Prusa-Firmware/Firmware/ultralcd.cpp
bubnikv b470e103dc Reset live adjust on XYZ calibration.
Disable timeouts in the XYZ/Z calibration.
Don't modify feed rate multiplier during the XYZ/Z calibration.
Support multi screen messages in the XYZ/Z calibration - "move the Z carriages up" step.
Support up to three lines in the XYZ/Z calibration messages.
Added a new message "Measuring reference height of calibration point xx of 9".
Changed the "move the Z carriages up" message to suggest rotating the knob.
Changed the "live adjust not set" message to reference the manual chapter and section.
Remove debugging serial line output on Z calibration.
2016-09-01 10:44:24 +02:00

3916 lines
101 KiB
C++

#include "temperature.h"
#include "ultralcd.h"
#ifdef ULTRA_LCD
#include "Marlin.h"
#include "language.h"
#include "cardreader.h"
#include "temperature.h"
#include "stepper.h"
#include "ConfigurationStore.h"
#include <string.h>
#include "util.h"
#include "mesh_bed_leveling.h"
//#include "Configuration.h"
#define _STRINGIFY(s) #s
int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */
extern int lcd_change_fil_state;
//Function pointer to menu functions.
typedef void (*menuFunc_t)();
struct EditMenuParentState
{
//prevMenu and prevEncoderPosition are used to store the previous menu location when editing settings.
menuFunc_t prevMenu;
uint16_t prevEncoderPosition;
//Variables used when editing values.
const char* editLabel;
void* editValue;
int32_t minEditValue, maxEditValue;
// menuFunc_t callbackFunc;
};
union MenuData
{
struct BabyStep
{
// 29B total
int8_t status;
int babystepMem[3];
float babystepMemMM[3];
} babyStep;
struct SupportMenu
{
// 6B+16B=22B total
int8_t status;
bool is_flash_air;
uint8_t ip[4];
char ip_str[3*4+3+1];
} supportMenu;
struct AdjustBed
{
// 6+13+16=35B
// editMenuParentState is used when an edit menu is entered, so it knows
// the return menu and encoder state.
struct EditMenuParentState editMenuParentState;
int8_t status;
int8_t left;
int8_t right;
int8_t front;
int8_t rear;
int left2;
int right2;
int front2;
int rear2;
} adjustBed;
// editMenuParentState is used when an edit menu is entered, so it knows
// the return menu and encoder state.
struct EditMenuParentState editMenuParentState;
};
// State of the currently active menu.
// C Union manages sharing of the static memory by all the menus.
union MenuData menuData = { 0 };
union Data
{
byte b[2];
int value;
};
int8_t ReInitLCD = 0;
int8_t SDscrool = 0;
int8_t SilentModeMenu = 0;
int lcd_commands_type=LCD_COMMAND_IDLE;
int lcd_commands_step=0;
bool isPrintPaused = false;
bool farm_mode = false;
int farm_no = 0;
int farm_timer = 30;
int farm_status = 0;
bool menuExiting = false;
#ifdef FILAMENT_LCD_DISPLAY
unsigned long message_millis = 0;
#endif
#ifdef ULTIPANEL
static float manual_feedrate[] = MANUAL_FEEDRATE;
#endif // ULTIPANEL
/* !Configuration settings */
uint8_t lcd_status_message_level;
char lcd_status_message[LCD_WIDTH + 1] = ""; //////WELCOME!
unsigned char firstrun = 1;
#ifdef DOGLCD
#include "dogm_lcd_implementation.h"
#else
#include "ultralcd_implementation_hitachi_HD44780.h"
#endif
/** forward declarations **/
// void copy_and_scalePID_i();
// void copy_and_scalePID_d();
/* Different menus */
static void lcd_status_screen();
#ifdef ULTIPANEL
extern bool powersupply;
static void lcd_main_menu();
static void lcd_tune_menu();
static void lcd_prepare_menu();
static void lcd_move_menu();
static void lcd_settings_menu();
static void lcd_calibration_menu();
static void lcd_language_menu();
static void lcd_control_temperature_menu();
static void lcd_control_temperature_preheat_pla_settings_menu();
static void lcd_control_temperature_preheat_abs_settings_menu();
static void lcd_control_motion_menu();
static void lcd_control_volumetric_menu();
static void prusa_stat_printerstatus(int _status);
static void prusa_stat_temperatures();
static void prusa_stat_printinfo();
static void lcd_farm_no();
#ifdef DOGLCD
static void lcd_set_contrast();
#endif
static void lcd_control_retract_menu();
static void lcd_sdcard_menu();
#ifdef DELTA_CALIBRATION_MENU
static void lcd_delta_calibrate_menu();
#endif // DELTA_CALIBRATION_MENU
static void lcd_quick_feedback();//Cause an LCD refresh, and give the user visual or audible feedback that something has happened
/* Different types of actions that can be used in menu items. */
static void menu_action_back(menuFunc_t data);
#define menu_action_back_RAM menu_action_back
static void menu_action_submenu(menuFunc_t data);
static void menu_action_gcode(const char* pgcode);
static void menu_action_function(menuFunc_t data);
static void menu_action_setlang(unsigned char lang);
static void menu_action_sdfile(const char* filename, char* longFilename);
static void menu_action_sddirectory(const char* filename, char* longFilename);
static void menu_action_setting_edit_bool(const char* pstr, bool* ptr);
static void menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue);
static void menu_action_setting_edit_float3(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float32(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float43(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float5(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float51(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float52(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue);
/*
static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float3(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float32(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float43(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float5(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float51(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float52(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue, menuFunc_t callbackFunc);
*/
#define ENCODER_FEEDRATE_DEADZONE 10
#if !defined(LCD_I2C_VIKI)
#ifndef ENCODER_STEPS_PER_MENU_ITEM
#define ENCODER_STEPS_PER_MENU_ITEM 5
#endif
#ifndef ENCODER_PULSES_PER_STEP
#define ENCODER_PULSES_PER_STEP 1
#endif
#else
#ifndef ENCODER_STEPS_PER_MENU_ITEM
#define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation
#endif
#ifndef ENCODER_PULSES_PER_STEP
#define ENCODER_PULSES_PER_STEP 1
#endif
#endif
/* Helper macros for menus */
#define START_MENU() do { \
if (encoderPosition > 0x8000) encoderPosition = 0; \
if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM < currentMenuViewOffset) currentMenuViewOffset = encoderPosition / ENCODER_STEPS_PER_MENU_ITEM;\
uint8_t _lineNr = currentMenuViewOffset, _menuItemNr; \
bool wasClicked = LCD_CLICKED;\
for(uint8_t _drawLineNr = 0; _drawLineNr < LCD_HEIGHT; _drawLineNr++, _lineNr++) { \
_menuItemNr = 0;
#define MENU_ITEM(type, label, args...) do { \
if (_menuItemNr == _lineNr) { \
if (lcdDrawUpdate) { \
const char* _label_pstr = (label); \
if ((encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) { \
lcd_implementation_drawmenu_ ## type ## _selected (_drawLineNr, _label_pstr , ## args ); \
}else{\
lcd_implementation_drawmenu_ ## type (_drawLineNr, _label_pstr , ## args ); \
}\
}\
if (wasClicked && (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) {\
lcd_quick_feedback(); \
menu_action_ ## type ( args ); \
return;\
}\
}\
_menuItemNr++;\
} while(0)
#define MENU_ITEM_DUMMY() do { _menuItemNr++; } while(0)
#define MENU_ITEM_EDIT(type, label, args...) MENU_ITEM(setting_edit_ ## type, label, (label) , ## args )
#define MENU_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, (label) , ## args )
#define END_MENU() \
if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM >= _menuItemNr) encoderPosition = _menuItemNr * ENCODER_STEPS_PER_MENU_ITEM - 1; \
if ((uint8_t)(encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) >= currentMenuViewOffset + LCD_HEIGHT) { currentMenuViewOffset = (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) - LCD_HEIGHT + 1; lcdDrawUpdate = 1; _lineNr = currentMenuViewOffset - 1; _drawLineNr = -1; } \
} } while(0)
/** Used variables to keep track of the menu */
#ifndef REPRAPWORLD_KEYPAD
volatile uint8_t buttons;//Contains the bits of the currently pressed buttons.
#else
volatile uint8_t buttons_reprapworld_keypad; // to store the reprapworld_keypad shift register values
#endif
#ifdef LCD_HAS_SLOW_BUTTONS
volatile uint8_t slow_buttons;//Contains the bits of the currently pressed buttons.
#endif
uint8_t currentMenuViewOffset; /* scroll offset in the current menu */
uint32_t blocking_enc;
uint8_t lastEncoderBits;
uint32_t encoderPosition;
#if (SDCARDDETECT > 0)
bool lcd_oldcardstatus;
#endif
#endif //ULTIPANEL
menuFunc_t currentMenu = lcd_status_screen; /* function pointer to the currently active menu */
uint32_t lcd_next_update_millis;
uint8_t lcd_status_update_delay;
bool ignore_click = false;
bool wait_for_unclick;
uint8_t lcdDrawUpdate = 2; /* Set to none-zero when the LCD needs to draw, decreased after every draw. Set to 2 in LCD routines so the LCD gets at least 1 full redraw (first redraw is partial) */
// place-holders for Ki and Kd edits
#ifdef PIDTEMP
// float raw_Ki, raw_Kd;
#endif
static void lcd_goto_menu(menuFunc_t menu, const uint32_t encoder = 0, const bool feedback = true, bool reset_menu_state = true) {
if (currentMenu != menu) {
currentMenu = menu;
encoderPosition = encoder;
if (reset_menu_state) {
// Resets the global shared C union.
// This ensures, that the menu entered will find out, that it shall initialize itself.
memset(&menuData, 0, sizeof(menuData));
}
if (feedback) lcd_quick_feedback();
// For LCD_PROGRESS_BAR re-initialize the custom characters
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
lcd_set_custom_characters(menu == lcd_status_screen);
#endif
}
}
/* Main status screen. It's up to the implementation specific part to show what is needed. As this is very display dependent */
// Language selection dialog not active.
#define LANGSEL_OFF 0
// Language selection dialog modal, entered from the info screen. This is the case on firmware boot up,
// if the language index stored in the EEPROM is not valid.
#define LANGSEL_MODAL 1
// Language selection dialog entered from the Setup menu.
#define LANGSEL_ACTIVE 2
// Language selection dialog status
unsigned char langsel = LANGSEL_OFF;
void set_language_from_EEPROM() {
unsigned char eep = eeprom_read_byte((unsigned char*)EEPROM_LANG);
if (eep < LANG_NUM)
{
lang_selected = eep;
// Language is valid, no need to enter the language selection screen.
langsel = LANGSEL_OFF;
}
else
{
lang_selected = LANG_ID_DEFAULT;
// Invalid language, enter the language selection screen in a modal mode.
langsel = LANGSEL_MODAL;
}
}
void lcd_mylang();
static void lcd_status_screen()
{
if (firstrun == 1)
{
firstrun = 0;
set_language_from_EEPROM();
if(lcd_status_message_level == 0){
strncpy_P(lcd_status_message, WELCOME_MSG, LCD_WIDTH);
}
if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
{
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
}
if (langsel) {
//strncpy_P(lcd_status_message, PSTR(">>>>>>>>>>>> PRESS v"), LCD_WIDTH);
// Entering the language selection screen in a modal mode.
}
}
if (lcd_status_update_delay)
lcd_status_update_delay--;
else
lcdDrawUpdate = 1;
if (lcdDrawUpdate)
{
ReInitLCD++;
if (ReInitLCD == 30) {
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
currentMenu == lcd_status_screen
#endif
);
ReInitLCD = 0 ;
} else {
if ((ReInitLCD % 10) == 0) {
//lcd_implementation_nodisplay();
lcd_implementation_init_noclear( // to maybe revive the LCD if static electricity killed it.
