ba49c21f17
numeric accuracy and to reduce compuatitonal load. With this commit, the numeric rounding is fixed not only for the M221 G-code (as implemented by the preceding commit), but also for the volumetric extrusion in general. Removed the old FILAMENT_SENSOR code, which served the purpose to modulate the volumetric multiplayer in real time depending on the measured filament diameter. This feature will certainly not be used by Prusa Research in the near future as we know of no sensor, which would offer sufficient accuracy for a reasonable price.
8162 lines
274 KiB
C++
8162 lines
274 KiB
C++
/* -*- c++ -*- */
|
|
|
|
/*
|
|
Reprap firmware based on Sprinter and grbl.
|
|
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
This firmware is a mashup between Sprinter and grbl.
|
|
(https://github.com/kliment/Sprinter)
|
|
(https://github.com/simen/grbl/tree)
|
|
|
|
It has preliminary support for Matthew Roberts advance algorithm
|
|
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
|
*/
|
|
|
|
#include "Marlin.h"
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
#include "vector_3.h"
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
#include "qr_solve.h"
|
|
#endif
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
#include "mesh_bed_leveling.h"
|
|
#include "mesh_bed_calibration.h"
|
|
#endif
|
|
|
|
#include "ultralcd.h"
|
|
#include "Configuration_prusa.h"
|
|
#include "planner.h"
|
|
#include "stepper.h"
|
|
#include "temperature.h"
|
|
#include "motion_control.h"
|
|
#include "cardreader.h"
|
|
#include "watchdog.h"
|
|
#include "ConfigurationStore.h"
|
|
#include "language.h"
|
|
#include "pins_arduino.h"
|
|
#include "math.h"
|
|
#include "util.h"
|
|
|
|
#include <avr/wdt.h>
|
|
|
|
#include "Dcodes.h"
|
|
|
|
|
|
#ifdef SWSPI
|
|
#include "swspi.h"
|
|
#endif //SWSPI
|
|
|
|
#ifdef SWI2C
|
|
#include "swi2c.h"
|
|
#endif //SWI2C
|
|
|
|
#ifdef PAT9125
|
|
#include "pat9125.h"
|
|
#include "fsensor.h"
|
|
#endif //PAT9125
|
|
|
|
#ifdef TMC2130
|
|
#include "tmc2130.h"
|
|
#endif //TMC2130
|
|
|
|
|
|
#ifdef BLINKM
|
|
#include "BlinkM.h"
|
|
#include "Wire.h"
|
|
#endif
|
|
|
|
#ifdef ULTRALCD
|
|
#include "ultralcd.h"
|
|
#endif
|
|
|
|
#if NUM_SERVOS > 0
|
|
#include "Servo.h"
|
|
#endif
|
|
|
|
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
#include <SPI.h>
|
|
#endif
|
|
|
|
#define VERSION_STRING "1.0.2"
|
|
|
|
|
|
#include "ultralcd.h"
|
|
|
|
#include "cmdqueue.h"
|
|
|
|
// Macros for bit masks
|
|
#define BIT(b) (1<<(b))
|
|
#define TEST(n,b) (((n)&BIT(b))!=0)
|
|
#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
|
|
|
|
//Macro for print fan speed
|
|
#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
|
|
|
|
// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
|
|
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
|
|
|
//Implemented Codes
|
|
//-------------------
|
|
|
|
// PRUSA CODES
|
|
// P F - Returns FW versions
|
|
// P R - Returns revision of printer
|
|
|
|
// G0 -> G1
|
|
// G1 - Coordinated Movement X Y Z E
|
|
// G2 - CW ARC
|
|
// G3 - CCW ARC
|
|
// G4 - Dwell S<seconds> or P<milliseconds>
|
|
// G10 - retract filament according to settings of M207
|
|
// G11 - retract recover filament according to settings of M208
|
|
// G28 - Home all Axis
|
|
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
|
|
// G30 - Single Z Probe, probes bed at current XY location.
|
|
// G31 - Dock sled (Z_PROBE_SLED only)
|
|
// G32 - Undock sled (Z_PROBE_SLED only)
|
|
// G80 - Automatic mesh bed leveling
|
|
// G81 - Print bed profile
|
|
// G90 - Use Absolute Coordinates
|
|
// G91 - Use Relative Coordinates
|
|
// G92 - Set current position to coordinates given
|
|
|
|
// M Codes
|
|
// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
|
|
// M1 - Same as M0
|
|
// M17 - Enable/Power all stepper motors
|
|
// M18 - Disable all stepper motors; same as M84
|
|
// M20 - List SD card
|
|
// M21 - Init SD card
|
|
// M22 - Release SD card
|
|
// M23 - Select SD file (M23 filename.g)
|
|
// M24 - Start/resume SD print
|
|
// M25 - Pause SD print
|
|
// M26 - Set SD position in bytes (M26 S12345)
|
|
// M27 - Report SD print status
|
|
// M28 - Start SD write (M28 filename.g)
|
|
// M29 - Stop SD write
|
|
// M30 - Delete file from SD (M30 filename.g)
|
|
// M31 - Output time since last M109 or SD card start to serial
|
|
// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
|
|
// syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
|
|
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
|
|
// The '#' is necessary when calling from within sd files, as it stops buffer prereading
|
|
// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
|
|
// M80 - Turn on Power Supply
|
|
// M81 - Turn off Power Supply
|
|
// M82 - Set E codes absolute (default)
|
|
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
|
|
// M84 - Disable steppers until next move,
|
|
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
|
|
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
// M92 - Set axis_steps_per_unit - same syntax as G92
|
|
// M104 - Set extruder target temp
|
|
// M105 - Read current temp
|
|
// M106 - Fan on
|
|
// M107 - Fan off
|
|
// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
|
|
// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
|
|
// IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
|
|
// M112 - Emergency stop
|
|
// M113 - Get or set the timeout interval for Host Keepalive "busy" messages
|
|
// M114 - Output current position to serial port
|
|
// M115 - Capabilities string
|
|
// M117 - display message
|
|
// M119 - Output Endstop status to serial port
|
|
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
|
|
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
|
|
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
|
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
|
// M140 - Set bed target temp
|
|
// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
|
|
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
|
// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
|
// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
|
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
|
|
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
|
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
|
|
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
|
|
// M206 - set additional homing offset
|
|
// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
|
|
// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
|
|
// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
// M220 S<factor in percent>- set speed factor override percentage
|
|
// M221 S<factor in percent>- set extrude factor override percentage
|
|
// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
|
// M240 - Trigger a camera to take a photograph
|
|
// M250 - Set LCD contrast C<contrast value> (value 0..63)
|
|
// M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
|
// M300 - Play beep sound S<frequency Hz> P<duration ms>
|
|
// M301 - Set PID parameters P I and D
|
|
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
|
|
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
|
|
// M304 - Set bed PID parameters P I and D
|
|
// M400 - Finish all moves
|
|
// M401 - Lower z-probe if present
|
|
// M402 - Raise z-probe if present
|
|
// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
|
|
// M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
|
|
// M406 - Turn off Filament Sensor extrusion control
|
|
// M407 - Displays measured filament diameter
|
|
// M500 - stores parameters in EEPROM
|
|
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
|
|
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
|
|
// M503 - print the current settings (from memory not from EEPROM)
|
|
// M509 - force language selection on next restart
|
|
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
|
|
// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
|
|
// M907 - Set digital trimpot motor current using axis codes.
|
|
// M908 - Control digital trimpot directly.
|
|
// M350 - Set microstepping mode.
|
|
// M351 - Toggle MS1 MS2 pins directly.
|
|
|
|
// M928 - Start SD logging (M928 filename.g) - ended by M29
|
|
// M999 - Restart after being stopped by error
|
|
|
|
//Stepper Movement Variables
|
|
|
|
//===========================================================================
|
|
//=============================imported variables============================
|
|
//===========================================================================
|
|
|
|
|
|
//===========================================================================
|
|
//=============================public variables=============================
|
|
//===========================================================================
|
|
#ifdef SDSUPPORT
|
|
CardReader card;
|
|
#endif
|
|
|
|
unsigned long PingTime = millis();
|
|
union Data
|
|
{
|
|
byte b[2];
|
|
int value;
|
|
};
|
|
|
|
float homing_feedrate[] = HOMING_FEEDRATE;
|
|
// Currently only the extruder axis may be switched to a relative mode.
|
|
// Other axes are always absolute or relative based on the common relative_mode flag.
|
|
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
|
int feedmultiply=100; //100->1 200->2
|
|
int saved_feedmultiply;
|
|
int extrudemultiply=100; //100->1 200->2
|
|
int extruder_multiply[EXTRUDERS] = {100
|
|
#if EXTRUDERS > 1
|
|
, 100
|
|
#if EXTRUDERS > 2
|
|
, 100
|
|
#endif
|
|
#endif
|
|
};
|
|
|
|
int bowden_length[4] = {385, 385, 385, 385};
|
|
|
|
bool is_usb_printing = false;
|
|
bool homing_flag = false;
|
|
|
|
bool temp_cal_active = false;
|
|
|
|
unsigned long kicktime = millis()+100000;
|
|
|
|
unsigned int usb_printing_counter;
|
|
|
|
int lcd_change_fil_state = 0;
|
|
|
|
int feedmultiplyBckp = 100;
|
|
float HotendTempBckp = 0;
|
|
int fanSpeedBckp = 0;
|
|
float pause_lastpos[4];
|
|
unsigned long pause_time = 0;
|
|
unsigned long start_pause_print = millis();
|
|
unsigned long t_fan_rising_edge = millis();
|
|
|
|
//unsigned long load_filament_time;
|
|
|
|
bool mesh_bed_leveling_flag = false;
|
|
bool mesh_bed_run_from_menu = false;
|
|
|
|
unsigned char lang_selected = 0;
|
|
int8_t FarmMode = 0;
|
|
|
|
bool prusa_sd_card_upload = false;
|
|
|
|
unsigned int status_number = 0;
|
|
|
|
unsigned long total_filament_used;
|
|
unsigned int heating_status;
|
|
unsigned int heating_status_counter;
|
|
bool custom_message;
|
|
bool loading_flag = false;
|
|
unsigned int custom_message_type;
|
|
unsigned int custom_message_state;
|
|
char snmm_filaments_used = 0;
|
|
|
|
float distance_from_min[2];
|
|
|
|
bool fan_state[2];
|
|
int fan_edge_counter[2];
|
|
int fan_speed[2];
|
|
|
|
char dir_names[3][9];
|
|
|
|
bool sortAlpha = false;
|
|
|
|
bool volumetric_enabled = false;
|
|
float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
|
|
#if EXTRUDERS > 1
|
|
, DEFAULT_NOMINAL_FILAMENT_DIA
|
|
#if EXTRUDERS > 2
|
|
, DEFAULT_NOMINAL_FILAMENT_DIA
|
|
#endif
|
|
#endif
|
|
};
|
|
float extruder_multiplier[EXTRUDERS] = {1.0
|
|
#if EXTRUDERS > 1
|
|
, 1.0
|
|
#if EXTRUDERS > 2
|
|
, 1.0
|
|
#endif
|
|
#endif
|
|
};
|
|
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
|
|
float add_homing[3]={0,0,0};
|
|
|
|
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
|
|
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
|
|
bool axis_known_position[3] = {false, false, false};
|
|
float zprobe_zoffset;
|
|
|
|
// Extruder offset
|
|
#if EXTRUDERS > 1
|
|
#define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
|
|
float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
|
|
#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
|
|
EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
|
|
#endif
|
|
};
|
|
#endif
|
|
|
|
uint8_t active_extruder = 0;
|
|
int fanSpeed=0;
|
|
|
|
#ifdef FWRETRACT
|
|
bool autoretract_enabled=false;
|
|
bool retracted[EXTRUDERS]={false
|
|
#if EXTRUDERS > 1
|
|
, false
|
|
#if EXTRUDERS > 2
|
|
, false
|
|
#endif
|
|
#endif
|
|
};
|
|
bool retracted_swap[EXTRUDERS]={false
|
|
#if EXTRUDERS > 1
|
|
, false
|
|
#if EXTRUDERS > 2
|
|
, false
|
|
#endif
|
|
#endif
|
|
};
|
|
|
|
float retract_length = RETRACT_LENGTH;
|
|
float retract_length_swap = RETRACT_LENGTH_SWAP;
|
|
float retract_feedrate = RETRACT_FEEDRATE;
|
|
float retract_zlift = RETRACT_ZLIFT;
|
|
float retract_recover_length = RETRACT_RECOVER_LENGTH;
|
|
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
|
|
float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
|
|
#endif
|
|
|
|
#ifdef ULTIPANEL
|
|
#ifdef PS_DEFAULT_OFF
|
|
bool powersupply = false;
|
|
#else
|
|
bool powersupply = true;
|
|
#endif
|
|
#endif
|
|
|
|
bool cancel_heatup = false ;
|
|
|
|
#ifdef HOST_KEEPALIVE_FEATURE
|
|
|
|
int busy_state = NOT_BUSY;
|
|
static long prev_busy_signal_ms = -1;
|
|
uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
|
|
#else
|
|
#define host_keepalive();
|
|
#define KEEPALIVE_STATE(n);
|
|
#endif
|
|
|
|
const char errormagic[] PROGMEM = "Error:";
|
|
const char echomagic[] PROGMEM = "echo:";
|
|
|
|
//===========================================================================
|
|
//=============================Private Variables=============================
|
|
//===========================================================================
|
|
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
|
float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
|
|
|
|
static float delta[3] = {0.0, 0.0, 0.0};
|
|
|
|
// For tracing an arc
|
|
static float offset[3] = {0.0, 0.0, 0.0};
|
|
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
|
|
|
// Determines Absolute or Relative Coordinates.
|
|
// Also there is bool axis_relative_modes[] per axis flag.
|
|
static bool relative_mode = false;
|
|
|
|
#ifndef _DISABLE_M42_M226
|
|
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
|
|
#endif //_DISABLE_M42_M226
|
|
|
|
//static float tt = 0;
|
|
//static float bt = 0;
|
|
|
|
//Inactivity shutdown variables
|
|
static unsigned long previous_millis_cmd = 0;
|
|
unsigned long max_inactive_time = 0;
|
|
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
|
|
|
|
unsigned long starttime=0;
|
|
unsigned long stoptime=0;
|
|
unsigned long _usb_timer = 0;
|
|
|
|
static uint8_t tmp_extruder;
|
|
|
|
bool extruder_under_pressure = true;
|
|
|
|
|
|
bool Stopped=false;
|
|
|
|
#if NUM_SERVOS > 0
|
|
Servo servos[NUM_SERVOS];
|
|
#endif
|
|
|
|
bool CooldownNoWait = true;
|
|
bool target_direction;
|
|
|
|
//Insert variables if CHDK is defined
|
|
#ifdef CHDK
|
|
unsigned long chdkHigh = 0;
|
|
boolean chdkActive = false;
|
|
#endif
|
|
|
|
//===========================================================================
|
|
//=============================Routines======================================
|
|
//===========================================================================
|
|
|
|
void get_arc_coordinates();
|
|
bool setTargetedHotend(int code);
|
|
|
|
void serial_echopair_P(const char *s_P, float v)
|
|
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char *s_P, double v)
|
|
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char *s_P, unsigned long v)
|
|
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
|
|
#ifdef SDSUPPORT
|
|
#include "SdFatUtil.h"
|
|
int freeMemory() { return SdFatUtil::FreeRam(); }
|
|
#else
|
|
extern "C" {
|
|
extern unsigned int __bss_end;
|
|
extern unsigned int __heap_start;
|
|
extern void *__brkval;
|
|
|
|
int freeMemory() {
|
|
int free_memory;
|
|
|
|
if ((int)__brkval == 0)
|
|
free_memory = ((int)&free_memory) - ((int)&__bss_end);
|
|
else
|
|
free_memory = ((int)&free_memory) - ((int)__brkval);
|
|
|
|
return free_memory;
|
|
}
|
|
}
|
|
#endif //!SDSUPPORT
|
|
|
|
void setup_killpin()
|
|
{
|
|
#if defined(KILL_PIN) && KILL_PIN > -1
|
|
SET_INPUT(KILL_PIN);
|
|
WRITE(KILL_PIN,HIGH);
|
|
#endif
|
|
}
|
|
|
|
// Set home pin
|
|
void setup_homepin(void)
|
|
{
|
|
#if defined(HOME_PIN) && HOME_PIN > -1
|
|
SET_INPUT(HOME_PIN);
|
|
WRITE(HOME_PIN,HIGH);
|
|
#endif
|
|
}
|
|
|
|
void setup_photpin()
|
|
{
|
|
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
|
SET_OUTPUT(PHOTOGRAPH_PIN);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
void setup_powerhold()
|
|
{
|
|
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
SET_OUTPUT(SUICIDE_PIN);
|
|
WRITE(SUICIDE_PIN, HIGH);
|
|
#endif
|
|
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
SET_OUTPUT(PS_ON_PIN);
|
|
#if defined(PS_DEFAULT_OFF)
|
|
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
#else
|
|
WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void suicide()
|
|
{
|
|
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
SET_OUTPUT(SUICIDE_PIN);
|
|
WRITE(SUICIDE_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
void servo_init()
|
|
{
|
|
#if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
|
|
servos[0].attach(SERVO0_PIN);
|
|
#endif
|
|
#if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
|
|
servos[1].attach(SERVO1_PIN);
|
|
#endif
|
|
#if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
|
|
servos[2].attach(SERVO2_PIN);
|
|
#endif
|
|
#if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
|
|
servos[3].attach(SERVO3_PIN);
|
|
#endif
|
|
#if (NUM_SERVOS >= 5)
|
|
#error "TODO: enter initalisation code for more servos"
|
|
#endif
|
|
}
|
|
|
|
static void lcd_language_menu();
|
|
|
|
void stop_and_save_print_to_ram(float z_move, float e_move);
|
|
void restore_print_from_ram_and_continue(float e_move);
|
|
|
|
bool fans_check_enabled = true;
|
|
bool filament_autoload_enabled = true;
|
|
|
|
extern int8_t CrashDetectMenu;
|
|
|
|
void crashdet_enable()
|
|
{
|
|
// MYSERIAL.println("crashdet_enable");
|
|
tmc2130_sg_stop_on_crash = true;
|
|
eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
|
|
CrashDetectMenu = 1;
|
|
|
|
}
|
|
|
|
void crashdet_disable()
|
|
{
|
|
// MYSERIAL.println("crashdet_disable");
|
|
tmc2130_sg_stop_on_crash = false;
|
|
tmc2130_sg_crash = 0;
|
|
eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
|
|
CrashDetectMenu = 0;
|
|
}
|
|
|
|
void crashdet_stop_and_save_print()
|
|
{
|
|
stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
|
|
}
|
|
|
|
void crashdet_restore_print_and_continue()
|
|
{
|
|
restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
|
|
// babystep_apply();
|
|
}
|
|
|
|
|
|
void crashdet_stop_and_save_print2()
|
|
{
|
|
cli();
|
|
planner_abort_hard(); //abort printing
|
|
cmdqueue_reset(); //empty cmdqueue
|
|
card.sdprinting = false;
|
|
card.closefile();
|
|
// Reset and re-enable the stepper timer just before the global interrupts are enabled.
|
|
st_reset_timer();
|
|
sei();
|
|
}
|
|
|
|
void crashdet_detected(uint8_t mask)
|
|
{
|
|
// printf("CRASH_DETECTED");
|
|
/* while (!is_buffer_empty())
|
|
{
|
|
process_commands();
|
|
cmdqueue_pop_front();
|
|
}*/
|
|
st_synchronize();
|
|
|
|
lcd_update_enable(true);
|
|
lcd_implementation_clear();
|
|
lcd_update(2);
|
|
|
|
if (mask & X_AXIS_MASK)
|
|
{
|
|
eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
|
|
eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
|
|
}
|
|
if (mask & Y_AXIS_MASK)
|
|
{
|
|
eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
|
|
eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
|
|
}
|
|
|
|
#ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
|
|
bool yesno = true;
|
|
#else
|
|
bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
|
|
#endif
|
|
lcd_update_enable(true);
|
|
lcd_update(2);
|
|
lcd_setstatuspgm(MSG_CRASH_DETECTED);
|
|
if (yesno)
|
|
{
|
|
enquecommand_P(PSTR("G28 X Y"));
|
|
enquecommand_P(PSTR("CRASH_RECOVER"));
|
|
}
|
|
else
|
|
{
|
|
enquecommand_P(PSTR("CRASH_CANCEL"));
|
|
}
|
|
}
|
|
|
|
void crashdet_recover()
|
|
{
|
|
crashdet_restore_print_and_continue();
|
|
tmc2130_sg_stop_on_crash = true;
|
|
}
|
|
|
|
void crashdet_cancel()
|
|
{
|
|
card.sdprinting = false;
|
|
card.closefile();
|
|
tmc2130_sg_stop_on_crash = true;
|
|
}
|
|
|
|
void failstats_reset_print()
|
|
{
|
|
eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
|
|
eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
|
|
eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
|
|
eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
|
|
}
|
|
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
|
|
#endif
|
|
|
|
|
|
// Factory reset function
|
|
// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
|
|
// Level input parameter sets depth of reset
|
|
// Quiet parameter masks all waitings for user interact.
|
|
int er_progress = 0;
|
|
void factory_reset(char level, bool quiet)
|
|
{
|
|
lcd_implementation_clear();
|
|
int cursor_pos = 0;
|
|
switch (level) {
|
|
|
|
// Level 0: Language reset
|
|
case 0:
|
|
WRITE(BEEPER, HIGH);
|
|
_delay_ms(100);
|
|
WRITE(BEEPER, LOW);
|
|
|
|
lcd_force_language_selection();
|
|
break;
|
|
|
|
//Level 1: Reset statistics
|
|
case 1:
|
|
WRITE(BEEPER, HIGH);
|
|
_delay_ms(100);
|
|
WRITE(BEEPER, LOW);
|
|
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
|
|
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
|
|
|
|
eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
|
|
eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
|
|
eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
|
|
eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
|
|
|
|
eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
|
|
eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
|
|
eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
|
|
eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
|
|
|
|
lcd_menu_statistics();
|
|
|
|
break;
|
|
|
|
// Level 2: Prepare for shipping
|
|
case 2:
|
|
//lcd_printPGM(PSTR("Factory RESET"));
|
|
//lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
|
|
|
|
// Force language selection at the next boot up.
|
|
lcd_force_language_selection();
|
|
// Force the "Follow calibration flow" message at the next boot up.
|
|
calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
|
|
eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
|
|
farm_no = 0;
|
|
farm_mode == false;
|
|
eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
|
|
EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
|
|
|
|
WRITE(BEEPER, HIGH);
|
|
_delay_ms(100);
|
|
WRITE(BEEPER, LOW);
|
|
//_delay_ms(2000);
|
|
break;
|
|
|
|
// Level 3: erase everything, whole EEPROM will be set to 0xFF
|
|
|
|
case 3:
|
|
lcd_printPGM(PSTR("Factory RESET"));
|
|
lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
|
|
|
|
WRITE(BEEPER, HIGH);
|
|
_delay_ms(100);
|
|
WRITE(BEEPER, LOW);
|
|
|
|
er_progress = 0;
|
|
lcd_print_at_PGM(3, 3, PSTR(" "));
|
|
lcd_implementation_print_at(3, 3, er_progress);
|
|
|
|
// Erase EEPROM
|
|
for (int i = 0; i < 4096; i++) {
|
|
eeprom_write_byte((uint8_t*)i, 0xFF);
|
|
|
|
if (i % 41 == 0) {
|
|
er_progress++;
|
|
lcd_print_at_PGM(3, 3, PSTR(" "));
|
|
lcd_implementation_print_at(3, 3, er_progress);
|
|
lcd_printPGM(PSTR("%"));
|
|
}
|
|
|
|
}
|
|
|
|
|
|
break;
|
|
case 4:
|
|
bowden_menu();
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
|
|
}
|
|
#include "LiquidCrystal.h"
|
|
extern LiquidCrystal lcd;
|
|
|
|
FILE _lcdout = {0};
|
|
|
|
int lcd_putchar(char c, FILE *stream)
|
|
{
|
|
lcd.write(c);
|
|
return 0;
|
|
}
|
|
|
|
FILE _uartout = {0};
|
|
|
|
int uart_putchar(char c, FILE *stream)
|
|
{
|
|
MYSERIAL.write(c);
|
|
return 0;
|
|
}
|
|
|
|
void lcd_splash()
|
|
{
|
|
// lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
|
|
// lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
|
|
// lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
|
|
fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
|
|
}
|
|
|
|
void factory_reset()
|
|
{
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
if (!READ(BTN_ENC))
|
|
{
|
|
_delay_ms(1000);
|
|
if (!READ(BTN_ENC))
|
|
{
|
|
lcd_implementation_clear();
|
|
|
|
|
|
lcd_printPGM(PSTR("Factory RESET"));
|
|
|
|
|
|
SET_OUTPUT(BEEPER);
|
|
WRITE(BEEPER, HIGH);
|
|
|
|
while (!READ(BTN_ENC));
|
|
|
|
WRITE(BEEPER, LOW);
|
|
|
|
|
|
|
|
_delay_ms(2000);
|
|
|
|
char level = reset_menu();
|
|
factory_reset(level, false);
|
|
|
|
switch (level) {
|
|
case 0: _delay_ms(0); break;
|
|
case 1: _delay_ms(0); break;
|
|
case 2: _delay_ms(0); break;
|
|
case 3: _delay_ms(0); break;
|
|
}
|
|
// _delay_ms(100);
|
|
/*
|
|
#ifdef MESH_BED_LEVELING
|
|
_delay_ms(2000);
|
|
|
|
if (!READ(BTN_ENC))
|
|
{
|
|
WRITE(BEEPER, HIGH);
|
|
_delay_ms(100);
|
|
WRITE(BEEPER, LOW);
|
|
_delay_ms(200);
|
|
WRITE(BEEPER, HIGH);
|
|
_delay_ms(100);
|
|
WRITE(BEEPER, LOW);
|
|
|
|
int _z = 0;
|
|
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
|
|
EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
|
|
EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
|
|
EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
|
|
}
|
|
else
|
|
{
|
|
|
|
WRITE(BEEPER, HIGH);
|
|
_delay_ms(100);
|
|
WRITE(BEEPER, LOW);
|
|
}
|
|
#endif // mesh */
|
|
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
|
|
}
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
}
|
|
|
|
void show_fw_version_warnings() {
|
|
if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
|
|
switch (FW_DEV_VERSION) {
|
|
case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
|
|
case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
|
|
case(FW_VERSION_DEVEL):
|
|
case(FW_VERSION_DEBUG):
|
|
lcd_update_enable(false);
|
|
lcd_implementation_clear();
|
|
#if FW_DEV_VERSION == FW_VERSION_DEVEL
|
|
lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
|
|
#else
|
|
lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
|
|
#endif
|
|
lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
|
|
lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
|
|
lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
|
|
lcd_wait_for_click();
|
|
break;
|
|
default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
|
|
}
|
|
lcd_update_enable(true);
|
|
}
|
|
|
|
|
|
|
|
void erase_eeprom_section(uint16_t offset, uint16_t bytes)
|
|
{
|
|
for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
|
|
}
|
|
|
|
// "Setup" function is called by the Arduino framework on startup.
|
|
// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
|
|
// are initialized by the main() routine provided by the Arduino framework.
