block->flag = 0;
|
|
|
|
if (plan_reset_next_e_sched)
|
|
{
|
|
// finally propagate a pending reset
|
|
block->flag |= BLOCK_FLAG_E_RESET;
|
|
plan_reset_next_e_sched = false;
|
|
}
|
|
|
|
// Initial limit on the segment entry velocity.
|
|
float vmax_junction;
|
|
|
|
//FIXME Vojtech: Why only if at least two lines are planned in the queue?
|
|
// Is it because we don't want to tinker with the first buffer line, which
|
|
// is likely to be executed by the stepper interrupt routine soon?
|
|
if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
|
|
// Estimate a maximum velocity allowed at a joint of two successive segments.
|
|
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
|
|
// then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
|
|
|
|
// The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
|
|
bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
|
|
float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
|
|
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
|
|
vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
|
|
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
|
|
float v_factor = 1.f;
|
|
limited = false;
|
|
// Now limit the jerk in all axes.
|
|
for (uint8_t axis = 0; axis < 4; ++ axis) {
|
|
// Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
|
|
float v_exit = previous_speed[axis];
|
|
float v_entry = current_speed [axis];
|
|
if (prev_speed_larger)
|
|
v_exit *= smaller_speed_factor;
|
|
if (limited) {
|
|
v_exit *= v_factor;
|
|
v_entry *= v_factor;
|
|
}
|
|
// Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
|
|
float jerk =
|
|
(v_exit > v_entry) ?
|
|
((v_entry > 0.f || v_exit < 0.f) ?
|
|
// coasting
|
|
(v_exit - v_entry) :
|
|
// axis reversal
|
|
max(v_exit, - v_entry)) :
|
|
// v_exit <= v_entry
|
|
((v_entry < 0.f || v_exit > 0.f) ?
|
|
// coasting
|
|
(v_entry - v_exit) :
|
|
// axis reversal
|
|
max(- v_exit, v_entry));
|
|
if (jerk > cs.max_jerk[axis]) {
|
|
v_factor *= cs.max_jerk[axis] / jerk;
|
|
limited = true;
|
|
}
|
|
}
|
|
if (limited)
|
|
vmax_junction *= v_factor;
|
|
// Now the transition velocity is known, which maximizes the shared exit / entry velocity while
|
|
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
|
|
float vmax_junction_threshold = vmax_junction * 0.99f;
|
|
if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
|
|
// Not coasting. The machine will stop and start the movements anyway,
|
|
// better to start the segment from start.
|
|
block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
|
|
vmax_junction = safe_speed;
|
|
}
|
|
} else {
|
|
block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
|
|
vmax_junction = safe_speed;
|
|
}
|
|
|
|
// Max entry speed of this block equals the max exit speed of the previous block.
|
|
block->max_entry_speed = vmax_junction;
|
|
|
|
// Initialize block entry speed. Compute based on deceleration to safe_speed.