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
currentMenu == lcd_status_screen
#endif
);
}
}
//lcd_implementation_display();
lcd_implementation_status_screen();
//lcd_implementation_clear();
if (farm_mode)
{
farm_timer--;
if (farm_timer < 1)
{
farm_timer = 90;
prusa_statistics(0);
}
switch (farm_timer)
{
case 45:
prusa_statistics(21);
break;
case 10:
if (IS_SD_PRINTING)
{
prusa_statistics(20);
}
break;
}
} // end of farm_mode
lcd_status_update_delay = 10; /* redraw the main screen every second. This is easier then trying keep track of all things that change on the screen */
if (lcd_commands_type != LCD_COMMAND_IDLE)
{
lcd_commands();
}
} // end of lcdDrawUpdate
#ifdef ULTIPANEL
bool current_click = LCD_CLICKED;
if (ignore_click) {
if (wait_for_unclick) {
if (!current_click) {
ignore_click = wait_for_unclick = false;
}
else {
current_click = false;
}
}
else if (current_click) {
lcd_quick_feedback();
wait_for_unclick = true;
current_click = false;
}
}
//if (--langsel ==0) {langsel=1;current_click=true;}
if (current_click)
{
lcd_goto_menu(lcd_main_menu);
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
currentMenu == lcd_status_screen
#endif
);
#ifdef FILAMENT_LCD_DISPLAY
message_millis = millis(); // get status message to show up for a while
#endif
}
#ifdef ULTIPANEL_FEEDMULTIPLY
// Dead zone at 100% feedrate
if ((feedmultiply < 100 && (feedmultiply + int(encoderPosition)) > 100) ||
(feedmultiply > 100 && (feedmultiply + int(encoderPosition)) < 100))
{
encoderPosition = 0;
feedmultiply = 100;
}
if (feedmultiply == 100 && int(encoderPosition) > ENCODER_FEEDRATE_DEADZONE)
{
feedmultiply += int(encoderPosition) - ENCODER_FEEDRATE_DEADZONE;
encoderPosition = 0;
}
else if (feedmultiply == 100 && int(encoderPosition) < -ENCODER_FEEDRATE_DEADZONE)
{
feedmultiply += int(encoderPosition) + ENCODER_FEEDRATE_DEADZONE;
encoderPosition = 0;
}
else if (feedmultiply != 100)
{
feedmultiply += int(encoderPosition);
encoderPosition = 0;
}
#endif //ULTIPANEL_FEEDMULTIPLY
if (feedmultiply < 10)
feedmultiply = 10;
else if (feedmultiply > 999)
feedmultiply = 999;
#endif //ULTIPANEL
}
#ifdef ULTIPANEL
void lcd_commands()
{
if (lcd_commands_type == LCD_COMMAND_LOAD_FILAMENT) //// load filament sequence
{
if (lcd_commands_step == 0) { lcd_commands_step = 5; custom_message = true; }
if (lcd_commands_step == 1 && !blocks_queued())
{
lcd_commands_step = 0;
lcd_commands_type = 0;
lcd_setstatuspgm(WELCOME_MSG);
disable_z();
custom_message = false;
custom_message_type = 0;
}
if (lcd_commands_step == 2 && !blocks_queued())
{
lcd_setstatuspgm(MSG_LOADING_FILAMENT);
enquecommand_P(PSTR(LOAD_FILAMENT_2));
lcd_commands_step = 1;
}
if (lcd_commands_step == 3 && !blocks_queued())
{
enquecommand_P(PSTR(LOAD_FILAMENT_1));
enquecommand_P(PSTR("G4"));
lcd_commands_step = 2;
}
if (lcd_commands_step == 4 && !blocks_queued())
{
lcd_setstatuspgm(MSG_INSERT_FILAMENT);
enquecommand_P(PSTR(LOAD_FILAMENT_0));
enquecommand_P(PSTR("G1 E0.1 F400"));
lcd_commands_step = 3;
}
if (lcd_commands_step == 5 && !blocks_queued())
{
lcd_setstatuspgm(MSG_PLEASE_WAIT);
enable_z();
custom_message = true;
custom_message_type = 2;
lcd_commands_step = 4;
}
}
if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) /// stop print
{
if (lcd_commands_step == 0) { lcd_commands_step = 6; custom_message = true; }
if (lcd_commands_step == 1 && !blocks_queued())
{
lcd_commands_step = 0;
lcd_commands_type = 0;
lcd_setstatuspgm(WELCOME_MSG);
custom_message = false;
}
if (lcd_commands_step == 2 && !blocks_queued())
{
setTargetBed(0);
setTargetHotend(0, 0);
setTargetHotend(0, 1);
setTargetHotend(0, 2);
manage_heater();
lcd_setstatuspgm(WELCOME_MSG);
cancel_heatup = false;
lcd_commands_step = 1;
}
if (lcd_commands_step == 3 && !blocks_queued())
{
// M84: Disable steppers.
enquecommand_P(PSTR("M84"));
autotempShutdown();
lcd_commands_step = 2;
}
if (lcd_commands_step == 4 && !blocks_queued())
{
// G90: Absolute positioning.
enquecommand_P(PSTR("G90"));
// M83: Set extruder to relative mode.
enquecommand_P(PSTR("M83"));
#ifdef X_CANCEL_POS
enquecommand_P(PSTR("G1 X" STRINGIFY(X_CANCEL_POS) " Y" STRINGIFY(Y_CANCEL_POS) " E0 F7000"));
#else
enquecommand_P(PSTR("G1 X50 Y" STRINGIFY(Y_MAX_POS) " E0 F7000"));
#endif
lcd_ignore_click(false);
lcd_commands_step = 3;
}
if (lcd_commands_step == 5 && !blocks_queued())
{
lcd_setstatuspgm(MSG_PRINT_ABORTED);
// G91: Set to relative positioning.
enquecommand_P(PSTR("G91"));
// Lift up.
enquecommand_P(PSTR("G1 Z15 F1500"));
lcd_commands_step = 4;
}
if (lcd_commands_step == 6 && !blocks_queued())
{
lcd_setstatuspgm(MSG_PRINT_ABORTED);
cancel_heatup = true;
setTargetBed(0);
setTargetHotend(0, 0);
setTargetHotend(0, 1);
setTargetHotend(0, 2);
manage_heater();
lcd_commands_step = 5;
}
}
if (lcd_commands_type == 3)
{
lcd_commands_type = 0;
}
if (lcd_commands_type == LCD_COMMAND_FARM_MODE_CONFIRM) /// farm mode confirm
{
if (lcd_commands_step == 0) { lcd_commands_step = 6; custom_message = true; }
if (lcd_commands_step == 1 && !blocks_queued())
{
lcd_confirm_print();
lcd_commands_step = 0;
lcd_commands_type = 0;
}
if (lcd_commands_step == 2 && !blocks_queued())
{
lcd_commands_step = 1;
}
if (lcd_commands_step == 3 && !blocks_queued())
{
lcd_commands_step = 2;
}
if (lcd_commands_step == 4 && !blocks_queued())
{
enquecommand_P(PSTR("G90"));
enquecommand_P(PSTR("G1 X" STRINGIFY(X_CANCEL_POS) " Y" STRINGIFY(Y_CANCEL_POS) " E0 F7000"));
lcd_commands_step = 3;
}
if (lcd_commands_step == 5 && !blocks_queued())
{
lcd_commands_step = 4;
}
if (lcd_commands_step == 6 && !blocks_queued())
{
enquecommand_P(PSTR("G91"));
enquecommand_P(PSTR("G1 Z15 F1500"));
st_synchronize();
lcd_commands_step = 5;
}
}
}
static void lcd_return_to_status() {
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
currentMenu == lcd_status_screen
#endif
);
lcd_goto_menu(lcd_status_screen, 0, false);
}
static void lcd_sdcard_pause() {
card.pauseSDPrint();
isPrintPaused = true;
lcdDrawUpdate = 3;
}
static void lcd_sdcard_resume() {
card.startFileprint();
isPrintPaused = false;
lcdDrawUpdate = 3;
}
float move_menu_scale;
static void lcd_move_menu_axis();
/* Menu implementation */
void lcd_preheat_pla()
{
setTargetHotend0(PLA_PREHEAT_HOTEND_TEMP);
setTargetBed(PLA_PREHEAT_HPB_TEMP);
fanSpeed = 0;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_abs()
{
setTargetHotend0(ABS_PREHEAT_HOTEND_TEMP);
setTargetBed(ABS_PREHEAT_HPB_TEMP);
fanSpeed = 0;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_pp()
{
setTargetHotend0(PP_PREHEAT_HOTEND_TEMP);
setTargetBed(PP_PREHEAT_HPB_TEMP);
fanSpeed = 0;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_pet()
{
setTargetHotend0(PET_PREHEAT_HOTEND_TEMP);
setTargetBed(PET_PREHEAT_HPB_TEMP);
fanSpeed = 0;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_hips()
{
setTargetHotend0(HIPS_PREHEAT_HOTEND_TEMP);
setTargetBed(HIPS_PREHEAT_HPB_TEMP);
fanSpeed = 0;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_flex()
{
setTargetHotend0(FLEX_PREHEAT_HOTEND_TEMP);
setTargetBed(FLEX_PREHEAT_HPB_TEMP);
fanSpeed = 0;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_cooldown()
{
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
setTargetBed(0);
fanSpeed = 0;
lcd_return_to_status();
}
static void lcd_preheat_menu()
{
START_MENU();
MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
MENU_ITEM(function, PSTR("ABS - " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP)), lcd_preheat_abs);
MENU_ITEM(function, PSTR("PLA - " STRINGIFY(PLA_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PLA_PREHEAT_HPB_TEMP)), lcd_preheat_pla);
MENU_ITEM(function, PSTR("PET - " STRINGIFY(PET_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PET_PREHEAT_HPB_TEMP)), lcd_preheat_pet);
MENU_ITEM(function, PSTR("HIPS - " STRINGIFY(HIPS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(HIPS_PREHEAT_HPB_TEMP)), lcd_preheat_hips);
MENU_ITEM(function, PSTR("PP - " STRINGIFY(PP_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PP_PREHEAT_HPB_TEMP)), lcd_preheat_pp);
MENU_ITEM(function, PSTR("FLEX - " STRINGIFY(FLEX_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FLEX_PREHEAT_HPB_TEMP)), lcd_preheat_flex);
MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown);
END_MENU();
}
static void lcd_support_menu()
{
if (menuData.supportMenu.status == 0 || lcdDrawUpdate == 2) {
// Menu was entered or SD card status has changed (plugged in or removed).
// Initialize its status.
menuData.supportMenu.status = 1;
menuData.supportMenu.is_flash_air = card.ToshibaFlashAir_isEnabled() && card.ToshibaFlashAir_GetIP(menuData.supportMenu.ip);
if (menuData.supportMenu.is_flash_air)
sprintf_P(menuData.supportMenu.ip_str, PSTR("%d.%d.%d.%d"),
menuData.supportMenu.ip[0], menuData.supportMenu.ip[1],
menuData.supportMenu.ip[2], menuData.supportMenu.ip[3]);
} else if (menuData.supportMenu.is_flash_air &&
menuData.supportMenu.ip[0] == 0 && menuData.supportMenu.ip[1] == 0 &&
menuData.supportMenu.ip[2] == 0 && menuData.supportMenu.ip[3] == 0 &&
++ menuData.supportMenu.status == 16) {
// Waiting for the FlashAir card to get an IP address from a router. Force an update.
menuData.supportMenu.status = 0;
}
START_MENU();
MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
// Ideally this block would be optimized out by the compiler.
const uint8_t fw_string_len = strlen_P(FW_VERSION_STR_P());
if (fw_string_len < 6) {
MENU_ITEM(back, PSTR(MSG_FW_VERSION " - " FW_version), lcd_main_menu);
} else {
MENU_ITEM(back, PSTR("FW - " FW_version), lcd_main_menu);
}
MENU_ITEM(back, MSG_PRUSA3D, lcd_main_menu);
MENU_ITEM(back, MSG_PRUSA3D_FORUM, lcd_main_menu);
MENU_ITEM(back, MSG_PRUSA3D_HOWTO, lcd_main_menu);
MENU_ITEM(back, PSTR("------------"), lcd_main_menu);
MENU_ITEM(back, PSTR(FILAMENT_SIZE), lcd_main_menu);
MENU_ITEM(back, PSTR(ELECTRONICS),lcd_main_menu);
MENU_ITEM(back, PSTR(NOZZLE_TYPE),lcd_main_menu);
MENU_ITEM(back, PSTR("------------"), lcd_main_menu);
MENU_ITEM(back, PSTR("Date: "), lcd_main_menu);
MENU_ITEM(back, PSTR(__DATE__), lcd_main_menu);
// Show the FlashAir IP address, if the card is available.