|
|
void setup()
|
|
{
|
|
lcd_init();
|
|
fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
|
|
lcd_splash();
|
|
setup_killpin();
|
|
setup_powerhold();
|
|
|
|
farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
|
|
EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
|
|
if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
|
|
if (farm_no == 0xFFFF) farm_no = 0;
|
|
|
|
selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
|
|
if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
|
|
if (farm_mode)
|
|
{
|
|
prusa_statistics(8);
|
|
selectedSerialPort = 1;
|
|
}
|
|
MYSERIAL.begin(BAUDRATE);
|
|
fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
|
|
stdout = uartout;
|
|
SERIAL_PROTOCOLLNPGM("start");
|
|
SERIAL_ECHO_START;
|
|
printf_P(PSTR(" "FW_VERSION_FULL"\n"));
|
|
|
|
#if 0
|
|
SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
|
|
for (int i = 0; i < 4096; ++i) {
|
|
int b = eeprom_read_byte((unsigned char*)i);
|
|
if (b != 255) {
|
|
SERIAL_ECHO(i);
|
|
SERIAL_ECHO(":");
|
|
SERIAL_ECHO(b);
|
|
SERIAL_ECHOLN("");
|
|
}
|
|
}
|
|
SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
|
|
#endif
|
|
|
|
// Check startup - does nothing if bootloader sets MCUSR to 0
|
|
byte mcu = MCUSR;
|
|
/* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
|
|
if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
|
|
if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
|
|
if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
|
|
if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
|
|
if (mcu & 1) puts_P(MSG_POWERUP);
|
|
if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
|
|
if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
|
|
if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
|
|
if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
|
|
MCUSR = 0;
|
|
|
|
//SERIAL_ECHORPGM(MSG_MARLIN);
|
|
//SERIAL_ECHOLNRPGM(VERSION_STRING);
|
|
|
|
#ifdef STRING_VERSION_CONFIG_H
|
|
#ifdef STRING_CONFIG_H_AUTHOR
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
|
|
SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
|
|
SERIAL_ECHORPGM(MSG_AUTHOR);
|
|
SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
|
|
SERIAL_ECHOPGM("Compiled: ");
|
|
SERIAL_ECHOLNPGM(__DATE__);
|
|
#endif
|
|
#endif
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHORPGM(MSG_FREE_MEMORY);
|
|
SERIAL_ECHO(freeMemory());
|
|
SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
|
|
SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
|
|
//lcd_update_enable(false); // why do we need this?? - andre
|
|
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
|
|
bool previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
|
|
SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
|
|
|
|
tp_init(); // Initialize temperature loop
|
|
|
|
lcd_splash(); // we need to do this again, because tp_init() kills lcd
|
|
|
|
plan_init(); // Initialize planner;
|
|
watchdog_init();
|
|
|
|
factory_reset();
|
|
|
|
#ifdef TMC2130
|
|
uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
|
|
if (silentMode == 0xff) silentMode = 0;
|
|
tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
|
|
uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
|
|
if (crashdet)
|
|
{
|
|
crashdet_enable();
|
|
MYSERIAL.println("CrashDetect ENABLED!");
|
|
}
|
|
else
|
|
{
|
|
crashdet_disable();
|
|
MYSERIAL.println("CrashDetect DISABLED");
|
|
}
|
|
|
|
tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
|
|
tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
|
|
tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
|
|
tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
|
|
if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
|
|
if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
|
|
if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
|
|
if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
|
|
|
|
tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
|
|
tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
|
|
tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
|
|
tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
|
|
if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
|
|
if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
|
|
if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
|
|
if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
|
|
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
|
|
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
|
|
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
|
|
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
|
|
|
|
#endif //TMC2130
|
|
|
|
st_init(); // Initialize stepper, this enables interrupts!
|
|
|
|
setup_photpin();
|
|
|
|
servo_init();
|
|
// Reset the machine correction matrix.
|
|
// It does not make sense to load the correction matrix until the machine is homed.
|
|
world2machine_reset();
|
|
|
|
#ifdef PAT9125
|
|
fsensor_init();
|
|
#endif //PAT9125
|
|
|
|
|
|
#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
|
|
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
|
|
#endif
|
|
|
|
|
|
#ifdef DIGIPOT_I2C
|
|
digipot_i2c_init();
|
|
#endif
|
|
setup_homepin();
|
|
|
|
if (1) {
|
|
/// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
|
|
// try to run to zero phase before powering the Z motor.
|
|
// Move in negative direction
|
|
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
|
// Round the current micro-micro steps to micro steps.
|
|
for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
|
|
// Until the phase counter is reset to zero.
|
|
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
|
|
delay(2);
|
|
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
|
|
delay(2);
|
|
}
|
|
// SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
|
|
}
|
|
|
|
#if defined(Z_AXIS_ALWAYS_ON)
|
|
enable_z();
|
|
#endif
|
|
farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
|
|
EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
|
|
if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
|
|
if (farm_no == 0xFFFF) farm_no = 0;
|
|
if (farm_mode)
|
|
{
|
|
prusa_statistics(8);
|
|
}
|
|
|
|
// Enable Toshiba FlashAir SD card / WiFi enahanced card.
|
|
card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
|
|
|
|
if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
|
|
eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
|
|
// Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
|
|
// where all the EEPROM entries are set to 0x0ff.
|
|
// Once a firmware boots up, it forces at least a language selection, which changes
|
|
// EEPROM_LANG to number lower than 0x0ff.
|
|
// 1) Set a high power mode.
|
|
eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
|
|
tmc2130_mode = TMC2130_MODE_NORMAL;
|
|
eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
|
|
|
|
}
|
|
|
|
// Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
|
|
// but this times out if a blocking dialog is shown in setup().
|
|
card.initsd();
|
|
if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
|
|
if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
|
|
if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
|
|
if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
|
|
if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
|
|
if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
|
|
if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
|
|
if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
|
|
#ifdef SNMM
|
|
if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
|
|
int _z = BOWDEN_LENGTH;
|
|
for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
|
|
}
|
|
#endif
|
|
|
|
// In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
|
|
// If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
|
|
// is being written into the EEPROM, so the update procedure will be triggered only once.
|
|
lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
|
|
if (lang_selected >= LANG_NUM){
|
|
lcd_mylang();
|
|
}
|
|
|
|
if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
|
|
eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
|
|
temp_cal_active = false;
|
|
} else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
|
|
|
|
if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
|
|
//eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
|
|
eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
|
|
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
|
|
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
|
|
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
|
|
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
|
|
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
|
|
|
|
eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
|
|
temp_cal_active = true;
|
|
}
|
|
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
|
|
eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
|
|
}
|
|
if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
|
|
eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
|
|
}
|
|
|
|
check_babystep(); //checking if Z babystep is in allowed range
|
|
setup_uvlo_interrupt();
|
|
#ifndef DEBUG_DISABLE_FANCHECK
|
|
setup_fan_interrupt();
|
|
#endif //DEBUG_DISABLE_FANCHECK
|
|
#ifndef DEBUG_DISABLE_FSENSORCHECK
|
|
fsensor_setup_interrupt();
|
|
#endif //DEBUG_DISABLE_FSENSORCHECK
|
|
for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
|
|
|
|
#ifndef DEBUG_DISABLE_STARTMSGS
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
|
|
show_fw_version_warnings();
|
|
|
|
if (!previous_settings_retrieved) {
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version was changed, inform user that default setting were loaded
|
|
erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
|
|
}
|
|
if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
|
|
lcd_wizard(0);
|
|
}
|
|
if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
|
|
if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
|
|
calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
|
|
// Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
|
|
eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
|
|
// Show the message.
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
|
|
}
|
|
else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
|
|
// Show the message.
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
|
|
lcd_update_enable(true);
|
|
}
|
|
else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
|
|
//lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
|
|
lcd_update_enable(true);
|
|
}
|
|
else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
|
|
// Show the message.
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
|
|
}
|
|
}
|
|
KEEPALIVE_STATE(IN_PROCESS);
|
|
#endif //DEBUG_DISABLE_STARTMSGS
|
|
lcd_update_enable(true);
|
|
lcd_implementation_clear();
|
|
lcd_update(2);
|
|
// Store the currently running firmware into an eeprom,
|
|
// so the next time the firmware gets updated, it will know from which version it has been updated.
|
|
update_current_firmware_version_to_eeprom();
|
|
|
|
tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
|
|
tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
|
|
tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
|
|
if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
|
|
if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
|
|
if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
|
|
|
|
tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
|
|
tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
|
|
tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
|
|
if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
|
|
if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
|
|
if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
|
|
|
|
tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
|
|
if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
|
|
|
|
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
|
|
/*
|
|
if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
|
|
else {
|
|
eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
|
|
lcd_update_enable(true);
|
|
lcd_update(2);
|
|
lcd_setstatuspgm(WELCOME_MSG);
|
|
}
|
|
*/
|
|
manage_heater(); // Update temperatures
|
|
#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
|
|
MYSERIAL.println("Power panic detected!");
|
|
MYSERIAL.print("Current bed temp:");
|
|
MYSERIAL.println(degBed());
|
|
MYSERIAL.print("Saved bed temp:");
|
|
MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
|
|
#endif
|
|
if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
|
|
#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
|
|
MYSERIAL.println("Automatic recovery!");
|
|
#endif
|
|
recover_print(1);
|
|
}
|
|
else{
|
|
#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
|
|
MYSERIAL.println("Normal recovery!");
|
|
#endif
|
|
if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
|
|
else {
|
|
eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
|
|
lcd_update_enable(true);
|
|
lcd_update(2);
|
|
lcd_setstatuspgm(WELCOME_MSG);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
wdt_enable(WDTO_4S);
|
|
}
|
|
|
|
#ifdef PAT9125
|
|
void fsensor_init() {
|
|
int pat9125 = pat9125_init();
|
|
printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
|
|
uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
|
|
if (!pat9125)
|
|
{
|
|
fsensor = 0; //disable sensor
|
|
fsensor_not_responding = true;
|
|
}
|
|
else {
|
|
fsensor_not_responding = false;
|
|
}
|
|
puts_P(PSTR("FSensor "));
|
|
if (fsensor)
|
|
{
|
|
puts_P(PSTR("ENABLED\n"));
|
|
fsensor_enable();
|
|
}
|
|
else
|
|
{
|
|
puts_P(PSTR("DISABLED\n"));
|
|
fsensor_disable();
|
|
}
|
|
#ifdef DEBUG_DISABLE_FSENSORCHECK
|
|
filament_autoload_enabled = false;
|
|
fsensor_disable();
|
|
#endif //DEBUG_DISABLE_FSENSORCHECK
|
|
}
|
|
|
|
#endif //PAT9125
|
|
|
|
void trace();
|
|
|
|
#define CHUNK_SIZE 64 // bytes
|
|
#define SAFETY_MARGIN 1
|
|
char chunk[CHUNK_SIZE+SAFETY_MARGIN];
|
|
int chunkHead = 0;
|
|
|
|
int serial_read_stream() {
|
|
|
|
setTargetHotend(0, 0);
|
|
setTargetBed(0);
|
|
|
|
lcd_implementation_clear();
|
|
lcd_printPGM(PSTR(" Upload in progress"));
|
|
|
|
// first wait for how many bytes we will receive
|
|
uint32_t bytesToReceive;
|
|
|
|
// receive the four bytes
|
|
char bytesToReceiveBuffer[4];
|
|
for (int i=0; i<4; i++) {
|
|
int data;
|
|
while ((data = MYSERIAL.read()) == -1) {};
|
|
bytesToReceiveBuffer[i] = data;
|
|
|
|
}
|
|
|
|
// make it a uint32
|
|
memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
|
|
|
|
// we're ready, notify the sender
|
|
MYSERIAL.write('+');
|
|
|
|
// lock in the routine
|
|
uint32_t receivedBytes = 0;
|
|
while (prusa_sd_card_upload) {
|
|
int i;
|
|
for (i=0; i<CHUNK_SIZE; i++) {
|
|
int data;
|
|
|
|
// check if we're not done
|
|
if (receivedBytes == bytesToReceive) {
|
|
break;
|
|
}
|
|
|
|
// read the next byte
|
|
while ((data = MYSERIAL.read()) == -1) {};
|
|
receivedBytes++;
|
|
|
|
// save it to the chunk
|
|
chunk[i] = data;
|
|
}
|
|
|
|
// write the chunk to SD
|
|
card.write_command_no_newline(&chunk[0]);
|
|
|
|
// notify the sender we're ready for more data
|
|
MYSERIAL.write('+');
|
|
|
|
// for safety
|
|
manage_heater();
|
|
|
|
// check if we're done
|
|
if(receivedBytes == bytesToReceive) {
|
|
trace(); // beep
|
|
card.closefile();
|
|
prusa_sd_card_upload = false;
|
|
SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
#ifdef HOST_KEEPALIVE_FEATURE
|
|
/**
|
|
* Output a "busy" message at regular intervals
|
|
* while the machine is not accepting commands.
|
|
*/
|
|
void host_keepalive() {
|
|
if (farm_mode) return;
|
|
long ms = millis();
|
|
if (host_keepalive_interval && busy_state != NOT_BUSY) {
|
|
if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
|
|
switch (busy_state) {
|
|
case IN_HANDLER:
|
|
case IN_PROCESS:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM("busy: processing");
|
|
break;
|
|
case PAUSED_FOR_USER:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM("busy: paused for user");
|
|
break;
|
|
case PAUSED_FOR_INPUT:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM("busy: paused for input");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
prev_busy_signal_ms = ms;
|
|
}
|
|
#endif
|
|
|
|
// The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
|
|
// Before loop(), the setup() function is called by the main() routine.
|
|
void loop()
|
|
{
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
bool stack_integrity = true;
|
|
|
|
if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
|
|
{
|
|
is_usb_printing = true;
|
|
usb_printing_counter--;
|
|
_usb_timer = millis();
|
|
}
|
|
if (usb_printing_counter == 0)
|
|
{
|
|
is_usb_printing = false;
|
|
}
|
|
|
|
if (prusa_sd_card_upload)
|
|
{
|
|
//we read byte-by byte
|
|
serial_read_stream();
|
|
} else
|
|
{
|
|
|
|
get_command();
|
|
|
|
#ifdef SDSUPPORT
|
|
card.checkautostart(false);
|
|
#endif
|
|
if(buflen)
|
|
{
|
|
cmdbuffer_front_already_processed = false;
|
|
#ifdef SDSUPPORT
|
|
if(card.saving)
|
|
{
|
|
// Saving a G-code file onto an SD-card is in progress.
|
|
// Saving starts with M28, saving until M29 is seen.
|
|
if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
|
|
card.write_command(CMDBUFFER_CURRENT_STRING);
|
|
if(card.logging)
|
|
process_commands();
|
|
else
|
|
SERIAL_PROTOCOLLNRPGM(MSG_OK);
|
|
} else {
|
|
card.closefile();
|
|
SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
|
|
}
|
|
} else {
|
|
process_commands();
|
|
}
|
|
#else
|
|
process_commands();
|
|
#endif //SDSUPPORT
|
|
|
|
if (! cmdbuffer_front_already_processed && buflen)
|
|
{
|
|
// ptr points to the start of the block currently being processed.
|
|
// The first character in the block is the block type.
|
|
char *ptr = cmdbuffer + bufindr;
|
|
if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
|
|
// To support power panic, move the lenght of the command on the SD card to a planner buffer.
|
|
union {
|
|
struct {
|
|
char lo;
|
|
char hi;
|
|
} lohi;
|
|
uint16_t value;
|
|
} sdlen;
|
|
sdlen.value = 0;
|
|
{
|
|
// This block locks the interrupts globally for 3.25 us,
|
|
// which corresponds to a maximum repeat frequency of 307.69 kHz.
|
|
// This blocking is safe in the context of a 10kHz stepper driver interrupt
|
|
// or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
|
|
cli();
|
|
// Reset the command to something, which will be ignored by the power panic routine,
|
|
// so this buffer length will not be counted twice.
|
|
*ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
|
|
// Extract the current buffer length.
|
|
sdlen.lohi.lo = *ptr ++;
|
|
sdlen.lohi.hi = *ptr;
|
|
// and pass it to the planner queue.
|
|
planner_add_sd_length(sdlen.value);
|
|
sei();
|
|
}
|
|
}
|
|
// Now it is safe to release the already processed command block. If interrupted by the power panic now,
|
|
// this block's SD card length will not be counted twice as its command type has been replaced
|
|
// by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
|
|
cmdqueue_pop_front();
|
|
}
|
|
host_keepalive();
|
|
}
|
|
}
|
|
//check heater every n milliseconds
|
|
manage_heater();
|
|
isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
|
|
checkHitEndstops();
|
|
lcd_update();
|
|
#ifdef PAT9125
|
|
fsensor_update();
|
|
#endif //PAT9125
|
|
#ifdef TMC2130
|
|
tmc2130_check_overtemp();
|
|
if (tmc2130_sg_crash)
|
|
{
|
|
uint8_t crash = tmc2130_sg_crash;
|
|
tmc2130_sg_crash = 0;
|
|
// crashdet_stop_and_save_print();
|
|
switch (crash)
|
|
{
|
|
case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
|
|
case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
|
|
case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
|
|
}
|
|
}
|
|
#endif //TMC2130
|
|
|
|
}
|
|
|
|
#define DEFINE_PGM_READ_ANY(type, reader) \
|
|
static inline type pgm_read_any(const type *p) \
|
|
{ return pgm_read_##reader##_near(p); }
|
|
|
|
DEFINE_PGM_READ_ANY(float, float);
|
|
DEFINE_PGM_READ_ANY(signed char, byte);
|
|
|
|
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
|
|
static const PROGMEM type array##_P[3] = \
|
|
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
|
|
static inline type array(int axis) \
|
|
{ return pgm_read_any(&array##_P[axis]); } \
|
|
type array##_ext(int axis) \
|
|
{ return pgm_read_any(&array##_P[axis]); }
|
|
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
|
|
XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
|
|
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
|
|
|
static void axis_is_at_home(int axis) {
|
|
current_position[axis] = base_home_pos(axis) + add_homing[axis];
|
|
min_pos[axis] = base_min_pos(axis) + add_homing[axis];
|
|
max_pos[axis] = base_max_pos(axis) + add_homing[axis];
|
|
}
|
|
|
|
|
|
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
|
|
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
|
|
|
|
|
|
static void setup_for_endstop_move(bool enable_endstops_now = true) {
|
|
saved_feedrate = feedrate;
|
|
saved_feedmultiply = feedmultiply;
|
|
feedmultiply = 100;
|
|
previous_millis_cmd = millis();
|
|
|
|
enable_endstops(enable_endstops_now);
|
|
}
|
|
|
|
static void clean_up_after_endstop_move() {
|
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
enable_endstops(false);
|
|
#endif
|
|
|
|
feedrate = saved_feedrate;
|
|
feedmultiply = saved_feedmultiply;
|
|
previous_millis_cmd = millis();
|
|
}
|
|
|
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
|
|
{
|
|
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
|
|
planeNormal.debug("planeNormal");
|
|
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
//bedLevel.debug("bedLevel");
|
|
|
|
//plan_bed_level_matrix.debug("bed level before");
|
|
//vector_3 uncorrected_position = plan_get_position_mm();
|
|
//uncorrected_position.debug("position before");
|
|
|
|
vector_3 corrected_position = plan_get_position();
|
|
// corrected_position.debug("position after");
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
// put the bed at 0 so we don't go below it.
|
|
current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
|
|
#else // not AUTO_BED_LEVELING_GRID
|
|
|
|
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
|
|
|
|
plan_bed_level_matrix.set_to_identity();
|
|
|
|
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
|
|
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
|
|
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
|
|
|
|
vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
|
|
vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
|
|
vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
|
|
planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
|
|
|
|
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
vector_3 corrected_position = plan_get_position();
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
// put the bed at 0 so we don't go below it.
|
|
current_position[Z_AXIS] = zprobe_zoffset;
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_GRID
|
|
|
|
static void run_z_probe() {
|
|
plan_bed_level_matrix.set_to_identity();
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
// move down until you find the bed
|
|
float zPosition = -10;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
// we have to let the planner know where we are right now as it is not where we said to go.
|
|
zPosition = st_get_position_mm(Z_AXIS);
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
|
|
|
|
// move up the retract distance
|
|
zPosition += home_retract_mm(Z_AXIS);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
// move back down slowly to find bed
|
|
feedrate = homing_feedrate[Z_AXIS]/4;
|
|
zPosition -= home_retract_mm(Z_AXIS) * 2;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
// make sure the planner knows where we are as it may be a bit different than we last said to move to
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
|
|
static void do_blocking_move_to(float x, float y, float z) {
|
|
float oldFeedRate = feedrate;
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
current_position[Z_AXIS] = z;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
feedrate = XY_TRAVEL_SPEED;
|
|
|
|
current_position[X_AXIS] = x;
|
|
current_position[Y_AXIS] = y;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
feedrate = oldFeedRate;
|
|
}
|
|
|
|
static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
|
|
do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
|
|
}
|
|
|
|
|
|
/// Probe bed height at position (x,y), returns the measured z value
|
|
static float probe_pt(float x, float y, float z_before) {
|
|
// move to right place
|
|
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
|
|
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
|
|
|
|
run_z_probe();
|
|
float measured_z = current_position[Z_AXIS];
|
|
|
|
SERIAL_PROTOCOLRPGM(MSG_BED);
|
|
SERIAL_PROTOCOLPGM(" x: ");
|
|
SERIAL_PROTOCOL(x);
|
|
SERIAL_PROTOCOLPGM(" y: ");
|
|
SERIAL_PROTOCOL(y);
|
|
SERIAL_PROTOCOLPGM(" z: ");
|
|
SERIAL_PROTOCOL(measured_z);
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
return measured_z;
|
|
}
|
|
|
|
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
#ifdef LIN_ADVANCE
|
|
/**
|
|
* M900: Set and/or Get advance K factor and WH/D ratio
|
|
*
|
|
* K<factor> Set advance K factor
|
|
* R<ratio> Set ratio directly (overrides WH/D)
|
|
* W<width> H<height> D<diam> Set ratio from WH/D
|
|
*/
|
|
inline void gcode_M900() {
|
|
st_synchronize();
|
|
|
|
const float newK = code_seen('K') ? code_value_float() : -1;
|
|
if (newK >= 0) extruder_advance_k = newK;
|
|
|
|
float newR = code_seen('R') ? code_value_float() : -1;
|
|
if (newR < 0) {
|
|
const float newD = code_seen('D') ? code_value_float() : -1,
|
|
newW = code_seen('W') ? code_value_float() : -1,
|
|
newH = code_seen('H') ? code_value_float() : -1;
|
|
if (newD >= 0 && newW >= 0 && newH >= 0)
|
|
newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
|
|
}
|
|
if (newR >= 0) advance_ed_ratio = newR;
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM("Advance K=");
|
|
SERIAL_ECHOLN(extruder_advance_k);
|
|
SERIAL_ECHOPGM(" E/D=");
|
|
const float ratio = advance_ed_ratio;
|
|
if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
|
|
}
|
|
#endif // LIN_ADVANCE
|
|
|
|
bool check_commands() {
|
|
bool end_command_found = false;
|
|
|
|
while (buflen)
|
|
{
|
|
if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
|
|
if (!cmdbuffer_front_already_processed)
|
|
cmdqueue_pop_front();
|
|
cmdbuffer_front_already_processed = false;
|
|
}
|
|
return end_command_found;
|
|
|
|
}
|
|
|
|
#ifdef TMC2130
|
|
bool calibrate_z_auto()
|
|
{
|
|
//lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
|
|
lcd_implementation_clear();
|
|
lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
|
|
bool endstops_enabled = enable_endstops(true);
|
|
int axis_up_dir = -home_dir(Z_AXIS);
|
|
tmc2130_home_enter(Z_AXIS_MASK);
|
|
current_position[Z_AXIS] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
set_destination_to_current();
|
|
destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
// current_position[axis] = 0;
|
|
// plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
tmc2130_home_exit();
|
|
enable_endstops(false);
|
|
current_position[Z_AXIS] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
set_destination_to_current();
|
|
destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
|
|
feedrate = homing_feedrate[Z_AXIS] / 2;
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
enable_endstops(endstops_enabled);
|
|
current_position[Z_AXIS] = Z_MAX_POS+2.0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
return true;
|
|
}
|
|
#endif //TMC2130
|
|
|
|
void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
|
|
{
|
|
bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
|
|
#define HOMEAXIS_DO(LETTER) \
|
|
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
|
|
if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
|
|
{
|
|
int axis_home_dir = home_dir(axis);
|
|
feedrate = homing_feedrate[axis];
|
|
|
|
#ifdef TMC2130
|
|
tmc2130_home_enter(X_AXIS_MASK << axis);
|
|
#endif //TMC2130
|
|
|
|
|
|
// Move right a bit, so that the print head does not touch the left end position,
|
|
// and the following left movement has a chance to achieve the required velocity
|
|
// for the stall guard to work.
|
|
current_position[axis] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
// destination[axis] = 11.f;
|
|
destination[axis] = 3.f;
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
// Move left away from the possible collision with the collision detection disabled.
|
|
endstops_hit_on_purpose();
|
|
enable_endstops(false);
|
|
current_position[axis] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[axis] = - 1.;
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
// Now continue to move up to the left end stop with the collision detection enabled.
|
|
enable_endstops(true);
|
|
destination[axis] = - 1.1 * max_length(axis);
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
for (uint8_t i = 0; i < cnt; i++)
|
|
{
|
|
// Move right from the collision to a known distance from the left end stop with the collision detection disabled.
|
|
endstops_hit_on_purpose();
|
|
enable_endstops(false);
|
|
current_position[axis] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[axis] = 10.f;
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
endstops_hit_on_purpose();
|
|
// Now move left up to the collision, this time with a repeatable velocity.
|
|
enable_endstops(true);
|
|
destination[axis] = - 11.f;
|
|
#ifdef TMC2130
|
|
feedrate = homing_feedrate[axis];
|
|
#else //TMC2130
|
|
feedrate = homing_feedrate[axis] / 2;
|
|
#endif //TMC2130
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
#ifdef TMC2130
|
|
uint16_t mscnt = tmc2130_rd_MSCNT(axis);
|
|
if (pstep) pstep[i] = mscnt >> 4;
|
|
printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
|
|
#endif //TMC2130
|
|
}
|
|
endstops_hit_on_purpose();
|
|
enable_endstops(false);
|
|
|
|
#ifdef TMC2130
|
|
uint8_t orig = tmc2130_home_origin[axis];
|
|
uint8_t back = tmc2130_home_bsteps[axis];
|
|
if (tmc2130_home_enabled && (orig <= 63))
|
|
{
|
|
tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
|
|
if (back > 0)
|
|
tmc2130_do_steps(axis, back, 1, 1000);
|
|
}
|
|
else
|
|
tmc2130_do_steps(axis, 8, 2, 1000);
|
|
tmc2130_home_exit();
|
|
#endif //TMC2130
|
|
|
|
axis_is_at_home(axis);
|
|
axis_known_position[axis] = true;
|
|
// Move from minimum
|
|
#ifdef TMC2130
|
|
float dist = 0.01f * tmc2130_home_fsteps[axis];
|
|
#else //TMC2130
|
|
float dist = 0.01f * 64;
|
|
#endif //TMC2130
|
|
current_position[axis] -= dist;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
current_position[axis] += dist;
|
|
destination[axis] = current_position[axis];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
feedrate = 0.0;
|
|
}
|
|
else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
|
|
{
|
|
int axis_home_dir = home_dir(axis);
|
|
current_position[axis] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
|
|
feedrate = homing_feedrate[axis];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
current_position[axis] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
|
|
feedrate = homing_feedrate[axis]/2 ;
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
axis_is_at_home(axis);
|
|
destination[axis] = current_position[axis];
|
|
feedrate = 0.0;
|
|
endstops_hit_on_purpose();
|
|
axis_known_position[axis] = true;
|
|
}
|
|
enable_endstops(endstops_enabled);
|
|
}
|
|
|
|
/**/
|
|
void home_xy()
|
|
{
|
|
set_destination_to_current();
|
|
homeaxis(X_AXIS);
|
|
homeaxis(Y_AXIS);
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
endstops_hit_on_purpose();
|
|
}
|
|
|
|
void refresh_cmd_timeout(void)
|
|
{
|
|
previous_millis_cmd = millis();
|
|
}
|
|
|
|
#ifdef FWRETRACT
|
|
void retract(bool retracting, bool swapretract = false) {
|
|
if(retracting && !retracted[active_extruder]) {
|
|
destination[X_AXIS]=current_position[X_AXIS];
|
|
destination[Y_AXIS]=current_position[Y_AXIS];
|
|
destination[Z_AXIS]=current_position[Z_AXIS];
|
|
destination[E_AXIS]=current_position[E_AXIS];
|
|
current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
float oldFeedrate = feedrate;
|
|
feedrate=retract_feedrate*60;
|
|
retracted[active_extruder]=true;
|
|
prepare_move();
|
|
current_position[Z_AXIS]-=retract_zlift;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
prepare_move();
|
|
feedrate = oldFeedrate;
|
|
} else if(!retracting && retracted[active_extruder]) {
|
|
destination[X_AXIS]=current_position[X_AXIS];
|
|
destination[Y_AXIS]=current_position[Y_AXIS];
|
|
destination[Z_AXIS]=current_position[Z_AXIS];
|
|
destination[E_AXIS]=current_position[E_AXIS];
|
|
current_position[Z_AXIS]+=retract_zlift;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
float oldFeedrate = feedrate;
|
|
feedrate=retract_recover_feedrate*60;
|
|
retracted[active_extruder]=false;
|
|
prepare_move();
|
|
feedrate = oldFeedrate;
|
|
}
|
|
} //retract
|
|
#endif //FWRETRACT
|
|
|
|
void trace() {
|
|
tone(BEEPER, 440);
|
|
delay(25);
|
|
noTone(BEEPER);
|
|
delay(20);
|
|
}
|
|
/*
|
|
void ramming() {
|
|
// float tmp[4] = DEFAULT_MAX_FEEDRATE;
|
|
if (current_temperature[0] < 230) {
|
|
//PLA
|
|
|
|
max_feedrate[E_AXIS] = 50;
|
|
//current_position[E_AXIS] -= 8;
|
|
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
//current_position[E_AXIS] += 8;
|
|
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
current_position[E_AXIS] += 5.4;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
|
|
current_position[E_AXIS] += 3.2;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
current_position[E_AXIS] += 3;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
|
|
st_synchronize();
|
|
max_feedrate[E_AXIS] = 80;
|
|
current_position[E_AXIS] -= 82;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
|
|
max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
|
|
current_position[E_AXIS] -= 20;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
|
|
current_position[E_AXIS] += 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
|
|
current_position[E_AXIS] += 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
current_position[E_AXIS] -= 10;
|
|
st_synchronize();
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
current_position[E_AXIS] += 10;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
current_position[E_AXIS] -= 10;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
current_position[E_AXIS] += 10;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
current_position[E_AXIS] -= 10;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
st_synchronize();
|
|
}
|
|
else {
|
|
//ABS
|
|
max_feedrate[E_AXIS] = 50;
|
|
//current_position[E_AXIS] -= 8;
|
|
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
//current_position[E_AXIS] += 8;
|
|
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
current_position[E_AXIS] += 3.1;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
|
|
current_position[E_AXIS] += 3.1;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
|
|
current_position[E_AXIS] += 4;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
//current_position[X_AXIS] += 23; //delay
|
|
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
|
|
//current_position[X_AXIS] -= 23; //delay
|
|
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
|
|
delay(4700);
|
|
max_feedrate[E_AXIS] = 80;
|
|
current_position[E_AXIS] -= 92;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
|
|
max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
|
|
current_position[E_AXIS] -= 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
current_position[E_AXIS] += 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
|
|
current_position[E_AXIS] -= 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
st_synchronize();
|
|
current_position[E_AXIS] += 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
current_position[E_AXIS] -= 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
current_position[E_AXIS] += 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
current_position[E_AXIS] -= 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
st_synchronize();
|
|
|
|
}
|
|
}
|
|
*/
|
|
|
|
#ifdef TMC2130
|
|
void force_high_power_mode(bool start_high_power_section) {
|
|
uint8_t silent;
|
|
silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
|
|
if (silent == 1) {
|
|
//we are in silent mode, set to normal mode to enable crash detection
|
|
|
|
// Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
|
|
st_synchronize();
|
|
cli();
|
|
tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
|
|
tmc2130_init();
|
|
// We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
|
|
// Be safe than sorry, reset the stepper timer before re-enabling interrupts.
