Prusa-Firmware/Firmware/fsensor.cpp
PavelSindler aefb4e5c09
Merge pull request #1200 from XPila/MK3
Filament sensor - fix invalid calculation of fsensor_counter in LA st…
2018-09-27 21:05:33 +02:00

499 lines
16 KiB
C++

#include "Marlin.h"
#include "fsensor.h"
#include <avr/pgmspace.h>
#include "pat9125.h"
#include "stepper.h"
#include "planner.h"
#include "fastio.h"
#include "cmdqueue.h"
//Basic params
#define FSENSOR_CHUNK_LEN 0.64F //filament sensor chunk length 0.64mm
#define FSENSOR_ERR_MAX 17 //filament sensor maximum error count for runout detection
//Optical quality meassurement params
#define FSENSOR_OQ_MAX_ES 6 //maximum error sum while loading (length ~64mm = 100chunks)
#define FSENSOR_OQ_MAX_EM 2 //maximum error counter value while loading
#define FSENSOR_OQ_MIN_YD 2 //minimum yd per chunk (applied to avg value)
#define FSENSOR_OQ_MAX_YD 200 //maximum yd per chunk (applied to avg value)
#define FSENSOR_OQ_MAX_PD 4 //maximum positive deviation (= yd_max/yd_avg)
#define FSENSOR_OQ_MAX_ND 5 //maximum negative deviation (= yd_avg/yd_min)
#define FSENSOR_OQ_MAX_SH 13 //maximum shutter value
const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
#define FSENSOR_INT_PIN 63 //filament sensor interrupt pin PK1
#define FSENSOR_INT_PIN_MSK 0x02 //filament sensor interrupt pin mask (bit1)
extern void stop_and_save_print_to_ram(float z_move, float e_move);
extern void restore_print_from_ram_and_continue(float e_move);
extern int8_t FSensorStateMenu;
//uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
uint8_t fsensor_int_pin_old = 0;
int16_t fsensor_chunk_len = 0;
//enabled = initialized and sampled every chunk event
bool fsensor_enabled = true;
//runout watching is done in fsensor_update (called from main loop)
bool fsensor_watch_runout = true;
//not responding - is set if any communication error occured durring initialization or readout
bool fsensor_not_responding = false;
//number of errors, updated in ISR
uint8_t fsensor_err_cnt = 0;
//variable for accumolating step count (updated callbacks from stepper and ISR)
int16_t fsensor_st_cnt = 0;
//last dy value from pat9125 sensor (used in ISR)
int16_t fsensor_dy_old = 0;
//log flag: 0=log disabled, 1=log enabled
uint8_t fsensor_log = 1;
////////////////////////////////////////////////////////////////////////////////
//filament autoload variables
//autoload feature enabled
bool fsensor_autoload_enabled = true;
//autoload watching enable/disable flag
bool fsensor_watch_autoload = false;
//
uint16_t fsensor_autoload_y;
//
uint8_t fsensor_autoload_c;
//
uint32_t fsensor_autoload_last_millis;
//
uint8_t fsensor_autoload_sum;
////////////////////////////////////////////////////////////////////////////////
//filament optical quality meassurement variables
//meassurement enable/disable flag
bool fsensor_oq_meassure = false;
//skip-chunk counter, for accurate meassurement is necesary to skip first chunk...