if (menuData.supportMenu.is_flash_air) {
MENU_ITEM(back, PSTR("------------"), lcd_main_menu);
MENU_ITEM(back, PSTR("FlashAir IP Addr:"), lcd_main_menu);
MENU_ITEM(back_RAM, menuData.supportMenu.ip_str, lcd_main_menu);
}
END_MENU();
}
void lcd_unLoadFilament()
{
if (degHotend0() > EXTRUDE_MINTEMP) {
enquecommand_P(PSTR(UNLOAD_FILAMENT_0));
enquecommand_P(PSTR(UNLOAD_FILAMENT_1));
} else {
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_ERROR);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PREHEAT_NOZZLE);
delay(2000);
lcd_implementation_clear();
}
lcd_return_to_status();
}
void lcd_change_filament() {
lcd_implementation_clear();
lcd.setCursor(0, 1);
lcd_printPGM(MSG_CHANGING_FILAMENT);
}
void lcd_wait_interact() {
lcd_implementation_clear();
lcd.setCursor(0, 1);
lcd_printPGM(MSG_INSERT_FILAMENT);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PRESS);
}
void lcd_change_success() {
lcd_implementation_clear();
lcd.setCursor(0, 2);
lcd_printPGM(MSG_CHANGE_SUCCESS);
}
void lcd_loading_color() {
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_LOADING_COLOR);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PLEASE_WAIT);
for (int i = 0; i < 20; i++) {
lcd.setCursor(i, 3);
lcd.print(".");
for (int j = 0; j < 10 ; j++) {
manage_heater();
manage_inactivity(true);
delay(85);
}
}
}
void lcd_loading_filament() {
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_LOADING_FILAMENT);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PLEASE_WAIT);
for (int i = 0; i < 20; i++) {
lcd.setCursor(i, 3);
lcd.print(".");
for (int j = 0; j < 10 ; j++) {
manage_heater();
manage_inactivity(true);
delay(110);
}
}
}
void lcd_alright() {
int enc_dif = 0;
int cursor_pos = 1;
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_CORRECTLY);
lcd.setCursor(1, 1);
lcd_printPGM(MSG_YES);
lcd.setCursor(1, 2);
lcd_printPGM(MSG_NOT_LOADED);
lcd.setCursor(1, 3);
lcd_printPGM(MSG_NOT_COLOR);
lcd.setCursor(0, 1);
lcd.print(">");
enc_dif = encoderDiff;
while (lcd_change_fil_state == 0) {
manage_heater();
manage_inactivity(true);
if ( abs((enc_dif - encoderDiff)) > 4 ) {
if ( (abs(enc_dif - encoderDiff)) > 1 ) {
if (enc_dif > encoderDiff ) {
cursor_pos --;
}
if (enc_dif < encoderDiff ) {
cursor_pos ++;
}
if (cursor_pos > 3) {
cursor_pos = 3;
}
if (cursor_pos < 1) {
cursor_pos = 1;
}
lcd.setCursor(0, 1);
lcd.print(" ");
lcd.setCursor(0, 2);
lcd.print(" ");
lcd.setCursor(0, 3);
lcd.print(" ");
lcd.setCursor(0, cursor_pos);
lcd.print(">");
enc_dif = encoderDiff;
delay(100);
}
}
if (lcd_clicked()) {
lcd_change_fil_state = cursor_pos;
delay(500);
}
};
lcd_implementation_clear();
lcd_return_to_status();
}
void lcd_LoadFilament()
{
if (degHotend0() > EXTRUDE_MINTEMP)
{
custom_message = true;
lcd_commands_type = LCD_COMMAND_LOAD_FILAMENT;
SERIAL_ECHOLN("Loading filament");
// commands() will handle the rest
}
else
{
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_ERROR);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PREHEAT_NOZZLE);
delay(2000);
lcd_implementation_clear();
}
lcd_return_to_status();
}
static void lcd_menu_statistics()
{
if (IS_SD_PRINTING)
{
int _met = total_filament_used / 100000;
int _cm = (total_filament_used - (_met * 100000))/10;
int _t = (millis() - starttime) / 1000;
int _h = _t / 3600;
int _m = (_t - (_h * 3600)) / 60;
int _s = _t - ((_h * 3600) + (_m * 60));
lcd.setCursor(0, 0);
lcd_printPGM(MSG_STATS_FILAMENTUSED);
lcd.setCursor(6, 1);
lcd.print(itostr3(_met));
lcd.print("m ");
lcd.print(ftostr32ns(_cm));
lcd.print("cm");
lcd.setCursor(0, 2);
lcd_printPGM(MSG_STATS_PRINTTIME);
lcd.setCursor(8, 3);
lcd.print(itostr2(_h));
lcd.print("h ");
lcd.print(itostr2(_m));
lcd.print("m ");
lcd.print(itostr2(_s));
lcd.print("s");
if (lcd_clicked())
{
lcd_quick_feedback();
lcd_return_to_status();
}
}
else
{
unsigned long _filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
unsigned long _time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
uint8_t _days, _hours, _minutes;
float _filament_m = (float)_filament;
int _filament_km = (_filament >= 100000) ? _filament / 100000 : 0;
if (_filament_km > 0) _filament_m = _filament - (_filament_km * 100000);
_days = _time / 1440;
_hours = (_time - (_days * 1440)) / 60;
_minutes = _time - ((_days * 1440) + (_hours * 60));
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_STATS_TOTALFILAMENT);
lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)), 1);
lcd.print(ftostr32ns(_filament_m));
if (_filament_km > 0)
{
lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)) - 3, 1);
lcd.print("km");
lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)) - 8, 1);
lcd.print(itostr4(_filament_km));
}
lcd.setCursor(18, 1);
lcd.print("m");
lcd.setCursor(0, 2);
lcd_printPGM(MSG_STATS_TOTALPRINTTIME);;
lcd.setCursor(18, 3);
lcd.print("m");
lcd.setCursor(14, 3);
lcd.print(itostr3(_minutes));
lcd.setCursor(14, 3);
lcd.print(":");
lcd.setCursor(12, 3);
lcd.print("h");
lcd.setCursor(9, 3);
lcd.print(itostr3(_hours));
lcd.setCursor(9, 3);
lcd.print(":");
lcd.setCursor(7, 3);
lcd.print("d");
lcd.setCursor(4, 3);
lcd.print(itostr3(_days));
while (!lcd_clicked())
{
manage_heater();
manage_inactivity(true);
delay(100);
}
lcd_quick_feedback();
lcd_return_to_status();
}
}
static void _lcd_move(const char *name, int axis, int min, int max) {
if (encoderPosition != 0) {
refresh_cmd_timeout();
if (! planner_queue_full()) {
current_position[axis] += float((int)encoderPosition) * move_menu_scale;
if (min_software_endstops && current_position[axis] < min) current_position[axis] = min;
if (max_software_endstops && current_position[axis] > max) current_position[axis] = max;
encoderPosition = 0;
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis] / 60, active_extruder);
lcdDrawUpdate = 1;
}
}
if (lcdDrawUpdate) lcd_implementation_drawedit(name, ftostr31(current_position[axis]));
if (LCD_CLICKED) lcd_goto_menu(lcd_move_menu_axis);
}
static void lcd_move_e()
{
if (encoderPosition != 0)
{
refresh_cmd_timeout();
if (! planner_queue_full()) {
current_position[E_AXIS] += float((int)encoderPosition) * move_menu_scale;
encoderPosition = 0;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[E_AXIS] / 60, active_extruder);
lcdDrawUpdate = 1;
}
}
if (lcdDrawUpdate)
{
lcd_implementation_drawedit(PSTR("Extruder"), ftostr31(current_position[E_AXIS]));
}
if (LCD_CLICKED) lcd_goto_menu(lcd_move_menu_axis);
}
// Save a single axis babystep value.
void EEPROM_save_B(int pos, int* value)
{
union Data data;
data.value = *value;
eeprom_update_byte((unsigned char*)pos, data.b[0]);
eeprom_update_byte((unsigned char*)pos + 1, data.b[1]);
}
// Read a single axis babystep value.
void EEPROM_read_B(int pos, int* value)
{
union Data data;
data.b[0] = eeprom_read_byte((unsigned char*)pos);
data.b[1] = eeprom_read_byte((unsigned char*)pos + 1);
*value = data.value;
}
static void lcd_move_x() {
_lcd_move(PSTR("X"), X_AXIS, X_MIN_POS, X_MAX_POS);
}
static void lcd_move_y() {
_lcd_move(PSTR("Y"), Y_AXIS, Y_MIN_POS, Y_MAX_POS);
}
static void lcd_move_z() {
_lcd_move(PSTR("Z"), Z_AXIS, Z_MIN_POS, Z_MAX_POS);
}
static void _lcd_babystep(int axis, const char *msg)
{
if (menuData.babyStep.status == 0) {
// Menu was entered.
// Initialize its status.
menuData.babyStep.status = 1;
EEPROM_read_B(EEPROM_BABYSTEP_X, &menuData.babyStep.babystepMem[0]);
EEPROM_read_B(EEPROM_BABYSTEP_Y, &menuData.babyStep.babystepMem[1]);
EEPROM_read_B(EEPROM_BABYSTEP_Z, &menuData.babyStep.babystepMem[2]);
menuData.babyStep.babystepMemMM[0] = menuData.babyStep.babystepMem[0]/axis_steps_per_unit[X_AXIS];
menuData.babyStep.babystepMemMM[1] = menuData.babyStep.babystepMem[1]/axis_steps_per_unit[Y_AXIS];
menuData.babyStep.babystepMemMM[2] = menuData.babyStep.babystepMem[2]/axis_steps_per_unit[Z_AXIS];
lcdDrawUpdate = 1;
}
if (encoderPosition != 0)
{
CRITICAL_SECTION_START
babystepsTodo[axis] += (int)encoderPosition;
CRITICAL_SECTION_END
menuData.babyStep.babystepMem[axis] += (int)encoderPosition;
menuData.babyStep.babystepMemMM[axis] = menuData.babyStep.babystepMem[axis]/axis_steps_per_unit[Z_AXIS];
delay(50);
encoderPosition = 0;
lcdDrawUpdate = 1;
}
if (lcdDrawUpdate)
lcd_implementation_drawedit_2(msg, ftostr13ns(menuData.babyStep.babystepMemMM[axis]));
if (LCD_CLICKED || menuExiting) {
// Only update the EEPROM when leaving the menu.
EEPROM_save_B(
(axis == 0) ? EEPROM_BABYSTEP_X : ((axis == 1) ? EEPROM_BABYSTEP_Y : EEPROM_BABYSTEP_Z),
&menuData.babyStep.babystepMem[axis]);
}
if (LCD_CLICKED) lcd_goto_menu(lcd_main_menu);
}
static void lcd_babystep_x() {
_lcd_babystep(X_AXIS, (MSG_BABYSTEPPING_X));
}
static void lcd_babystep_y() {
_lcd_babystep(Y_AXIS, (MSG_BABYSTEPPING_Y));
}
static void lcd_babystep_z() {
_lcd_babystep(Z_AXIS, (MSG_BABYSTEPPING_Z));
}
static void lcd_adjust_bed();
static void lcd_adjust_bed_reset()
{
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT , 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR , 0);
lcd_goto_menu(lcd_adjust_bed, 0, false);
// Because we did not leave the menu, the menuData did not reset.
// Force refresh of the bed leveling data.
menuData.adjustBed.status = 0;
}
#define BED_ADJUSTMENT_UM_MAX 50
static void lcd_adjust_bed()
{
if (menuData.adjustBed.status == 0) {
// Menu was entered.
// Initialize its status.
menuData.adjustBed.status = 1;
bool valid = false;
menuData.adjustBed.left = menuData.adjustBed.left2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT);
menuData.adjustBed.right = menuData.adjustBed.right2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT);
menuData.adjustBed.front = menuData.adjustBed.front2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT);
menuData.adjustBed.rear = menuData.adjustBed.rear2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR);
if (eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1 &&
menuData.adjustBed.left >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.left <= BED_ADJUSTMENT_UM_MAX &&
menuData.adjustBed.right >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.right <= BED_ADJUSTMENT_UM_MAX &&
menuData.adjustBed.front >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.front <= BED_ADJUSTMENT_UM_MAX &&
menuData.adjustBed.rear >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.rear <= BED_ADJUSTMENT_UM_MAX)
valid = true;
if (! valid) {
// Reset the values: simulate an edit.
menuData.adjustBed.left2 = 0;
menuData.adjustBed.right2 = 0;
menuData.adjustBed.front2 = 0;
menuData.adjustBed.rear2 = 0;
}
lcdDrawUpdate = 1;
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
}
if (menuData.adjustBed.left != menuData.adjustBed.left2)
eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT, menuData.adjustBed.left = menuData.adjustBed.left2);
if (menuData.adjustBed.right != menuData.adjustBed.right2)
eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, menuData.adjustBed.right = menuData.adjustBed.right2);
if (menuData.adjustBed.front != menuData.adjustBed.front2)
eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT, menuData.adjustBed.front = menuData.adjustBed.front2);
if (menuData.adjustBed.rear != menuData.adjustBed.rear2)
eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR, menuData.adjustBed.rear = menuData.adjustBed.rear2);
START_MENU();
MENU_ITEM(back, MSG_SETTINGS, lcd_calibration_menu);
MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_LEFT, &menuData.adjustBed.left2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_RIGHT, &menuData.adjustBed.right2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_FRONT, &menuData.adjustBed.front2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_REAR, &menuData.adjustBed.rear2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
MENU_ITEM(function, MSG_BED_CORRECTION_RESET, lcd_adjust_bed_reset);
END_MENU();
}
void lcd_adjust_z() {
int enc_dif = 0;
int cursor_pos = 1;
int fsm = 0;
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_ADJUSTZ);
lcd.setCursor(1, 1);
lcd_printPGM(MSG_YES);
lcd.setCursor(1, 2);
lcd_printPGM(MSG_NO);
lcd.setCursor(0, 1);
lcd.print(">");
enc_dif = encoderDiff;
while (fsm == 0) {
manage_heater();
manage_inactivity(true);
if ( abs((enc_dif - encoderDiff)) > 4 ) {
if ( (abs(enc_dif - encoderDiff)) > 1 ) {
if (enc_dif > encoderDiff ) {
cursor_pos --;
}
if (enc_dif < encoderDiff ) {
cursor_pos ++;
}
if (cursor_pos > 2) {
cursor_pos = 2;
}
if (cursor_pos < 1) {
cursor_pos = 1;
}
lcd.setCursor(0, 1);
lcd.print(" ");
lcd.setCursor(0, 2);
lcd.print(" ");
lcd.setCursor(0, cursor_pos);
lcd.print(">");
enc_dif = encoderDiff;
delay(100);
}
}
if (lcd_clicked()) {
fsm = cursor_pos;
if (fsm == 1) {
int babystepLoadZ = 0;
EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystepLoadZ);
CRITICAL_SECTION_START
babystepsTodo[Z_AXIS] = babystepLoadZ;
CRITICAL_SECTION_END
} else {
int zero = 0;
EEPROM_save_B(EEPROM_BABYSTEP_X, &zero);
EEPROM_save_B(EEPROM_BABYSTEP_Y, &zero);
EEPROM_save_B(EEPROM_BABYSTEP_Z, &zero);
}
delay(500);
}
};
lcd_implementation_clear();
lcd_return_to_status();
}
// Lets the user move the Z carriage up to the end stoppers.
// When done, it sets the current Z to Z_MAX_POS and returns true.
// Otherwise the Z calibration is not changed and false is returned.
bool lcd_calibrate_z_end_stop_manual(bool only_z)
{
bool clean_nozzle_asked = false;
// Don't know where we are. Let's claim we are Z=0, so the soft end stops will not be triggered when moving up.