|
|
st_reset_timer();
|
|
sei();
|
|
digipot_init();
|
|
}
|
|
}
|
|
#endif //TMC2130
|
|
|
|
bool gcode_M45(bool onlyZ)
|
|
{
|
|
bool final_result = false;
|
|
#ifdef TMC2130
|
|
FORCE_HIGH_POWER_START;
|
|
#endif // TMC2130
|
|
// Only Z calibration?
|
|
if (!onlyZ)
|
|
{
|
|
setTargetBed(0);
|
|
setTargetHotend(0, 0);
|
|
setTargetHotend(0, 1);
|
|
setTargetHotend(0, 2);
|
|
adjust_bed_reset(); //reset bed level correction
|
|
}
|
|
|
|
// Disable the default update procedure of the display. We will do a modal dialog.
|
|
lcd_update_enable(false);
|
|
// Let the planner use the uncorrected coordinates.
|
|
mbl.reset();
|
|
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
// the planner will not perform any adjustments in the XY plane.
|
|
// Wait for the motors to stop and update the current position with the absolute values.
|
|
world2machine_revert_to_uncorrected();
|
|
// Reset the baby step value applied without moving the axes.
|
|
babystep_reset();
|
|
// Mark all axes as in a need for homing.
|
|
memset(axis_known_position, 0, sizeof(axis_known_position));
|
|
|
|
// Home in the XY plane.
|
|
//set_destination_to_current();
|
|
setup_for_endstop_move();
|
|
lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
|
|
home_xy();
|
|
|
|
enable_endstops(false);
|
|
current_position[X_AXIS] += 5;
|
|
current_position[Y_AXIS] += 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
|
|
st_synchronize();
|
|
|
|
// Let the user move the Z axes up to the end stoppers.
|
|
#ifdef TMC2130
|
|
if (calibrate_z_auto())
|
|
{
|
|
#else //TMC2130
|
|
if (lcd_calibrate_z_end_stop_manual(onlyZ))
|
|
{
|
|
#endif //TMC2130
|
|
refresh_cmd_timeout();
|
|
//if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
|
|
//{
|
|
// lcd_wait_for_cool_down();
|
|
//}
|
|
if(!onlyZ)
|
|
{
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
|
|
if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
|
|
lcd_implementation_print_at(0, 2, 1);
|
|
lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
|
|
}
|
|
// Move the print head close to the bed.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
bool endstops_enabled = enable_endstops(true);
|
|
tmc2130_home_enter(Z_AXIS_MASK);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
|
|
|
|
st_synchronize();
|
|
tmc2130_home_exit();
|
|
enable_endstops(endstops_enabled);
|
|
|
|
if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
|
|
{
|
|
|
|
//#ifdef TMC2130
|
|
// tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
|
|
//#endif
|
|
|
|
int8_t verbosity_level = 0;
|
|
if (code_seen('V'))
|
|
{
|
|
// Just 'V' without a number counts as V1.
|
|
char c = strchr_pointer[1];
|
|
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
|
|
}
|
|
|
|
if (onlyZ)
|
|
{
|
|
clean_up_after_endstop_move();
|
|
// Z only calibration.
|
|
// Load the machine correction matrix
|
|
world2machine_initialize();
|
|
// and correct the current_position to match the transformed coordinate system.
|
|
world2machine_update_current();
|
|
//FIXME
|
|
bool result = sample_mesh_and_store_reference();
|
|
if (result)
|
|
{
|
|
if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
|
|
// Shipped, the nozzle height has been set already. The user can start printing now.
|
|
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
|
|
final_result = true;
|
|
// babystep_apply();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Reset the baby step value and the baby step applied flag.
|
|
calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
|
|
eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
|
|
// Complete XYZ calibration.
|
|
uint8_t point_too_far_mask = 0;
|
|
BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
|
|
clean_up_after_endstop_move();
|
|
// Print head up.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
|
|
st_synchronize();
|
|
if (result >= 0)
|
|
{
|
|
point_too_far_mask = 0;
|
|
// Second half: The fine adjustment.
|
|
// Let the planner use the uncorrected coordinates.
|
|
mbl.reset();
|
|
world2machine_reset();
|
|
// Home in the XY plane.
|
|
setup_for_endstop_move();
|
|
home_xy();
|
|
result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
|
|
clean_up_after_endstop_move();
|
|
// Print head up.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
|
|
st_synchronize();
|
|
// if (result >= 0) babystep_apply();
|
|
}
|
|
lcd_bed_calibration_show_result(result, point_too_far_mask);
|
|
if (result >= 0)
|
|
{
|
|
// Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
|
|
calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
|
|
if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
|
|
final_result = true;
|
|
}
|
|
}
|
|
#ifdef TMC2130
|
|
tmc2130_home_exit();
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
|
|
final_result = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Timeouted.
|
|
}
|
|
lcd_update_enable(true);
|
|
#ifdef TMC2130
|
|
FORCE_HIGH_POWER_END;
|
|
#endif // TMC2130
|
|
return final_result;
|
|
}
|
|
|
|
void gcode_M701()
|
|
{
|
|
#ifdef SNMM
|
|
extr_adj(snmm_extruder);//loads current extruder
|
|
#else
|
|
enable_z();
|
|
custom_message = true;
|
|
custom_message_type = 2;
|
|
|
|
lcd_setstatuspgm(MSG_LOADING_FILAMENT);
|
|
current_position[E_AXIS] += 70;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
|
|
|
|
current_position[E_AXIS] += 25;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
|
|
st_synchronize();
|
|
|
|
tone(BEEPER, 500);
|
|
delay_keep_alive(50);
|
|
noTone(BEEPER);
|
|
|
|
if (!farm_mode && loading_flag) {
|
|
bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
|
|
|
|
while (!clean) {
|
|
lcd_update_enable(true);
|
|
lcd_update(2);
|
|
current_position[E_AXIS] += 25;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
|
|
st_synchronize();
|
|
clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
|
|
|
|
}
|
|
|
|
}
|
|
lcd_update_enable(true);
|
|
lcd_update(2);
|
|
lcd_setstatuspgm(WELCOME_MSG);
|
|
disable_z();
|
|
loading_flag = false;
|
|
custom_message = false;
|
|
custom_message_type = 0;
|
|
#endif
|
|
|
|
}
|
|
|
|
void process_commands()
|
|
{
|
|
#ifdef FILAMENT_RUNOUT_SUPPORT
|
|
SET_INPUT(FR_SENS);
|
|
#endif
|
|
|
|
#ifdef CMDBUFFER_DEBUG
|
|
SERIAL_ECHOPGM("Processing a GCODE command: ");
|
|
SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("In cmdqueue: ");
|
|
SERIAL_ECHO(buflen);
|
|
SERIAL_ECHOLNPGM("");
|
|
#endif /* CMDBUFFER_DEBUG */
|
|
|
|
unsigned long codenum; //throw away variable
|
|
char *starpos = NULL;
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
float x_tmp, y_tmp, z_tmp, real_z;
|
|
#endif
|
|
|
|
// PRUSA GCODES
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
#ifdef SNMM
|
|
float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
|
|
float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
|
|
int8_t SilentMode;
|
|
#endif
|
|
|
|
if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
|
|
starpos = (strchr(strchr_pointer + 5, '*'));
|
|
if (starpos != NULL)
|
|
*(starpos) = '\0';
|
|
lcd_setstatus(strchr_pointer + 5);
|
|
}
|
|
|
|
else if(code_seen("CRASH_DETECTED"))
|
|
{
|
|
uint8_t mask = 0;
|
|
if (code_seen("X")) mask |= X_AXIS_MASK;
|
|
if (code_seen("Y")) mask |= Y_AXIS_MASK;
|
|
crashdet_detected(mask);
|
|
}
|
|
else if(code_seen("CRASH_RECOVER"))
|
|
crashdet_recover();
|
|
else if(code_seen("CRASH_CANCEL"))
|
|
crashdet_cancel();
|
|
|
|
else if(code_seen("PRUSA")){
|
|
if (code_seen("Ping")) { //PRUSA Ping
|
|
if (farm_mode) {
|
|
PingTime = millis();
|
|
//MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
|
|
}
|
|
}
|
|
else if (code_seen("PRN")) {
|
|
MYSERIAL.println(status_number);
|
|
|
|
}else if (code_seen("FAN")) {
|
|
MYSERIAL.print("E0:");
|
|
MYSERIAL.print(60*fan_speed[0]);
|
|
MYSERIAL.println(" RPM");
|
|
MYSERIAL.print("PRN0:");
|
|
MYSERIAL.print(60*fan_speed[1]);
|
|
MYSERIAL.println(" RPM");
|
|
|
|
}else if (code_seen("fn")) {
|
|
if (farm_mode) {
|
|
MYSERIAL.println(farm_no);
|
|
}
|
|
else {
|
|
MYSERIAL.println("Not in farm mode.");
|
|
}
|
|
|
|
}else if (code_seen("fv")) {
|
|
// get file version
|
|
#ifdef SDSUPPORT
|
|
card.openFile(strchr_pointer + 3,true);
|
|
while (true) {
|
|
uint16_t readByte = card.get();
|
|
MYSERIAL.write(readByte);
|
|
if (readByte=='\n') {
|
|
break;
|
|
}
|
|
}
|
|
card.closefile();
|
|
|
|
#endif // SDSUPPORT
|
|
|
|
} else if (code_seen("M28")) {
|
|
trace();
|
|
prusa_sd_card_upload = true;
|
|
card.openFile(strchr_pointer+4,false);
|
|
} else if (code_seen("SN")) {
|
|
if (farm_mode) {
|
|
selectedSerialPort = 0;
|
|
MSerial.write(";S");
|
|
// S/N is:CZPX0917X003XC13518
|
|
int numbersRead = 0;
|
|
|
|
while (numbersRead < 19) {
|
|
while (MSerial.available() > 0) {
|
|
uint8_t serial_char = MSerial.read();
|
|
selectedSerialPort = 1;
|
|
MSerial.write(serial_char);
|
|
numbersRead++;
|
|
selectedSerialPort = 0;
|
|
}
|
|
}
|
|
selectedSerialPort = 1;
|
|
MSerial.write('\n');
|
|
/*for (int b = 0; b < 3; b++) {
|
|
tone(BEEPER, 110);
|
|
delay(50);
|
|
noTone(BEEPER);
|
|
delay(50);
|
|
}*/
|
|
} else {
|
|
MYSERIAL.println("Not in farm mode.");
|
|
}
|
|
|
|
} else if(code_seen("Fir")){
|
|
|
|
SERIAL_PROTOCOLLN(FW_VERSION);
|
|
|
|
} else if(code_seen("Rev")){
|
|
|
|
SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
|
|
|
|
} else if(code_seen("Lang")) {
|
|
lcd_force_language_selection();
|
|
} else if(code_seen("Lz")) {
|
|
EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
|
|
|
|
} else if (code_seen("SERIAL LOW")) {
|
|
MYSERIAL.println("SERIAL LOW");
|
|
MYSERIAL.begin(BAUDRATE);
|
|
return;
|
|
} else if (code_seen("SERIAL HIGH")) {
|
|
MYSERIAL.println("SERIAL HIGH");
|
|
MYSERIAL.begin(1152000);
|
|
return;
|
|
} else if(code_seen("Beat")) {
|
|
// Kick farm link timer
|
|
kicktime = millis();
|
|
|
|
} else if(code_seen("FR")) {
|
|
// Factory full reset
|
|
factory_reset(0,true);
|
|
}
|
|
//else if (code_seen('Cal')) {
|
|
// lcd_calibration();
|
|
// }
|
|
|
|
}
|
|
else if (code_seen('^')) {
|
|
// nothing, this is a version line
|
|
} else if(code_seen('G'))
|
|
{
|
|
switch((int)code_value())
|
|
{
|
|
case 0: // G0 -> G1
|
|
case 1: // G1
|
|
if(Stopped == false) {
|
|
|
|
#ifdef FILAMENT_RUNOUT_SUPPORT
|
|
|
|
if(READ(FR_SENS)){
|
|
|
|
feedmultiplyBckp=feedmultiply;
|
|
float target[4];
|
|
float lastpos[4];
|
|
target[X_AXIS]=current_position[X_AXIS];
|
|
target[Y_AXIS]=current_position[Y_AXIS];
|
|
target[Z_AXIS]=current_position[Z_AXIS];
|
|
target[E_AXIS]=current_position[E_AXIS];
|
|
lastpos[X_AXIS]=current_position[X_AXIS];
|
|
lastpos[Y_AXIS]=current_position[Y_AXIS];
|
|
lastpos[Z_AXIS]=current_position[Z_AXIS];
|
|
lastpos[E_AXIS]=current_position[E_AXIS];
|
|
//retract by E
|
|
|
|
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
|
|
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
|
|
|
|
|
|
target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
|
|
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
|
|
|
|
target[X_AXIS]= FILAMENTCHANGE_XPOS ;
|
|
|
|
target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
|
|
|
|
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
|
|
|
|
target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
|
|
|
|
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
|
|
|
|
//finish moves
|
|
st_synchronize();
|
|
//disable extruder steppers so filament can be removed
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
delay(100);
|
|
|
|
//LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
|
|
uint8_t cnt=0;
|
|
int counterBeep = 0;
|
|
lcd_wait_interact();
|
|
while(!lcd_clicked()){
|
|
cnt++;
|
|
manage_heater();
|
|
manage_inactivity(true);
|
|
//lcd_update();
|
|
if(cnt==0)
|
|
{
|
|
#if BEEPER > 0
|
|
|
|
if (counterBeep== 500){
|
|
counterBeep = 0;
|
|
|
|
}
|
|
|
|
|
|
SET_OUTPUT(BEEPER);
|
|
if (counterBeep== 0){
|
|
WRITE(BEEPER,HIGH);
|
|
}
|
|
|
|
if (counterBeep== 20){
|
|
WRITE(BEEPER,LOW);
|
|
}
|
|
|
|
|
|
|
|
|
|
counterBeep++;
|
|
#else
|
|
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
|
lcd_buzz(1000/6,100);
|
|
#else
|
|
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
|
|
WRITE(BEEPER,LOW);
|
|
|
|
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
|
|
|
|
|
|
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
|
|
|
|
|
|
|
|
lcd_change_fil_state = 0;
|
|
lcd_loading_filament();
|
|
while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
|
|
|
|
lcd_change_fil_state = 0;
|
|
lcd_alright();
|
|
switch(lcd_change_fil_state){
|
|
|
|
case 2:
|
|
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
|
|
|
|
|
|
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
|
|
lcd_loading_filament();
|
|
break;
|
|
case 3:
|
|
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
lcd_loading_color();
|
|
break;
|
|
|
|
default:
|
|
lcd_change_success();
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
target[E_AXIS]+= 5;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
|
|
|
|
|
|
//current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
|
|
//plan_set_e_position(current_position[E_AXIS]);
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
|
|
|
|
|
|
target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
|
|
|
|
|
|
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
|
|
|
|
|
|
plan_set_e_position(lastpos[E_AXIS]);
|
|
|
|
feedmultiply=feedmultiplyBckp;
|
|
|
|
|
|
|
|
char cmd[9];
|
|
|
|
sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
|
|
enquecommand(cmd);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
get_coordinates(); // For X Y Z E F
|
|
if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
|
|
total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
|
|
}
|
|
#ifdef FWRETRACT
|
|
if(autoretract_enabled)
|
|
if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
|
|
float echange=destination[E_AXIS]-current_position[E_AXIS];
|
|
|
|
if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
|
|
current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
|
|
plan_set_e_position(current_position[E_AXIS]); //AND from the planner
|
|
retract(!retracted);
|
|
return;
|
|
}
|
|
|
|
|
|
}
|
|
#endif //FWRETRACT
|
|
prepare_move();
|
|
//ClearToSend();
|
|
}
|
|
break;
|
|
case 2: // G2 - CW ARC
|
|
if(Stopped == false) {
|
|
get_arc_coordinates();
|
|
prepare_arc_move(true);
|
|
}
|
|
break;
|
|
case 3: // G3 - CCW ARC
|
|
if(Stopped == false) {
|
|
get_arc_coordinates();
|
|
prepare_arc_move(false);
|
|
}
|
|
break;
|
|
case 4: // G4 dwell
|
|
codenum = 0;
|
|
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
|
|
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
|
|
if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
|
|
st_synchronize();
|
|
codenum += millis(); // keep track of when we started waiting
|
|
previous_millis_cmd = millis();
|
|
while(millis() < codenum) {
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
break;
|
|
#ifdef FWRETRACT
|
|
case 10: // G10 retract
|
|
#if EXTRUDERS > 1
|
|
retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
|
|
retract(true,retracted_swap[active_extruder]);
|
|
#else
|
|
retract(true);
|
|
#endif
|
|
break;
|
|
case 11: // G11 retract_recover
|
|
#if EXTRUDERS > 1
|
|
retract(false,retracted_swap[active_extruder]);
|
|
#else
|
|
retract(false);
|
|
#endif
|
|
break;
|
|
#endif //FWRETRACT
|
|
case 28: //G28 Home all Axis one at a time
|
|
{
|
|
st_synchronize();
|
|
|
|
#if 0
|
|
SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
|
|
SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
|
|
#endif
|
|
|
|
// Flag for the display update routine and to disable the print cancelation during homing.
|
|
homing_flag = true;
|
|
|
|
// Which axes should be homed?
|
|
bool home_x = code_seen(axis_codes[X_AXIS]);
|
|
bool home_y = code_seen(axis_codes[Y_AXIS]);
|
|
bool home_z = code_seen(axis_codes[Z_AXIS]);
|
|
// calibrate?
|
|
bool calib = code_seen('C');
|
|
// Either all X,Y,Z codes are present, or none of them.
|
|
bool home_all_axes = home_x == home_y && home_x == home_z;
|
|
if (home_all_axes)
|
|
// No X/Y/Z code provided means to home all axes.
|
|
home_x = home_y = home_z = true;
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
|
#endif //ENABLE_AUTO_BED_LEVELING
|
|
|
|
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
// the planner will not perform any adjustments in the XY plane.
|
|
// Wait for the motors to stop and update the current position with the absolute values.
|
|
world2machine_revert_to_uncorrected();
|
|
|
|
// For mesh bed leveling deactivate the matrix temporarily.
|
|
// It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
|
|
// in a single axis only.
|
|
// In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
|
|
#ifdef MESH_BED_LEVELING
|
|
uint8_t mbl_was_active = mbl.active;
|
|
mbl.active = 0;
|
|
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
#endif
|
|
|
|
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
|
|
// consumed during the first movements following this statement.
|
|
if (home_z)
|
|
babystep_undo();
|
|
|
|
saved_feedrate = feedrate;
|
|
saved_feedmultiply = feedmultiply;
|
|
feedmultiply = 100;
|
|
previous_millis_cmd = millis();
|
|
|
|
enable_endstops(true);
|
|
|
|
memcpy(destination, current_position, sizeof(destination));
|
|
feedrate = 0.0;
|
|
|
|
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
|
if(home_z)
|
|
homeaxis(Z_AXIS);
|
|
#endif
|
|
|
|
#ifdef QUICK_HOME
|
|
// In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
|
|
if(home_x && home_y) //first diagonal move
|
|
{
|
|
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
|
|
|
|
int x_axis_home_dir = home_dir(X_AXIS);
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
|
feedrate = homing_feedrate[X_AXIS];
|
|
if(homing_feedrate[Y_AXIS]<feedrate)
|
|
feedrate = homing_feedrate[Y_AXIS];
|
|
if (max_length(X_AXIS) > max_length(Y_AXIS)) {
|
|
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
|
|
} else {
|
|
feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
|
|
}
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
axis_is_at_home(X_AXIS);
|
|
axis_is_at_home(Y_AXIS);
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[X_AXIS] = current_position[X_AXIS];
|
|
destination[Y_AXIS] = current_position[Y_AXIS];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
feedrate = 0.0;
|
|
st_synchronize();
|
|
endstops_hit_on_purpose();
|
|
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
current_position[Z_AXIS] = destination[Z_AXIS];
|
|
}
|
|
#endif /* QUICK_HOME */
|
|
|
|
|
|
if(home_x)
|
|
{
|
|
if (!calib)
|
|
homeaxis(X_AXIS);
|
|
else
|
|
tmc2130_home_calibrate(X_AXIS);
|
|
}
|
|
|
|
if(home_y)
|
|
{
|
|
if (!calib)
|
|
homeaxis(Y_AXIS);
|
|
else
|
|
tmc2130_home_calibrate(Y_AXIS);
|
|
}
|
|
|
|
if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
|
|
current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
|
|
|
|
if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
|
|
current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
|
|
|
|
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
|
|
#ifndef Z_SAFE_HOMING
|
|
if(home_z) {
|
|
#if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
|
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
feedrate = max_feedrate[Z_AXIS];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
st_synchronize();
|
|
#endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
|
#if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
|
|
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
|
|
{
|
|
homeaxis(X_AXIS);
|
|
homeaxis(Y_AXIS);
|
|
}
|
|
// 1st mesh bed leveling measurement point, corrected.
|
|
world2machine_initialize();
|
|
world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
|
|
world2machine_reset();
|
|
if (destination[Y_AXIS] < Y_MIN_POS)
|
|
destination[Y_AXIS] = Y_MIN_POS;
|
|
destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
|
|
feedrate = homing_feedrate[Z_AXIS]/10;
|
|
current_position[Z_AXIS] = 0;
|
|
enable_endstops(false);
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
st_synchronize();
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
enable_endstops(true);
|
|
endstops_hit_on_purpose();
|
|
homeaxis(Z_AXIS);
|
|
#else // MESH_BED_LEVELING
|
|
homeaxis(Z_AXIS);
|
|
#endif // MESH_BED_LEVELING
|
|
}
|
|
#else // defined(Z_SAFE_HOMING): Z Safe mode activated.
|
|
if(home_all_axes) {
|
|
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
|
|
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
feedrate = XY_TRAVEL_SPEED/60;
|
|
current_position[Z_AXIS] = 0;
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
st_synchronize();
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
homeaxis(Z_AXIS);
|
|
}
|
|
// Let's see if X and Y are homed and probe is inside bed area.
|
|
if(home_z) {
|
|
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
|
|
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
|
|
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
|
|
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
|
|
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
|
|
|
|
current_position[Z_AXIS] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
feedrate = max_feedrate[Z_AXIS];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
st_synchronize();
|
|
|
|
homeaxis(Z_AXIS);
|
|
} else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
|
|
LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
|
|
} else {
|
|
LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
|
|
}
|
|
}
|
|
#endif // Z_SAFE_HOMING
|
|
#endif // Z_HOME_DIR < 0
|
|
|
|
if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
|
|
current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
if(home_z)
|
|
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
|
|
#endif
|
|
|
|
// Set the planner and stepper routine positions.
|
|
// At this point the mesh bed leveling and world2machine corrections are disabled and current_position
|
|
// contains the machine coordinates.
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
enable_endstops(false);
|
|
#endif
|
|
|
|
feedrate = saved_feedrate;
|
|
feedmultiply = saved_feedmultiply;
|
|
previous_millis_cmd = millis();
|
|
endstops_hit_on_purpose();
|
|
#ifndef MESH_BED_LEVELING
|
|
// If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
|
|
// Offer the user to load the baby step value, which has been adjusted at the previous print session.
|
|
if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
|
|
lcd_adjust_z();
|
|
#endif
|
|
|
|
// Load the machine correction matrix
|
|
world2machine_initialize();
|
|
// and correct the current_position XY axes to match the transformed coordinate system.
|
|
world2machine_update_current();
|
|
|
|
#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
|
|
if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
|
|
{
|
|
if (! home_z && mbl_was_active) {
|
|
// Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
|
|
mbl.active = true;
|
|
// and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
|
|
current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
st_synchronize();
|
|
homing_flag = false;
|
|
// Push the commands to the front of the message queue in the reverse order!
|
|
// There shall be always enough space reserved for these commands.
|
|
// enquecommand_front_P((PSTR("G80")));
|
|
goto case_G80;
|
|
}
|
|
#endif
|
|
|
|
if (farm_mode) { prusa_statistics(20); };
|
|
|
|
homing_flag = false;
|
|
#if 0
|
|
SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
|
|
SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
|
|
SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
|
|
#endif
|
|
break;
|
|
}
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
|
{
|
|
#if Z_MIN_PIN == -1
|
|
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
|
|
#endif
|
|
|
|
// Prevent user from running a G29 without first homing in X and Y
|
|
if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
|
|
{
|
|
LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
|
|
break; // abort G29, since we don't know where we are
|
|
}
|
|
|
|
st_synchronize();
|
|
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
|
//vector_3 corrected_position = plan_get_position_mm();
|
|
//corrected_position.debug("position before G29");
|
|
plan_bed_level_matrix.set_to_identity();
|
|
vector_3 uncorrected_position = plan_get_position();
|
|
//uncorrected_position.debug("position durring G29");
|
|
current_position[X_AXIS] = uncorrected_position.x;
|
|
current_position[Y_AXIS] = uncorrected_position.y;
|
|
current_position[Z_AXIS] = uncorrected_position.z;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
setup_for_endstop_move();
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
// probe at the points of a lattice grid
|
|
|
|
int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
|
|
int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
|
|
|
|
|
|
// solve the plane equation ax + by + d = z
|
|
// A is the matrix with rows [x y 1] for all the probed points
|
|
// B is the vector of the Z positions
|
|
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
|
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
|
|
|
// "A" matrix of the linear system of equations
|
|
double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
|
|
// "B" vector of Z points
|
|
double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
|
|
|
|
|
|
int probePointCounter = 0;
|
|
bool zig = true;
|
|
|
|
for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
|
|
{
|
|
int xProbe, xInc;
|
|
if (zig)
|
|
{
|
|
xProbe = LEFT_PROBE_BED_POSITION;
|
|
//xEnd = RIGHT_PROBE_BED_POSITION;
|
|
xInc = xGridSpacing;
|
|
zig = false;
|
|
} else // zag
|
|
{
|
|
xProbe = RIGHT_PROBE_BED_POSITION;
|
|
//xEnd = LEFT_PROBE_BED_POSITION;
|
|
xInc = -xGridSpacing;
|
|
zig = true;
|
|
}
|
|
|
|
for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
|
|
{
|
|
float z_before;
|
|
if (probePointCounter == 0)
|
|
{
|
|
// raise before probing
|
|
z_before = Z_RAISE_BEFORE_PROBING;
|
|
} else
|
|
{
|
|
// raise extruder
|
|
z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
|
|
}
|
|
|
|
float measured_z = probe_pt(xProbe, yProbe, z_before);
|
|
|
|
eqnBVector[probePointCounter] = measured_z;
|
|
|
|
eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
|
|
eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
|
|
eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
|
|
probePointCounter++;
|
|
xProbe += xInc;
|
|
}
|
|
}
|
|
clean_up_after_endstop_move();
|
|
|
|
// solve lsq problem
|
|
double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
|
|
|
|
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
|
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
|
|
SERIAL_PROTOCOLPGM(" b: ");
|
|
SERIAL_PROTOCOL(plane_equation_coefficients[1]);
|
|
SERIAL_PROTOCOLPGM(" d: ");
|
|
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
|
|
|
|
|
|
set_bed_level_equation_lsq(plane_equation_coefficients);
|
|
|
|
free(plane_equation_coefficients);
|
|
|
|
#else // AUTO_BED_LEVELING_GRID not defined
|
|
|
|
// Probe at 3 arbitrary points
|
|
// probe 1
|
|
float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
|
|
|
|
// probe 2
|
|
float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
|
|
|
// probe 3
|
|
float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
|
|
|
clean_up_after_endstop_move();
|
|
|
|
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
|
|
|
|
|
#endif // AUTO_BED_LEVELING_GRID
|
|
st_synchronize();
|
|
|
|
// The following code correct the Z height difference from z-probe position and hotend tip position.