uint8_t fsensor_oq_skipchunk;
//number of samples from start of meassurement
uint8_t fsensor_oq_samples;
//sum of steps in positive direction movements
uint16_t fsensor_oq_st_sum;
//sum of deltas in positive direction movements
uint16_t fsensor_oq_yd_sum;
//sum of errors durring meassurement
uint16_t fsensor_oq_er_sum;
//max error counter value durring meassurement
uint8_t fsensor_oq_er_max;
//minimum delta value
uint16_t fsensor_oq_yd_min;
//maximum delta value
uint16_t fsensor_oq_yd_max;
//sum of shutter value
uint16_t fsensor_oq_sh_sum;
void fsensor_stop_and_save_print(void)
{
printf_P(PSTR("fsensor_stop_and_save_print\n"));
stop_and_save_print_to_ram(0, 0); //XYZE - no change
}
void fsensor_restore_print_and_continue(void)
{
printf_P(PSTR("fsensor_restore_print_and_continue\n"));
fsensor_watch_runout = true;
fsensor_err_cnt = 0;
restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
}
void fsensor_init(void)
{
uint8_t pat9125 = pat9125_init();
printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * axis_steps_per_unit[E_AXIS]);
if (!pat9125)
{
fsensor = 0; //disable sensor
fsensor_not_responding = true;
}
else
fsensor_not_responding = false;
if (fsensor)
fsensor_enable();
else
fsensor_disable();
printf_P(PSTR("FSensor %S\n"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED\n")));
}
bool fsensor_enable(void)
{
uint8_t pat9125 = pat9125_init();
printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
if (pat9125)
fsensor_not_responding = false;
else
fsensor_not_responding = true;
fsensor_enabled = pat9125?true:false;
fsensor_watch_runout = true;
fsensor_oq_meassure = false;
fsensor_err_cnt = 0;
fsensor_dy_old = 0;
eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled?0x01:0x00);
FSensorStateMenu = fsensor_enabled?1:0;
return fsensor_enabled;
}
void fsensor_disable(void)
{
fsensor_enabled = false;
eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
FSensorStateMenu = 0;
}
void fsensor_autoload_set(bool State)
{
fsensor_autoload_enabled = State;
eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
}
void pciSetup(byte pin)
{
*digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
}
void fsensor_autoload_check_start(void)
{
// puts_P(_N("fsensor_autoload_check_start\n"));
if (!fsensor_enabled) return;
if (!fsensor_autoload_enabled) return;
if (fsensor_watch_autoload) return;
if (!pat9125_update_y()) //update sensor
{
fsensor_disable();
fsensor_not_responding = true;
fsensor_watch_autoload = false;
printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
return;
}
puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
fsensor_autoload_y = pat9125_y; //save current y value
fsensor_autoload_c = 0; //reset number of changes counter
fsensor_autoload_sum = 0;
fsensor_autoload_last_millis = millis();
fsensor_watch_runout = false;
fsensor_watch_autoload = true;
fsensor_err_cnt = 0;
}
void fsensor_autoload_check_stop(void)
{
// puts_P(_N("fsensor_autoload_check_stop\n"));
if (!fsensor_enabled) return;
// puts_P(_N("fsensor_autoload_check_stop 1\n"));
if (!fsensor_autoload_enabled) return;
// puts_P(_N("fsensor_autoload_check_stop 2\n"));
if (!fsensor_watch_autoload) return;
puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
fsensor_autoload_sum = 0;
fsensor_watch_autoload = false;
fsensor_watch_runout = true;
fsensor_err_cnt = 0;
}
bool fsensor_check_autoload(void)
{
if (!fsensor_enabled) return false;
if (!fsensor_autoload_enabled) return false;
if (!fsensor_watch_autoload)
{
fsensor_autoload_check_start();
return false;
}
uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
if ((millis() - fsensor_autoload_last_millis) < 25) return false;
fsensor_autoload_last_millis = millis();
if (!pat9125_update_y()) //update sensor
{
fsensor_disable();
fsensor_not_responding = true;
printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
return false;
}
int16_t dy = pat9125_y - fsensor_autoload_y;
if (dy) //? dy value is nonzero
{
if (dy > 0) //? delta-y value is positive (inserting)
{
fsensor_autoload_sum += dy;
fsensor_autoload_c += 3; //increment change counter by 3
}
else if (fsensor_autoload_c > 1)
fsensor_autoload_c -= 2; //decrement change counter by 2
fsensor_autoload_y = pat9125_y; //save current value
}
else if (fsensor_autoload_c > 0)
fsensor_autoload_c--;
if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
// puts_P(_N("fsensor_check_autoload\n"));
// if (fsensor_autoload_c != fsensor_autoload_c_old)
// printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
// if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
{
// puts_P(_N("fsensor_check_autoload = true !!!\n"));
return true;
}
return false;
}
void fsensor_oq_meassure_start(uint8_t skip)
{