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
// Until confirmed by the confirmation dialog.
for (;;) {
unsigned long previous_millis_cmd = millis();
const char *msg = only_z ? MSG_MOVE_CARRIAGE_TO_THE_TOP_Z : MSG_MOVE_CARRIAGE_TO_THE_TOP;
const char *msg_next = lcd_display_message_fullscreen_P(msg);
const bool multi_screen = msg_next != NULL;
unsigned long previous_millis_msg = millis();
// Until the user finishes the z up movement.
encoderDiff = 0;
encoderPosition = 0;
for (;;) {
// if (millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS)
// goto canceled;
manage_heater();
manage_inactivity(true);
if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP) {
delay(50);
previous_millis_cmd = millis();
encoderPosition += abs(encoderDiff / ENCODER_PULSES_PER_STEP);
encoderDiff = 0;
if (! planner_queue_full()) {
// Only move up, whatever direction the user rotates the encoder.
current_position[Z_AXIS] += fabs(encoderPosition);
encoderPosition = 0;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[Z_AXIS] / 60, active_extruder);
}
}
if (lcd_clicked()) {
// Abort a move if in progress.
planner_abort_hard();
while (lcd_clicked()) ;
delay(10);
while (lcd_clicked()) ;
break;
}
if (multi_screen && millis() - previous_millis_msg > 5000) {
if (msg_next == NULL)
msg_next = msg;
msg_next = lcd_display_message_fullscreen_P(msg_next);
previous_millis_msg = millis();
}
}
if (! clean_nozzle_asked) {
lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
clean_nozzle_asked = true;
}
// Let the user confirm, that the Z carriage is at the top end stoppers.
int8_t result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CONFIRM_CARRIAGE_AT_THE_TOP, false);
if (result == -1)
goto canceled;
else if (result == 1)
goto calibrated;
// otherwise perform another round of the Z up dialog.
}
calibrated:
// Let the machine think the Z axis is a bit higher than it is, so it will not home into the bed
// during the search for the induction points.
current_position[Z_AXIS] = Z_MAX_POS-3.f;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
return true;
canceled:
return false;
}
static inline bool pgm_is_whitespace(const char *c_addr)
{
const char c = pgm_read_byte(c_addr);
return c == ' ' || c == '\t' || c == '\r' || c == '\n';
}
static inline bool pgm_is_interpunction(const char *c_addr)
{
const char c = pgm_read_byte(c_addr);
return c == '.' || c == ',' || c == ':'|| c == ';' || c == '?' || c == '!' || c == '/';
}
const char* lcd_display_message_fullscreen_P(const char *msg, uint8_t &nlines)
{
// Disable update of the screen by the usual lcd_update() routine.
lcd_update_enable(false);
lcd_implementation_clear();
lcd.setCursor(0, 0);
const char *msgend = msg;
uint8_t row = 0;
for (; row < 4; ++ row) {
while (pgm_is_whitespace(msg))
++ msg;
if (pgm_read_byte(msg) == 0)
// End of the message.
break;
lcd.setCursor(0, row);
const char *msgend2 = msg + min(strlen_P(msg), 20);
msgend = msgend2;
if (pgm_read_byte(msgend) != 0 && ! pgm_is_whitespace(msgend) && ! pgm_is_interpunction(msgend)) {
// Splitting a word. Find the start of the current word.
while (msgend > msg && ! pgm_is_whitespace(msgend - 1))
-- msgend;
if (msgend == msg)
// Found a single long word, which cannot be split. Just cut it.
msgend = msgend2;
}
for (; msg < msgend; ++ msg) {
char c = char(pgm_read_byte(msg));
if (c == '~')
c = ' ';
lcd.print(c);
}
}
nlines = row;
return (pgm_read_byte(msgend) == 0) ? NULL : msgend;
}
void lcd_show_fullscreen_message_and_wait_P(const char *msg)
{
const char *msg_next = lcd_display_message_fullscreen_P(msg);
bool multi_screen = msg_next != NULL;
// Until confirmed by a button click.
for (;;) {
// Wait for 5 seconds before displaying the next text.
for (uint8_t i = 0; i < 100; ++ i) {
delay_keep_alive(50);
if (lcd_clicked()) {
while (lcd_clicked()) ;
delay(10);
while (lcd_clicked()) ;
return;
}
}
if (multi_screen) {
if (msg_next == NULL)
msg_next = msg;
msg_next = lcd_display_message_fullscreen_P(msg_next);
}
}
}
void lcd_wait_for_click()
{
for (;;) {
manage_heater();
manage_inactivity(true);
if (lcd_clicked()) {
while (lcd_clicked()) ;
delay(10);
while (lcd_clicked()) ;
return;
}
}
}
int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting)
{
lcd_display_message_fullscreen_P(msg);
lcd.setCursor(1, 2);
lcd_printPGM(MSG_YES);
lcd.setCursor(0, 3);
lcd_printPGM(PSTR(">"));
lcd_printPGM(MSG_NO);
bool yes = false;
// Wait for user confirmation or a timeout.
unsigned long previous_millis_cmd = millis();
int8_t enc_dif = encoderDiff;
for (;;) {
if (allow_timeouting && millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS)
return -1;
manage_heater();
manage_inactivity(true);
if (abs((enc_dif - encoderDiff)) > 4) {
if (abs(enc_dif - encoderDiff) > 1) {
lcd.setCursor(0, 2);
if (enc_dif > encoderDiff && yes) {
lcd_printPGM((PSTR(" ")));
lcd.setCursor(0, 3);
lcd_printPGM((PSTR(">")));
yes = false;
} else if (enc_dif < encoderDiff && ! yes) {
lcd_printPGM((PSTR(">")));
lcd.setCursor(0, 3);
lcd_printPGM((PSTR(" ")));
yes = true;
}
enc_dif = encoderDiff;
}
}
if (lcd_clicked()) {
while (lcd_clicked()) ;
delay(10);
while (lcd_clicked()) ;
return yes;
}
}
}
void lcd_bed_calibration_show_result(BedSkewOffsetDetectionResultType result, uint8_t point_too_far_mask)
{
const char *msg = NULL;
if (result == BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND) {
lcd_show_fullscreen_message_and_wait_P(MSG_BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND);
} else if (result == BED_SKEW_OFFSET_DETECTION_FITTING_FAILED) {
if (point_too_far_mask == 0)
msg = MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
else if (point_too_far_mask == 2 || point_too_far_mask == 7)
// Only the center point or all the three front points.
msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_BOTH_FAR;
else if (point_too_far_mask & 1 == 0)
// The right and maybe the center point out of reach.
msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_RIGHT_FAR;
else
// The left and maybe the center point out of reach.
msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_LEFT_FAR;
lcd_show_fullscreen_message_and_wait_P(msg);
} else {
if (point_too_far_mask != 0) {
if (point_too_far_mask == 2 || point_too_far_mask == 7)
// Only the center point or all the three front points.
msg = MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_BOTH_FAR;
else if (point_too_far_mask & 1 == 0)
// The right and maybe the center point out of reach.
msg = MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_RIGHT_FAR;
else
// The left and maybe the center point out of reach.
msg = MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_LEFT_FAR;
lcd_show_fullscreen_message_and_wait_P(msg);
}
if (point_too_far_mask == 0 || result > 0) {
switch (result) {
default:
// should not happen
msg = MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
break;
case BED_SKEW_OFFSET_DETECTION_PERFECT:
msg = MSG_BED_SKEW_OFFSET_DETECTION_PERFECT;
break;
case BED_SKEW_OFFSET_DETECTION_SKEW_MILD:
msg = MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD;
break;
case BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME:
msg = MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
break;
}
lcd_show_fullscreen_message_and_wait_P(msg);
}
}
}
static void lcd_show_end_stops() {
lcd.setCursor(0, 0);
lcd_printPGM((PSTR("End stops diag")));
lcd.setCursor(0, 1);
lcd_printPGM((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("X1")) : (PSTR("X0")));
lcd.setCursor(0, 2);
lcd_printPGM((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("Y1")) : (PSTR("Y0")));
lcd.setCursor(0, 3);
lcd_printPGM((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("Z1")) : (PSTR("Z0")));
}
static void menu_show_end_stops() {
lcd_show_end_stops();
if (LCD_CLICKED) lcd_goto_menu(lcd_calibration_menu);
}
// Lets the user move the Z carriage up to the end stoppers.
// When done, it sets the current Z to Z_MAX_POS and returns true.
// Otherwise the Z calibration is not changed and false is returned.
void lcd_diag_show_end_stops()
{
int enc_dif = encoderDiff;
lcd_implementation_clear();
for (;;) {
manage_heater();
manage_inactivity(true);
lcd_show_end_stops();
if (lcd_clicked()) {
while (lcd_clicked()) ;
delay(10);
while (lcd_clicked()) ;
break;
}
}
lcd_implementation_clear();
lcd_return_to_status();
}
void prusa_statistics(int _message) {
switch (_message)
{
case 0: // default message
if (IS_SD_PRINTING)
{
SERIAL_ECHO("{");
prusa_stat_printerstatus(4);
prusa_stat_printinfo();
SERIAL_ECHOLN("}");
}
else
{
SERIAL_ECHO("{");
prusa_stat_printerstatus(1);
SERIAL_ECHOLN("}");
}
break;
case 1: // 1 heating
farm_status = 2;
SERIAL_ECHO("{");
prusa_stat_printerstatus(2);
SERIAL_ECHOLN("}");
farm_timer = 1;
break;
case 2: // heating done
farm_status = 3;
SERIAL_ECHO("{");
prusa_stat_printerstatus(3);
SERIAL_ECHOLN("}");
farm_timer = 1;
if (IS_SD_PRINTING)
{
farm_status = 4;
SERIAL_ECHO("{");
prusa_stat_printerstatus(4);
SERIAL_ECHOLN("}");
}
else
{
SERIAL_ECHO("{");
prusa_stat_printerstatus(3);
SERIAL_ECHOLN("}");;
}
farm_timer = 1;
break;
case 3: // filament change
break;
case 4: // print succesfull
SERIAL_ECHOLN("{[RES:1]}");
farm_timer = 2;
break;
case 5: // print not succesfull
SERIAL_ECHOLN("{[RES:0]}");
farm_timer = 2;
break;
case 6: // print done
SERIAL_ECHOLN("{[PRN:8]}");
farm_timer = 2;
break;
case 7: // print done - stopped
SERIAL_ECHOLN("{[PRN:9]}");
farm_timer = 2;
break;
case 8: // printer started
SERIAL_ECHO("{[PRN:0][PFN:");
SERIAL_ECHO(farm_no);
SERIAL_ECHOLN("]}");
farm_timer = 2;
break;
case 20: // echo farm no
SERIAL_ECHO("{[PFN:");
SERIAL_ECHO(farm_no);
SERIAL_ECHOLN("]}");
farm_timer = 5;
break;
case 21: // temperatures
SERIAL_ECHO("{");
prusa_stat_temperatures();
SERIAL_ECHOLN("}");
break;
case 22: // waiting for filament change
SERIAL_ECHOLN("{[PRN:5]}");
break;
case 99: // heartbeat
SERIAL_ECHO("{[PRN:99]");
prusa_stat_temperatures();
SERIAL_ECHOLN("}");
break;
}
}
static void prusa_stat_printerstatus(int _status)
{
SERIAL_ECHO("[PRN:");
SERIAL_ECHO(_status);
SERIAL_ECHO("]");
}
static void prusa_stat_temperatures()
{
SERIAL_ECHO("[ST0:");
SERIAL_ECHO(target_temperature[0]);
SERIAL_ECHO("][STB:");
SERIAL_ECHO(target_temperature_bed);
SERIAL_ECHO("][AT0:");
SERIAL_ECHO(current_temperature[0]);
SERIAL_ECHO("][ATB:");
SERIAL_ECHO(current_temperature_bed);
SERIAL_ECHO("]");
}
static void prusa_stat_printinfo()
{
SERIAL_ECHO("[TFU:");
SERIAL_ECHO(total_filament_used);
SERIAL_ECHO("][PCD:");
SERIAL_ECHO(itostr3(card.percentDone()));
SERIAL_ECHO("][FEM:");
SERIAL_ECHO(itostr3(feedmultiply));
SERIAL_ECHO("][FNM:");
SERIAL_ECHO(longFilenameOLD);
SERIAL_ECHO("][TIM:");
if (starttime != 0)
{
SERIAL_ECHO(millis() / 1000 - starttime / 1000);
}
else
{
SERIAL_ECHO(0);
}
SERIAL_ECHO("][FWR:");
SERIAL_ECHO(FW_version);
SERIAL_ECHO("]");
}
void lcd_pick_babystep(){
int enc_dif = 0;
int cursor_pos = 1;
int fsm = 0;
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_PICK_Z);
lcd.setCursor(3, 2);
lcd.print("1");
lcd.setCursor(3, 3);
lcd.print("2");
lcd.setCursor(12, 2);
lcd.print("3");
lcd.setCursor(12, 3);
lcd.print("4");
lcd.setCursor(1, 2);
lcd.print(">");
enc_dif = encoderDiff;
while (fsm == 0) {
manage_heater();
manage_inactivity(true);
if ( abs((enc_dif - encoderDiff)) > 4 ) {
if ( (abs(enc_dif - encoderDiff)) > 1 ) {
if (enc_dif > encoderDiff ) {
cursor_pos --;
}
if (enc_dif < encoderDiff ) {
cursor_pos ++;
}
if (cursor_pos > 4) {
cursor_pos = 4;
}
if (cursor_pos < 1) {
cursor_pos = 1;
}
lcd.setCursor(1, 2);
lcd.print(" ");
lcd.setCursor(1, 3);
lcd.print(" ");
lcd.setCursor(10, 2);
lcd.print(" ");
lcd.setCursor(10, 3);
lcd.print(" ");
if (cursor_pos < 3) {
lcd.setCursor(1, cursor_pos+1);
lcd.print(">");
}else{
lcd.setCursor(10, cursor_pos-1);
lcd.print(">");
}
enc_dif = encoderDiff;
delay(100);
}
}
if (lcd_clicked()) {
fsm = cursor_pos;
int babyStepZ;
EEPROM_read_B(EEPROM_BABYSTEP_Z0+((fsm-1)*2),&babyStepZ);
EEPROM_save_B(EEPROM_BABYSTEP_Z,&babyStepZ);
eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
delay(500);
}
};
lcd_implementation_clear();
lcd_return_to_status();
}
void lcd_move_menu_axis()
{
START_MENU();
MENU_ITEM(back, MSG_SETTINGS, lcd_settings_menu);
MENU_ITEM(submenu, MSG_MOVE_X, lcd_move_x);
MENU_ITEM(submenu, MSG_MOVE_Y, lcd_move_y);
if (move_menu_scale < 10.0)
{
if (!isPrintPaused)
{
MENU_ITEM(submenu, MSG_MOVE_Z, lcd_move_z);
}
MENU_ITEM(submenu, MSG_MOVE_E, lcd_move_e);
}
END_MENU();
}
static void lcd_move_menu_1mm()
{
move_menu_scale = 1.0;
lcd_move_menu_axis();
}
void EEPROM_save(int pos, uint8_t* value, uint8_t size)
{
do
{
eeprom_write_byte((unsigned char*)pos, *value);
pos++;
value++;
} while (--size);
}
void EEPROM_read(int pos, uint8_t* value, uint8_t size)
{
do
{
*value = eeprom_read_byte((unsigned char*)pos);
pos++;
value++;
} while (--size);
}
static void lcd_silent_mode_set() {
SilentModeMenu = !SilentModeMenu;
eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
digipot_init();
lcd_goto_menu(lcd_settings_menu, 7);
}
static void lcd_set_lang(unsigned char lang) {
lang_selected = lang;
firstrun = 1;
eeprom_update_byte((unsigned char *)EEPROM_LANG, lang);
/*langsel=0;*/
if (langsel == LANGSEL_MODAL)
// From modal mode to an active mode? This forces the menu to return to the setup menu.