|
|
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
|
// When the bed is uneven, this height must be corrected.
|
|
real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
|
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
z_tmp = current_position[Z_AXIS];
|
|
|
|
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
|
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
break;
|
|
#ifndef Z_PROBE_SLED
|
|
case 30: // G30 Single Z Probe
|
|
{
|
|
st_synchronize();
|
|
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
|
setup_for_endstop_move();
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
run_z_probe();
|
|
SERIAL_PROTOCOLPGM(MSG_BED);
|
|
SERIAL_PROTOCOLPGM(" X: ");
|
|
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
|
|
clean_up_after_endstop_move();
|
|
}
|
|
break;
|
|
#else
|
|
case 31: // dock the sled
|
|
dock_sled(true);
|
|
break;
|
|
case 32: // undock the sled
|
|
dock_sled(false);
|
|
break;
|
|
#endif // Z_PROBE_SLED
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
case 30: // G30 Single Z Probe
|
|
{
|
|
st_synchronize();
|
|
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
|
setup_for_endstop_move();
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
find_bed_induction_sensor_point_z(-10.f, 3);
|
|
SERIAL_PROTOCOLRPGM(MSG_BED);
|
|
SERIAL_PROTOCOLPGM(" X: ");
|
|
MYSERIAL.print(current_position[X_AXIS], 5);
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
MYSERIAL.print(current_position[Y_AXIS], 5);
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
clean_up_after_endstop_move();
|
|
}
|
|
break;
|
|
|
|
|
|
case 75:
|
|
{
|
|
for (int i = 40; i <= 110; i++) {
|
|
MYSERIAL.print(i);
|
|
MYSERIAL.print(" ");
|
|
MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 76: //PINDA probe temperature calibration
|
|
{
|
|
#ifdef PINDA_THERMISTOR
|
|
if (true)
|
|
{
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
|
|
bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
|
|
if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
|
|
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
|
// We don't know where we are! HOME!
|
|
// Push the commands to the front of the message queue in the reverse order!
|
|
// There shall be always enough space reserved for these commands.
|
|
repeatcommand_front(); // repeat G76 with all its parameters
|
|
enquecommand_front_P((PSTR("G28 W0")));
|
|
break;
|
|
}
|
|
KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
|
|
SERIAL_ECHOLNPGM("PINDA probe calibration start");
|
|
|
|
float zero_z;
|
|
int z_shift = 0; //unit: steps
|
|
float start_temp = 5 * (int)(current_temperature_pinda / 5);
|
|
if (start_temp < 35) start_temp = 35;
|
|
if (start_temp < current_temperature_pinda) start_temp += 5;
|
|
SERIAL_ECHOPGM("start temperature: ");
|
|
MYSERIAL.println(start_temp);
|
|
|
|
// setTargetHotend(200, 0);
|
|
setTargetBed(70 + (start_temp - 30));
|
|
|
|
custom_message = true;
|
|
custom_message_type = 4;
|
|
custom_message_state = 1;
|
|
custom_message = MSG_TEMP_CALIBRATION;
|
|
current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
|
|
while (current_temperature_pinda < start_temp)
|
|
{
|
|
delay_keep_alive(1000);
|
|
serialecho_temperatures();
|
|
}
|
|
|
|
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
|
|
|
|
current_position[Z_AXIS] = 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
|
|
find_bed_induction_sensor_point_z(-1.f);
|
|
zero_z = current_position[Z_AXIS];
|
|
|
|
//current_position[Z_AXIS]
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("ZERO: ");
|
|
MYSERIAL.print(current_position[Z_AXIS]);
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
int i = -1; for (; i < 5; i++)
|
|
{
|
|
float temp = (40 + i * 5);
|
|
SERIAL_ECHOPGM("Step: ");
|
|
MYSERIAL.print(i + 2);
|
|
SERIAL_ECHOLNPGM("/6 (skipped)");
|
|
SERIAL_ECHOPGM("PINDA temperature: ");
|
|
MYSERIAL.print((40 + i*5));
|
|
SERIAL_ECHOPGM(" Z shift (mm):");
|
|
MYSERIAL.print(0);
|
|
SERIAL_ECHOLNPGM("");
|
|
if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
|
|
if (start_temp <= temp) break;
|
|
}
|
|
|
|
for (i++; i < 5; i++)
|
|
{
|
|
float temp = (40 + i * 5);
|
|
SERIAL_ECHOPGM("Step: ");
|
|
MYSERIAL.print(i + 2);
|
|
SERIAL_ECHOLNPGM("/6");
|
|
custom_message_state = i + 2;
|
|
setTargetBed(50 + 10 * (temp - 30) / 5);
|
|
// setTargetHotend(255, 0);
|
|
current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
while (current_temperature_pinda < temp)
|
|
{
|
|
delay_keep_alive(1000);
|
|
serialecho_temperatures();
|
|
}
|
|
current_position[Z_AXIS] = 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
find_bed_induction_sensor_point_z(-1.f);
|
|
z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
|
|
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("PINDA temperature: ");
|
|
MYSERIAL.print(current_temperature_pinda);
|
|
SERIAL_ECHOPGM(" Z shift (mm):");
|
|
MYSERIAL.print(current_position[Z_AXIS] - zero_z);
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
|
|
|
|
}
|
|
custom_message_type = 0;
|
|
custom_message = false;
|
|
|
|
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
|
|
SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
|
|
disable_x();
|
|
disable_y();
|
|
disable_z();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
setTargetBed(0); //set bed target temperature back to 0
|
|
// setTargetHotend(0,0); //set hotend target temperature back to 0
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
|
|
lcd_update_enable(true);
|
|
lcd_update(2);
|
|
break;
|
|
}
|
|
#endif //PINDA_THERMISTOR
|
|
|
|
setTargetBed(PINDA_MIN_T);
|
|
float zero_z;
|
|
int z_shift = 0; //unit: steps
|
|
int t_c; // temperature
|
|
|
|
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
|
// We don't know where we are! HOME!
|
|
// Push the commands to the front of the message queue in the reverse order!
|
|
// There shall be always enough space reserved for these commands.
|
|
repeatcommand_front(); // repeat G76 with all its parameters
|
|
enquecommand_front_P((PSTR("G28 W0")));
|
|
break;
|
|
}
|
|
SERIAL_ECHOLNPGM("PINDA probe calibration start");
|
|
custom_message = true;
|
|
custom_message_type = 4;
|
|
custom_message_state = 1;
|
|
custom_message = MSG_TEMP_CALIBRATION;
|
|
current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
|
|
while (abs(degBed() - PINDA_MIN_T) > 1) {
|
|
delay_keep_alive(1000);
|
|
serialecho_temperatures();
|
|
}
|
|
|
|
//enquecommand_P(PSTR("M190 S50"));
|
|
for (int i = 0; i < PINDA_HEAT_T; i++) {
|
|
delay_keep_alive(1000);
|
|
serialecho_temperatures();
|
|
}
|
|
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
|
|
|
|
current_position[Z_AXIS] = 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
|
|
find_bed_induction_sensor_point_z(-1.f);
|
|
zero_z = current_position[Z_AXIS];
|
|
|
|
//current_position[Z_AXIS]
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("ZERO: ");
|
|
MYSERIAL.print(current_position[Z_AXIS]);
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
for (int i = 0; i<5; i++) {
|
|
SERIAL_ECHOPGM("Step: ");
|
|
MYSERIAL.print(i+2);
|
|
SERIAL_ECHOLNPGM("/6");
|
|
custom_message_state = i + 2;
|
|
t_c = 60 + i * 10;
|
|
|
|
setTargetBed(t_c);
|
|
current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
while (degBed() < t_c) {
|
|
delay_keep_alive(1000);
|
|
serialecho_temperatures();
|
|
}
|
|
for (int i = 0; i < PINDA_HEAT_T; i++) {
|
|
delay_keep_alive(1000);
|
|
serialecho_temperatures();
|
|
}
|
|
current_position[Z_AXIS] = 5;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
find_bed_induction_sensor_point_z(-1.f);
|
|
z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
|
|
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("Temperature: ");
|
|
MYSERIAL.print(t_c);
|
|
SERIAL_ECHOPGM(" Z shift (mm):");
|
|
MYSERIAL.print(current_position[Z_AXIS] - zero_z);
|
|
SERIAL_ECHOLNPGM("");
|
|
|
|
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
|
|
|
|
|
|
}
|
|
custom_message_type = 0;
|
|
custom_message = false;
|
|
|
|
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
|
|
SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
|
|
disable_x();
|
|
disable_y();
|
|
disable_z();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
setTargetBed(0); //set bed target temperature back to 0
|
|
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
|
|
lcd_update_enable(true);
|
|
lcd_update(2);
|
|
|
|
|
|
|
|
}
|
|
break;
|
|
|
|
#ifdef DIS
|
|
case 77:
|
|
{
|
|
//G77 X200 Y150 XP100 YP15 XO10 Y015
|
|
|
|
//for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
|
|
|
|
|
|
//G77 X232 Y218 XP116 YP109 XO-11 YO0
|
|
|
|
float dimension_x = 40;
|
|
float dimension_y = 40;
|
|
int points_x = 40;
|
|
int points_y = 40;
|
|
float offset_x = 74;
|
|
float offset_y = 33;
|
|
|
|
if (code_seen('X')) dimension_x = code_value();
|
|
if (code_seen('Y')) dimension_y = code_value();
|
|
if (code_seen('XP')) points_x = code_value();
|
|
if (code_seen('YP')) points_y = code_value();
|
|
if (code_seen('XO')) offset_x = code_value();
|
|
if (code_seen('YO')) offset_y = code_value();
|
|
|
|
bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
|
|
|
|
} break;
|
|
|
|
#endif
|
|
|
|
case 79: {
|
|
for (int i = 255; i > 0; i = i - 5) {
|
|
fanSpeed = i;
|
|
//delay_keep_alive(2000);
|
|
for (int j = 0; j < 100; j++) {
|
|
delay_keep_alive(100);
|
|
|
|
}
|
|
fan_speed[1];
|
|
MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
|
|
}
|
|
}break;
|
|
|
|
/**
|
|
* G80: Mesh-based Z probe, probes a grid and produces a
|
|
* mesh to compensate for variable bed height
|
|
*
|
|
* The S0 report the points as below
|
|
*
|
|
* +----> X-axis
|
|
* |
|
|
* |
|
|
* v Y-axis
|
|
*
|
|
*/
|
|
|
|
case 80:
|
|
#ifdef MK1BP
|
|
break;
|
|
#endif //MK1BP
|
|
case_G80:
|
|
{
|
|
mesh_bed_leveling_flag = true;
|
|
int8_t verbosity_level = 0;
|
|
static bool run = false;
|
|
|
|
if (code_seen('V')) {
|
|
// Just 'V' without a number counts as V1.
|
|
char c = strchr_pointer[1];
|
|
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
|
|
}
|
|
// Firstly check if we know where we are
|
|
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
|
// We don't know where we are! HOME!
|
|
// Push the commands to the front of the message queue in the reverse order!
|
|
// There shall be always enough space reserved for these commands.
|
|
if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
|
|
repeatcommand_front(); // repeat G80 with all its parameters
|
|
enquecommand_front_P((PSTR("G28 W0")));
|
|
}
|
|
else {
|
|
mesh_bed_leveling_flag = false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
bool temp_comp_start = true;
|
|
#ifdef PINDA_THERMISTOR
|
|
temp_comp_start = false;
|
|
#endif //PINDA_THERMISTOR
|
|
|
|
if (temp_comp_start)
|
|
if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
|
|
if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
|
|
temp_compensation_start();
|
|
run = true;
|
|
repeatcommand_front(); // repeat G80 with all its parameters
|
|
enquecommand_front_P((PSTR("G28 W0")));
|
|
}
|
|
else {
|
|
mesh_bed_leveling_flag = false;
|
|
}
|
|
break;
|
|
}
|
|
run = false;
|
|
if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
|
|
mesh_bed_leveling_flag = false;
|
|
break;
|
|
}
|
|
// Save custom message state, set a new custom message state to display: Calibrating point 9.
|
|
bool custom_message_old = custom_message;
|
|
unsigned int custom_message_type_old = custom_message_type;
|
|
unsigned int custom_message_state_old = custom_message_state;
|
|
custom_message = true;
|
|
custom_message_type = 1;
|
|
custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
|
|
lcd_update(1);
|
|
|
|
mbl.reset(); //reset mesh bed leveling
|
|
|
|
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
|
|
// consumed during the first movements following this statement.
|
|
babystep_undo();
|
|
|
|
// Cycle through all points and probe them
|
|
// First move up. During this first movement, the babystepping will be reverted.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
|
|
// The move to the first calibration point.
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 1) {
|
|
clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
|
|
}
|
|
#endif //SUPPORT_VERBOSITY
|
|
// mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
|
|
// Wait until the move is finished.
|
|
st_synchronize();
|
|
|
|
int mesh_point = 0; //index number of calibration point
|
|
|
|
int ix = 0;
|
|
int iy = 0;
|
|
|
|
int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
|
|
int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
|
|
int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
|
|
bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 1) {
|
|
has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
|
|
const char *kill_message = NULL;
|
|
while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
|
|
// Get coords of a measuring point.
|
|
ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
|
|
iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
|
|
if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
|
|
float z0 = 0.f;
|
|
if (has_z && mesh_point > 0) {
|
|
uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
|
|
z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
|
|
//#if 0
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 1) {
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("Bed leveling, point: ");
|
|
MYSERIAL.print(mesh_point);
|
|
SERIAL_ECHOPGM(", calibration z: ");
|
|
MYSERIAL.print(z0, 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
//#endif
|
|
}
|
|
|
|
// Move Z up to MESH_HOME_Z_SEARCH.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
|
st_synchronize();
|
|
|
|
// Move to XY position of the sensor point.
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
|
|
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
|
|
|
|
|
|
|
|
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 1) {
|
|
|
|
SERIAL_PROTOCOL(mesh_point);
|
|
clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
|
|
st_synchronize();
|
|
|
|
// Go down until endstop is hit
|
|
const float Z_CALIBRATION_THRESHOLD = 1.f;
|
|
if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
|
|
kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
|
|
break;
|
|
}
|
|
if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
|
|
kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
|
|
break;
|
|
}
|
|
if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
|
|
kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
|
|
break;
|
|
}
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 10) {
|
|
SERIAL_ECHOPGM("X: ");
|
|
MYSERIAL.print(current_position[X_AXIS], 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
SERIAL_ECHOPGM("Y: ");
|
|
MYSERIAL.print(current_position[Y_AXIS], 5);
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
float offset_z = 0;
|
|
|
|
#ifdef PINDA_THERMISTOR
|
|
offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
|
|
#endif //PINDA_THERMISTOR
|
|
// #ifdef SUPPORT_VERBOSITY
|
|
/* if (verbosity_level >= 1)
|
|
{
|
|
SERIAL_ECHOPGM("mesh bed leveling: ");
|
|
MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
SERIAL_ECHOPGM(" offset: ");
|
|
MYSERIAL.print(offset_z, 5);
|
|
SERIAL_ECHOLNPGM("");
|
|
}*/
|
|
// #endif // SUPPORT_VERBOSITY
|
|
mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
|
|
|
|
custom_message_state--;
|
|
mesh_point++;
|
|
lcd_update(1);
|
|
}
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 20) {
|
|
SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
|
|
SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
|
|
MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
|
st_synchronize();
|
|
if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
|
|
kill(kill_message);
|
|
SERIAL_ECHOLNPGM("killed");
|
|
}
|
|
clean_up_after_endstop_move();
|
|
// SERIAL_ECHOLNPGM("clean up finished ");
|
|
|
|
bool apply_temp_comp = true;
|
|
#ifdef PINDA_THERMISTOR
|
|
apply_temp_comp = false;
|
|
#endif
|
|
if (apply_temp_comp)
|
|
if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
|
|
babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
|
|
// SERIAL_ECHOLNPGM("babystep applied");
|
|
bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
|
|
#ifdef SUPPORT_VERBOSITY
|
|
if (verbosity_level >= 1) {
|
|
eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
|
|
}
|
|
#endif // SUPPORT_VERBOSITY
|
|
|
|
for (uint8_t i = 0; i < 4; ++i) {
|
|
unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
|
|
long correction = 0;
|
|
if (code_seen(codes[i]))
|
|
correction = code_value_long();
|
|
else if (eeprom_bed_correction_valid) {
|
|
unsigned char *addr = (i < 2) ?
|
|
((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
|
|
((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
|
|
correction = eeprom_read_int8(addr);
|
|
}
|
|
if (correction == 0)
|
|
continue;
|
|
float offset = float(correction) * 0.001f;
|
|
if (fabs(offset) > 0.101f) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ECHOPGM("Excessive bed leveling correction: ");
|
|
SERIAL_ECHO(offset);
|
|
SERIAL_ECHOLNPGM(" microns");
|
|
}
|
|
else {
|
|
switch (i) {
|
|
case 0:
|
|
for (uint8_t row = 0; row < 3; ++row) {
|
|
mbl.z_values[row][1] += 0.5f * offset;
|
|
mbl.z_values[row][0] += offset;
|
|
}
|
|
break;
|
|
case 1:
|
|
for (uint8_t row = 0; row < 3; ++row) {
|
|
mbl.z_values[row][1] += 0.5f * offset;
|
|
mbl.z_values[row][2] += offset;
|
|
}
|
|
break;
|
|
case 2:
|
|
for (uint8_t col = 0; col < 3; ++col) {
|
|
mbl.z_values[1][col] += 0.5f * offset;
|
|
mbl.z_values[0][col] += offset;
|
|
}
|
|
break;
|
|
case 3:
|
|
for (uint8_t col = 0; col < 3; ++col) {
|
|
mbl.z_values[1][col] += 0.5f * offset;
|
|
mbl.z_values[2][col] += offset;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// SERIAL_ECHOLNPGM("Bed leveling correction finished");
|
|
mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
|
|
// SERIAL_ECHOLNPGM("Upsample finished");
|
|
mbl.active = 1; //activate mesh bed leveling
|
|
// SERIAL_ECHOLNPGM("Mesh bed leveling activated");
|
|
go_home_with_z_lift();
|
|
// SERIAL_ECHOLNPGM("Go home finished");
|
|
//unretract (after PINDA preheat retraction)
|
|
if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
|
|
current_position[E_AXIS] += DEFAULT_RETRACTION;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
|
|
}
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
// Restore custom message state
|
|
custom_message = custom_message_old;
|
|
custom_message_type = custom_message_type_old;
|
|
custom_message_state = custom_message_state_old;
|
|
mesh_bed_leveling_flag = false;
|
|
mesh_bed_run_from_menu = false;
|
|
lcd_update(2);
|
|
|
|
}
|
|
break;
|
|
|
|
/**
|
|
* G81: Print mesh bed leveling status and bed profile if activated
|
|
*/
|
|
case 81:
|
|
if (mbl.active) {
|
|
SERIAL_PROTOCOLPGM("Num X,Y: ");
|
|
SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
|
|
SERIAL_PROTOCOLPGM(",");
|
|
SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
|
|
SERIAL_PROTOCOLPGM("\nZ search height: ");
|
|
SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
|
|
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
|
|
for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
|
|
for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
|
|
}
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
}
|
|
}
|
|
else
|
|
SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
|
|
break;
|
|
|
|
#if 0
|
|
/**
|
|
* G82: Single Z probe at current location
|
|
*
|
|
* WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
|
|
*
|
|
*/
|
|
case 82:
|
|
SERIAL_PROTOCOLLNPGM("Finding bed ");
|
|
setup_for_endstop_move();
|
|
find_bed_induction_sensor_point_z();
|
|
clean_up_after_endstop_move();
|
|
SERIAL_PROTOCOLPGM("Bed found at: ");
|
|
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
break;
|
|
|
|
/**
|
|
* G83: Prusa3D specific: Babystep in Z and store to EEPROM
|
|
*/
|
|
case 83:
|
|
{
|
|
int babystepz = code_seen('S') ? code_value() : 0;
|
|
int BabyPosition = code_seen('P') ? code_value() : 0;
|
|
|
|
if (babystepz != 0) {
|
|
//FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
|
|
// Is the axis indexed starting with zero or one?
|
|
if (BabyPosition > 4) {
|
|
SERIAL_PROTOCOLLNPGM("Index out of bounds");
|
|
}else{
|
|
// Save it to the eeprom
|
|
babystepLoadZ = babystepz;
|
|
EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
|
|
// adjust the Z
|
|
babystepsTodoZadd(babystepLoadZ);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
break;
|
|
/**
|
|
* G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
|
|
*/
|
|
case 84:
|
|
babystepsTodoZsubtract(babystepLoadZ);
|
|
// babystepLoadZ = 0;
|
|
break;
|
|
|
|
/**
|
|
* G85: Prusa3D specific: Pick best babystep
|
|
*/
|
|
case 85:
|
|
lcd_pick_babystep();
|
|
break;
|
|
#endif
|
|
|
|
/**
|
|
* G86: Prusa3D specific: Disable babystep correction after home.
|
|
* This G-code will be performed at the start of a calibration script.
|
|
*/
|
|
case 86:
|
|
calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
|
|
break;
|
|
/**
|
|
* G87: Prusa3D specific: Enable babystep correction after home
|
|
* This G-code will be performed at the end of a calibration script.
|
|
*/
|
|
case 87:
|
|
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
|
|
break;
|
|
|
|
/**
|
|
* G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
|
|
*/
|
|
case 88:
|
|
break;
|
|
|
|
|
|
#endif // ENABLE_MESH_BED_LEVELING
|
|
|
|
|
|
case 90: // G90
|
|
relative_mode = false;
|
|
break;
|
|
case 91: // G91
|
|
relative_mode = true;
|
|
break;
|
|
case 92: // G92
|
|
if(!code_seen(axis_codes[E_AXIS]))
|
|
st_synchronize();
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i])) {
|
|
if(i == E_AXIS) {
|
|
current_position[i] = code_value();
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
}
|
|
else {
|
|
current_position[i] = code_value()+add_homing[i];
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 98: //activate farm mode
|
|
farm_mode = 1;
|
|
PingTime = millis();
|
|
eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
|
|
break;
|
|
|
|
case 99: //deactivate farm mode
|
|
farm_mode = 0;
|
|
lcd_printer_connected();
|
|
eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
|
|
lcd_update(2);
|
|
break;
|
|
default:
|
|
printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
|
|
}
|
|
} // end if(code_seen('G'))
|
|
|
|
else if(code_seen('M'))
|
|
{
|
|
int index;
|
|
for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
|
|
|
|
/*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
|
|
if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
|
|
printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
|
|
|
|
} else
|
|
switch((int)code_value())
|
|
{
|
|
#ifdef ULTIPANEL
|
|
|
|
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
|
|
case 1: // M1 - Conditional stop - Wait for user button press on LCD
|
|
{
|
|
char *src = strchr_pointer + 2;
|
|
|
|
codenum = 0;
|
|
|
|
bool hasP = false, hasS = false;
|
|
if (code_seen('P')) {
|
|
codenum = code_value(); // milliseconds to wait
|
|
hasP = codenum > 0;
|
|
}
|
|
if (code_seen('S')) {
|
|
codenum = code_value() * 1000; // seconds to wait
|
|
hasS = codenum > 0;
|
|
}
|
|
starpos = strchr(src, '*');
|
|
if (starpos != NULL) *(starpos) = '\0';
|
|
while (*src == ' ') ++src;
|
|
if (!hasP && !hasS && *src != '\0') {
|
|
lcd_setstatus(src);
|
|
} else {
|
|
LCD_MESSAGERPGM(MSG_USERWAIT);
|
|
}
|
|
|
|
lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
|
|
st_synchronize();
|
|
previous_millis_cmd = millis();
|
|
if (codenum > 0){
|
|
codenum += millis(); // keep track of when we started waiting
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
while(millis() < codenum && !lcd_clicked()){
|
|
manage_heater();
|
|
manage_inactivity(true);
|
|
lcd_update();
|
|
}
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
lcd_ignore_click(false);
|
|
}else{
|
|
if (!lcd_detected())
|
|
break;
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
while(!lcd_clicked()){
|
|
manage_heater();
|
|
manage_inactivity(true);
|
|
lcd_update();
|
|
}
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
}
|
|
if (IS_SD_PRINTING)
|
|
LCD_MESSAGERPGM(MSG_RESUMING);
|
|
else
|
|
LCD_MESSAGERPGM(WELCOME_MSG);
|
|
}
|
|
break;
|
|
#endif
|
|
case 17:
|
|
LCD_MESSAGERPGM(MSG_NO_MOVE);
|
|
enable_x();
|
|
enable_y();
|
|
enable_z();
|
|
enable_e0();
|
|
enable_e1();
|
|
enable_e2();
|
|
break;
|
|
|
|
#ifdef SDSUPPORT
|
|
case 20: // M20 - list SD card
|
|
SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
|
|
card.ls();
|
|
SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
|
|
break;
|
|
case 21: // M21 - init SD card
|
|
|
|
card.initsd();
|
|
|
|
break;
|
|
case 22: //M22 - release SD card
|
|
card.release();
|
|
|
|
break;
|
|
case 23: //M23 - Select file
|
|
starpos = (strchr(strchr_pointer + 4,'*'));
|
|
if(starpos!=NULL)
|
|
*(starpos)='\0';
|
|
card.openFile(strchr_pointer + 4,true);
|
|
break;
|
|
case 24: //M24 - Start SD print
|
|
if (!card.paused)
|
|
failstats_reset_print();
|
|
card.startFileprint();
|
|
starttime=millis();
|
|
break;
|
|
case 25: //M25 - Pause SD print
|
|
card.pauseSDPrint();
|
|
break;
|
|
case 26: //M26 - Set SD index
|
|
if(card.cardOK && code_seen('S')) {
|
|
card.setIndex(code_value_long());
|
|
}
|
|
break;
|
|
case 27: //M27 - Get SD status
|
|
card.getStatus();
|
|
break;
|
|
case 28: //M28 - Start SD write
|
|
starpos = (strchr(strchr_pointer + 4,'*'));
|
|
if(starpos != NULL){
|
|
char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
|
|
strchr_pointer = strchr(npos,' ') + 1;
|
|
*(starpos) = '\0';
|
|
}
|
|
card.openFile(strchr_pointer+4,false);
|
|
break;
|
|
case 29: //M29 - Stop SD write
|
|
//processed in write to file routine above
|
|
//card,saving = false;
|
|
break;
|
|
case 30: //M30 <filename> Delete File
|
|
if (card.cardOK){
|
|
card.closefile();
|
|
starpos = (strchr(strchr_pointer + 4,'*'));
|
|
if(starpos != NULL){
|
|
char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
|
|
strchr_pointer = strchr(npos,' ') + 1;
|
|
*(starpos) = '\0';
|
|
}
|
|
card.removeFile(strchr_pointer + 4);
|
|
}
|
|
break;
|
|
case 32: //M32 - Select file and start SD print
|
|
{
|
|
if(card.sdprinting) {
|
|
st_synchronize();
|
|
|
|
}
|
|
starpos = (strchr(strchr_pointer + 4,'*'));
|
|
|
|
char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
|
|
if(namestartpos==NULL)
|
|
{
|
|
namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
|
|
}
|
|
else
|
|
namestartpos++; //to skip the '!'
|
|
|
|
if(starpos!=NULL)
|
|
*(starpos)='\0';
|
|
|
|
bool call_procedure=(code_seen('P'));
|
|
|
|
if(strchr_pointer>namestartpos)
|
|
call_procedure=false; //false alert, 'P' found within filename
|
|
|
|
if( card.cardOK )
|
|
{
|
|
card.openFile(namestartpos,true,!call_procedure);
|
|
if(code_seen('S'))
|
|
if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
|
|
card.setIndex(code_value_long());
|
|
card.startFileprint();
|
|
if(!call_procedure)
|
|
starttime=millis(); //procedure calls count as normal print time.
|
|
}
|
|
} break;
|
|
case 928: //M928 - Start SD write
|
|
starpos = (strchr(strchr_pointer + 5,'*'));
|
|
if(starpos != NULL){
|
|
char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
|
|
strchr_pointer = strchr(npos,' ') + 1;
|
|
*(starpos) = '\0';
|
|
}
|
|
card.openLogFile(strchr_pointer+5);
|
|
break;
|
|
|
|
#endif //SDSUPPORT
|
|
|
|
case 31: //M31 take time since the start of the SD print or an M109 command
|
|
{
|
|
stoptime=millis();
|
|
char time[30];
|
|
unsigned long t=(stoptime-starttime)/1000;
|
|
int sec,min;
|
|
min=t/60;
|
|
sec=t%60;
|
|
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN(time);
|
|
lcd_setstatus(time);
|
|
autotempShutdown();
|
|
}
|
|
break;
|
|
#ifndef _DISABLE_M42_M226
|
|
case 42: //M42 -Change pin status via gcode
|
|
if (code_seen('S'))
|
|
{
|
|
int pin_status = code_value();
|
|
int pin_number = LED_PIN;
|
|
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
|
|
pin_number = code_value();
|
|
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
|
|
{
|
|
if (sensitive_pins[i] == pin_number)
|
|
{
|
|
pin_number = -1;
|
|
break;
|
|
}
|
|
}
|
|
#if defined(FAN_PIN) && FAN_PIN > -1
|
|
if (pin_number == FAN_PIN)
|
|
fanSpeed = pin_status;
|
|
#endif
|
|
if (pin_number > -1)
|
|
{
|
|
pinMode(pin_number, OUTPUT);
|
|
digitalWrite(pin_number, pin_status);
|
|
analogWrite(pin_number, pin_status);
|
|
}
|
|
}
|
|
break;
|
|
#endif //_DISABLE_M42_M226
|
|
case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
|
|
|
|
// Reset the baby step value and the baby step applied flag.
|
|
calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
|
|
eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
|
|
|
|
// Reset the skew and offset in both RAM and EEPROM.
|
|
reset_bed_offset_and_skew();
|
|
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
// the planner will not perform any adjustments in the XY plane.
|
|
// Wait for the motors to stop and update the current position with the absolute values.
|
|
world2machine_revert_to_uncorrected();
|
|
break;
|
|
|
|
case 45: // M45: Prusa3D: bed skew and offset with manual Z up
|
|
{
|
|
bool only_Z = code_seen('Z');
|
|
gcode_M45(only_Z);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
case 46:
|
|
{
|
|
// M46: Prusa3D: Show the assigned IP address.
|
|
uint8_t ip[4];
|
|
bool hasIP = card.ToshibaFlashAir_GetIP(ip);
|
|
if (hasIP) {
|
|
SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
|
|
SERIAL_ECHO(int(ip[0]));
|
|
SERIAL_ECHOPGM(".");
|
|
SERIAL_ECHO(int(ip[1]));
|
|
SERIAL_ECHOPGM(".");
|
|
SERIAL_ECHO(int(ip[2]));
|
|
SERIAL_ECHOPGM(".");
|
|
SERIAL_ECHO(int(ip[3]));
|
|
SERIAL_ECHOLNPGM("");
|
|
} else {
|
|
SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
|
|
}
|
|
break;
|
|
}
|
|
*/
|
|
|
|
case 47:
|
|
// M47: Prusa3D: Show end stops dialog on the display.