if (!fsensor_enabled) return;
printf_P(PSTR("fsensor_oq_meassure_start\n"));
fsensor_oq_skipchunk = skip;
fsensor_oq_samples = 0;
fsensor_oq_st_sum = 0;
fsensor_oq_yd_sum = 0;
fsensor_oq_er_sum = 0;
fsensor_oq_er_max = 0;
fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
fsensor_oq_yd_max = 0;
fsensor_oq_sh_sum = 0;
pat9125_update();
pat9125_y = 0;
fsensor_watch_runout = false;
fsensor_oq_meassure = true;
}
void fsensor_oq_meassure_stop(void)
{
if (!fsensor_enabled) return;
printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
fsensor_oq_meassure = false;
fsensor_watch_runout = true;
fsensor_err_cnt = 0;
}
const char _OK[] PROGMEM = "OK";
const char _NG[] PROGMEM = "NG!";
bool fsensor_oq_result(void)
{
if (!fsensor_enabled) return true;
printf_P(_N("fsensor_oq_result\n"));
bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
printf_P(_N(" yd_dev = %u\n"), yd_dev);
printf_P(_N(" yd_qua = %u\n"), yd_qua);
uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
if (yd_qua >= 8) res_sh_avg = true;
printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
return res;
}
ISR(PCINT2_vect)
{
if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return;
fsensor_int_pin_old = PINK;
static bool _lock = false;
if (_lock) return;
_lock = true;
int st_cnt = fsensor_st_cnt;
fsensor_st_cnt = 0;
sei();
uint8_t old_err_cnt = fsensor_err_cnt;
uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
if (!pat9125_res)
{
fsensor_disable();
fsensor_not_responding = true;
printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
}
if (st_cnt != 0)
{ //movement
if (st_cnt > 0) //positive movement
{
if (pat9125_y < 0)
{
if (fsensor_err_cnt)
fsensor_err_cnt += 2;
else
fsensor_err_cnt++;
}
else if (pat9125_y > 0)
{
if (fsensor_err_cnt)
fsensor_err_cnt--;
}
else //(pat9125_y == 0)
if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1)))
fsensor_err_cnt++;
if (fsensor_oq_meassure)
{
if (fsensor_oq_skipchunk)
{
fsensor_oq_skipchunk--;
fsensor_err_cnt = 0;
}
else
{
if (st_cnt == fsensor_chunk_len)
{
if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
}
fsensor_oq_samples++;
fsensor_oq_st_sum += st_cnt;
if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
if (fsensor_err_cnt > old_err_cnt)
fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
if (fsensor_oq_er_max < fsensor_err_cnt)
fsensor_oq_er_max = fsensor_err_cnt;
fsensor_oq_sh_sum += pat9125_s;
}
}
}
else //negative movement
{
}
}
else
{ //no movement
}
#ifdef DEBUG_FSENSOR_LOG
if (fsensor_log)
{
printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
}
#endif //DEBUG_FSENSOR_LOG
fsensor_dy_old = pat9125_y;
pat9125_y = 0;
_lock = false;
return;
}
void fsensor_st_block_begin(block_t* bl)
{
if (!fsensor_enabled) return;
if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
{
if (_READ(63)) _WRITE(63, LOW);
else _WRITE(63, HIGH);
}
}
void fsensor_st_block_chunk(block_t* bl, int cnt)
{
if (!fsensor_enabled) return;
fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
{
if (_READ(63)) _WRITE(63, LOW);
else _WRITE(63, HIGH);
}
}
void fsensor_update(void)
{
if (fsensor_enabled && fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
{
bool autoload_enabled_tmp = fsensor_autoload_enabled;
fsensor_autoload_enabled = false;
fsensor_stop_and_save_print();
fsensor_err_cnt = 0;
fsensor_oq_meassure_start(0);
// st_synchronize();
// for (int axis = X_AXIS; axis <= E_AXIS; axis++)
// current_position[axis] = st_get_position_mm(axis);
/*
current_position[E_AXIS] -= 3;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 200 / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 3;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 200 / 60, active_extruder);
st_synchronize();
*/
enquecommand_front_P((PSTR("G1 E-3 F200")));
process_commands();
KEEPALIVE_STATE(IN_HANDLER);
cmdqueue_pop_front();
st_synchronize();
enquecommand_front_P((PSTR("G1 E3 F200")));
process_commands();
KEEPALIVE_STATE(IN_HANDLER);
cmdqueue_pop_front();
st_synchronize();
uint8_t err_cnt = fsensor_err_cnt;
fsensor_oq_meassure_stop();
bool err = false;
err |= (fsensor_oq_er_sum > 2);
err |= (err_cnt > 1);
err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
if (!err)
{
printf_P(PSTR("fsensor_err_cnt = 0\n"));
fsensor_restore_print_and_continue();
}
else
{
printf_P(PSTR("fsensor_update - M600\n"));
eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
enquecommand_front_P(PSTR("FSENSOR_RECOVER"));
enquecommand_front_P((PSTR("M600")));
fsensor_watch_runout = false;
}
fsensor_autoload_enabled = autoload_enabled_tmp;
}
}
void fsensor_setup_interrupt(void)
{
pinMode(FSENSOR_INT_PIN, OUTPUT);
digitalWrite(FSENSOR_INT_PIN, LOW);
fsensor_int_pin_old = 0;
pciSetup(FSENSOR_INT_PIN);
}