langsel = LANGSEL_ACTIVE;
}
void lcd_force_language_selection() {
eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_FORCE_SELECTION);
}
static void lcd_language_menu()
{
START_MENU();
if (langsel == LANGSEL_OFF) {
MENU_ITEM(back, MSG_SETTINGS, lcd_settings_menu);
} else if (langsel == LANGSEL_ACTIVE) {
MENU_ITEM(back, MSG_WATCH, lcd_status_screen);
}
for (int i=0;i<LANG_NUM;i++){
MENU_ITEM(setlang, MSG_LANGUAGE_NAME_EXPLICIT(i), i);
}
END_MENU();
}
void lcd_mesh_bedleveling()
{
enquecommand_P(PSTR("G80"));
lcd_return_to_status();
}
void lcd_mesh_calibration()
{
enquecommand_P(PSTR("M45"));
lcd_return_to_status();
}
void lcd_mesh_calibration_z()
{
enquecommand_P(PSTR("M45 Z"));
lcd_return_to_status();
}
void lcd_toshiba_flash_air_compatibility_toggle()
{
card.ToshibaFlashAir_enable(! card.ToshibaFlashAir_isEnabled());
eeprom_update_byte((uint8_t*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY, card.ToshibaFlashAir_isEnabled());
}
static void lcd_settings_menu()
{
EEPROM_read(EEPROM_SILENT, (uint8_t*)&SilentModeMenu, sizeof(SilentModeMenu));
START_MENU();
MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
MENU_ITEM(submenu, MSG_TEMPERATURE, lcd_control_temperature_menu);
MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu_1mm);
if (!isPrintPaused)
{
MENU_ITEM(gcode, MSG_DISABLE_STEPPERS, PSTR("M84"));
}
if (SilentModeMenu == 0) {
MENU_ITEM(function, MSG_SILENT_MODE_OFF, lcd_silent_mode_set);
} else {
MENU_ITEM(function, MSG_SILENT_MODE_ON, lcd_silent_mode_set);
}
if (!isPrintPaused)
{
MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z);//8
}
MENU_ITEM(submenu, MSG_LANGUAGE_SELECT, lcd_language_menu);
if (card.ToshibaFlashAir_isEnabled()) {
MENU_ITEM(function, MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_ON, lcd_toshiba_flash_air_compatibility_toggle);
} else {
MENU_ITEM(function, MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_OFF, lcd_toshiba_flash_air_compatibility_toggle);
}
if (farm_mode)
{
MENU_ITEM(submenu, PSTR("Farm number"), lcd_farm_no);
}
END_MENU();
}
static void lcd_calibration_menu()
{
START_MENU();
MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
if (!isPrintPaused)
{
MENU_ITEM(submenu, MSG_SELFTEST, lcd_selftest);
#ifndef MESH_BED_LEVELING
// MK1
// "Calibrate Z"
MENU_ITEM(gcode, MSG_HOMEYZ, PSTR("G28 Z"));
#else
// MK2
MENU_ITEM(submenu, MSG_CALIBRATE_BED, lcd_mesh_calibration);
// "Calibrate Z" with storing the reference values to EEPROM.
MENU_ITEM(submenu, MSG_HOMEYZ, lcd_mesh_calibration_z);
// "Mesh Bed Leveling"
MENU_ITEM(submenu, MSG_MESH_BED_LEVELING, lcd_mesh_bedleveling);
#endif
MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28 W"));
MENU_ITEM(submenu, MSG_BED_CORRECTION_MENU, lcd_adjust_bed);
MENU_ITEM(submenu, MSG_SHOW_END_STOPS, menu_show_end_stops);
MENU_ITEM(gcode, MSG_CALIBRATE_BED_RESET, PSTR("M44"));
}
END_MENU();
}
/*
void lcd_mylang_top(int hlaska) {
lcd.setCursor(0,0);
lcd.print(" ");
lcd.setCursor(0,0);
lcd_printPGM(MSG_ALL[hlaska-1][LANGUAGE_SELECT]);
}
void lcd_mylang_drawmenu(int cursor) {
int first = 0;
if (cursor>2) first = cursor-2;
if (cursor==LANG_NUM) first = LANG_NUM-3;
lcd.setCursor(0, 1);
lcd.print(" ");
lcd.setCursor(1, 1);
lcd_printPGM(MSG_ALL[first][LANGUAGE_NAME]);
lcd.setCursor(0, 2);
lcd.print(" ");
lcd.setCursor(1, 2);
lcd_printPGM(MSG_ALL[first+1][LANGUAGE_NAME]);
lcd.setCursor(0, 3);
lcd.print(" ");
lcd.setCursor(1, 3);
lcd_printPGM(MSG_ALL[first+2][LANGUAGE_NAME]);
if (cursor==1) lcd.setCursor(0, 1);
if (cursor>1 && cursor<LANG_NUM) lcd.setCursor(0, 2);
if (cursor==LANG_NUM) lcd.setCursor(0, 3);
lcd.print(">");
if (cursor<LANG_NUM-1) {
lcd.setCursor(19,3);
lcd.print("\x01");
}
if (cursor>2) {
lcd.setCursor(19,1);
lcd.print("^");
}
}
*/
void lcd_mylang_drawmenu(int cursor) {
int first = 0;
if (cursor>3) first = cursor-3;
if (cursor==LANG_NUM && LANG_NUM>4) first = LANG_NUM-4;
if (cursor==LANG_NUM && LANG_NUM==4) first = LANG_NUM-4;
lcd.setCursor(0, 0);
lcd.print(" ");
lcd.setCursor(1, 0);
lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+0));
lcd.setCursor(0, 1);
lcd.print(" ");
lcd.setCursor(1, 1);
lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+1));
lcd.setCursor(0, 2);
lcd.print(" ");
if (LANG_NUM > 2){
lcd.setCursor(1, 2);
lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+2));
}
lcd.setCursor(0, 3);
lcd.print(" ");
if (LANG_NUM>3) {
lcd.setCursor(1, 3);
lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+3));
}
if (cursor==1) lcd.setCursor(0, 0);
if (cursor==2) lcd.setCursor(0, 1);
if (cursor>2) lcd.setCursor(0, 2);
if (cursor==LANG_NUM && LANG_NUM>3) lcd.setCursor(0, 3);
lcd.print(">");
if (cursor<LANG_NUM-1 && LANG_NUM>4) {
lcd.setCursor(19,3);
lcd.print("\x01");
}
if (cursor>3 && LANG_NUM>4) {
lcd.setCursor(19,0);
lcd.print("^");
}
}
void lcd_set_custom_characters_arrows();
void lcd_set_custom_characters_degree();
void lcd_mylang_drawcursor(int cursor) {
if (cursor==1) lcd.setCursor(0, 1);
if (cursor>1 && cursor<LANG_NUM) lcd.setCursor(0, 2);
if (cursor==LANG_NUM) lcd.setCursor(0, 3);
lcd.print(">");
}
void lcd_mylang() {
int enc_dif = 0;
int cursor_pos = 1;
lang_selected=255;
int hlaska=1;
int counter=0;
lcd_set_custom_characters_arrows();
lcd_implementation_clear();
//lcd_mylang_top(hlaska);
lcd_mylang_drawmenu(cursor_pos);
enc_dif = encoderDiff;
while ( (lang_selected == 255) ) {
manage_heater();
manage_inactivity(true);
if ( abs((enc_dif - encoderDiff)) > 4 ) {
//if ( (abs(enc_dif - encoderDiff)) > 1 ) {
if (enc_dif > encoderDiff ) {
cursor_pos --;
}
if (enc_dif < encoderDiff ) {
cursor_pos ++;
}
if (cursor_pos > LANG_NUM) {
cursor_pos = LANG_NUM;
}
if (cursor_pos < 1) {
cursor_pos = 1;
}
lcd_mylang_drawmenu(cursor_pos);
enc_dif = encoderDiff;
delay(100);
//}
} else delay(20);
if (lcd_clicked()) {
lcd_set_lang(cursor_pos-1);
delay(500);
}
/*
if (++counter == 80) {
hlaska++;
if(hlaska>LANG_NUM) hlaska=1;
lcd_mylang_top(hlaska);
lcd_mylang_drawcursor(cursor_pos);
counter=0;
}
*/
};
if(MYSERIAL.available() > 1){
lang_selected = 0;
firstrun = 0;
}
lcd_set_custom_characters_degree();
lcd_implementation_clear();
lcd_return_to_status();
}
static void lcd_farm_no()
{
int enc_dif = 0;
int _farmno = farm_no;
int _ret = 0;
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd.print("Farm no");
do
{
if (abs((enc_dif - encoderDiff)) > 2) {
if (enc_dif > encoderDiff) {
_farmno--;
}
if (enc_dif < encoderDiff) {
_farmno++;
}
enc_dif = 0;
encoderDiff = 0;
}
if (_farmno > 254) { _farmno = 1; }
if (_farmno < 1) { _farmno = 254; }
lcd.setCursor(0, 2);
lcd.print(_farmno);
lcd.print(" ");
delay(100);
if (lcd_clicked())
{
_ret = 1;
farm_no = _farmno;
EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
prusa_statistics(20);
lcd_return_to_status();
}
manage_heater();
} while (_ret == 0);
}
void lcd_confirm_print()
{
int enc_dif = 0;
int cursor_pos = 1;
int _ret = 0;
int _t = 0;
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd.print("Print ok ?");
do
{
if (abs((enc_dif - encoderDiff)) > 2) {
if (enc_dif > encoderDiff) {
cursor_pos--;
}
if (enc_dif < encoderDiff) {
cursor_pos++;
}
}
if (cursor_pos > 2) { cursor_pos = 2; }
if (cursor_pos < 1) { cursor_pos = 1; }
lcd.setCursor(0, 2); lcd.print(" ");
lcd.setCursor(0, 3); lcd.print(" ");
lcd.setCursor(2, 2);
lcd_printPGM(MSG_YES);
lcd.setCursor(2, 3);
lcd_printPGM(MSG_NO);
lcd.setCursor(0, 1 + cursor_pos);
lcd.print(">");
delay(100);
_t = _t + 1;
if (_t>100)
{
prusa_statistics(99);
_t = 0;
}
if (lcd_clicked())
{
if (cursor_pos == 1)
{
_ret = 1;
prusa_statistics(20);
prusa_statistics(4);
}
if (cursor_pos == 2)
{
_ret = 2;
prusa_statistics(20);
prusa_statistics(5);
}
}
manage_heater();
manage_inactivity();
} while (_ret == 0);
}
static void lcd_main_menu()
{
SDscrool = 0;
START_MENU();
// Majkl superawesome menu
MENU_ITEM(back, MSG_WATCH, lcd_status_screen);
if ( ( IS_SD_PRINTING || is_usb_printing ) && (current_position[Z_AXIS] < Z_HEIGHT_HIDE_LIVE_ADJUST_MENU) )
{
MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z);//8
}
if ( moves_planned() || IS_SD_PRINTING || is_usb_printing )
{
MENU_ITEM(submenu, MSG_TUNE, lcd_tune_menu);
} else
{
MENU_ITEM(submenu, MSG_PREHEAT, lcd_preheat_menu);
}
#ifdef SDSUPPORT
if (card.cardOK)
{
if (card.isFileOpen())
{
if (card.sdprinting)
{
MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause);
}
else
{
MENU_ITEM(function, MSG_RESUME_PRINT, lcd_sdcard_resume);
}
MENU_ITEM(submenu, MSG_STOP_PRINT, lcd_sdcard_stop);
}
else
{
if (!is_usb_printing)
{
MENU_ITEM(submenu, MSG_CARD_MENU, lcd_sdcard_menu);
}
#if SDCARDDETECT < 1
MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21")); // SD-card changed by user
#endif
}
} else
{
MENU_ITEM(submenu, MSG_NO_CARD, lcd_sdcard_menu);
#if SDCARDDETECT < 1
MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface
#endif
}
#endif
if (IS_SD_PRINTING || is_usb_printing)
{
}
else
{
MENU_ITEM(function, MSG_LOAD_FILAMENT, lcd_LoadFilament);
MENU_ITEM(function, MSG_UNLOAD_FILAMENT, lcd_unLoadFilament);
MENU_ITEM(submenu, MSG_SETTINGS, lcd_settings_menu);
MENU_ITEM(submenu, MSG_MENU_CALIBRATION, lcd_calibration_menu);
}
if (!is_usb_printing)
{
MENU_ITEM(submenu, MSG_STATISTICS, lcd_menu_statistics);
}
MENU_ITEM(submenu, MSG_SUPPORT, lcd_support_menu);
END_MENU();
}
#ifdef SDSUPPORT
static void lcd_autostart_sd()
{
card.lastnr = 0;
card.setroot();
card.checkautostart(true);
}
#endif
static void lcd_silent_mode_set_tune() {
SilentModeMenu = !SilentModeMenu;
eeprom_update_byte((unsigned char*)EEPROM_SILENT, SilentModeMenu);
digipot_init();
lcd_goto_menu(lcd_tune_menu, 9);
}
static void lcd_tune_menu()
{
EEPROM_read(EEPROM_SILENT, (uint8_t*)&SilentModeMenu, sizeof(SilentModeMenu));
START_MENU();
MENU_ITEM(back, MSG_MAIN, lcd_main_menu); //1
MENU_ITEM_EDIT(int3, MSG_SPEED, &feedmultiply, 10, 999);//2
MENU_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 10);//3
MENU_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 10);//4
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);//5
MENU_ITEM_EDIT(int3, MSG_FLOW, &extrudemultiply, 10, 999);//6
#ifdef FILAMENTCHANGEENABLE
MENU_ITEM(gcode, MSG_FILAMENTCHANGE, PSTR("M600"));//7
#endif
if (SilentModeMenu == 0) {
MENU_ITEM(function, MSG_SILENT_MODE_OFF, lcd_silent_mode_set_tune);
} else {
MENU_ITEM(function, MSG_SILENT_MODE_ON, lcd_silent_mode_set_tune);
}
END_MENU();
}
static void lcd_move_menu_01mm()
{
move_menu_scale = 0.1;
lcd_move_menu_axis();
}
static void lcd_control_temperature_menu()
{
#ifdef PIDTEMP
// set up temp variables - undo the default scaling