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
lcd_diag_show_end_stops();
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
break;
|
|
|
|
#if 0
|
|
case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
|
|
{
|
|
// Disable the default update procedure of the display. We will do a modal dialog.
|
|
lcd_update_enable(false);
|
|
// Let the planner use the uncorrected coordinates.
|
|
mbl.reset();
|
|
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
// the planner will not perform any adjustments in the XY plane.
|
|
// Wait for the motors to stop and update the current position with the absolute values.
|
|
world2machine_revert_to_uncorrected();
|
|
// Move the print head close to the bed.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
st_synchronize();
|
|
// Home in the XY plane.
|
|
set_destination_to_current();
|
|
setup_for_endstop_move();
|
|
home_xy();
|
|
int8_t verbosity_level = 0;
|
|
if (code_seen('V')) {
|
|
// Just 'V' without a number counts as V1.
|
|
char c = strchr_pointer[1];
|
|
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
|
|
}
|
|
bool success = scan_bed_induction_points(verbosity_level);
|
|
clean_up_after_endstop_move();
|
|
// Print head up.
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
st_synchronize();
|
|
lcd_update_enable(true);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
// M48 Z-Probe repeatability measurement function.
|
|
//
|
|
// Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
|
|
//
|
|
// This function assumes the bed has been homed. Specificaly, that a G28 command
|
|
// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
|
|
// Any information generated by a prior G29 Bed leveling command will be lost and need to be
|
|
// regenerated.
|
|
//
|
|
// The number of samples will default to 10 if not specified. You can use upper or lower case
|
|
// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
|
|
// N for its communication protocol and will get horribly confused if you send it a capital N.
|
|
//
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
#ifdef Z_PROBE_REPEATABILITY_TEST
|
|
|
|
case 48: // M48 Z-Probe repeatability
|
|
{
|
|
#if Z_MIN_PIN == -1
|
|
#error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
|
|
#endif
|
|
|
|
double sum=0.0;
|
|
double mean=0.0;
|
|
double sigma=0.0;
|
|
double sample_set[50];
|
|
int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
|
|
double X_current, Y_current, Z_current;
|
|
double X_probe_location, Y_probe_location, Z_start_location, ext_position;
|
|
|
|
if (code_seen('V') || code_seen('v')) {
|
|
verbose_level = code_value();
|
|
if (verbose_level<0 || verbose_level>4 ) {
|
|
SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
|
|
goto Sigma_Exit;
|
|
}
|
|
}
|
|
|
|
if (verbose_level > 0) {
|
|
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
|
|
SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
|
|
}
|
|
|
|
if (code_seen('n')) {
|
|
n_samples = code_value();
|
|
if (n_samples<4 || n_samples>50 ) {
|
|
SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
|
|
goto Sigma_Exit;
|
|
}
|
|
}
|
|
|
|
X_current = X_probe_location = st_get_position_mm(X_AXIS);
|
|
Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
|
|
Z_current = st_get_position_mm(Z_AXIS);
|
|
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
|
ext_position = st_get_position_mm(E_AXIS);
|
|
|
|
if (code_seen('X') || code_seen('x') ) {
|
|
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
|
|
SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
|
|
goto Sigma_Exit;
|
|
}
|
|
}
|
|
|
|
if (code_seen('Y') || code_seen('y') ) {
|
|
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
|
|
SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
|
|
goto Sigma_Exit;
|
|
}
|
|
}
|
|
|
|
if (code_seen('L') || code_seen('l') ) {
|
|
n_legs = code_value();
|
|
if ( n_legs==1 )
|
|
n_legs = 2;
|
|
if ( n_legs<0 || n_legs>15 ) {
|
|
SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
|
|
goto Sigma_Exit;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Do all the preliminary setup work. First raise the probe.
|
|
//
|
|
|
|
st_synchronize();
|
|
plan_bed_level_matrix.set_to_identity();
|
|
plan_buffer_line( X_current, Y_current, Z_start_location,
|
|
ext_position,
|
|
homing_feedrate[Z_AXIS]/60,
|
|
active_extruder);
|
|
st_synchronize();
|
|
|
|
//
|
|
// Now get everything to the specified probe point So we can safely do a probe to
|
|
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
|
|
// use that as a starting point for each probe.
|
|
//
|
|
if (verbose_level > 2)
|
|
SERIAL_PROTOCOL("Positioning probe for the test.\n");
|
|
|
|
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
ext_position,
|
|
homing_feedrate[X_AXIS]/60,
|
|
active_extruder);
|
|
st_synchronize();
|
|
|
|
current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
|
|
current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
|
|
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
|
|
|
|
//
|
|
// OK, do the inital probe to get us close to the bed.
|
|
// Then retrace the right amount and use that in subsequent probes
|
|
//
|
|
|
|
setup_for_endstop_move();
|
|
run_z_probe();
|
|
|
|
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
|
|
|
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
ext_position,
|
|
homing_feedrate[X_AXIS]/60,
|
|
active_extruder);
|
|
st_synchronize();
|
|
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
|
|
for( n=0; n<n_samples; n++) {
|
|
|
|
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
|
|
|
|
if ( n_legs) {
|
|
double radius=0.0, theta=0.0, x_sweep, y_sweep;
|
|
int rotational_direction, l;
|
|
|
|
rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
|
|
radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
|
|
theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
|
|
|
|
//SERIAL_ECHOPAIR("starting radius: ",radius);
|
|
//SERIAL_ECHOPAIR(" theta: ",theta);
|
|
//SERIAL_ECHOPAIR(" direction: ",rotational_direction);
|
|
//SERIAL_PROTOCOLLNPGM("");
|
|
|
|
for( l=0; l<n_legs-1; l++) {
|
|
if (rotational_direction==1)
|
|
theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
|
|
else
|
|
theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
|
|
|
|
radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
|
|
if ( radius<0.0 )
|
|
radius = -radius;
|
|
|
|
X_current = X_probe_location + cos(theta) * radius;
|
|
Y_current = Y_probe_location + sin(theta) * radius;
|
|
|
|
if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
|
|
X_current = X_MIN_POS;
|
|
if ( X_current>X_MAX_POS)
|
|
X_current = X_MAX_POS;
|
|
|
|
if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
|
|
Y_current = Y_MIN_POS;
|
|
if ( Y_current>Y_MAX_POS)
|
|
Y_current = Y_MAX_POS;
|
|
|
|
if (verbose_level>3 ) {
|
|
SERIAL_ECHOPAIR("x: ", X_current);
|
|
SERIAL_ECHOPAIR("y: ", Y_current);
|
|
SERIAL_PROTOCOLLNPGM("");
|
|
}
|
|
|
|
do_blocking_move_to( X_current, Y_current, Z_current );
|
|
}
|
|
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
|
|
}
|
|
|
|
setup_for_endstop_move();
|
|
run_z_probe();
|
|
|
|
sample_set[n] = current_position[Z_AXIS];
|
|
|
|
//
|
|
// Get the current mean for the data points we have so far
|
|
//
|
|
sum=0.0;
|
|
for( j=0; j<=n; j++) {
|
|
sum = sum + sample_set[j];
|
|
}
|
|
mean = sum / (double (n+1));
|
|
//
|
|
// Now, use that mean to calculate the standard deviation for the
|
|
// data points we have so far
|
|
//
|
|
|
|
sum=0.0;
|
|
for( j=0; j<=n; j++) {
|
|
sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
|
|
}
|
|
sigma = sqrt( sum / (double (n+1)) );
|
|
|
|
if (verbose_level > 1) {
|
|
SERIAL_PROTOCOL(n+1);
|
|
SERIAL_PROTOCOL(" of ");
|
|
SERIAL_PROTOCOL(n_samples);
|
|
SERIAL_PROTOCOLPGM(" z: ");
|
|
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
|
|
}
|
|
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOL(" mean: ");
|
|
SERIAL_PROTOCOL_F(mean,6);
|
|
|
|
SERIAL_PROTOCOL(" sigma: ");
|
|
SERIAL_PROTOCOL_F(sigma,6);
|
|
}
|
|
|
|
if (verbose_level > 0)
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
|
|
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
}
|
|
|
|
delay(1000);
|
|
|
|
clean_up_after_endstop_move();
|
|
|
|
// enable_endstops(true);
|
|
|
|
if (verbose_level > 0) {
|
|
SERIAL_PROTOCOLPGM("Mean: ");
|
|
SERIAL_PROTOCOL_F(mean, 6);
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
}
|
|
|
|
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
SERIAL_PROTOCOLPGM("\n\n");
|
|
|
|
Sigma_Exit:
|
|
break;
|
|
}
|
|
#endif // Z_PROBE_REPEATABILITY_TEST
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
case 104: // M104
|
|
if(setTargetedHotend(104)){
|
|
break;
|
|
}
|
|
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
|
|
setWatch();
|
|
break;
|
|
case 112: // M112 -Emergency Stop
|
|
kill("", 3);
|
|
break;
|
|
case 140: // M140 set bed temp
|
|
if (code_seen('S')) setTargetBed(code_value());
|
|
break;
|
|
case 105 : // M105
|
|
if(setTargetedHotend(105)){
|
|
break;
|
|
}
|
|
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
|
|
SERIAL_PROTOCOLPGM("ok T:");
|
|
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
|
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
SERIAL_PROTOCOLPGM(" B:");
|
|
SERIAL_PROTOCOL_F(degBed(),1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(degTargetBed(),1);
|
|
#endif //TEMP_BED_PIN
|
|
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
SERIAL_PROTOCOLPGM(" T");
|
|
SERIAL_PROTOCOL(cur_extruder);
|
|
SERIAL_PROTOCOLPGM(":");
|
|
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
|
|
}
|
|
#else
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
|
|
#endif
|
|
|
|
SERIAL_PROTOCOLPGM(" @:");
|
|
#ifdef EXTRUDER_WATTS
|
|
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
|
|
SERIAL_PROTOCOLPGM("W");
|
|
#else
|
|
SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
|
|
#endif
|
|
|
|
SERIAL_PROTOCOLPGM(" B@:");
|
|
#ifdef BED_WATTS
|
|
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
|
|
SERIAL_PROTOCOLPGM("W");
|
|
#else
|
|
SERIAL_PROTOCOL(getHeaterPower(-1));
|
|
#endif
|
|
|
|
#ifdef PINDA_THERMISTOR
|
|
SERIAL_PROTOCOLPGM(" P:");
|
|
SERIAL_PROTOCOL_F(current_temperature_pinda,1);
|
|
#endif //PINDA_THERMISTOR
|
|
|
|
#ifdef AMBIENT_THERMISTOR
|
|
SERIAL_PROTOCOLPGM(" A:");
|
|
SERIAL_PROTOCOL_F(current_temperature_ambient,1);
|
|
#endif //AMBIENT_THERMISTOR
|
|
|
|
|
|
#ifdef SHOW_TEMP_ADC_VALUES
|
|
{float raw = 0.0;
|
|
|
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
SERIAL_PROTOCOLPGM(" ADC B:");
|
|
SERIAL_PROTOCOL_F(degBed(),1);
|
|
SERIAL_PROTOCOLPGM("C->");
|
|
raw = rawBedTemp();
|
|
SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
|
|
SERIAL_PROTOCOLPGM(" Rb->");
|
|
SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
|
|
SERIAL_PROTOCOLPGM(" Rxb->");
|
|
SERIAL_PROTOCOL_F(raw, 5);
|
|
#endif
|
|
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
SERIAL_PROTOCOLPGM(" T");
|
|
SERIAL_PROTOCOL(cur_extruder);
|
|
SERIAL_PROTOCOLPGM(":");
|
|
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
|
SERIAL_PROTOCOLPGM("C->");
|
|
raw = rawHotendTemp(cur_extruder);
|
|
SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
|
|
SERIAL_PROTOCOLPGM(" Rt");
|
|
SERIAL_PROTOCOL(cur_extruder);
|
|
SERIAL_PROTOCOLPGM("->");
|
|
SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
|
|
SERIAL_PROTOCOLPGM(" Rx");
|
|
SERIAL_PROTOCOL(cur_extruder);
|
|
SERIAL_PROTOCOLPGM("->");
|
|
SERIAL_PROTOCOL_F(raw, 5);
|
|
}}
|
|
#endif
|
|
SERIAL_PROTOCOLLN("");
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
return;
|
|
break;
|
|
case 109:
|
|
{// M109 - Wait for extruder heater to reach target.
|
|
if(setTargetedHotend(109)){
|
|
break;
|
|
}
|
|
LCD_MESSAGERPGM(MSG_HEATING);
|
|
heating_status = 1;
|
|
if (farm_mode) { prusa_statistics(1); };
|
|
|
|
#ifdef AUTOTEMP
|
|
autotemp_enabled=false;
|
|
#endif
|
|
if (code_seen('S')) {
|
|
setTargetHotend(code_value(), tmp_extruder);
|
|
CooldownNoWait = true;
|
|
} else if (code_seen('R')) {
|
|
setTargetHotend(code_value(), tmp_extruder);
|
|
CooldownNoWait = false;
|
|
}
|
|
#ifdef AUTOTEMP
|
|
if (code_seen('S')) autotemp_min=code_value();
|
|
if (code_seen('B')) autotemp_max=code_value();
|
|
if (code_seen('F'))
|
|
{
|
|
autotemp_factor=code_value();
|
|
autotemp_enabled=true;
|
|
}
|
|
#endif
|
|
|
|
setWatch();
|
|
codenum = millis();
|
|
|
|
/* See if we are heating up or cooling down */
|
|
target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
|
|
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
|
|
cancel_heatup = false;
|
|
|
|
wait_for_heater(codenum); //loops until target temperature is reached
|
|
|
|
LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
heating_status = 2;
|
|
if (farm_mode) { prusa_statistics(2); };
|
|
|
|
//starttime=millis();
|
|
previous_millis_cmd = millis();
|
|
}
|
|
break;
|
|
case 190: // M190 - Wait for bed heater to reach target.
|
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
LCD_MESSAGERPGM(MSG_BED_HEATING);
|
|
heating_status = 3;
|
|
if (farm_mode) { prusa_statistics(1); };
|
|
if (code_seen('S'))
|
|
{
|
|
setTargetBed(code_value());
|
|
CooldownNoWait = true;
|
|
}
|
|
else if (code_seen('R'))
|
|
{
|
|
setTargetBed(code_value());
|
|
CooldownNoWait = false;
|
|
}
|
|
codenum = millis();
|
|
|
|
cancel_heatup = false;
|
|
target_direction = isHeatingBed(); // true if heating, false if cooling
|
|
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
|
|
{
|
|
if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
|
|
{
|
|
if (!farm_mode) {
|
|
float tt = degHotend(active_extruder);
|
|
SERIAL_PROTOCOLPGM("T:");
|
|
SERIAL_PROTOCOL(tt);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL((int)active_extruder);
|
|
SERIAL_PROTOCOLPGM(" B:");
|
|
SERIAL_PROTOCOL_F(degBed(), 1);
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
codenum = millis();
|
|
|
|
}
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
LCD_MESSAGERPGM(MSG_BED_DONE);
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
heating_status = 4;
|
|
|
|
previous_millis_cmd = millis();
|
|
#endif
|
|
break;
|
|
|
|
#if defined(FAN_PIN) && FAN_PIN > -1
|
|
case 106: //M106 Fan On
|
|
if (code_seen('S')){
|
|
fanSpeed=constrain(code_value(),0,255);
|
|
}
|
|
else {
|
|
fanSpeed=255;
|
|
}
|
|
break;
|
|
case 107: //M107 Fan Off
|
|
fanSpeed = 0;
|
|
break;
|
|
#endif //FAN_PIN
|
|
|
|
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
case 80: // M80 - Turn on Power Supply
|
|
SET_OUTPUT(PS_ON_PIN); //GND
|
|
WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
|
|
|
// If you have a switch on suicide pin, this is useful
|
|
// if you want to start another print with suicide feature after
|
|
// a print without suicide...
|
|
#if defined SUICIDE_PIN && SUICIDE_PIN > -1
|
|
SET_OUTPUT(SUICIDE_PIN);
|
|
WRITE(SUICIDE_PIN, HIGH);
|
|
#endif
|
|
|
|
#ifdef ULTIPANEL
|
|
powersupply = true;
|
|
LCD_MESSAGERPGM(WELCOME_MSG);
|
|
lcd_update();
|
|
#endif
|
|
break;
|
|
#endif
|
|
|
|
case 81: // M81 - Turn off Power Supply
|
|
disable_heater();
|
|
st_synchronize();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
finishAndDisableSteppers();
|
|
fanSpeed = 0;
|
|
delay(1000); // Wait a little before to switch off
|
|
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
st_synchronize();
|
|
suicide();
|
|
#elif defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
SET_OUTPUT(PS_ON_PIN);
|
|
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
#endif
|
|
#ifdef ULTIPANEL
|
|
powersupply = false;
|
|
LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
|
|
|
|
/*
|
|
MACHNAME = "Prusa i3"
|
|
MSGOFF = "Vypnuto"
|
|
"Prusai3"" ""vypnuto""."
|
|
|
|
"Prusa i3"" "MSG_ALL[lang_selected][50]"."
|
|
*/
|
|
lcd_update();
|
|
#endif
|
|
break;
|
|
|
|
case 82:
|
|
axis_relative_modes[3] = false;
|
|
break;
|
|
case 83:
|
|
axis_relative_modes[3] = true;
|
|
break;
|
|
case 18: //compatibility
|
|
case 84: // M84
|
|
if(code_seen('S')){
|
|
stepper_inactive_time = code_value() * 1000;
|
|
}
|
|
else
|
|
{
|
|
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
|
|
if(all_axis)
|
|
{
|
|
st_synchronize();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
finishAndDisableSteppers();
|
|
}
|
|
else
|
|
{
|
|
st_synchronize();
|
|
if (code_seen('X')) disable_x();
|
|
if (code_seen('Y')) disable_y();
|
|
if (code_seen('Z')) disable_z();
|
|
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
|
|
if (code_seen('E')) {
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
snmm_filaments_used = 0;
|
|
break;
|
|
case 85: // M85
|
|
if(code_seen('S')) {
|
|
max_inactive_time = code_value() * 1000;
|
|
}
|
|
break;
|
|
case 92: // M92
|
|
for(int8_t i=0; i < NUM_AXIS; i++)
|
|
{
|
|
if(code_seen(axis_codes[i]))
|
|
{
|
|
if(i == 3) { // E
|
|
float value = code_value();
|
|
if(value < 20.0) {
|
|
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
|
|
max_jerk[E_AXIS] *= factor;
|
|
max_feedrate[i] *= factor;
|
|
axis_steps_per_sqr_second[i] *= factor;
|
|
}
|
|
axis_steps_per_unit[i] = value;
|
|
}
|
|
else {
|
|
axis_steps_per_unit[i] = code_value();
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case 110: // M110 - reset line pos
|
|
if (code_seen('N'))
|
|
gcode_LastN = code_value_long();
|
|
break;
|
|
#ifdef HOST_KEEPALIVE_FEATURE
|
|
case 113: // M113 - Get or set Host Keepalive interval
|
|
if (code_seen('S')) {
|
|
host_keepalive_interval = (uint8_t)code_value_short();
|
|
// NOMORE(host_keepalive_interval, 60);
|
|
}
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
break;
|
|
#endif
|
|
case 115: // M115
|
|
if (code_seen('V')) {
|
|
// Report the Prusa version number.
|
|
SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
|
|
} else if (code_seen('U')) {
|
|
// Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
|
|
// pause the print and ask the user to upgrade the firmware.