|
|
double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
|
|
block->entry_speed = min(vmax_junction, v_allowable);
|
|
|
|
// Initialize planner efficiency flags
|
|
// Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
|
|
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
|
|
// the current block and next block junction speeds are guaranteed to always be at their maximum
|
|
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
|
|
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
|
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
|
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
|
// Always calculate trapezoid for new block
|
|
block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
|
|
|
|
// Update previous path unit_vector and nominal speed
|
|
memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
|
|
previous_nominal_speed = block->nominal_speed;
|
|
previous_safe_speed = safe_speed;
|
|
|
|
// Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
|
|
block->speed_factor = block->nominal_rate / block->nominal_speed;
|
|
|
|
#ifdef LIN_ADVANCE
|
|
if (block->use_advance_lead) {
|
|
// calculate the compression ratio for the segment (the required advance steps are computed
|
|
// during trapezoid planning)
|
|
float adv_comp = extruder_advance_K * e_D_ratio * cs.axis_steps_per_unit[E_AXIS]; // (step/(mm/s))
|
|
block->adv_comp = adv_comp / block->speed_factor; // step/(step/min)
|
|
|
|
float advance_speed;
|
|
if (e_D_ratio > 0)
|
|
advance_speed = (extruder_advance_K * e_D_ratio * block->acceleration * cs.axis_steps_per_unit[E_AXIS]);
|
|
else
|
|
advance_speed = cs.max_jerk[E_AXIS] * cs.axis_steps_per_unit[E_AXIS];
|
|
|
|
// to save more space we avoid another copy of calc_timer and go through slow division, but we
|
|
// still need to replicate the *exact* same step grouping policy (see below)
|
|
if (advance_speed > MAX_STEP_FREQUENCY) advance_speed = MAX_STEP_FREQUENCY;
|
|
float advance_rate = (F_CPU / 8.0) / advance_speed;
|
|
if (advance_speed > 20000) {
|
|
block->advance_rate = advance_rate * 4;
|
|
block->advance_step_loops = 4;
|
|
}
|
|
else if (advance_speed > 10000) {
|
|
block->advance_rate = advance_rate * 2;
|
|
block->advance_step_loops = 2;
|
|
}
|
|
else
|
|
{
|
|
// never overflow the internal accumulator with very low rates
|
|
if (advance_rate < UINT16_MAX)
|
|
block->advance_rate = advance_rate;
|
|
else
|
|
block->advance_rate = UINT16_MAX;
|
|
block->advance_step_loops = 1;
|
|
}
|
|
|
|
#ifdef LA_DEBUG
|
|
if (block->advance_step_loops > 2)
|
|
// @wavexx: we should really check for the difference between step_loops and
|
|
// advance_step_loops instead. A difference of more than 1 will lead
|
|
// to uneven speed and *should* be adjusted here by furthermore
|
|
// reducing the speed.
|
|
SERIAL_ECHOLNPGM("LA: More than 2 steps per eISR loop executed.");
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
|
|
|
|
if (block->step_event_count.wide <= 32767)
|
|
block->flag |= BLOCK_FLAG_DDA_LOWRES;
|
|
|
|
// Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
|
|
block_buffer_head = next_buffer_head;
|
|
|
|
// Update position
|
|
memcpy(position, target, sizeof(target)); // position[] = target[]
|
|
|
|
#ifdef LIN_ADVANCE
|
|
position_float[X_AXIS] = x;
|
|
position_float[Y_AXIS] = y;
|
|
position_float[Z_AXIS] = z;
|
|
position_float[E_AXIS] = e;
|
|
#endif
|
|
|
|
// Recalculate the trapezoids to maximize speed at the segment transitions while respecting
|
|
// the machine limits (maximum acceleration and maximum jerk).
|
|
// This runs asynchronously with the stepper interrupt controller, which may
|
|
// interfere with the process.
|
|
planner_recalculate(safe_speed);
|
|
|
|
// SERIAL_ECHOPGM("Q");
|
|
// SERIAL_ECHO(int(moves_planned()));
|
|
// SERIAL_ECHOLNPGM("");
|
|
|
|
#ifdef PLANNER_DIAGNOSTICS
|
|
planner_update_queue_min_counter();
|
|
#endif /* PLANNER_DIAGNOSTIC */
|
|
|
|
// The stepper timer interrupt will run continuously from now on.
|
|
// If there are no planner blocks to be executed by the stepper routine,
|
|
// the stepper interrupt ticks at 1kHz to wake up and pick a block
|
|
// from the planner queue if available.
|
|
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
}
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
vector_3 plan_get_position() {
|
|
vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
|
|
|
|
//position.debug("in plan_get position");
|
|
//plan_bed_level_matrix.debug("in plan_get bed_level");
|
|
matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
|
|
//inverse.debug("in plan_get inverse");
|
|
position.apply_rotation(inverse);
|
|
//position.debug("after rotation");
|
|
|
|
return position;
|
|
}
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
void plan_set_position(float x, float y, float z, const float &e)
|
|
{
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
world2machine(x, y);
|
|
|
|
position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
|
|
position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
|
|
#ifdef MESH_BED_LEVELING
|
|
position[Z_AXIS] = mbl.active ?