// raw_Ki = unscalePID_i(Ki);
// raw_Kd = unscalePID_d(Kd);
#endif
START_MENU();
MENU_ITEM(back, MSG_SETTINGS, lcd_settings_menu);
#if TEMP_SENSOR_0 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 10);
#endif
#if TEMP_SENSOR_1 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE1, &target_temperature[1], 0, HEATER_1_MAXTEMP - 10);
#endif
#if TEMP_SENSOR_2 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE2, &target_temperature[2], 0, HEATER_2_MAXTEMP - 10);
#endif
#if TEMP_SENSOR_BED != 0
MENU_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 3);
#endif
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
#if defined AUTOTEMP && (TEMP_SENSOR_0 != 0)
MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &autotemp_enabled);
MENU_ITEM_EDIT(float3, MSG_MIN, &autotemp_min, 0, HEATER_0_MAXTEMP - 10);
MENU_ITEM_EDIT(float3, MSG_MAX, &autotemp_max, 0, HEATER_0_MAXTEMP - 10);
MENU_ITEM_EDIT(float32, MSG_FACTOR, &autotemp_factor, 0.0, 1.0);
#endif
END_MENU();
}
#if SDCARDDETECT == -1
static void lcd_sd_refresh()
{
card.initsd();
currentMenuViewOffset = 0;
}
#endif
static void lcd_sd_updir()
{
SDscrool = 0;
card.updir();
currentMenuViewOffset = 0;
}
void lcd_sdcard_stop()
{
lcd.setCursor(0, 0);
lcd_printPGM(MSG_STOP_PRINT);
lcd.setCursor(2, 2);
lcd_printPGM(MSG_NO);
lcd.setCursor(2, 3);
lcd_printPGM(MSG_YES);
lcd.setCursor(0, 2); lcd.print(" ");
lcd.setCursor(0, 3); lcd.print(" ");
if ((int32_t)encoderPosition > 2) { encoderPosition = 2; }
if ((int32_t)encoderPosition < 1) { encoderPosition = 1; }
lcd.setCursor(0, 1 + encoderPosition);
lcd.print(">");
if (lcd_clicked())
{
if ((int32_t)encoderPosition == 1)
{
lcd_return_to_status();
}
if ((int32_t)encoderPosition == 2)
{
cancel_heatup = true;
#ifdef MESH_BED_LEVELING
mbl.active = false;
#endif
// Stop the stoppers, update the position from the stoppers.
planner_abort_hard();
// Because the planner_abort_hard() initialized current_position[Z] from the stepper,
// Z baystep is no more applied. Reset it.
babystep_reset();
// Clean the input command queue.
cmdqueue_reset();
lcd_setstatuspgm(MSG_PRINT_ABORTED);
card.sdprinting = false;
card.closefile();
stoptime = millis();
unsigned long t = (stoptime - starttime) / 1000;
save_statistics(total_filament_used, t);
lcd_return_to_status();
lcd_ignore_click(true);
lcd_commands_type = LCD_COMMAND_STOP_PRINT;
}
}
}
void lcd_sdcard_menu()
{
int tempScrool = 0;
if (lcdDrawUpdate == 0 && LCD_CLICKED == 0)
//delay(100);
return; // nothing to do (so don't thrash the SD card)
uint16_t fileCnt = card.getnrfilenames();
START_MENU();
MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
card.getWorkDirName();
if (card.filename[0] == '/')
{
#if SDCARDDETECT == -1
MENU_ITEM(function, MSG_REFRESH, lcd_sd_refresh);
#endif
} else {
MENU_ITEM(function, PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir);
}
for (uint16_t i = 0; i < fileCnt; i++)
{
if (_menuItemNr == _lineNr)
{
#ifndef SDCARD_RATHERRECENTFIRST
card.getfilename(i);
#else
card.getfilename(fileCnt - 1 - i);
#endif
if (card.filenameIsDir)
{
MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
} else {
MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, card.longFilename);
}
} else {
MENU_ITEM_DUMMY();
}
}
END_MENU();
}
#define menu_edit_type(_type, _name, _strFunc, scale) \
void menu_edit_ ## _name () \
{ \
if ((int32_t)encoderPosition < 0) encoderPosition = 0; \
if ((int32_t)encoderPosition > menuData.editMenuParentState.maxEditValue) encoderPosition = menuData.editMenuParentState.maxEditValue; \
if (lcdDrawUpdate) \
lcd_implementation_drawedit(menuData.editMenuParentState.editLabel, _strFunc(((_type)((int32_t)encoderPosition + menuData.editMenuParentState.minEditValue)) / scale)); \
if (LCD_CLICKED) \
{ \
*((_type*)menuData.editMenuParentState.editValue) = ((_type)((int32_t)encoderPosition + menuData.editMenuParentState.minEditValue)) / scale; \
lcd_goto_menu(menuData.editMenuParentState.prevMenu, menuData.editMenuParentState.prevEncoderPosition, true, false); \
} \
} \
static void menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) \
{ \
menuData.editMenuParentState.prevMenu = currentMenu; \
menuData.editMenuParentState.prevEncoderPosition = encoderPosition; \
\
lcdDrawUpdate = 2; \
menuData.editMenuParentState.editLabel = pstr; \
menuData.editMenuParentState.editValue = ptr; \
menuData.editMenuParentState.minEditValue = minValue * scale; \
menuData.editMenuParentState.maxEditValue = maxValue * scale - menuData.editMenuParentState.minEditValue; \
lcd_goto_menu(menu_edit_ ## _name, (*ptr) * scale - menuData.editMenuParentState.minEditValue, true, false); \
\
}\
/*
void menu_edit_callback_ ## _name () { \
menu_edit_ ## _name (); \
if (LCD_CLICKED) (*callbackFunc)(); \
} \
static void menu_action_setting_edit_callback_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue, menuFunc_t callback) \
{ \
menuData.editMenuParentState.prevMenu = currentMenu; \
menuData.editMenuParentState.prevEncoderPosition = encoderPosition; \
\
lcdDrawUpdate = 2; \
lcd_goto_menu(menu_edit_callback_ ## _name, (*ptr) * scale - menuData.editMenuParentState.minEditValue, true, false); \
\
menuData.editMenuParentState.editLabel = pstr; \
menuData.editMenuParentState.editValue = ptr; \
menuData.editMenuParentState.minEditValue = minValue * scale; \
menuData.editMenuParentState.maxEditValue = maxValue * scale - menuData.editMenuParentState.minEditValue; \
callbackFunc = callback;\
}
*/
menu_edit_type(int, int3, itostr3, 1)
menu_edit_type(float, float3, ftostr3, 1)
menu_edit_type(float, float32, ftostr32, 100)
menu_edit_type(float, float43, ftostr43, 1000)
menu_edit_type(float, float5, ftostr5, 0.01)
menu_edit_type(float, float51, ftostr51, 10)
menu_edit_type(float, float52, ftostr52, 100)
menu_edit_type(unsigned long, long5, ftostr5, 0.01)
static void lcd_selftest()
{
int _progress = 0;
bool _result = false;
_progress = lcd_selftest_screen(-1, _progress, 4, true, 2000);
_progress = lcd_selftest_screen(0, _progress, 3, true, 2000);
_result = lcd_selfcheck_endstops();
if (_result)
{
_progress = lcd_selftest_screen(1, _progress, 3, true, 1000);
_result = lcd_selfcheck_check_heater(false);
}
if (_result)
{
_progress = lcd_selftest_screen(2, _progress, 3, true, 2000);
_result = lcd_selfcheck_axis(0, X_MAX_POS);
}
if (_result)
{
_progress = lcd_selftest_screen(3, _progress, 3, true, 1500);
_result = lcd_selfcheck_axis(1, Y_MAX_POS);
}
if (_result)
{
current_position[X_AXIS] = current_position[X_AXIS] - 3;
current_position[Y_AXIS] = current_position[Y_AXIS] - 14;
_progress = lcd_selftest_screen(4, _progress, 3, true, 1500);
_result = lcd_selfcheck_axis(2, Z_MAX_POS);
}
if (_result)
{
_progress = lcd_selftest_screen(5, _progress, 3, true, 2000);
_result = lcd_selfcheck_check_heater(true);
}
if (_result)
{
_progress = lcd_selftest_screen(6, _progress, 3, true, 5000);
}
else
{
_progress = lcd_selftest_screen(7, _progress, 3, true, 5000);
}
lcd_implementation_clear();
lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL;
if (_result)
{
LCD_ALERTMESSAGERPGM(MSG_SELFTEST_OK);
}
else
{
LCD_ALERTMESSAGERPGM(MSG_SELFTEST_FAILED);
}
}
static bool lcd_selfcheck_endstops()
{
bool _result = true;
if (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1 || READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1 || READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1)
{
current_position[0] = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? current_position[0] = current_position[0] + 10 : current_position[0];
current_position[1] = (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? current_position[1] = current_position[1] + 10 : current_position[1];
current_position[2] = (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? current_position[2] = current_position[2] + 10 : current_position[2];
}
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[0] / 60, active_extruder);
delay(500);
if (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1 || READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1 || READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1)
{
_result = false;
String _error = String((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? "X" : "") +
String((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? "Y" : "") +
String((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? "Z" : "");
lcd_selftest_error(3, _error.c_str(), "");
}
manage_heater();
manage_inactivity();
return _result;
}
static bool lcd_selfcheck_axis(int _axis, int _travel)
{
bool _stepdone = false;
bool _stepresult = false;
int _progress = 0;
int _travel_done = 0;
int _err_endstop = 0;
int _lcd_refresh = 0;
_travel = _travel + (_travel / 10);
do {
if (_axis == 2)
{
current_position[_axis] = current_position[_axis] - 1;
}
else
{
current_position[_axis] = current_position[_axis] - 3;
}
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
st_synchronize();
if (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1 || READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1 || READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1)
{
if (_axis == 0)
{
_stepresult = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? true : false;
_err_endstop = (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? 1 : 2;
disable_x();
}
if (_axis == 1)
{
_stepresult = (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? true : false;
_err_endstop = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? 0 : 2;
disable_y();
}
if (_axis == 2)
{
_stepresult = (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? true : false;
_err_endstop = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? 0 : 1;
disable_z();
}
_stepdone = true;
}
if (_lcd_refresh < 6)
{
_lcd_refresh++;
}
else
{
_progress = lcd_selftest_screen(2 + _axis, _progress, 3, false, 0);
_lcd_refresh = 0;
}
manage_heater();
manage_inactivity();
delay(100);
(_travel_done <= _travel) ? _travel_done++ : _stepdone = true;
} while (!_stepdone);
current_position[_axis] = current_position[_axis] + 15;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
if (!_stepresult)
{
const char *_error_1;
const char *_error_2;
if (_axis == X_AXIS) _error_1 = "X";
if (_axis == Y_AXIS) _error_1 = "Y";
if (_axis == Z_AXIS) _error_1 = "Z";
if (_err_endstop == 0) _error_2 = "X";
if (_err_endstop == 1) _error_2 = "Y";
if (_err_endstop == 2) _error_2 = "Z";
if (_travel_done >= _travel)
{
lcd_selftest_error(5, _error_1, _error_2);
}
else
{
lcd_selftest_error(4, _error_1, _error_2);
}
}