|
|
show_upgrade_dialog_if_version_newer(++ strchr_pointer);
|
|
} else {
|
|
SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
|
|
}
|
|
break;
|
|
/* case 117: // M117 display message
|
|
starpos = (strchr(strchr_pointer + 5,'*'));
|
|
if(starpos!=NULL)
|
|
*(starpos)='\0';
|
|
lcd_setstatus(strchr_pointer + 5);
|
|
break;*/
|
|
case 114: // M114
|
|
SERIAL_PROTOCOLPGM("X:");
|
|
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Y:");
|
|
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Z:");
|
|
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL(current_position[E_AXIS]);
|
|
|
|
SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
|
|
SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Y:");
|
|
SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Z:");
|
|
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
|
|
|
|
SERIAL_PROTOCOLLN("");
|
|
break;
|
|
case 120: // M120
|
|
enable_endstops(false) ;
|
|
break;
|
|
case 121: // M121
|
|
enable_endstops(true) ;
|
|
break;
|
|
case 119: // M119
|
|
SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
|
|
SERIAL_PROTOCOLLN("");
|
|
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
|
SERIAL_PROTOCOLRPGM(MSG_X_MIN);
|
|
if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
}else{
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
}
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
|
SERIAL_PROTOCOLRPGM(MSG_X_MAX);
|
|
if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
}else{
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
}
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
|
SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
|
|
if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
}else{
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
}
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
|
SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
|
|
if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
}else{
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
}
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
|
SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
|
|
if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
}else{
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
}
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
|
SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
|
|
if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
}else{
|
|
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
}
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
break;
|
|
//TODO: update for all axis, use for loop
|
|
#ifdef BLINKM
|
|
case 150: // M150
|
|
{
|
|
byte red;
|
|
byte grn;
|
|
byte blu;
|
|
|
|
if(code_seen('R')) red = code_value();
|
|
if(code_seen('U')) grn = code_value();
|
|
if(code_seen('B')) blu = code_value();
|
|
|
|
SendColors(red,grn,blu);
|
|
}
|
|
break;
|
|
#endif //BLINKM
|
|
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
{
|
|
|
|
tmp_extruder = active_extruder;
|
|
if(code_seen('T')) {
|
|
tmp_extruder = code_value();
|
|
if(tmp_extruder >= EXTRUDERS) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
|
|
break;
|
|
}
|
|
}
|
|
|
|
float area = .0;
|
|
if(code_seen('D')) {
|
|
float diameter = (float)code_value();
|
|
if (diameter == 0.0) {
|
|
// setting any extruder filament size disables volumetric on the assumption that
|
|
// slicers either generate in extruder values as cubic mm or as as filament feeds
|
|
// for all extruders
|
|
volumetric_enabled = false;
|
|
} else {
|
|
filament_size[tmp_extruder] = (float)code_value();
|
|
// make sure all extruders have some sane value for the filament size
|
|
filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
|
|
#if EXTRUDERS > 1
|
|
filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
|
|
#if EXTRUDERS > 2
|
|
filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
|
|
#endif
|
|
#endif
|
|
volumetric_enabled = true;
|
|
}
|
|
} else {
|
|
//reserved for setting filament diameter via UFID or filament measuring device
|
|
break;
|
|
}
|
|
calculate_extruder_multipliers();
|
|
}
|
|
break;
|
|
case 201: // M201
|
|
for(int8_t i=0; i < NUM_AXIS; i++)
|
|
{
|
|
if(code_seen(axis_codes[i]))
|
|
{
|
|
max_acceleration_units_per_sq_second[i] = code_value();
|
|
}
|
|
}
|
|
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
|
reset_acceleration_rates();
|
|
break;
|
|
#if 0 // Not used for Sprinter/grbl gen6
|
|
case 202: // M202
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
|
}
|
|
break;
|
|
#endif
|
|
case 203: // M203 max feedrate mm/sec
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
|
|
}
|
|
break;
|
|
case 204: // M204 acclereration S normal moves T filmanent only moves
|
|
{
|
|
if(code_seen('S')) acceleration = code_value() ;
|
|
if(code_seen('T')) retract_acceleration = code_value() ;
|
|
}
|
|
break;
|
|
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
|
{
|
|
if(code_seen('S')) minimumfeedrate = code_value();
|
|
if(code_seen('T')) mintravelfeedrate = code_value();
|
|
if(code_seen('B')) minsegmenttime = code_value() ;
|
|
if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
|
|
if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
|
|
if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
|
|
if(code_seen('E')) max_jerk[E_AXIS] = code_value();
|
|
if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
|
|
if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
|
|
}
|
|
break;
|
|
case 206: // M206 additional homing offset
|
|
for(int8_t i=0; i < 3; i++)
|
|
{
|
|
if(code_seen(axis_codes[i])) add_homing[i] = code_value();
|
|
}
|
|
break;
|
|
#ifdef FWRETRACT
|
|
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
|
|
{
|
|
if(code_seen('S'))
|
|
{
|
|
retract_length = code_value() ;
|
|
}
|
|
if(code_seen('F'))
|
|
{
|
|
retract_feedrate = code_value()/60 ;
|
|
}
|
|
if(code_seen('Z'))
|
|
{
|
|
retract_zlift = code_value() ;
|
|
}
|
|
}break;
|
|
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
|
{
|
|
if(code_seen('S'))
|
|
{
|
|
retract_recover_length = code_value() ;
|
|
}
|
|
if(code_seen('F'))
|
|
{
|
|
retract_recover_feedrate = code_value()/60 ;
|
|
}
|
|
}break;
|
|
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
{
|
|
if(code_seen('S'))
|
|
{
|
|
int t= code_value() ;
|
|
switch(t)
|
|
{
|
|
case 0:
|
|
{
|
|
autoretract_enabled=false;
|
|
retracted[0]=false;
|
|
#if EXTRUDERS > 1
|
|
retracted[1]=false;
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
retracted[2]=false;
|
|
#endif
|
|
}break;
|
|
case 1:
|
|
{
|
|
autoretract_enabled=true;
|
|
retracted[0]=false;
|
|
#if EXTRUDERS > 1
|
|
retracted[1]=false;
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
retracted[2]=false;
|
|
#endif
|
|
}break;
|
|
default:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
|
|
SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
|
|
SERIAL_ECHOLNPGM("\"(1)");
|
|
}
|
|
}
|
|
|
|
}break;
|
|
#endif // FWRETRACT
|
|
#if EXTRUDERS > 1
|
|
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
{
|
|
if(setTargetedHotend(218)){
|
|
break;
|
|
}
|
|
if(code_seen('X'))
|
|
{
|
|
extruder_offset[X_AXIS][tmp_extruder] = code_value();
|
|
}
|
|
if(code_seen('Y'))
|
|
{
|
|
extruder_offset[Y_AXIS][tmp_extruder] = code_value();
|
|
}
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
|
|
for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
|
|
{
|
|
SERIAL_ECHO(" ");
|
|
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
|
|
SERIAL_ECHO(",");
|
|
SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
|
|
}
|
|
SERIAL_ECHOLN("");
|
|
}break;
|
|
#endif
|
|
case 220: // M220 S<factor in percent>- set speed factor override percentage
|
|
{
|
|
if(code_seen('S'))
|
|
{
|
|
feedmultiply = code_value() ;
|
|
}
|
|
}
|
|
break;
|
|
case 221: // M221 S<factor in percent>- set extrude factor override percentage
|
|
{
|
|
if(code_seen('S'))
|
|
{
|
|
int tmp_code = code_value();
|
|
if (code_seen('T'))
|
|
{
|
|
if(setTargetedHotend(221)){
|
|
break;
|
|
}
|
|
extruder_multiply[tmp_extruder] = tmp_code;
|
|
}
|
|
else
|
|
{
|
|
extrudemultiply = tmp_code ;
|
|
}
|
|
}
|
|
calculate_extruder_multipliers();
|
|
}
|
|
break;
|
|
|
|
#ifndef _DISABLE_M42_M226
|
|
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
|
{
|
|
if(code_seen('P')){
|
|
int pin_number = code_value(); // pin number
|
|
int pin_state = -1; // required pin state - default is inverted
|
|
|
|
if(code_seen('S')) pin_state = code_value(); // required pin state
|
|
|
|
if(pin_state >= -1 && pin_state <= 1){
|
|
|
|
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
|
|
{
|
|
if (sensitive_pins[i] == pin_number)
|
|
{
|
|
pin_number = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pin_number > -1)
|
|
{
|
|
int target = LOW;
|
|
|
|
st_synchronize();
|
|
|
|
pinMode(pin_number, INPUT);
|
|
|
|
switch(pin_state){
|
|
case 1:
|
|
target = HIGH;
|
|
break;
|
|
|
|
case 0:
|
|
target = LOW;
|
|
break;
|
|
|
|
case -1:
|
|
target = !digitalRead(pin_number);
|
|
break;
|
|
}
|
|
|
|
while(digitalRead(pin_number) != target){
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
#endif //_DISABLE_M42_M226
|
|
|
|
#if NUM_SERVOS > 0
|
|
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
|
{
|
|
int servo_index = -1;
|
|
int servo_position = 0;
|
|
if (code_seen('P'))
|
|
servo_index = code_value();
|
|
if (code_seen('S')) {
|
|
servo_position = code_value();
|
|
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
|
|
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
servos[servo_index].attach(0);
|
|
#endif
|
|
servos[servo_index].write(servo_position);
|
|
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
|
servos[servo_index].detach();
|
|
#endif
|
|
}
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO("Servo ");
|
|
SERIAL_ECHO(servo_index);
|
|
SERIAL_ECHOLN(" out of range");
|
|
}
|
|
}
|
|
else if (servo_index >= 0) {
|
|
SERIAL_PROTOCOL(MSG_OK);
|
|
SERIAL_PROTOCOL(" Servo ");
|
|
SERIAL_PROTOCOL(servo_index);
|
|
SERIAL_PROTOCOL(": ");
|
|
SERIAL_PROTOCOL(servos[servo_index].read());
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
}
|
|
break;
|
|
#endif // NUM_SERVOS > 0
|
|
|
|
#if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
|
|
case 300: // M300
|
|
{
|
|
int beepS = code_seen('S') ? code_value() : 110;
|
|
int beepP = code_seen('P') ? code_value() : 1000;
|
|
if (beepS > 0)
|
|
{
|
|
#if BEEPER > 0
|
|
tone(BEEPER, beepS);
|
|
delay(beepP);
|
|
noTone(BEEPER);
|
|
#elif defined(ULTRALCD)
|
|
lcd_buzz(beepS, beepP);
|
|
#elif defined(LCD_USE_I2C_BUZZER)
|
|
lcd_buzz(beepP, beepS);
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
delay(beepP);
|
|
}
|
|
}
|
|
break;
|
|
#endif // M300
|
|
|
|
#ifdef PIDTEMP
|
|
case 301: // M301
|
|
{
|
|
if(code_seen('P')) Kp = code_value();
|
|
if(code_seen('I')) Ki = scalePID_i(code_value());
|
|
if(code_seen('D')) Kd = scalePID_d(code_value());
|
|
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
if(code_seen('C')) Kc = code_value();
|
|
#endif
|
|
|
|
updatePID();
|
|
SERIAL_PROTOCOLRPGM(MSG_OK);
|
|
SERIAL_PROTOCOL(" p:");
|
|
SERIAL_PROTOCOL(Kp);
|
|
SERIAL_PROTOCOL(" i:");
|
|
SERIAL_PROTOCOL(unscalePID_i(Ki));
|
|
SERIAL_PROTOCOL(" d:");
|
|
SERIAL_PROTOCOL(unscalePID_d(Kd));
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
SERIAL_PROTOCOL(" c:");
|
|
//Kc does not have scaling applied above, or in resetting defaults
|
|
SERIAL_PROTOCOL(Kc);
|
|
#endif
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
break;
|
|
#endif //PIDTEMP
|
|
#ifdef PIDTEMPBED
|
|
case 304: // M304
|
|
{
|
|
if(code_seen('P')) bedKp = code_value();
|
|
if(code_seen('I')) bedKi = scalePID_i(code_value());
|
|
if(code_seen('D')) bedKd = scalePID_d(code_value());
|
|
|
|
updatePID();
|
|
SERIAL_PROTOCOLRPGM(MSG_OK);
|
|
SERIAL_PROTOCOL(" p:");
|
|
SERIAL_PROTOCOL(bedKp);
|
|
SERIAL_PROTOCOL(" i:");
|
|
SERIAL_PROTOCOL(unscalePID_i(bedKi));
|
|
SERIAL_PROTOCOL(" d:");
|
|
SERIAL_PROTOCOL(unscalePID_d(bedKd));
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
break;
|
|
#endif //PIDTEMP
|
|
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
|
{
|
|
#ifdef CHDK
|
|
|
|
SET_OUTPUT(CHDK);
|
|
WRITE(CHDK, HIGH);
|
|
chdkHigh = millis();
|
|
chdkActive = true;
|
|
|
|
#else
|
|
|
|
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
|
const uint8_t NUM_PULSES=16;
|
|
const float PULSE_LENGTH=0.01524;
|
|
for(int i=0; i < NUM_PULSES; i++) {
|
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
_delay_ms(PULSE_LENGTH);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
_delay_ms(PULSE_LENGTH);
|
|
}
|
|
delay(7.33);
|
|
for(int i=0; i < NUM_PULSES; i++) {
|
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
_delay_ms(PULSE_LENGTH);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
_delay_ms(PULSE_LENGTH);
|
|
}
|
|
#endif
|
|
#endif //chdk end if
|
|
}
|
|
break;
|
|
#ifdef DOGLCD
|
|
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
|
|
{
|
|
if (code_seen('C')) {
|
|
lcd_setcontrast( ((int)code_value())&63 );
|
|
}
|
|
SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
|
SERIAL_PROTOCOL(lcd_contrast);
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
case 302: // allow cold extrudes, or set the minimum extrude temperature
|
|
{
|
|
float temp = .0;
|
|
if (code_seen('S')) temp=code_value();
|
|
set_extrude_min_temp(temp);
|
|
}
|
|
break;
|
|
#endif
|
|
case 303: // M303 PID autotune
|
|
{
|
|
float temp = 150.0;
|
|
int e=0;
|
|
int c=5;
|
|
if (code_seen('E')) e=code_value();
|
|
if (e<0)
|
|
temp=70;
|
|
if (code_seen('S')) temp=code_value();
|
|
if (code_seen('C')) c=code_value();
|
|
PID_autotune(temp, e, c);
|
|
}
|
|
break;
|
|
case 400: // M400 finish all moves
|
|
{
|
|
st_synchronize();
|
|
}
|
|
break;
|
|
|
|
case 500: // M500 Store settings in EEPROM
|
|
{
|
|
Config_StoreSettings(EEPROM_OFFSET);
|
|
}
|
|
break;
|
|
case 501: // M501 Read settings from EEPROM
|
|
{
|
|
Config_RetrieveSettings(EEPROM_OFFSET);
|
|
}
|
|
break;
|
|
case 502: // M502 Revert to default settings
|
|
{
|
|
Config_ResetDefault();
|
|
}
|
|
break;
|
|
case 503: // M503 print settings currently in memory
|
|
{
|
|
Config_PrintSettings();
|
|
}
|
|
break;
|
|
case 509: //M509 Force language selection
|
|
{
|
|
lcd_force_language_selection();
|
|
SERIAL_ECHO_START;
|
|
SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
|
|
}
|
|
break;
|
|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
case 540:
|
|
{
|
|
if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
|
|
{
|
|
float value;
|
|
if (code_seen('Z'))
|
|
{
|
|
value = code_value();
|
|
if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
|
|
{
|
|
zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
else
|
|
{
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
|
|
SERIAL_ECHORPGM(MSG_Z_MIN);
|
|
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
|
|
SERIAL_ECHORPGM(MSG_Z_MAX);
|
|
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
|
|
SERIAL_ECHO(-zprobe_zoffset);
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
break;
|
|
}
|
|
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
|
|
#ifdef FILAMENTCHANGEENABLE
|
|
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
{
|
|
bool old_fsensor_enabled = fsensor_enabled;
|
|
fsensor_enabled = false; //temporary solution for unexpected restarting
|
|
|
|
st_synchronize();
|
|
float target[4];
|
|
float lastpos[4];
|
|
|
|
if (farm_mode)
|
|
|
|
{
|
|
|
|
prusa_statistics(22);
|
|
|
|
}
|
|
|
|
feedmultiplyBckp=feedmultiply;
|
|
int8_t TooLowZ = 0;
|
|
|
|
float HotendTempBckp = degTargetHotend(active_extruder);
|
|
int fanSpeedBckp = fanSpeed;
|
|
target[X_AXIS]=current_position[X_AXIS];
|
|
target[Y_AXIS]=current_position[Y_AXIS];
|
|
target[Z_AXIS]=current_position[Z_AXIS];
|
|
target[E_AXIS]=current_position[E_AXIS];
|
|
lastpos[X_AXIS]=current_position[X_AXIS];
|
|
lastpos[Y_AXIS]=current_position[Y_AXIS];
|
|
lastpos[Z_AXIS]=current_position[Z_AXIS];
|
|
lastpos[E_AXIS]=current_position[E_AXIS];
|
|
|
|
//Restract extruder
|
|
if(code_seen('E'))
|
|
{
|
|
target[E_AXIS]+= code_value();
|
|
}
|
|
else
|
|
{
|
|
#ifdef FILAMENTCHANGE_FIRSTRETRACT
|
|
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
|
|
#endif
|
|
}
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
|
|
//Lift Z
|
|
if(code_seen('Z'))
|
|
{
|
|
target[Z_AXIS]+= code_value();
|
|
}
|
|
else
|
|
{
|
|
#ifdef FILAMENTCHANGE_ZADD
|
|
target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
|
|
if(target[Z_AXIS] < 10){
|
|
target[Z_AXIS]+= 10 ;
|
|
TooLowZ = 1;
|
|
}else{
|
|
TooLowZ = 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
}
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
|
|
|
|
//Move XY to side
|
|
if(code_seen('X'))
|
|
{
|
|
target[X_AXIS]+= code_value();
|
|
}
|
|
else
|
|
{
|
|
#ifdef FILAMENTCHANGE_XPOS
|
|
target[X_AXIS]= FILAMENTCHANGE_XPOS ;
|
|
#endif
|
|
}
|
|
if(code_seen('Y'))
|
|
{
|
|
target[Y_AXIS]= code_value();
|
|
}
|
|
else
|
|
{
|
|
#ifdef FILAMENTCHANGE_YPOS
|
|
target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
|
|
#endif
|
|
}
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
|
|
st_synchronize();
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
|
|
uint8_t cnt = 0;
|
|
int counterBeep = 0;
|
|
fanSpeed = 0;
|
|
unsigned long waiting_start_time = millis();
|
|
uint8_t wait_for_user_state = 0;
|
|
lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
|
|
while (!(wait_for_user_state == 0 && lcd_clicked())){
|
|
|
|
//cnt++;
|
|
manage_heater();
|
|
manage_inactivity(true);
|
|
|
|
/*#ifdef SNMM
|
|
target[E_AXIS] += 0.002;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
|
|
|
|
#endif // SNMM*/
|
|
|
|
//if (cnt == 0)
|
|
{
|
|
#if BEEPER > 0
|
|
if (counterBeep == 500) {
|
|
counterBeep = 0;
|
|
}
|
|
SET_OUTPUT(BEEPER);
|
|
if (counterBeep == 0) {
|
|
WRITE(BEEPER, HIGH);
|
|
}
|
|
if (counterBeep == 20) {
|
|
WRITE(BEEPER, LOW);
|
|
}
|
|
|
|
counterBeep++;
|
|
#else
|
|
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
|
lcd_buzz(1000 / 6, 100);
|
|
#else
|
|
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
switch (wait_for_user_state) {
|
|
case 0:
|
|
delay_keep_alive(4);
|
|
|
|
if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
|
|
lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
|
|
wait_for_user_state = 1;
|
|
setTargetHotend(0, 0);
|
|
setTargetHotend(0, 1);
|
|
setTargetHotend(0, 2);
|
|
st_synchronize();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
}
|
|
break;
|
|
case 1:
|
|
delay_keep_alive(4);
|
|
|
|
if (lcd_clicked()) {
|
|
setTargetHotend(HotendTempBckp, active_extruder);
|
|
lcd_wait_for_heater();
|
|
|
|
wait_for_user_state = 2;
|
|
}
|
|
break;
|
|
case 2:
|
|
|
|
if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
|
|
lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
|
|
waiting_start_time = millis();
|
|
wait_for_user_state = 0;
|
|
}
|
|
else {
|
|
counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
|
|
lcd.setCursor(1, 4);
|
|
lcd.print(ftostr3(degHotend(active_extruder)));
|
|
}
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
WRITE(BEEPER, LOW);
|
|
|
|
lcd_change_fil_state = 0;
|
|
|
|
|
|
// Unload filament
|
|
lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
custom_message = true;
|
|
lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
|
|
|
|
if (code_seen('L'))
|
|
{
|
|
target[E_AXIS] += code_value();
|
|
}
|
|
else
|
|
{
|
|
#ifdef SNMM
|
|
|
|
#else
|
|
#ifdef FILAMENTCHANGE_FINALRETRACT
|
|
target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
|
|
#endif
|
|
#endif // SNMM
|
|
}
|
|
|
|
#ifdef SNMM
|
|
target[E_AXIS] += 12;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
|
|
target[E_AXIS] += 6;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
|
|
target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
|
|
st_synchronize();
|
|
target[E_AXIS] += (FIL_COOLING);
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
|
|
target[E_AXIS] += (FIL_COOLING*-1);
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
|
|
target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
|
|
st_synchronize();
|
|
|
|
#else
|
|
// plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
//plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
|
|
|
|
target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
|
|
st_synchronize();
|
|
uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
|
|
tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
|
|
|
|
target[E_AXIS] -= 45;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
|
|
st_synchronize();
|
|
target[E_AXIS] -= 15;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
|
|
st_synchronize();
|
|
target[E_AXIS] -= 20;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
|
|
st_synchronize();
|
|
|
|
tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
|
|
#endif // SNMM
|
|
|
|
|
|
//finish moves
|
|
st_synchronize();
|
|
|
|
lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
|
|
|
|
//disable extruder steppers so filament can be removed
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
delay(100);
|
|
|
|
|
|
WRITE(BEEPER, HIGH);
|
|
counterBeep = 0;
|
|
while(!lcd_clicked() && (counterBeep < 50)) {
|
|
if(counterBeep > 5) WRITE(BEEPER, LOW);
|
|
delay_keep_alive(100);
|
|
counterBeep++;
|
|
}
|
|
WRITE(BEEPER, LOW);
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
|
|
if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
|
|
//lcd_return_to_status();
|
|
lcd_update_enable(true);
|
|
|
|
//Wait for user to insert filament
|
|
lcd_wait_interact();
|
|
//load_filament_time = millis();
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
#ifdef PAT9125
|
|
if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
|
|
#endif //PAT9125
|
|
// printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
|
|
while(!lcd_clicked())
|
|
{
|
|
manage_heater();
|
|
manage_inactivity(true);
|
|
#ifdef PAT9125
|
|
if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
|
|
{
|
|
tone(BEEPER, 1000);
|
|
delay_keep_alive(50);
|
|
noTone(BEEPER);
|
|
break;
|
|
}
|
|
#endif //PAT9125
|
|
/*#ifdef SNMM
|
|
target[E_AXIS] += 0.002;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
|
|
|
|
#endif // SNMM*/
|
|
|
|
}
|
|
#ifdef PAT9125
|
|
if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
|
|
#endif //PAT9125
|
|
//WRITE(BEEPER, LOW);
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
#ifdef SNMM
|
|
display_loading();
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
do {
|
|
target[E_AXIS] += 0.002;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
|
|
delay_keep_alive(2);
|
|
} while (!lcd_clicked());
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
/*if (millis() - load_filament_time > 2) {
|
|
load_filament_time = millis();
|
|
target[E_AXIS] += 0.001;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
|
|
}*/
|
|
|
|
//Filament inserted
|
|
//Feed the filament to the end of nozzle quickly
|
|
st_synchronize();
|
|
target[E_AXIS] += bowden_length[snmm_extruder];
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
|
|
target[E_AXIS] += FIL_LOAD_LENGTH - 60;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
|
|
target[E_AXIS] += 40;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
|
|
target[E_AXIS] += 10;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
|
|
#else
|
|
target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
|
|
#endif // SNMM
|
|
|
|
//Extrude some filament
|
|
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
|
|
|
|
//Wait for user to check the state
|
|
lcd_change_fil_state = 0;
|
|
lcd_loading_filament();
|
|
|
|
tone(BEEPER, 500);
|
|
delay_keep_alive(50);
|
|
noTone(BEEPER);
|
|
|
|
while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
|
|
lcd_change_fil_state = 0;
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
lcd_alright();
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
switch(lcd_change_fil_state){
|
|
|
|
// Filament failed to load so load it again
|
|
case 2:
|
|
#ifdef SNMM
|
|
display_loading();
|
|
do {
|
|
target[E_AXIS] += 0.002;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
|
|
delay_keep_alive(2);
|
|
} while (!lcd_clicked());
|
|
|
|
st_synchronize();
|
|
target[E_AXIS] += bowden_length[snmm_extruder];
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
|
|
target[E_AXIS] += FIL_LOAD_LENGTH - 60;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
|
|
target[E_AXIS] += 40;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
|
|
target[E_AXIS] += 10;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
|
|
|
|
#else
|
|
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
|
|
#endif
|
|
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
|
|
|
|
lcd_loading_filament();
|
|
|
|
break;
|
|
|
|
// Filament loaded properly but color is not clear
|
|
case 3:
|
|
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
lcd_loading_color();
|
|
break;
|
|
|
|
// Everything good
|
|
default:
|
|
lcd_change_success();
|
|
lcd_update_enable(true);
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
//Not let's go back to print
|
|
fanSpeed = fanSpeedBckp;
|
|
|
|
//Feed a little of filament to stabilize pressure
|
|
target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
|
|
|
|
//Retract
|
|
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
|
|
|
|
|
|
//plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
|
|
|
|
//Move XY back
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
|
|
|
|
//Move Z back
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
|
|
|
|
|
|
target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
|
|
|
|
//Unretract
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
|
|
//Set E position to original
|
|
plan_set_e_position(lastpos[E_AXIS]);
|
|
|
|
//Recover feed rate
|
|
feedmultiply=feedmultiplyBckp;
|
|
char cmd[9];
|
|
sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
|
|
enquecommand(cmd);
|
|
|
|
lcd_setstatuspgm(WELCOME_MSG);
|
|
custom_message = false;
|
|
custom_message_type = 0;
|
|
|
|
fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
|
|
|
|
#ifdef PAT9125
|
|
|
|
if (fsensor_M600)
|
|
{
|
|
cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
|
|
st_synchronize();
|
|
while (!is_buffer_empty())
|
|
{
|
|
process_commands();
|
|
cmdqueue_pop_front();
|
|
}
|
|
fsensor_enable();
|
|
fsensor_restore_print_and_continue();
|
|
}
|
|
|
|
#endif //PAT9125
|
|
|
|
}
|
|
break;
|
|
#endif //FILAMENTCHANGEENABLE
|
|
case 601: {
|
|
if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
|
|
}
|
|
break;
|
|
|
|
case 602: {
|
|
if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
|
|
}
|
|
break;
|
|
|
|
#ifdef LIN_ADVANCE
|
|
case 900: // M900: Set LIN_ADVANCE options.
|
|
gcode_M900();
|
|
break;
|
|
#endif
|
|
|
|
case 907: // M907 Set digital trimpot motor current using axis codes.
|
|
{
|
|
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
|
|
if(code_seen('B')) digipot_current(4,code_value());
|
|
if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
|
|
#endif
|
|
#ifdef MOTOR_CURRENT_PWM_XY_PIN
|
|
if(code_seen('X')) digipot_current(0, code_value());
|
|
#endif
|
|
#ifdef MOTOR_CURRENT_PWM_Z_PIN
|
|
if(code_seen('Z')) digipot_current(1, code_value());
|
|
#endif
|
|
#ifdef MOTOR_CURRENT_PWM_E_PIN
|
|
if(code_seen('E')) digipot_current(2, code_value());
|
|
#endif
|
|
#ifdef DIGIPOT_I2C
|
|
// this one uses actual amps in floating point
|
|
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
|
|
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
|
for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
|
|
#endif
|
|
}
|
|
break;
|
|
case 908: // M908 Control digital trimpot directly.
|
|
{
|
|
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
uint8_t channel,current;
|
|
if(code_seen('P')) channel=code_value();
|
|
if(code_seen('S')) current=code_value();
|
|
digitalPotWrite(channel, current);
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
case 910: // M910 TMC2130 init
|
|
{
|
|
tmc2130_init();
|
|
}
|
|
break;
|
|
|
|
case 911: // M911 Set TMC2130 holding currents
|
|
{
|
|
if (code_seen('X')) tmc2130_set_current_h(0, code_value());
|
|
if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
|
|
if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
|
|
if (code_seen('E')) tmc2130_set_current_h(3, code_value());
|
|
}
|
|
break;
|
|
|
|
case 912: // M912 Set TMC2130 running currents
|
|
{
|
|
if (code_seen('X')) tmc2130_set_current_r(0, code_value());
|
|
if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
|
|
if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
|
|
if (code_seen('E')) tmc2130_set_current_r(3, code_value());
|
|
}
|
|
break;
|
|
|
|
case 913: // M913 Print TMC2130 currents
|
|
{
|
|
tmc2130_print_currents();
|
|
}
|
|
break;
|
|
|
|
case 914: // M914 Set normal mode
|
|
{
|
|
tmc2130_mode = TMC2130_MODE_NORMAL;
|
|
tmc2130_init();
|
|
}
|
|
break;
|
|
|
|
case 915: // M915 Set silent mode
|
|
{
|
|
tmc2130_mode = TMC2130_MODE_SILENT;
|
|
tmc2130_init();
|
|
}
|
|
break;
|
|
|
|
case 916: // M916 Set sg_thrs
|
|
{
|
|
if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
|
|
if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
|
|
if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
|
|
if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
|
|
MYSERIAL.print("tmc2130_sg_thr[X]=");
|
|
MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
|
|
MYSERIAL.print("tmc2130_sg_thr[Y]=");
|
|
MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
|
|
MYSERIAL.print("tmc2130_sg_thr[Z]=");
|
|
MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
|
|
MYSERIAL.print("tmc2130_sg_thr[E]=");
|
|
MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
|
|
}
|
|
break;
|
|
|
|
case 917: // M917 Set TMC2130 pwm_ampl
|
|
{
|
|
if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
|
|
if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
|
|
if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
|
|
if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
|
|
}
|
|
break;
|
|
|
|
case 918: // M918 Set TMC2130 pwm_grad
|
|
{
|
|
if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
|
|
if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
|
|
if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
|
|
if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
|
|
}
|
|
break;
|
|
|
|
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
{
|
|
#ifdef TMC2130
|
|
if(code_seen('E'))
|
|
{
|
|
uint16_t res_new = code_value();
|
|
if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
|
|
{
|
|
st_synchronize();
|
|
uint8_t axis = E_AXIS;
|
|
uint16_t res = tmc2130_get_res(axis);
|
|
tmc2130_set_res(axis, res_new);
|
|
if (res_new > res)
|
|
{
|
|
uint16_t fac = (res_new / res);
|
|
axis_steps_per_unit[axis] *= fac;
|
|
position[E_AXIS] *= fac;
|
|
}
|
|
else
|
|
{
|
|
uint16_t fac = (res / res_new);
|
|
axis_steps_per_unit[axis] /= fac;
|
|
position[E_AXIS] /= fac;
|
|
}
|
|
}
|
|
}
|
|
#else //TMC2130
|
|
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
|
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
|
|
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
|
|
if(code_seen('B')) microstep_mode(4,code_value());
|
|
microstep_readings();
|
|
#endif
|
|
#endif //TMC2130
|
|
}
|
|
break;
|
|
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
|
{
|
|
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
|
if(code_seen('S')) switch((int)code_value())
|
|
{
|
|
case 1:
|
|
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
|
|
if(code_seen('B')) microstep_ms(4,code_value(),-1);
|
|
break;
|
|
case 2:
|
|
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
|
|
if(code_seen('B')) microstep_ms(4,-1,code_value());
|
|
break;
|
|
}
|
|
microstep_readings();
|
|
#endif
|
|
}
|
|
break;
|
|
case 701: //M701: load filament
|
|
{
|
|
gcode_M701();
|
|
}
|
|
break;
|
|
case 702:
|
|
{
|
|
#ifdef SNMM
|
|
if (code_seen('U')) {
|
|
extr_unload_used(); //unload all filaments which were used in current print
|
|
}
|
|
else if (code_seen('C')) {
|
|
extr_unload(); //unload just current filament
|
|
}
|
|
else {
|
|
extr_unload_all(); //unload all filaments
|
|
}
|
|
#else
|
|
bool old_fsensor_enabled = fsensor_enabled;
|
|
fsensor_enabled = false;
|
|
custom_message = true;
|
|
custom_message_type = 2;
|
|
lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
|
|
|
|
// extr_unload2();
|
|
|
|
current_position[E_AXIS] -= 45;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
|
|
st_synchronize();
|
|
current_position[E_AXIS] -= 15;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
|
|
st_synchronize();
|
|
current_position[E_AXIS] -= 20;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
|
|
st_synchronize();
|
|
|
|
lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
|
|
|
|
//disable extruder steppers so filament can be removed
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
delay(100);
|
|
|
|
|
|
WRITE(BEEPER, HIGH);
|
|
uint8_t counterBeep = 0;
|
|
while (!lcd_clicked() && (counterBeep < 50)) {
|
|
if (counterBeep > 5) WRITE(BEEPER, LOW);
|
|
delay_keep_alive(100);
|
|
counterBeep++;
|
|
}
|
|
WRITE(BEEPER, LOW);
|
|
st_synchronize();
|
|
while (lcd_clicked()) delay_keep_alive(100);
|
|
|
|
lcd_update_enable(true);
|
|
|
|
lcd_setstatuspgm(WELCOME_MSG);
|
|
custom_message = false;
|
|
custom_message_type = 0;
|
|
fsensor_enabled = old_fsensor_enabled;
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
case 999: // M999: Restart after being stopped
|
|
Stopped = false;
|
|
lcd_reset_alert_level();
|
|
gcode_LastN = Stopped_gcode_LastN;
|
|
FlushSerialRequestResend();
|
|
break;
|
|
default:
|
|
printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
|
|
}
|
|
|
|
} // end if(code_seen('M')) (end of M codes)
|
|
|
|
else if(code_seen('T'))
|
|
{
|
|
int index;
|
|
st_synchronize();
|
|
for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
|
|
|
|
if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
|
|
SERIAL_ECHOLNPGM("Invalid T code.");
|
|
}
|
|
else {
|
|
if (*(strchr_pointer + index) == '?') {
|
|
tmp_extruder = choose_extruder_menu();
|
|
}
|
|
else {
|
|
tmp_extruder = code_value();
|
|
}
|
|
snmm_filaments_used |= (1 << tmp_extruder); //for stop print
|
|
#ifdef SNMM
|
|
|
|
#ifdef LIN_ADVANCE
|
|
if (snmm_extruder != tmp_extruder)
|
|
clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
|
|
#endif
|
|
|
|
snmm_extruder = tmp_extruder;
|
|
|
|
|
|
delay(100);
|
|
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
|
|
pinMode(E_MUX0_PIN, OUTPUT);
|
|
pinMode(E_MUX1_PIN, OUTPUT);
|
|
pinMode(E_MUX2_PIN, OUTPUT);
|
|
|
|
delay(100);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO("T:");
|
|
SERIAL_ECHOLN((int)tmp_extruder);
|
|
switch (tmp_extruder) {
|
|
case 1:
|
|
WRITE(E_MUX0_PIN, HIGH);
|
|
WRITE(E_MUX1_PIN, LOW);
|
|
WRITE(E_MUX2_PIN, LOW);
|
|
|
|
break;
|
|
case 2:
|
|
WRITE(E_MUX0_PIN, LOW);
|
|
WRITE(E_MUX1_PIN, HIGH);
|
|
WRITE(E_MUX2_PIN, LOW);
|
|
|
|
break;
|
|
case 3:
|
|
WRITE(E_MUX0_PIN, HIGH);
|
|
WRITE(E_MUX1_PIN, HIGH);
|
|
WRITE(E_MUX2_PIN, LOW);
|
|
|
|
break;
|
|
default:
|
|
WRITE(E_MUX0_PIN, LOW);
|
|
WRITE(E_MUX1_PIN, LOW);
|
|
WRITE(E_MUX2_PIN, LOW);
|
|
|
|
break;
|
|
}
|
|
delay(100);
|
|
|
|
#else
|
|
if (tmp_extruder >= EXTRUDERS) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM("T");
|
|
SERIAL_PROTOCOLLN((int)tmp_extruder);
|
|
SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
|
|
}
|
|
else {
|
|
boolean make_move = false;
|
|
if (code_seen('F')) {
|
|
make_move = true;
|
|
next_feedrate = code_value();
|
|
if (next_feedrate > 0.0) {
|
|
feedrate = next_feedrate;
|
|
}
|
|
}
|
|
#if EXTRUDERS > 1
|
|
if (tmp_extruder != active_extruder) {
|
|
// Save current position to return to after applying extruder offset
|
|
memcpy(destination, current_position, sizeof(destination));
|
|
// Offset extruder (only by XY)
|
|
int i;
|
|
for (i = 0; i < 2; i++) {
|
|
current_position[i] = current_position[i] -
|
|
extruder_offset[i][active_extruder] +
|
|
extruder_offset[i][tmp_extruder];
|
|
}
|
|
// Set the new active extruder and position
|
|
active_extruder = tmp_extruder;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
// Move to the old position if 'F' was in the parameters
|
|
if (make_move && Stopped == false) {
|
|
prepare_move();
|
|
}
|
|
}
|
|
#endif
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
|
|
SERIAL_PROTOCOLLN((int)active_extruder);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
} // end if(code_seen('T')) (end of T codes)
|
|
|
|
#ifdef DEBUG_DCODES
|
|
else if (code_seen('D')) // D codes (debug)
|
|
{
|
|
switch((int)code_value())
|
|
{
|
|
case -1: // D-1 - Endless loop
|
|
dcode__1(); break;
|
|
case 0: // D0 - Reset
|
|
dcode_0(); break;
|
|
case 1: // D1 - Clear EEPROM
|
|
dcode_1(); break;
|
|
case 2: // D2 - Read/Write RAM
|
|
dcode_2(); break;
|
|
case 3: // D3 - Read/Write EEPROM
|
|
dcode_3(); break;
|
|
case 4: // D4 - Read/Write PIN
|
|
dcode_4(); break;
|
|
case 5: // D5 - Read/Write FLASH
|
|
// dcode_5(); break;
|
|
break;
|
|
case 6: // D6 - Read/Write external FLASH
|
|
dcode_6(); break;
|
|
case 7: // D7 - Read/Write Bootloader
|
|
dcode_7(); break;
|
|
case 8: // D8 - Read/Write PINDA
|
|
dcode_8(); break;
|
|
case 9: // D9 - Read/Write ADC
|
|
dcode_9(); break;
|
|
|
|
case 10: // D10 - XYZ calibration = OK
|
|
dcode_10(); break;
|
|
|
|
case 2130: // D9125 - TMC2130
|
|
dcode_2130(); break;
|
|
case 9125: // D9125 - PAT9125
|
|
dcode_9125(); break;
|
|
}
|
|
}
|
|
#endif //DEBUG_DCODES
|
|
|
|
else
|
|
{
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
|
|
SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
|
|
SERIAL_ECHOLNPGM("\"(2)");
|
|
}
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
ClearToSend();
|
|
}
|
|
|
|
void FlushSerialRequestResend()
|
|
{
|
|
//char cmdbuffer[bufindr][100]="Resend:";
|
|
MYSERIAL.flush();
|
|
SERIAL_PROTOCOLRPGM(MSG_RESEND);
|
|
SERIAL_PROTOCOLLN(gcode_LastN + 1);
|
|
previous_millis_cmd = millis();
|
|
SERIAL_PROTOCOLLNRPGM(MSG_OK);
|
|
}
|
|
|
|
// Confirm the execution of a command, if sent from a serial line.