|
|
lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
|
|
lround(z*cs.axis_steps_per_unit[Z_AXIS]);
|
|
#else
|
|
position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
|
|
#endif // ENABLE_MESH_BED_LEVELING
|
|
position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
|
|
#ifdef LIN_ADVANCE
|
|
position_float[X_AXIS] = x;
|
|
position_float[Y_AXIS] = y;
|
|
position_float[Z_AXIS] = z;
|
|
position_float[E_AXIS] = e;
|
|
#endif
|
|
st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
|
|
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
|
memset(previous_speed, 0, sizeof(previous_speed));
|
|
}
|
|
|
|
// Only useful in the bed leveling routine, when the mesh bed leveling is off.
|
|
void plan_set_z_position(const float &z)
|
|
{
|
|
#ifdef LIN_ADVANCE
|
|
position_float[Z_AXIS] = z;
|
|
#endif
|
|
position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
|
|
st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
|
|
}
|
|
|
|
void plan_set_e_position(const float &e)
|
|
{
|
|
#ifdef LIN_ADVANCE
|
|
position_float[E_AXIS] = e;
|
|
#endif
|
|
position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
|
|
st_set_e_position(position[E_AXIS]);
|
|
}
|
|
|
|
void plan_reset_next_e()
|
|
{
|
|
plan_reset_next_e_queue = true;
|
|
}
|
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
void set_extrude_min_temp(float temp)
|
|
{
|
|
extrude_min_temp=temp;
|
|
}
|
|
#endif
|
|
|
|
// Calculate the steps/s^2 acceleration rates, based on the mm/s^s
|
|
void reset_acceleration_rates()
|
|
{
|
|
for(int8_t i=0; i < NUM_AXIS; i++)
|
|
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
|
|
}
|
|
|
|
#ifdef TMC2130
|
|
void update_mode_profile()
|
|
{
|
|
if (tmc2130_mode == TMC2130_MODE_NORMAL)
|
|
{
|
|
max_feedrate = cs.max_feedrate_normal;
|
|
max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
|
|
}
|
|
else if (tmc2130_mode == TMC2130_MODE_SILENT)
|
|
{
|
|
max_feedrate = cs.max_feedrate_silent;
|
|
max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_silent;
|
|
}
|
|
reset_acceleration_rates();
|
|
}
|
|
#endif //TMC2130
|
|
|
|
uint8_t number_of_blocks()
|
|
{
|
|
return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
|
|
}
|
|
#ifdef PLANNER_DIAGNOSTICS
|
|
uint8_t planner_queue_min()
|
|
{
|
|
return g_cntr_planner_queue_min;
|
|
}
|
|
|
|
void planner_queue_min_reset()
|
|
{
|
|
g_cntr_planner_queue_min = moves_planned();
|
|
}
|
|
#endif /* PLANNER_DIAGNOSTICS */
|
|
|
|
void planner_add_sd_length(uint16_t sdlen)
|
|
{
|
|
if (block_buffer_head != block_buffer_tail) {
|
|
// The planner buffer is not empty. Get the index of the last buffer line entered,
|
|
// which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
|
|
block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
|
|
} else {
|
|
// There is no line stored in the planner buffer, which means the last command does not need to be revertible,
|
|
// at a power panic, so the length of this command may be forgotten.
|
|
}
|
|
}
|
|
|
|
uint16_t planner_calc_sd_length()
|
|
{
|
|
uint8_t _block_buffer_head = block_buffer_head;
|
|
uint8_t _block_buffer_tail = block_buffer_tail;
|
|
uint16_t sdlen = 0;
|
|
while (_block_buffer_head != _block_buffer_tail)
|
|
{
|
|
sdlen += block_buffer[_block_buffer_tail].sdlen;
|
|
_block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
|
|
}
|
|
return sdlen;
|
|
}
|