return _stepresult;
}
static bool lcd_selfcheck_check_heater(bool _isbed)
{
int _counter = 0;
int _progress = 0;
bool _stepresult = false;
bool _docycle = true;
int _checked_snapshot = (_isbed) ? degBed() : degHotend(0);
int _opposite_snapshot = (_isbed) ? degHotend(0) : degBed();
int _cycles = (_isbed) ? 120 : 30;
target_temperature[0] = (_isbed) ? 0 : 100;
target_temperature_bed = (_isbed) ? 100 : 0;
manage_heater();
manage_inactivity();
do {
_counter++;
(_counter < _cycles) ? _docycle = true : _docycle = false;
manage_heater();
manage_inactivity();
_progress = (_isbed) ? lcd_selftest_screen(5, _progress, 2, false, 400) : lcd_selftest_screen(1, _progress, 2, false, 400);
} while (_docycle);
target_temperature[0] = 0;
target_temperature_bed = 0;
manage_heater();
int _checked_result = (_isbed) ? degBed() - _checked_snapshot : degHotend(0) - _checked_snapshot;
int _opposite_result = (_isbed) ? degHotend(0) - _opposite_snapshot : degBed() - _opposite_snapshot;
if (_opposite_result < (_isbed) ? 10 : 3)
{
if (_checked_result >= (_isbed) ? 3 : 10)
{
_stepresult = true;
}
else
{
lcd_selftest_error(1, "", "");
}
}
else
{
lcd_selftest_error(2, "", "");
}
manage_heater();
manage_inactivity();
return _stepresult;
}
static void lcd_selftest_error(int _error_no, const char *_error_1, const char *_error_2)
{
lcd_implementation_quick_feedback();
target_temperature[0] = 0;
target_temperature_bed = 0;
manage_heater();
manage_inactivity();
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_SELFTEST_ERROR);
lcd.setCursor(0, 1);
lcd_printPGM(MSG_SELFTEST_PLEASECHECK);
switch (_error_no)
{
case 1:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_SELFTEST_HEATERTHERMISTOR);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_NOTCONNECTED);
break;
case 2:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_SELFTEST_BEDHEATER);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_WIRINGERROR);
break;
case 3:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_SELFTEST_ENDSTOPS);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_WIRINGERROR);
lcd.setCursor(17, 3);
lcd.print(_error_1);
break;
case 4:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_SELFTEST_MOTOR);
lcd.setCursor(18, 2);
lcd.print(_error_1);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_ENDSTOP);
lcd.setCursor(18, 3);
lcd.print(_error_2);
break;
case 5:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_SELFTEST_ENDSTOP_NOTHIT);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_MOTOR);
lcd.setCursor(18, 3);
lcd.print(_error_1);
break;
}
delay(1000);
lcd_implementation_quick_feedback();
do {
delay(100);
manage_heater();
manage_inactivity();
} while (!lcd_clicked());
LCD_ALERTMESSAGERPGM(MSG_SELFTEST_FAILED);
lcd_return_to_status();
}
static int lcd_selftest_screen(int _step, int _progress, int _progress_scale, bool _clear, int _delay)
{
lcd_next_update_millis = millis() + (LCD_UPDATE_INTERVAL * 10000);
int _step_block = 0;
const char *_indicator = (_progress > _progress_scale) ? "-" : "|";
if (_clear) lcd_implementation_clear();
lcd.setCursor(0, 0);
if (_step == -1) lcd_printPGM(MSG_SELFTEST_START);
if (_step == 0) lcd_printPGM(MSG_SELFTEST_CHECK_ENDSTOPS);
if (_step == 1) lcd_printPGM(MSG_SELFTEST_CHECK_HOTEND);
if (_step == 2) lcd_printPGM(MSG_SELFTEST_CHECK_X);
if (_step == 3) lcd_printPGM(MSG_SELFTEST_CHECK_Y);
if (_step == 4) lcd_printPGM(MSG_SELFTEST_CHECK_Z);
if (_step == 5) lcd_printPGM(MSG_SELFTEST_CHECK_BED);
if (_step == 6) lcd_printPGM(MSG_SELFTEST_CHECK_ALLCORRECT);
if (_step == 7) lcd_printPGM(MSG_SELFTEST_FAILED);
lcd.setCursor(0, 1);
lcd.print("--------------------");
_step_block = 1;
lcd_selftest_screen_step(3, 9, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Hotend", _indicator);
_step_block = 2;
lcd_selftest_screen_step(2, 2, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "X", _indicator);
_step_block = 3;
lcd_selftest_screen_step(2, 8, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Y", _indicator);
_step_block = 4;
lcd_selftest_screen_step(2, 14, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Z", _indicator);
_step_block = 5;
lcd_selftest_screen_step(3, 0, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Bed", _indicator);
if (_delay > 0) delay(_delay);
_progress++;
return (_progress > _progress_scale * 2) ? 0 : _progress;
}
static void lcd_selftest_screen_step(int _row, int _col, int _state, const char *_name, const char *_indicator)
{
lcd.setCursor(_col, _row);
switch (_state)
{
case 1:
lcd.print(_name);
lcd.setCursor(_col + strlen(_name), _row);
lcd.print(":");
lcd.setCursor(_col + strlen(_name) + 1, _row);
lcd.print(_indicator);
break;
case 2:
lcd.print(_name);
lcd.setCursor(_col + strlen(_name), _row);
lcd.print(":");
lcd.setCursor(_col + strlen(_name) + 1, _row);
lcd.print("OK");
break;
default:
lcd.print(_name);
}
}
/** End of menus **/
static void lcd_quick_feedback()
{
lcdDrawUpdate = 2;
blocking_enc = millis() + 500;
lcd_implementation_quick_feedback();
}
/** Menu action functions **/
static void menu_action_back(menuFunc_t data) {
lcd_goto_menu(data);
}
static void menu_action_submenu(menuFunc_t data) {
lcd_goto_menu(data);
}
static void menu_action_gcode(const char* pgcode) {
enquecommand_P(pgcode);
}
static void menu_action_setlang(unsigned char lang) {
lcd_set_lang(lang);
}
static void menu_action_function(menuFunc_t data) {
(*data)();
}
static void menu_action_sdfile(const char* filename, char* longFilename)
{
char cmd[30];
char* c;
sprintf_P(cmd, PSTR("M23 %s"), filename);
for (c = &cmd[4]; *c; c++)
*c = tolower(*c);
enquecommand(cmd);
enquecommand_P(PSTR("M24"));
lcd_return_to_status();
}
static void menu_action_sddirectory(const char* filename, char* longFilename)
{
card.chdir(filename);
encoderPosition = 0;
}
static void menu_action_setting_edit_bool(const char* pstr, bool* ptr)
{
*ptr = !(*ptr);
}
/*
static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callback)
{
menu_action_setting_edit_bool(pstr, ptr);
(*callback)();
}
*/
#endif//ULTIPANEL
/** LCD API **/
void lcd_init()
{
lcd_implementation_init();
#ifdef NEWPANEL
SET_INPUT(BTN_EN1);
SET_INPUT(BTN_EN2);
WRITE(BTN_EN1, HIGH);
WRITE(BTN_EN2, HIGH);
#if BTN_ENC > 0
SET_INPUT(BTN_ENC);
WRITE(BTN_ENC, HIGH);
#endif
#ifdef REPRAPWORLD_KEYPAD
pinMode(SHIFT_CLK, OUTPUT);
pinMode(SHIFT_LD, OUTPUT);
pinMode(SHIFT_OUT, INPUT);
WRITE(SHIFT_OUT, HIGH);
WRITE(SHIFT_LD, HIGH);
#endif
#else // Not NEWPANEL
#ifdef SR_LCD_2W_NL // Non latching 2 wire shift register
pinMode (SR_DATA_PIN, OUTPUT);
pinMode (SR_CLK_PIN, OUTPUT);
#elif defined(SHIFT_CLK)
pinMode(SHIFT_CLK, OUTPUT);
pinMode(SHIFT_LD, OUTPUT);
pinMode(SHIFT_EN, OUTPUT);
pinMode(SHIFT_OUT, INPUT);
WRITE(SHIFT_OUT, HIGH);
WRITE(SHIFT_LD, HIGH);
WRITE(SHIFT_EN, LOW);
#else
#ifdef ULTIPANEL
#error ULTIPANEL requires an encoder
#endif
#endif // SR_LCD_2W_NL
#endif//!NEWPANEL
#if defined (SDSUPPORT) && defined(SDCARDDETECT) && (SDCARDDETECT > 0)
pinMode(SDCARDDETECT, INPUT);
WRITE(SDCARDDETECT, HIGH);
lcd_oldcardstatus = IS_SD_INSERTED;
#endif//(SDCARDDETECT > 0)
#ifdef LCD_HAS_SLOW_BUTTONS
slow_buttons = 0;
#endif
lcd_buttons_update();
#ifdef ULTIPANEL
encoderDiff = 0;
#endif
}
//#include <avr/pgmspace.h>
static volatile bool lcd_update_enabled = true;
static unsigned long lcd_timeoutToStatus = 0;
void lcd_update_enable(bool enabled)
{
if (lcd_update_enabled != enabled) {
lcd_update_enabled = enabled;
if (enabled) {
// Reset encoder position. This is equivalent to re-entering a menu.
encoderPosition = 0;
encoderDiff = 0;
// Enabling the normal LCD update procedure.
// Reset the timeout interval.
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
// Force the keypad update now.
lcd_next_update_millis = millis() - 1;
// Full update.
lcd_implementation_clear();
lcd_update(2);
} else {
// Clear the LCD always, or let it to the caller?
}
}
}
void lcd_update(uint8_t lcdDrawUpdateOverride)
{
if (lcdDrawUpdate < lcdDrawUpdateOverride)
lcdDrawUpdate = lcdDrawUpdateOverride;
if (! lcd_update_enabled)
return;
#ifdef LCD_HAS_SLOW_BUTTONS
slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
#endif
lcd_buttons_update();
#if (SDCARDDETECT > 0)
if ((IS_SD_INSERTED != lcd_oldcardstatus && lcd_detected()))
{
lcdDrawUpdate = 2;
lcd_oldcardstatus = IS_SD_INSERTED;
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
currentMenu == lcd_status_screen
#endif
);
if (lcd_oldcardstatus)
{
card.initsd();
LCD_MESSAGERPGM(MSG_SD_INSERTED);
}
else
{
card.release();
LCD_MESSAGERPGM(MSG_SD_REMOVED);
}
}
#endif//CARDINSERTED
if (lcd_next_update_millis < millis())
{
#ifdef ULTIPANEL
#ifdef REPRAPWORLD_KEYPAD
if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) {
reprapworld_keypad_move_z_up();
}
if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) {
reprapworld_keypad_move_z_down();
}
if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) {
reprapworld_keypad_move_x_left();
}
if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) {
reprapworld_keypad_move_x_right();
}
if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) {
reprapworld_keypad_move_y_down();
}
if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) {
reprapworld_keypad_move_y_up();
}
if (REPRAPWORLD_KEYPAD_MOVE_HOME) {
reprapworld_keypad_move_home();
}
#endif
if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP)
{
if (lcdDrawUpdate == 0)
lcdDrawUpdate = 1;
encoderPosition += encoderDiff / ENCODER_PULSES_PER_STEP;
encoderDiff = 0;
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
}
if (LCD_CLICKED)
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
#endif//ULTIPANEL
#ifdef DOGLCD // Changes due to different driver architecture of the DOGM display
blink++; // Variable for fan animation and alive dot
u8g.firstPage();
do
{
u8g.setFont(u8g_font_6x10_marlin);
u8g.setPrintPos(125, 0);
if (blink % 2) u8g.setColorIndex(1); else u8g.setColorIndex(0); // Set color for the alive dot
u8g.drawPixel(127, 63); // draw alive dot
u8g.setColorIndex(1); // black on white
(*currentMenu)();
if (!lcdDrawUpdate) break; // Terminate display update, when nothing new to draw. This must be done before the last dogm.next()
} while (u8g.nextPage());
#else
(*currentMenu)();
#endif
#ifdef LCD_HAS_STATUS_INDICATORS
lcd_implementation_update_indicators();
#endif
#ifdef ULTIPANEL
if (lcd_timeoutToStatus < millis() && currentMenu != lcd_status_screen)
{
// Exiting a menu. Let's call the menu function the last time with menuExiting flag set to true
// to give it a chance to save its state.