|
|
// Execution of a command from a SD card will not be confirmed.
|
|
void ClearToSend()
|
|
{
|
|
previous_millis_cmd = millis();
|
|
if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
|
|
SERIAL_PROTOCOLLNRPGM(MSG_OK);
|
|
}
|
|
|
|
void get_coordinates()
|
|
{
|
|
bool seen[4]={false,false,false,false};
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i]))
|
|
{
|
|
bool relative = axis_relative_modes[i] || relative_mode;
|
|
destination[i] = (float)code_value();
|
|
if (i == E_AXIS) {
|
|
float emult = extruder_multiplier[active_extruder];
|
|
if (emult != 1.) {
|
|
if (! relative) {
|
|
destination[i] -= current_position[i];
|
|
relative = true;
|
|
}
|
|
destination[i] *= emult;
|
|
}
|
|
}
|
|
if (relative)
|
|
destination[i] += current_position[i];
|
|
seen[i]=true;
|
|
}
|
|
else destination[i] = current_position[i]; //Are these else lines really needed?
|
|
}
|
|
if(code_seen('F')) {
|
|
next_feedrate = code_value();
|
|
#ifdef MAX_SILENT_FEEDRATE
|
|
if (tmc2130_mode == TMC2130_MODE_SILENT)
|
|
if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
|
|
#endif //MAX_SILENT_FEEDRATE
|
|
if(next_feedrate > 0.0) feedrate = next_feedrate;
|
|
}
|
|
}
|
|
|
|
void get_arc_coordinates()
|
|
{
|
|
#ifdef SF_ARC_FIX
|
|
bool relative_mode_backup = relative_mode;
|
|
relative_mode = true;
|
|
#endif
|
|
get_coordinates();
|
|
#ifdef SF_ARC_FIX
|
|
relative_mode=relative_mode_backup;
|
|
#endif
|
|
|
|
if(code_seen('I')) {
|
|
offset[0] = code_value();
|
|
}
|
|
else {
|
|
offset[0] = 0.0;
|
|
}
|
|
if(code_seen('J')) {
|
|
offset[1] = code_value();
|
|
}
|
|
else {
|
|
offset[1] = 0.0;
|
|
}
|
|
}
|
|
|
|
void clamp_to_software_endstops(float target[3])
|
|
{
|
|
#ifdef DEBUG_DISABLE_SWLIMITS
|
|
return;
|
|
#endif //DEBUG_DISABLE_SWLIMITS
|
|
world2machine_clamp(target[0], target[1]);
|
|
|
|
// Clamp the Z coordinate.
|
|
if (min_software_endstops) {
|
|
float negative_z_offset = 0;
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
|
|
#endif
|
|
if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
|
|
}
|
|
if (max_software_endstops) {
|
|
if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
|
|
}
|
|
}
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
|
|
float dx = x - current_position[X_AXIS];
|
|
float dy = y - current_position[Y_AXIS];
|
|
float dz = z - current_position[Z_AXIS];
|
|
int n_segments = 0;
|
|
|
|
if (mbl.active) {
|
|
float len = abs(dx) + abs(dy);
|
|
if (len > 0)
|
|
// Split to 3cm segments or shorter.
|
|
n_segments = int(ceil(len / 30.f));
|
|
}
|
|
|
|
if (n_segments > 1) {
|
|
float de = e - current_position[E_AXIS];
|
|
for (int i = 1; i < n_segments; ++ i) {
|
|
float t = float(i) / float(n_segments);
|
|
plan_buffer_line(
|
|
current_position[X_AXIS] + t * dx,
|
|
current_position[Y_AXIS] + t * dy,
|
|
current_position[Z_AXIS] + t * dz,
|
|
current_position[E_AXIS] + t * de,
|
|
feed_rate, extruder);
|
|
}
|
|
}
|
|
// The rest of the path.
|
|
plan_buffer_line(x, y, z, e, feed_rate, extruder);
|
|
current_position[X_AXIS] = x;
|
|
current_position[Y_AXIS] = y;
|
|
current_position[Z_AXIS] = z;
|
|
current_position[E_AXIS] = e;
|
|
}
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
void prepare_move()
|
|
{
|
|
clamp_to_software_endstops(destination);
|
|
previous_millis_cmd = millis();
|
|
|
|
// Do not use feedmultiply for E or Z only moves
|
|
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
}
|
|
else {
|
|
#ifdef MESH_BED_LEVELING
|
|
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
|
|
#else
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
|
|
#endif
|
|
}
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
current_position[i] = destination[i];
|
|
}
|
|
}
|
|
|
|
void prepare_arc_move(char isclockwise) {
|
|
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
|
|
|
|
// Trace the arc
|
|
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
// motion control system might still be processing the action and the real tool position
|
|
// in any intermediate location.
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
current_position[i] = destination[i];
|
|
}
|
|
previous_millis_cmd = millis();
|
|
}
|
|
|
|
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
|
|
|
#if defined(FAN_PIN)
|
|
#if CONTROLLERFAN_PIN == FAN_PIN
|
|
#error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
|
|
#endif
|
|
#endif
|
|
|
|
unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
|
|
unsigned long lastMotorCheck = 0;
|
|
|
|
void controllerFan()
|
|
{
|
|
if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
|
|
{
|
|
lastMotorCheck = millis();
|
|
|
|
if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
|
|
#if EXTRUDERS > 2
|
|
|| !READ(E2_ENABLE_PIN)
|
|
#endif
|
|
#if EXTRUDER > 1
|
|
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|
|
|| !READ(X2_ENABLE_PIN)
|
|
#endif
|
|
|| !READ(E1_ENABLE_PIN)
|
|
#endif
|
|
|| !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
|
|
{
|
|
lastMotor = millis(); //... set time to NOW so the fan will turn on
|
|
}
|
|
|
|
if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
|
|
{
|
|
digitalWrite(CONTROLLERFAN_PIN, 0);
|
|
analogWrite(CONTROLLERFAN_PIN, 0);
|
|
}
|
|
else
|
|
{
|
|
// allows digital or PWM fan output to be used (see M42 handling)
|
|
digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
|
|
analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef TEMP_STAT_LEDS
|
|
static bool blue_led = false;
|
|
static bool red_led = false;
|
|
static uint32_t stat_update = 0;
|
|
|
|
void handle_status_leds(void) {
|
|
float max_temp = 0.0;
|
|
if(millis() > stat_update) {
|
|
stat_update += 500; // Update every 0.5s
|
|
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
max_temp = max(max_temp, degHotend(cur_extruder));
|
|
max_temp = max(max_temp, degTargetHotend(cur_extruder));
|
|
}
|
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
max_temp = max(max_temp, degTargetBed());
|
|
max_temp = max(max_temp, degBed());
|
|
#endif
|
|
if((max_temp > 55.0) && (red_led == false)) {
|
|
digitalWrite(STAT_LED_RED, 1);
|
|
digitalWrite(STAT_LED_BLUE, 0);
|
|
red_led = true;
|
|
blue_led = false;
|
|
}
|
|
if((max_temp < 54.0) && (blue_led == false)) {
|
|
digitalWrite(STAT_LED_RED, 0);
|
|
digitalWrite(STAT_LED_BLUE, 1);
|
|
red_led = false;
|
|
blue_led = true;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
|
|
{
|
|
if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
|
|
{
|
|
if (fsensor_autoload_enabled)
|
|
{
|
|
if (fsensor_check_autoload())
|
|
{
|
|
|
|
if (degHotend0() > EXTRUDE_MINTEMP)
|
|
{
|
|
fsensor_autoload_check_stop();
|
|
tone(BEEPER, 1000);
|
|
delay_keep_alive(50);
|
|
noTone(BEEPER);
|
|
loading_flag = true;
|
|
enquecommand_front_P((PSTR("M701")));
|
|
}
|
|
else
|
|
{
|
|
lcd_update_enable(false);
|
|
lcd_implementation_clear();
|
|
lcd.setCursor(0, 0);
|
|
lcd_printPGM(MSG_ERROR);
|
|
lcd.setCursor(0, 2);
|
|
lcd_printPGM(MSG_PREHEAT_NOZZLE);
|
|
delay(2000);
|
|
lcd_implementation_clear();
|
|
lcd_update_enable(true);
|
|
}
|
|
|
|
}
|
|
}
|
|
else
|
|
fsensor_autoload_check_start();
|
|
}
|
|
else
|
|
if (fsensor_autoload_enabled)
|
|
fsensor_autoload_check_stop();
|
|
|
|
#if defined(KILL_PIN) && KILL_PIN > -1
|
|
static int killCount = 0; // make the inactivity button a bit less responsive
|
|
const int KILL_DELAY = 10000;
|
|
#endif
|
|
|
|
if(buflen < (BUFSIZE-1)){
|
|
get_command();
|
|
}
|
|
|
|
if( (millis() - previous_millis_cmd) > max_inactive_time )
|
|
if(max_inactive_time)
|
|
kill("", 4);
|
|
if(stepper_inactive_time) {
|
|
if( (millis() - previous_millis_cmd) > stepper_inactive_time )
|
|
{
|
|
if(blocks_queued() == false && ignore_stepper_queue == false) {
|
|
disable_x();
|
|
// SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
|
|
disable_y();
|
|
disable_z();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
|
|
if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
|
|
{
|
|
chdkActive = false;
|
|
WRITE(CHDK, LOW);
|
|
}
|
|
#endif
|
|
|
|
#if defined(KILL_PIN) && KILL_PIN > -1
|
|
|
|
// Check if the kill button was pressed and wait just in case it was an accidental
|
|
// key kill key press
|
|
// -------------------------------------------------------------------------------
|
|
if( 0 == READ(KILL_PIN) )
|
|
{
|
|
killCount++;
|
|
}
|
|
else if (killCount > 0)
|
|
{
|
|
killCount--;
|
|
}
|
|
// Exceeded threshold and we can confirm that it was not accidental
|
|
// KILL the machine
|
|
// ----------------------------------------------------------------
|
|
if ( killCount >= KILL_DELAY)
|
|
{
|
|
kill("", 5);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
|
controllerFan(); //Check if fan should be turned on to cool stepper drivers down
|
|
#endif
|
|
#ifdef EXTRUDER_RUNOUT_PREVENT
|
|
if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
|
|
if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
|
|
{
|
|
bool oldstatus=READ(E0_ENABLE_PIN);
|
|
enable_e0();
|
|
float oldepos=current_position[E_AXIS];
|
|
float oldedes=destination[E_AXIS];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
|
|
destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
|
|
EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
|
|
current_position[E_AXIS]=oldepos;
|
|
destination[E_AXIS]=oldedes;
|
|
plan_set_e_position(oldepos);
|
|
previous_millis_cmd=millis();
|
|
st_synchronize();
|
|
WRITE(E0_ENABLE_PIN,oldstatus);
|
|
}
|
|
#endif
|
|
#ifdef TEMP_STAT_LEDS
|
|
handle_status_leds();
|
|
#endif
|
|
check_axes_activity();
|
|
}
|
|
|
|
void kill(const char *full_screen_message, unsigned char id)
|
|
{
|
|
SERIAL_ECHOPGM("KILL: ");
|
|
MYSERIAL.println(int(id));
|
|
//return;
|
|
cli(); // Stop interrupts
|
|
disable_heater();
|
|
|
|
disable_x();
|
|
// SERIAL_ECHOLNPGM("kill - disable Y");
|
|
disable_y();
|
|
disable_z();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
|
|
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
pinMode(PS_ON_PIN,INPUT);
|
|
#endif
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
|
|
if (full_screen_message != NULL) {
|
|
SERIAL_ERRORLNRPGM(full_screen_message);
|
|
lcd_display_message_fullscreen_P(full_screen_message);
|
|
} else {
|
|
LCD_ALERTMESSAGERPGM(MSG_KILLED);
|
|
}
|
|
|
|
// FMC small patch to update the LCD before ending
|
|
sei(); // enable interrupts
|
|
for ( int i=5; i--; lcd_update())
|
|
{
|
|
delay(200);
|
|
}
|
|
cli(); // disable interrupts
|
|
suicide();
|
|
while(1)
|
|
{
|
|
wdt_reset();
|
|
/* Intentionally left empty */
|
|
|
|
} // Wait for reset
|
|
}
|
|
|
|
void Stop()
|
|
{
|
|
disable_heater();
|
|
if(Stopped == false) {
|
|
Stopped = true;
|
|
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
|
|
LCD_MESSAGERPGM(MSG_STOPPED);
|
|
}
|
|
}
|
|
|
|
bool IsStopped() { return Stopped; };
|
|
|
|
#ifdef FAST_PWM_FAN
|
|
void setPwmFrequency(uint8_t pin, int val)
|
|
{
|
|
val &= 0x07;
|
|
switch(digitalPinToTimer(pin))
|
|
{
|
|
|
|
#if defined(TCCR0A)
|
|
case TIMER0A:
|
|
case TIMER0B:
|
|
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
|
|
// TCCR0B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR1A)
|
|
case TIMER1A:
|
|
case TIMER1B:
|
|
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
// TCCR1B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR2)
|
|
case TIMER2:
|
|
case TIMER2:
|
|
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
TCCR2 |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR2A)
|
|
case TIMER2A:
|
|
case TIMER2B:
|
|
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
|
|
TCCR2B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR3A)
|
|
case TIMER3A:
|
|
case TIMER3B:
|
|
case TIMER3C:
|
|
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
|
|
TCCR3B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR4A)
|
|
case TIMER4A:
|
|
case TIMER4B:
|
|
case TIMER4C:
|
|
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
|
|
TCCR4B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR5A)
|
|
case TIMER5A:
|
|
case TIMER5B:
|
|
case TIMER5C:
|
|
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
|
|
TCCR5B |= val;
|
|
break;
|
|
#endif
|
|
|
|
}
|
|
}
|
|
#endif //FAST_PWM_FAN
|
|
|
|
bool setTargetedHotend(int code){
|
|
tmp_extruder = active_extruder;
|
|
if(code_seen('T')) {
|
|
tmp_extruder = code_value();
|
|
if(tmp_extruder >= EXTRUDERS) {
|
|
SERIAL_ECHO_START;
|
|
switch(code){
|
|
case 104:
|
|
SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
|
|
break;
|
|
case 105:
|
|
SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
|
|
break;
|
|
case 109:
|
|
SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
|
|
break;
|
|
case 218:
|
|
SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
|
|
break;
|
|
case 221:
|
|
SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
|
|
break;
|
|
}
|
|
SERIAL_PROTOCOLLN((int)tmp_extruder);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
|
|
{
|
|
if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
|
|
{
|
|
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
|
|
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
|
|
}
|
|
|
|
unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
|
|
unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
|
|
|
|
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
|
|
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
|
|
|
|
total_filament_used = 0;
|
|
|
|
}
|
|
|
|
float calculate_extruder_multiplier(float diameter) {
|
|
bool enabled = volumetric_enabled && diameter > 0;
|
|
float area = enabled ? (M_PI * pow(diameter * .5, 2)) : 0;
|
|
return (extrudemultiply == 100) ?
|
|
(enabled ? (1.f / area) : 1.f) :
|
|
(enabled ? ((float(extrudemultiply) * 0.01f) / area) : 1.f);
|
|
}
|
|
|
|
void calculate_extruder_multipliers() {
|
|
extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
|
|
#if EXTRUDERS > 1
|
|
extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
|
|
#if EXTRUDERS > 2
|
|
extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void delay_keep_alive(unsigned int ms)
|
|
{
|
|
for (;;) {
|
|
manage_heater();
|
|
// Manage inactivity, but don't disable steppers on timeout.
|
|
manage_inactivity(true);
|
|
lcd_update();
|
|
if (ms == 0)
|
|
break;
|
|
else if (ms >= 50) {
|
|
delay(50);
|
|
ms -= 50;
|
|
} else {
|
|
delay(ms);
|
|
ms = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void wait_for_heater(long codenum) {
|
|
|
|
#ifdef TEMP_RESIDENCY_TIME
|
|
long residencyStart;
|
|
residencyStart = -1;
|
|
/* continue to loop until we have reached the target temp
|
|
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
|
|
while ((!cancel_heatup) && ((residencyStart == -1) ||
|
|
(residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
|
|
#else
|
|
while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
|
|
#endif //TEMP_RESIDENCY_TIME
|
|
if ((millis() - codenum) > 1000UL)
|
|
{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
|
|
if (!farm_mode) {
|
|
SERIAL_PROTOCOLPGM("T:");
|
|
SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL((int)tmp_extruder);
|
|
|
|
#ifdef TEMP_RESIDENCY_TIME
|
|
SERIAL_PROTOCOLPGM(" W:");
|
|
if (residencyStart > -1)
|
|
{
|
|
codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
|
|
SERIAL_PROTOCOLLN(codenum);
|
|
}
|
|
else
|
|
{
|
|
SERIAL_PROTOCOLLN("?");
|
|
}
|
|
}
|
|
#else
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
codenum = millis();
|
|
}
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
#ifdef TEMP_RESIDENCY_TIME
|
|
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
|
|
or when current temp falls outside the hysteresis after target temp was reached */
|
|
if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
|
|
(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
|
|
(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
|
|
{
|
|
residencyStart = millis();
|
|
}
|
|
#endif //TEMP_RESIDENCY_TIME
|
|
}
|
|
}
|
|
|
|
void check_babystep() {
|
|
int babystep_z;
|
|
EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
|
|
if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
|
|
babystep_z = 0; //if babystep value is out of min max range, set it to 0
|
|
SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
|
|
EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
|
|
lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
|
|
lcd_update_enable(true);
|
|
}
|
|
}
|
|
#ifdef DIS
|
|
void d_setup()
|
|
{
|
|
pinMode(D_DATACLOCK, INPUT_PULLUP);
|
|
pinMode(D_DATA, INPUT_PULLUP);
|
|
pinMode(D_REQUIRE, OUTPUT);
|
|
digitalWrite(D_REQUIRE, HIGH);
|
|
}
|
|
|
|
|
|
float d_ReadData()
|
|
{
|
|
int digit[13];
|
|
String mergeOutput;
|
|
float output;
|
|
|
|
digitalWrite(D_REQUIRE, HIGH);
|
|
for (int i = 0; i<13; i++)
|
|
{
|
|
for (int j = 0; j < 4; j++)
|
|
{
|
|
while (digitalRead(D_DATACLOCK) == LOW) {}
|
|
while (digitalRead(D_DATACLOCK) == HIGH) {}
|
|
bitWrite(digit[i], j, digitalRead(D_DATA));
|
|
}
|
|
}
|
|
|
|
digitalWrite(D_REQUIRE, LOW);
|
|
mergeOutput = "";
|
|
output = 0;
|
|
for (int r = 5; r <= 10; r++) //Merge digits
|
|
{
|
|
mergeOutput += digit[r];
|
|
}
|
|
output = mergeOutput.toFloat();
|
|
|
|
if (digit[4] == 8) //Handle sign
|
|
{
|
|
output *= -1;
|
|
}
|
|
|
|
for (int i = digit[11]; i > 0; i--) //Handle floating point
|
|
{
|
|
output /= 10;
|
|
}
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
|
|
int t1 = 0;
|
|
int t_delay = 0;
|
|
int digit[13];
|
|
int m;
|
|
char str[3];
|
|
//String mergeOutput;
|
|
char mergeOutput[15];
|
|
float output;
|
|
|
|
int mesh_point = 0; //index number of calibration point
|
|
float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
|
|
float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
float mesh_home_z_search = 4;
|
|
float row[x_points_num];
|
|
int ix = 0;
|
|
int iy = 0;
|
|
|
|
char* filename_wldsd = "wldsd.txt";
|
|
char data_wldsd[70];
|
|
char numb_wldsd[10];
|
|
|
|
d_setup();
|
|
|
|
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
|
// We don't know where we are! HOME!
|
|
// Push the commands to the front of the message queue in the reverse order!
|
|
// There shall be always enough space reserved for these commands.
|
|
repeatcommand_front(); // repeat G80 with all its parameters
|
|
|
|
enquecommand_front_P((PSTR("G28 W0")));
|
|
enquecommand_front_P((PSTR("G1 Z5")));
|
|
return;
|
|
}
|
|
bool custom_message_old = custom_message;
|
|
unsigned int custom_message_type_old = custom_message_type;
|
|
unsigned int custom_message_state_old = custom_message_state;
|
|
custom_message = true;
|
|
custom_message_type = 1;
|
|
custom_message_state = (x_points_num * y_points_num) + 10;
|
|
lcd_update(1);
|
|
|
|
mbl.reset();
|
|
babystep_undo();
|
|
|
|
card.openFile(filename_wldsd, false);
|
|
|
|
current_position[Z_AXIS] = mesh_home_z_search;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
|
|
|
|
int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
|
|
int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
|
|
int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
|
|
|
|
setup_for_endstop_move(false);
|
|
|
|
SERIAL_PROTOCOLPGM("Num X,Y: ");
|
|
SERIAL_PROTOCOL(x_points_num);
|
|
SERIAL_PROTOCOLPGM(",");
|
|
SERIAL_PROTOCOL(y_points_num);
|
|
SERIAL_PROTOCOLPGM("\nZ search height: ");
|
|
SERIAL_PROTOCOL(mesh_home_z_search);
|
|
SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
|
|
SERIAL_PROTOCOL(x_dimension);
|
|
SERIAL_PROTOCOLPGM(",");
|
|
SERIAL_PROTOCOL(y_dimension);
|
|
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
|
|
|
|
while (mesh_point != x_points_num * y_points_num) {
|
|
ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
|
|
iy = mesh_point / x_points_num;
|
|
if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
|
|
float z0 = 0.f;
|
|
current_position[Z_AXIS] = mesh_home_z_search;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
|
st_synchronize();
|
|
|
|
|
|
current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
|
|
current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
|
|
st_synchronize();
|
|
|
|
if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
|
|
break;
|
|
card.closefile();
|
|
}
|
|
|
|
|
|
//memset(numb_wldsd, 0, sizeof(numb_wldsd));
|
|
//dtostrf(d_ReadData(), 8, 5, numb_wldsd);
|
|
//strcat(data_wldsd, numb_wldsd);
|
|
|
|
|
|
|
|
//MYSERIAL.println(data_wldsd);
|
|
//delay(1000);
|
|
//delay(3000);
|
|
//t1 = millis();
|
|
|
|
//while (digitalRead(D_DATACLOCK) == LOW) {}
|
|
//while (digitalRead(D_DATACLOCK) == HIGH) {}
|
|
memset(digit, 0, sizeof(digit));
|
|
//cli();
|
|
digitalWrite(D_REQUIRE, LOW);
|
|
|
|
for (int i = 0; i<13; i++)
|
|
{
|
|
//t1 = millis();
|
|
for (int j = 0; j < 4; j++)
|
|
{
|
|
while (digitalRead(D_DATACLOCK) == LOW) {}
|
|
while (digitalRead(D_DATACLOCK) == HIGH) {}
|
|
bitWrite(digit[i], j, digitalRead(D_DATA));
|
|
}
|
|
//t_delay = (millis() - t1);
|
|
//SERIAL_PROTOCOLPGM(" ");
|
|
//SERIAL_PROTOCOL_F(t_delay, 5);
|
|
//SERIAL_PROTOCOLPGM(" ");
|
|
}
|
|
//sei();
|
|
digitalWrite(D_REQUIRE, HIGH);
|
|
mergeOutput[0] = '\0';
|
|
output = 0;
|
|
for (int r = 5; r <= 10; r++) //Merge digits
|
|
{
|
|
sprintf(str, "%d", digit[r]);
|
|
strcat(mergeOutput, str);
|
|
}
|
|
|
|
output = atof(mergeOutput);
|
|
|
|
if (digit[4] == 8) //Handle sign
|
|
{
|
|
output *= -1;
|
|
}
|
|
|
|
for (int i = digit[11]; i > 0; i--) //Handle floating point
|
|
{
|
|
output *= 0.1;
|
|
}
|
|
|
|
|
|
//output = d_ReadData();
|
|
|
|
//row[ix] = current_position[Z_AXIS];
|
|
|
|
memset(data_wldsd, 0, sizeof(data_wldsd));
|
|
|
|
for (int i = 0; i <3; i++) {
|
|
memset(numb_wldsd, 0, sizeof(numb_wldsd));
|
|
dtostrf(current_position[i], 8, 5, numb_wldsd);
|
|
strcat(data_wldsd, numb_wldsd);
|
|
strcat(data_wldsd, ";");
|
|
|
|
}
|
|
memset(numb_wldsd, 0, sizeof(numb_wldsd));
|
|
dtostrf(output, 8, 5, numb_wldsd);
|
|
strcat(data_wldsd, numb_wldsd);
|
|
//strcat(data_wldsd, ";");
|
|
card.write_command(data_wldsd);
|
|
|
|
|
|
//row[ix] = d_ReadData();
|
|
|
|
row[ix] = output; // current_position[Z_AXIS];
|
|
|
|
if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
|
|
for (int i = 0; i < x_points_num; i++) {
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
SERIAL_PROTOCOL_F(row[i], 5);
|
|
|
|
|
|
}
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
}
|
|
custom_message_state--;
|
|
mesh_point++;
|
|
lcd_update(1);
|
|
|
|
}
|
|
card.closefile();
|
|
|
|
}
|
|
#endif
|
|
|
|
void temp_compensation_start() {
|
|
|
|
custom_message = true;
|
|
custom_message_type = 5;
|
|
custom_message_state = PINDA_HEAT_T + 1;
|
|
lcd_update(2);
|
|
if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
|
|
current_position[E_AXIS] -= DEFAULT_RETRACTION;
|
|
}
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
|
|
|
|
current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
st_synchronize();
|
|
while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
|
|
|
|
for (int i = 0; i < PINDA_HEAT_T; i++) {
|
|
delay_keep_alive(1000);
|
|
custom_message_state = PINDA_HEAT_T - i;
|
|
if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
|
|
else lcd_update(1);
|
|
}
|
|
custom_message_type = 0;
|
|
custom_message_state = 0;
|
|
custom_message = false;
|
|
}
|
|
|
|
void temp_compensation_apply() {
|
|
int i_add;
|
|
int compensation_value;
|
|
int z_shift = 0;
|
|
float z_shift_mm;
|
|
|
|
if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
|
|
if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
|
|
i_add = (target_temperature_bed - 60) / 10;
|
|
EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
|
|
z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
|
|
}else {
|
|
//interpolation
|
|
z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
|
|
}
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
SERIAL_PROTOCOLPGM("Z shift applied:");
|
|
MYSERIAL.print(z_shift_mm);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
|
|
st_synchronize();
|
|
plan_set_z_position(current_position[Z_AXIS]);
|
|
}
|
|
else {
|
|
//we have no temp compensation data
|
|
}
|
|
}
|
|
|
|
float temp_comp_interpolation(float inp_temperature) {
|
|
|
|
//cubic spline interpolation
|
|
|
|
int n, i, j, k;
|
|
float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
|
|
int shift[10];
|
|
int temp_C[10];
|
|
|
|
n = 6; //number of measured points
|
|
|
|
shift[0] = 0;
|
|
for (i = 0; i < n; i++) {
|
|
if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
|
|
temp_C[i] = 50 + i * 10; //temperature in C
|
|
#ifdef PINDA_THERMISTOR
|
|
temp_C[i] = 35 + i * 5; //temperature in C
|
|
#else
|
|
temp_C[i] = 50 + i * 10; //temperature in C
|
|
#endif
|
|
x[i] = (float)temp_C[i];
|
|
f[i] = (float)shift[i];
|
|
}
|
|
if (inp_temperature < x[0]) return 0;
|
|
|
|
|
|
for (i = n - 1; i>0; i--) {
|
|
F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
|
|
h[i - 1] = x[i] - x[i - 1];
|
|
}
|
|
//*********** formation of h, s , f matrix **************
|
|
for (i = 1; i<n - 1; i++) {
|
|
m[i][i] = 2 * (h[i - 1] + h[i]);
|
|
if (i != 1) {
|
|
m[i][i - 1] = h[i - 1];
|
|
m[i - 1][i] = h[i - 1];
|
|
}
|
|
m[i][n - 1] = 6 * (F[i + 1] - F[i]);
|
|
}
|
|
//*********** forward elimination **************
|
|
for (i = 1; i<n - 2; i++) {
|
|
temp = (m[i + 1][i] / m[i][i]);
|
|
for (j = 1; j <= n - 1; j++)
|
|
m[i + 1][j] -= temp*m[i][j];
|
|
}
|
|
//*********** backward substitution *********
|
|
for (i = n - 2; i>0; i--) {
|
|
sum = 0;
|
|
for (j = i; j <= n - 2; j++)
|
|
sum += m[i][j] * s[j];
|
|
s[i] = (m[i][n - 1] - sum) / m[i][i];
|
|
}
|
|
|
|
for (i = 0; i<n - 1; i++)
|
|
if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
|
|
a = (s[i + 1] - s[i]) / (6 * h[i]);
|
|
b = s[i] / 2;
|
|
c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
|
|
d = f[i];
|
|
sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
|
|
}
|
|
|
|
return sum;
|
|
|
|
}
|
|
|
|
#ifdef PINDA_THERMISTOR
|
|
float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
|
|
{
|
|
if (!temp_cal_active) return 0;
|
|
if (!calibration_status_pinda()) return 0;
|
|
return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
|
|
}
|
|
#endif //PINDA_THERMISTOR
|
|
|
|
void long_pause() //long pause print
|
|
{
|
|
st_synchronize();
|
|
|
|
//save currently set parameters to global variables
|
|
saved_feedmultiply = feedmultiply;
|
|
HotendTempBckp = degTargetHotend(active_extruder);
|
|
fanSpeedBckp = fanSpeed;
|
|
start_pause_print = millis();
|
|
|
|
|
|
//save position
|
|
pause_lastpos[X_AXIS] = current_position[X_AXIS];
|
|
pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
|
|
pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
|
|
pause_lastpos[E_AXIS] = current_position[E_AXIS];
|
|
|
|
//retract
|
|
current_position[E_AXIS] -= DEFAULT_RETRACTION;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
|
|
|
|
//lift z
|
|
current_position[Z_AXIS] += Z_PAUSE_LIFT;
|
|
if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
|
|
|
|
//set nozzle target temperature to 0
|
|
setTargetHotend(0, 0);
|
|
setTargetHotend(0, 1);
|
|
setTargetHotend(0, 2);
|
|
|
|
//Move XY to side
|
|
current_position[X_AXIS] = X_PAUSE_POS;
|
|
current_position[Y_AXIS] = Y_PAUSE_POS;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
|
|
|
|
// Turn off the print fan
|
|
fanSpeed = 0;
|
|
|
|
st_synchronize();
|
|
}
|
|
|
|
void serialecho_temperatures() {
|
|
float tt = degHotend(active_extruder);
|
|
SERIAL_PROTOCOLPGM("T:");
|
|
SERIAL_PROTOCOL(tt);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL((int)active_extruder);
|
|
SERIAL_PROTOCOLPGM(" B:");
|
|
SERIAL_PROTOCOL_F(degBed(), 1);
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
|
|
extern uint32_t sdpos_atomic;
|
|
|
|
void uvlo_()
|
|
{
|
|
unsigned long time_start = millis();
|
|
bool sd_print = card.sdprinting;
|
|
// Conserve power as soon as possible.
|
|
disable_x();
|
|
disable_y();
|
|
disable_e0();
|
|
|
|
tmc2130_set_current_h(Z_AXIS, 20);
|
|
tmc2130_set_current_r(Z_AXIS, 20);
|
|
tmc2130_set_current_h(E_AXIS, 20);
|
|
tmc2130_set_current_r(E_AXIS, 20);
|
|
|
|
|
|
// Indicate that the interrupt has been triggered.
|
|
// SERIAL_ECHOLNPGM("UVLO");
|
|
|
|
// Read out the current Z motor microstep counter. This will be later used
|
|
// for reaching the zero full step before powering off.
|
|
uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
|
|
|
|
// Calculate the file position, from which to resume this print.
|
|
long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
|
|
{
|
|
uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
|
|
sd_position -= sdlen_planner;
|
|
uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
|
|
sd_position -= sdlen_cmdqueue;
|
|
if (sd_position < 0) sd_position = 0;
|
|
}
|
|
|
|
// Backup the feedrate in mm/min.
|
|
int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
|
|
|
|
// After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
|
|
// The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
|
|
// are in action.
|
|
planner_abort_hard();
|
|
|
|
// Store the current extruder position.
|
|
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
|
|
eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
|
|
|
|
// Clean the input command queue.
|
|
cmdqueue_reset();
|
|
card.sdprinting = false;
|
|
// card.closefile();
|
|
|
|
// Enable stepper driver interrupt to move Z axis.
|
|
// This should be fine as the planner and command queues are empty and the SD card printing is disabled.
|
|
//FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
|
|
// though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
|
|
sei();
|
|
plan_buffer_line(
|
|
current_position[X_AXIS],
|
|
current_position[Y_AXIS],
|
|
current_position[Z_AXIS],
|
|
current_position[E_AXIS] - DEFAULT_RETRACTION,
|
|
95, active_extruder);
|
|
|
|
st_synchronize();
|
|
disable_e0();
|
|
|
|
plan_buffer_line(
|
|
current_position[X_AXIS],
|
|
current_position[Y_AXIS],
|
|
current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
|
|
current_position[E_AXIS] - DEFAULT_RETRACTION,
|
|
40, active_extruder);
|
|
|
|
st_synchronize();
|
|
disable_e0();
|
|
|
|
plan_buffer_line(
|
|
current_position[X_AXIS],
|
|
current_position[Y_AXIS],
|
|
current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
|
|
current_position[E_AXIS] - DEFAULT_RETRACTION,
|
|
40, active_extruder);
|
|
st_synchronize();
|
|
disable_e0();
|
|
disable_z();
|
|
|
|
// Move Z up to the next 0th full step.
|
|
// Write the file position.
|
|
eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
|
|
// Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
|
|
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
|
|
uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
|
|
uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
|
|
// Scale the z value to 1u resolution.
|
|
int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
|
|
eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
|
|
}
|
|
// Read out the current Z motor microstep counter. This will be later used
|
|
// for reaching the zero full step before powering off.
|
|
eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
|
|
// Store the current position.
|
|
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
|
|
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
|
|
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
|
|
// Store the current feed rate, temperatures and fan speed.
|
|
EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
|
|
eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
|
|
eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
|
|
eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
|
|
// Finaly store the "power outage" flag.
|
|
if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
|
|
|
|
st_synchronize();
|
|
SERIAL_ECHOPGM("stps");
|
|
MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
|
|
|
|
disable_z();
|
|
|
|
// Increment power failure counter
|
|
eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
|
|
eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
|
|
|
|
SERIAL_ECHOLNPGM("UVLO - end");
|
|
MYSERIAL.println(millis() - time_start);
|
|
|
|
#if 0
|
|
// Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
|
|
current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
|
|
st_synchronize();
|
|
#endif
|
|
|
|
|
|
cli();
|
|
volatile unsigned int ppcount = 0;
|
|
SET_OUTPUT(BEEPER);
|
|
WRITE(BEEPER, HIGH);
|
|
for(ppcount = 0; ppcount < 2000; ppcount ++){
|
|
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
|
|
}
|
|
WRITE(BEEPER, LOW);
|
|
while(1){
|
|
#if 1
|
|
WRITE(BEEPER, LOW);
|
|
for(ppcount = 0; ppcount < 8000; ppcount ++){
|
|
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
|
|
}
|
|
#endif
|
|
|
|
};
|
|
}
|
|
|
|
void setup_fan_interrupt() {
|
|
//INT7
|
|
DDRE &= ~(1 << 7); //input pin
|
|
PORTE &= ~(1 << 7); //no internal pull-up
|
|
|
|
//start with sensing rising edge
|
|
EICRB &= ~(1 << 6);
|
|
EICRB |= (1 << 7);
|
|
|
|
//enable INT7 interrupt
|
|
EIMSK |= (1 << 7);
|
|
}
|
|
|
|
// The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
|
|
// and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
|
|
ISR(INT7_vect) {
|
|
//measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
|
|
|
|
if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
|
|
if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
|
|
t_fan_rising_edge = millis_nc();
|
|
}
|
|
else { //interrupt was triggered by falling edge
|
|
if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
|
|
fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
|
|
}
|
|
}
|
|
EICRB ^= (1 << 6); //change edge
|
|
}
|
|
|
|
void setup_uvlo_interrupt() {
|
|
DDRE &= ~(1 << 4); //input pin
|
|
PORTE &= ~(1 << 4); //no internal pull-up
|
|
|
|
//sensing falling edge
|
|
EICRB |= (1 << 0);
|
|
EICRB &= ~(1 << 1);
|
|
|
|
//enable INT4 interrupt
|
|
EIMSK |= (1 << 4);
|
|
}
|
|
|
|
ISR(INT4_vect) {
|
|
EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
|
|
SERIAL_ECHOLNPGM("INT4");
|
|
if (IS_SD_PRINTING) uvlo_();
|
|
}
|
|
|
|
void recover_print(uint8_t automatic) {
|
|
char cmd[30];
|
|
lcd_update_enable(true);
|
|
lcd_update(2);
|
|
lcd_setstatuspgm(MSG_RECOVERING_PRINT);
|
|
|
|
recover_machine_state_after_power_panic();
|
|
|
|
// Set the target bed and nozzle temperatures.
|
|
sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
|
|
enquecommand(cmd);
|
|
sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
|
|
enquecommand(cmd);
|
|
|
|
// Lift the print head, so one may remove the excess priming material.
|
|
if (current_position[Z_AXIS] < 25)
|
|
enquecommand_P(PSTR("G1 Z25 F800"));
|
|
// Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
|
|
enquecommand_P(PSTR("G28 X Y"));
|
|
// Set the target bed and nozzle temperatures and wait.
|
|
sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
|
|
enquecommand(cmd);
|
|
sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
|
|
enquecommand(cmd);
|
|
enquecommand_P(PSTR("M83")); //E axis relative mode
|
|
//enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
|
|
// If not automatically recoreverd (long power loss), extrude extra filament to stabilize
|
|
if(automatic == 0){
|
|
enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
|
|
}
|
|
enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
|
|
|
|
// Mark the power panic status as inactive.
|
|
eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
|
|
/*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
|
|
delay_keep_alive(1000);
|
|
}*/
|
|
SERIAL_ECHOPGM("After waiting for temp:");
|
|
SERIAL_ECHOPGM("Current position X_AXIS:");
|
|
MYSERIAL.println(current_position[X_AXIS]);
|
|
SERIAL_ECHOPGM("Current position Y_AXIS:");
|
|
MYSERIAL.println(current_position[Y_AXIS]);
|
|
|
|
// Restart the print.
|
|
restore_print_from_eeprom();
|
|
|
|
SERIAL_ECHOPGM("current_position[Z_AXIS]:");
|
|
MYSERIAL.print(current_position[Z_AXIS]);
|
|
SERIAL_ECHOPGM("current_position[E_AXIS]:");
|
|
MYSERIAL.print(current_position[E_AXIS]);
|
|
}
|
|
|
|
void recover_machine_state_after_power_panic()
|
|
{
|
|
char cmd[30];
|
|
// 1) Recover the logical cordinates at the time of the power panic.
|
|
// The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
|
|
current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
|
|
current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
|
|
// Recover the logical coordinate of the Z axis at the time of the power panic.
|
|
// The current position after power panic is moved to the next closest 0th full step.
|
|
current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
|
|
UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
|
|
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
|
|
current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
|
|
sprintf_P(cmd, PSTR("G92 E"));
|
|
dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
|
|
enquecommand(cmd);
|
|
}
|
|
|
|
memcpy(destination, current_position, sizeof(destination));
|
|
|
|
SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
|
|
print_world_coordinates();
|
|
|
|
// 2) Initialize the logical to physical coordinate system transformation.
|
|
world2machine_initialize();
|
|
|
|
// 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
|
|
mbl.active = false;
|
|
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
|
|
uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
|
|
uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
|
|
// Scale the z value to 10u resolution.
|
|
int16_t v;
|
|
eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
|
|
if (v != 0)
|
|
mbl.active = true;
|
|
mbl.z_values[iy][ix] = float(v) * 0.001f;
|
|
}
|
|
if (mbl.active)
|
|
mbl.upsample_3x3();
|
|
// SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
|
|
// print_mesh_bed_leveling_table();
|
|
|
|
// 4) Load the baby stepping value, which is expected to be active at the time of power panic.
|
|
// The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
|
|
babystep_load();
|
|
|
|
// 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
// 6) Power up the motors, mark their positions as known.
|
|
//FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
|
|
axis_known_position[X_AXIS] = true; enable_x();
|
|
axis_known_position[Y_AXIS] = true; enable_y();
|
|
axis_known_position[Z_AXIS] = true; enable_z();
|
|
|
|
SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
|
|
print_physical_coordinates();
|
|
|
|
// 7) Recover the target temperatures.
|
|
target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
|
|
target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
|
|
}
|
|
|
|
void restore_print_from_eeprom() {
|
|
float x_rec, y_rec, z_pos;
|
|
int feedrate_rec;
|
|
uint8_t fan_speed_rec;
|
|
char cmd[30];
|
|
char* c;
|
|
char filename[13];
|
|
uint8_t depth = 0;
|
|
char dir_name[9];
|
|
|
|
fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
|
|
EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
|
|
SERIAL_ECHOPGM("Feedrate:");
|
|
MYSERIAL.println(feedrate_rec);
|
|
|
|
depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
|
|
|
|
MYSERIAL.println(int(depth));
|
|
for (int i = 0; i < depth; i++) {
|
|
for (int j = 0; j < 8; j++) {
|
|
dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
|
|
|
|
}
|
|
dir_name[8] = '\0';
|
|
MYSERIAL.println(dir_name);
|
|
card.chdir(dir_name);
|
|
}
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
|
|
|
|
}
|
|
filename[8] = '\0';
|
|
|
|
MYSERIAL.print(filename);
|
|
strcat_P(filename, PSTR(".gco"));
|
|
sprintf_P(cmd, PSTR("M23 %s"), filename);
|
|
for (c = &cmd[4]; *c; c++)
|
|
*c = tolower(*c);
|
|
enquecommand(cmd);
|
|
uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
|
|
SERIAL_ECHOPGM("Position read from eeprom:");
|
|
MYSERIAL.println(position);
|
|
|
|
// E axis relative mode.
|
|
enquecommand_P(PSTR("M83"));
|
|
// Move to the XY print position in logical coordinates, where the print has been killed.
|
|
strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
|
|
strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
|
|
strcat_P(cmd, PSTR(" F2000"));
|
|
enquecommand(cmd);
|
|
// Move the Z axis down to the print, in logical coordinates.
|
|
strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
|
|
enquecommand(cmd);
|
|
// Unretract.
|
|
enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
|
|
// Set the feedrate saved at the power panic.
|
|
sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
|
|
enquecommand(cmd);
|
|
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
|
|
{
|
|
float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
|
|
enquecommand_P(PSTR("M82")); //E axis abslute mode
|
|
}
|
|
// Set the fan speed saved at the power panic.
|
|
strcpy_P(cmd, PSTR("M106 S"));
|
|
strcat(cmd, itostr3(int(fan_speed_rec)));
|
|
enquecommand(cmd);
|
|
|
|
// Set a position in the file.
|
|
sprintf_P(cmd, PSTR("M26 S%lu"), position);
|
|
enquecommand(cmd);
|
|
// Start SD print.
|
|
enquecommand_P(PSTR("M24"));
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// new save/restore printing
|
|
|
|
//extern uint32_t sdpos_atomic;
|
|
|
|
bool saved_printing = false;
|
|
uint32_t saved_sdpos = 0;
|
|
float saved_pos[4] = {0, 0, 0, 0};
|
|
// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
|
|
float saved_feedrate2 = 0;
|
|
uint8_t saved_active_extruder = 0;
|
|
bool saved_extruder_under_pressure = false;
|
|
|
|
void stop_and_save_print_to_ram(float z_move, float e_move)
|
|
{
|
|
if (saved_printing) return;
|
|
cli();
|
|
unsigned char nplanner_blocks = number_of_blocks();
|
|
saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
|
|
uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
|
|
saved_sdpos -= sdlen_planner;
|
|
uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
|
|
saved_sdpos -= sdlen_cmdqueue;
|
|
|
|
#if 0
|
|
SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
|
|
SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
|
|
SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
|
|
SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
|
|
SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
|
|
SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
|
|
SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
|
|
|
|
{
|
|
card.setIndex(saved_sdpos);
|
|
SERIAL_ECHOLNPGM("Content of planner buffer: ");
|
|
for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
|
|
MYSERIAL.print(char(card.get()));
|
|
SERIAL_ECHOLNPGM("Content of command buffer: ");
|
|
for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
|
|
MYSERIAL.print(char(card.get()));
|
|
SERIAL_ECHOLNPGM("End of command buffer");
|
|
}
|
|
|
|
{
|
|
// Print the content of the planner buffer, line by line:
|
|
card.setIndex(saved_sdpos);
|
|
int8_t iline = 0;
|
|
for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
|
|
SERIAL_ECHOPGM("Planner line (from file): ");
|
|
MYSERIAL.print(int(iline), DEC);
|
|
SERIAL_ECHOPGM(", length: ");
|
|
MYSERIAL.print(block_buffer[idx].sdlen, DEC);
|
|
SERIAL_ECHOPGM(", steps: (");
|
|
MYSERIAL.print(block_buffer[idx].steps_x, DEC);
|
|
SERIAL_ECHOPGM(",");
|
|
MYSERIAL.print(block_buffer[idx].steps_y, DEC);
|
|
SERIAL_ECHOPGM(",");
|
|
MYSERIAL.print(block_buffer[idx].steps_z, DEC);
|
|
SERIAL_ECHOPGM(",");
|
|
MYSERIAL.print(block_buffer[idx].steps_e, DEC);
|
|
SERIAL_ECHOPGM("), events: ");
|
|
MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
|
|
for (int len = block_buffer[idx].sdlen; len > 0; -- len)
|
|
MYSERIAL.print(char(card.get()));
|
|
}
|
|
}
|
|
{
|
|
// Print the content of the command buffer, line by line:
|
|
int8_t iline = 0;
|
|
union {
|
|
struct {
|
|
char lo;
|
|
char hi;
|
|
} lohi;
|
|
uint16_t value;
|
|
} sdlen_single;
|
|
int _bufindr = bufindr;
|
|
for (int _buflen = buflen; _buflen > 0; ++ iline) {
|
|
if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
|
|
sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
|
|
sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
|
|
}
|
|
SERIAL_ECHOPGM("Buffer line (from buffer): ");
|
|
MYSERIAL.print(int(iline), DEC);
|
|
SERIAL_ECHOPGM(", type: ");
|
|
MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
|
|
SERIAL_ECHOPGM(", len: ");
|
|
MYSERIAL.println(sdlen_single.value, DEC);
|
|
// Print the content of the buffer line.
|
|
MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
|
|
|
|
SERIAL_ECHOPGM("Buffer line (from file): ");
|
|
MYSERIAL.print(int(iline), DEC);
|
|
MYSERIAL.println(int(iline), DEC);
|
|
for (; sdlen_single.value > 0; -- sdlen_single.value)
|
|
MYSERIAL.print(char(card.get()));
|
|
|
|
if (-- _buflen == 0)
|
|
break;
|
|
// First skip the current command ID and iterate up to the end of the string.
|
|
for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
|
|
// Second, skip the end of string null character and iterate until a nonzero command ID is found.
|
|
for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
|
|
// If the end of the buffer was empty,
|
|
if (_bufindr == sizeof(cmdbuffer)) {
|
|
// skip to the start and find the nonzero command.
|
|
for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
saved_feedrate2 = feedrate; //save feedrate
|
|
#else
|
|
// Try to deduce the feedrate from the first block of the planner.
|
|
// Speed is in mm/min.
|
|
saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
|
|
#endif
|
|
|
|
planner_abort_hard(); //abort printing
|
|
memcpy(saved_pos, current_position, sizeof(saved_pos));
|
|
saved_active_extruder = active_extruder; //save active_extruder
|
|
|
|
saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
|
|
|
|
cmdqueue_reset(); //empty cmdqueue
|
|
card.sdprinting = false;
|
|
// card.closefile();
|
|
saved_printing = true;
|
|
// We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
|
|
st_reset_timer();
|
|
sei();
|
|
if ((z_move != 0) || (e_move != 0)) { // extruder or z move
|
|
#if 1
|
|
// Rather than calling plan_buffer_line directly, push the move into the command queue,
|
|
char buf[48];
|
|
strcpy_P(buf, PSTR("G1 Z"));
|
|
dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
|
|
strcat_P(buf, PSTR(" E"));
|
|
// Relative extrusion
|
|
dtostrf(e_move, 6, 3, buf + strlen(buf));
|
|
strcat_P(buf, PSTR(" F"));
|
|
dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
|
|
// At this point the command queue is empty.
|
|
enquecommand(buf, false);
|
|
// If this call is invoked from the main Arduino loop() function, let the caller know that the command
|
|
// in the command queue is not the original command, but a new one, so it should not be removed from the queue.
|
|
repeatcommand_front();
|
|
#else
|
|
plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
|
|
st_synchronize(); //wait moving
|
|
memcpy(current_position, saved_pos, sizeof(saved_pos));
|
|
memcpy(destination, current_position, sizeof(destination));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void restore_print_from_ram_and_continue(float e_move)
|
|
{
|
|
if (!saved_printing) return;
|
|
// for (int axis = X_AXIS; axis <= E_AXIS; axis++)
|
|
// current_position[axis] = st_get_position_mm(axis);
|
|
active_extruder = saved_active_extruder; //restore active_extruder
|
|
feedrate = saved_feedrate2; //restore feedrate
|
|
float e = saved_pos[E_AXIS] - e_move;
|
|
plan_set_e_position(e);
|
|
plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
|
|
st_synchronize();
|
|
memcpy(current_position, saved_pos, sizeof(saved_pos));
|
|
memcpy(destination, current_position, sizeof(destination));
|
|
card.setIndex(saved_sdpos);
|
|
sdpos_atomic = saved_sdpos;
|
|
card.sdprinting = true;
|
|
saved_printing = false;
|
|
printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
|
|
}
|
|
|
|
void print_world_coordinates()
|
|
{
|
|
SERIAL_ECHOPGM("world coordinates: (");
|
|
MYSERIAL.print(current_position[X_AXIS], 3);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(current_position[Y_AXIS], 3);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(current_position[Z_AXIS], 3);
|
|
SERIAL_ECHOLNPGM(")");
|
|
}
|
|
|
|
void print_physical_coordinates()
|
|
{
|
|
SERIAL_ECHOPGM("physical coordinates: (");
|
|
MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
|
|
SERIAL_ECHOPGM(", ");
|
|
MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
|
|
SERIAL_ECHOLNPGM(")");
|
|
}
|
|
|
|
void print_mesh_bed_leveling_table()
|
|
{
|
|
SERIAL_ECHOPGM("mesh bed leveling: ");
|
|
for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
|
|
for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
|
|
MYSERIAL.print(mbl.z_values[y][x], 3);
|
|
SERIAL_ECHOPGM(" ");
|
|
}
|
|
SERIAL_ECHOLNPGM("");
|
|
}
|
|
|
|
|
|
#define FIL_LOAD_LENGTH 60
|
|
|
|
void extr_unload2() { //unloads filament
|
|
// float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
|
|
// float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
|
|
// int8_t SilentMode;
|
|
uint8_t snmm_extruder = 0;
|
|
if (degHotend0() > EXTRUDE_MINTEMP) {
|
|
lcd_implementation_clear();
|
|
lcd_display_message_fullscreen_P(PSTR(""));
|
|
max_feedrate[E_AXIS] = 50;
|
|
lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
|
|
// lcd.print(" ");
|
|
// lcd.print(snmm_extruder + 1);
|
|
lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
|
|
if (current_position[Z_AXIS] < 15) {
|
|
current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
|
|
}
|
|
|
|
current_position[E_AXIS] += 10; //extrusion
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
|
|
// digipot_current(2, E_MOTOR_HIGH_CURRENT);
|
|
if (current_temperature[0] < 230) { //PLA & all other filaments
|
|
current_position[E_AXIS] += 5.4;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
|
|
current_position[E_AXIS] += 3.2;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
current_position[E_AXIS] += 3;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
|
|
}
|
|
else { //ABS
|
|
current_position[E_AXIS] += 3.1;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
|
|
current_position[E_AXIS] += 3.1;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
|
|
current_position[E_AXIS] += 4;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
/*current_position[X_AXIS] += 23; //delay
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
|
|
current_position[X_AXIS] -= 23; //delay
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
|
|
delay_keep_alive(4700);
|
|
}
|
|
|
|
max_feedrate[E_AXIS] = 80;
|
|
current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
|
|
current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
|
|
st_synchronize();
|
|
//digipot_init();
|
|
// if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
|
|
// else digipot_current(2, tmp_motor_loud[2]);
|
|
lcd_update_enable(true);
|
|
// lcd_return_to_status();
|
|
max_feedrate[E_AXIS] = 50;
|
|
}
|
|
else {
|
|
|
|
lcd_implementation_clear();
|
|
lcd.setCursor(0, 0);
|
|
lcd_printPGM(MSG_ERROR);
|
|
lcd.setCursor(0, 2);
|
|
lcd_printPGM(MSG_PREHEAT_NOZZLE);
|
|
|
|
delay(2000);
|
|
lcd_implementation_clear();
|
|
}
|
|
// lcd_return_to_status();
|
|
}
|