// This is useful for example, when the babystep value has to be written into EEPROM.
if (currentMenu != NULL) {
menuExiting = true;
(*currentMenu)();
menuExiting = false;
}
lcd_return_to_status();
lcdDrawUpdate = 2;
}
#endif//ULTIPANEL
if (lcdDrawUpdate == 2) lcd_implementation_clear();
if (lcdDrawUpdate) lcdDrawUpdate--;
lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL;
}
}
void lcd_ignore_click(bool b)
{
ignore_click = b;
wait_for_unclick = false;
}
void lcd_finishstatus() {
int len = strlen(lcd_status_message);
if (len > 0) {
while (len < LCD_WIDTH) {
lcd_status_message[len++] = ' ';
}
}
lcd_status_message[LCD_WIDTH] = '\0';
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
#if PROGRESS_MSG_EXPIRE > 0
messageTick =
#endif
progressBarTick = millis();
#endif
lcdDrawUpdate = 2;
#ifdef FILAMENT_LCD_DISPLAY
message_millis = millis(); //get status message to show up for a while
#endif
}
void lcd_setstatus(const char* message)
{
if (lcd_status_message_level > 0)
return;
strncpy(lcd_status_message, message, LCD_WIDTH);
lcd_finishstatus();
}
void lcd_setstatuspgm(const char* message)
{
if (lcd_status_message_level > 0)
return;
strncpy_P(lcd_status_message, message, LCD_WIDTH);
lcd_finishstatus();
}
void lcd_setalertstatuspgm(const char* message)
{
lcd_setstatuspgm(message);
lcd_status_message_level = 1;
#ifdef ULTIPANEL
lcd_return_to_status();
#endif//ULTIPANEL
}
void lcd_reset_alert_level()
{
lcd_status_message_level = 0;
}
#ifdef DOGLCD
void lcd_setcontrast(uint8_t value)
{
lcd_contrast = value & 63;
u8g.setContrast(lcd_contrast);
}
#endif
#ifdef ULTIPANEL
/* Warning: This function is called from interrupt context */
void lcd_buttons_update()
{
#ifdef NEWPANEL
uint8_t newbutton = 0;
if (READ(BTN_EN1) == 0) newbutton |= EN_A;
if (READ(BTN_EN2) == 0) newbutton |= EN_B;
#if BTN_ENC > 0
if ((blocking_enc < millis()) && (READ(BTN_ENC) == 0))
newbutton |= EN_C;
#endif
buttons = newbutton;
#ifdef LCD_HAS_SLOW_BUTTONS
buttons |= slow_buttons;
#endif
#ifdef REPRAPWORLD_KEYPAD
// for the reprapworld_keypad
uint8_t newbutton_reprapworld_keypad = 0;
WRITE(SHIFT_LD, LOW);
WRITE(SHIFT_LD, HIGH);
for (int8_t i = 0; i < 8; i++) {
newbutton_reprapworld_keypad = newbutton_reprapworld_keypad >> 1;
if (READ(SHIFT_OUT))
newbutton_reprapworld_keypad |= (1 << 7);
WRITE(SHIFT_CLK, HIGH);
WRITE(SHIFT_CLK, LOW);
}
buttons_reprapworld_keypad = ~newbutton_reprapworld_keypad; //invert it, because a pressed switch produces a logical 0
#endif
#else //read it from the shift register
uint8_t newbutton = 0;
WRITE(SHIFT_LD, LOW);
WRITE(SHIFT_LD, HIGH);
unsigned char tmp_buttons = 0;
for (int8_t i = 0; i < 8; i++)
{
newbutton = newbutton >> 1;
if (READ(SHIFT_OUT))
newbutton |= (1 << 7);
WRITE(SHIFT_CLK, HIGH);
WRITE(SHIFT_CLK, LOW);
}
buttons = ~newbutton; //invert it, because a pressed switch produces a logical 0
#endif//!NEWPANEL
//manage encoder rotation
uint8_t enc = 0;
if (buttons & EN_A) enc |= B01;
if (buttons & EN_B) enc |= B10;
if (enc != lastEncoderBits)
{
switch (enc)
{
case encrot0:
if (lastEncoderBits == encrot3)
encoderDiff++;
else if (lastEncoderBits == encrot1)
encoderDiff--;
break;
case encrot1:
if (lastEncoderBits == encrot0)
encoderDiff++;
else if (lastEncoderBits == encrot2)
encoderDiff--;
break;
case encrot2:
if (lastEncoderBits == encrot1)
encoderDiff++;
else if (lastEncoderBits == encrot3)
encoderDiff--;
break;
case encrot3:
if (lastEncoderBits == encrot2)
encoderDiff++;
else if (lastEncoderBits == encrot0)
encoderDiff--;
break;
}
}
lastEncoderBits = enc;
}
bool lcd_detected(void)
{
#if (defined(LCD_I2C_TYPE_MCP23017) || defined(LCD_I2C_TYPE_MCP23008)) && defined(DETECT_DEVICE)
return lcd.LcdDetected() == 1;
#else
return true;
#endif
}
void lcd_buzz(long duration, uint16_t freq)
{
#ifdef LCD_USE_I2C_BUZZER
lcd.buzz(duration, freq);
#endif
}
bool lcd_clicked()
{
return LCD_CLICKED;
}
#endif//ULTIPANEL
/********************************/
/** Float conversion utilities **/
/********************************/
// convert float to string with +123.4 format
char conv[8];
char *ftostr3(const float &x)
{
return itostr3((int)x);
}
char *itostr2(const uint8_t &x)
{
//sprintf(conv,"%5.1f",x);
int xx = x;
conv[0] = (xx / 10) % 10 + '0';
conv[1] = (xx) % 10 + '0';
conv[2] = 0;
return conv;
}
// Convert float to string with 123.4 format, dropping sign
char *ftostr31(const float &x)
{
int xx = x * 10;
conv[0] = (xx >= 0) ? '+' : '-';
xx = abs(xx);
conv[1] = (xx / 1000) % 10 + '0';
conv[2] = (xx / 100) % 10 + '0';
conv[3] = (xx / 10) % 10 + '0';
conv[4] = '.';
conv[5] = (xx) % 10 + '0';
conv[6] = 0;
return conv;
}
// Convert float to string with 123.4 format
char *ftostr31ns(const float &x)
{
int xx = x * 10;
//conv[0]=(xx>=0)?'+':'-';
xx = abs(xx);
conv[0] = (xx / 1000) % 10 + '0';
conv[1] = (xx / 100) % 10 + '0';
conv[2] = (xx / 10) % 10 + '0';
conv[3] = '.';
conv[4] = (xx) % 10 + '0';
conv[5] = 0;
return conv;
}
char *ftostr32(const float &x)
{
long xx = x * 100;
if (xx >= 0)
conv[0] = (xx / 10000) % 10 + '0';
else
conv[0] = '-';
xx = abs(xx);
conv[1] = (xx / 1000) % 10 + '0';
conv[2] = (xx / 100) % 10 + '0';
conv[3] = '.';
conv[4] = (xx / 10) % 10 + '0';
conv[5] = (xx) % 10 + '0';
conv[6] = 0;
return conv;
}
//// Convert float to rj string with 123.45 format
char *ftostr32ns(const float &x) {
long xx = abs(x);
conv[0] = xx >= 10000 ? (xx / 10000) % 10 + '0' : ' ';
conv[1] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' ';
conv[2] = xx >= 100 ? (xx / 100) % 10 + '0' : '0';
conv[3] = '.';
conv[4] = (xx / 10) % 10 + '0';
conv[5] = xx % 10 + '0';
return conv;
}
// Convert float to string with 1.234 format
char *ftostr43(const float &x)
{
long xx = x * 1000;
if (xx >= 0)
conv[0] = (xx / 1000) % 10 + '0';
else
conv[0] = '-';
xx = abs(xx);
conv[1] = '.';
conv[2] = (xx / 100) % 10 + '0';
conv[3] = (xx / 10) % 10 + '0';
conv[4] = (xx) % 10 + '0';
conv[5] = 0;
return conv;
}
//Float to string with 1.23 format
char *ftostr12ns(const float &x)
{
long xx = x * 100;
xx = abs(xx);
conv[0] = (xx / 100) % 10 + '0';
conv[1] = '.';
conv[2] = (xx / 10) % 10 + '0';
conv[3] = (xx) % 10 + '0';
conv[4] = 0;
return conv;
}
//Float to string with 1.234 format
char *ftostr13ns(const float &x)
{
long xx = x * 1000;
if (xx >= 0)
conv[0] = ' ';
else
conv[0] = '-';
xx = abs(xx);
conv[1] = (xx / 1000) % 10 + '0';
conv[2] = '.';
conv[3] = (xx / 100) % 10 + '0';
conv[4] = (xx / 10) % 10 + '0';
conv[5] = (xx) % 10 + '0';
conv[6] = 0;
return conv;
}
// convert float to space-padded string with -_23.4_ format
char *ftostr32sp(const float &x) {
long xx = abs(x * 100);
uint8_t dig;
if (x < 0) { // negative val = -_0
conv[0] = '-';
dig = (xx / 1000) % 10;
conv[1] = dig ? '0' + dig : ' ';
}
else { // positive val = __0
dig = (xx / 10000) % 10;
if (dig) {
conv[0] = '0' + dig;
conv[1] = '0' + (xx / 1000) % 10;
}
else {
conv[0] = ' ';
dig = (xx / 1000) % 10;
conv[1] = dig ? '0' + dig : ' ';
}
}
conv[2] = '0' + (xx / 100) % 10; // lsd always
dig = xx % 10;
if (dig) { // 2 decimal places
conv[5] = '0' + dig;
conv[4] = '0' + (xx / 10) % 10;
conv[3] = '.';
}
else { // 1 or 0 decimal place
dig = (xx / 10) % 10;
if (dig) {
conv[4] = '0' + dig;
conv[3] = '.';
}
else {
conv[3] = conv[4] = ' ';
}
conv[5] = ' ';
}
conv[6] = '\0';
return conv;
}
char *itostr31(const int &xx)
{
conv[0] = (xx >= 0) ? '+' : '-';
conv[1] = (xx / 1000) % 10 + '0';
conv[2] = (xx / 100) % 10 + '0';
conv[3] = (xx / 10) % 10 + '0';
conv[4] = '.';
conv[5] = (xx) % 10 + '0';
conv[6] = 0;
return conv;
}
// Convert int to rj string with 123 or -12 format
char *itostr3(const int &x)
{
int xx = x;
if (xx < 0) {
conv[0] = '-';
xx = -xx;
} else if (xx >= 100)
conv[0] = (xx / 100) % 10 + '0';
else
conv[0] = ' ';
if (xx >= 10)
conv[1] = (xx / 10) % 10 + '0';
else
conv[1] = ' ';
conv[2] = (xx) % 10 + '0';
conv[3] = 0;
return conv;
}
// Convert int to lj string with 123 format
char *itostr3left(const int &xx)
{
if (xx >= 100)
{
conv[0] = (xx / 100) % 10 + '0';
conv[1] = (xx / 10) % 10 + '0';
conv[2] = (xx) % 10 + '0';
conv[3] = 0;
}
else if (xx >= 10)
{
conv[0] = (xx / 10) % 10 + '0';
conv[1] = (xx) % 10 + '0';
conv[2] = 0;
}
else
{
conv[0] = (xx) % 10 + '0';
conv[1] = 0;
}
return conv;
}
// Convert int to rj string with 1234 format
char *itostr4(const int &xx) {
conv[0] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' ';
conv[1] = xx >= 100 ? (xx / 100) % 10 + '0' : ' ';
conv[2] = xx >= 10 ? (xx / 10) % 10 + '0' : ' ';
conv[3] = xx % 10 + '0';
conv[4] = 0;
return conv;
}
// Convert float to rj string with 12345 format
char *ftostr5(const float &x) {
long xx = abs(x);
conv[0] = xx >= 10000 ? (xx / 10000) % 10 + '0' : ' ';
conv[1] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' ';
conv[2] = xx >= 100 ? (xx / 100) % 10 + '0' : ' ';
conv[3] = xx >= 10 ? (xx / 10) % 10 + '0' : ' ';
conv[4] = xx % 10 + '0';
conv[5] = 0;
return conv;
}
// Convert float to string with +1234.5 format
char *ftostr51(const float &x)
{
long xx = x * 10;
conv[0] = (xx >= 0) ? '+' : '-';
xx = abs(xx);
conv[1] = (xx / 10000) % 10 + '0';
conv[2] = (xx / 1000) % 10 + '0';
conv[3] = (xx / 100) % 10 + '0';
conv[4] = (xx / 10) % 10 + '0';
conv[5] = '.';
conv[6] = (xx) % 10 + '0';
conv[7] = 0;
return conv;
}
// Convert float to string with +123.45 format
char *ftostr52(const float &x)
{
long xx = x * 100;
conv[0] = (xx >= 0) ? '+' : '-';
xx = abs(xx);
conv[1] = (xx / 10000) % 10 + '0';
conv[2] = (xx / 1000) % 10 + '0';
conv[3] = (xx / 100) % 10 + '0';
conv[4] = '.';
conv[5] = (xx / 10) % 10 + '0';
conv[6] = (xx) % 10 + '0';
conv[7] = 0;
return conv;
}
/*
// Callback for after editing PID i value
// grab the PID i value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_i()
{
#ifdef PIDTEMP
Ki = scalePID_i(raw_Ki);
updatePID();
#endif
}
// Callback for after editing PID d value
// grab the PID d value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_d()
{
#ifdef PIDTEMP
Kd = scalePID_d(raw_Kd);
updatePID();
#endif
}
*/
#endif //ULTRA_LCD