bab756699f
To maintain an accurate step count (which is required for correct position recovery), any call to plan_set_position&co needs to be done synchronously and from a halted state. However, G92 E* is currently special-cased to skip the sync (likely to avoid the associated performance cost), causing an incorrect E step count and position to be set. This breaks absolute position recovery, miscalculation of the LA factor and possibly other weird issues. We rewrite the handling of G92 to always sync but still special-case the frequent "G92 E0" for performance by using a free bit in the block flags. To avoid a sync, we relay the request for reset first to the planner which clears its internal state and then relays the request to the final stepper isr.
277 lines
11 KiB
C
277 lines
11 KiB
C
/*
|
|
planner.h - buffers movement commands and manages the acceleration profile plan
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// This module is to be considered a sub-module of stepper.c. Please don't include
|
|
// this file from any other module.
|
|
|
|
#ifndef planner_h
|
|
#define planner_h
|
|
|
|
#include "Marlin.h"
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
#include "vector_3.h"
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
enum BlockFlag {
|
|
// Planner flag to recalculate trapezoids on entry junction.
|
|
// This flag has an optimization purpose only.
|
|
BLOCK_FLAG_RECALCULATE = 1,
|
|
// Planner flag for nominal speed always reached. That means, the segment is long enough, that the nominal speed
|
|
// may be reached if accelerating from a safe speed (in the regard of jerking from zero speed).
|
|
BLOCK_FLAG_NOMINAL_LENGTH = 2,
|
|
// If set, the machine will start from a halt at the start of this block,
|
|
// respecting the maximum allowed jerk.
|
|
BLOCK_FLAG_START_FROM_FULL_HALT = 4,
|
|
// If set, the stepper interrupt expects, that the number of steps to tick will be lower
|
|
// than 32767, therefore the DDA algorithm may run with 16bit resolution only.
|
|
// In addition, the stepper routine will not do any end stop checking for higher performance.
|
|
BLOCK_FLAG_DDA_LOWRES = 8,
|
|
// Block starts with Zeroed E counter
|
|
BLOCK_FLAG_E_RESET = 16,
|
|
};
|
|
|
|
union dda_isteps_t
|
|
{
|
|
int32_t wide;
|
|
struct {
|
|
int16_t lo;
|
|
int16_t hi;
|
|
};
|
|
};
|
|
|
|
union dda_usteps_t
|
|
{
|
|
uint32_t wide;
|
|
struct {
|
|
uint16_t lo;
|
|
uint16_t hi;
|
|
};
|
|
};
|
|
|
|
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
|
|
// the source g-code and may never actually be reached if acceleration management is active.
|
|
typedef struct {
|
|
// Fields used by the bresenham algorithm for tracing the line
|
|
// steps_x.y,z, step_event_count, acceleration_rate, direction_bits and active_extruder are set by plan_buffer_line().
|
|
dda_isteps_t steps_x, steps_y, steps_z, steps_e; // Step count along each axis
|
|
dda_usteps_t step_event_count; // The number of step events required to complete this block
|
|
long acceleration_rate; // The acceleration rate used for acceleration calculation
|
|
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
|
|
unsigned char active_extruder; // Selects the active extruder
|
|
// accelerate_until and decelerate_after are set by calculate_trapezoid_for_block() and they need to be synchronized with the stepper interrupt controller.
|
|
long accelerate_until; // The index of the step event on which to stop acceleration
|
|
long decelerate_after; // The index of the step event on which to start decelerating
|
|
|
|
// Fields used by the motion planner to manage acceleration
|
|
// float speed_x, speed_y, speed_z, speed_e; // Nominal mm/sec for each axis
|
|
// The nominal speed for this block in mm/sec.
|
|
// This speed may or may not be reached due to the jerk and acceleration limits.
|
|
float nominal_speed;
|
|
// Entry speed at previous-current junction in mm/sec, respecting the acceleration and jerk limits.
|
|
// The entry speed limit of the current block equals the exit speed of the preceding block.
|
|
float entry_speed;
|
|
// Maximum allowable junction entry speed in mm/sec. This value is also a maximum exit speed of the previous block.
|
|
float max_entry_speed;
|
|
// The total travel of this block in mm
|
|
float millimeters;
|
|
// acceleration mm/sec^2
|
|
float acceleration;
|
|
|
|
// Bit flags defined by the BlockFlag enum.
|
|
uint8_t flag;
|
|
|
|
// Settings for the trapezoid generator (runs inside an interrupt handler).
|
|
// Changing the following values in the planner needs to be synchronized with the interrupt handler by disabling the interrupts.
|
|
//FIXME nominal_rate, initial_rate and final_rate are limited to uint16_t by MultiU24X24toH16 in the stepper interrupt anyway!
|
|
unsigned long nominal_rate; // The nominal step rate for this block in step_events/sec
|
|
unsigned long initial_rate; // The jerk-adjusted step rate at start of block
|
|
unsigned long final_rate; // The minimal rate at exit
|
|
unsigned long acceleration_st; // acceleration steps/sec^2
|
|
//FIXME does it have to be unsigned long? Probably uint8_t would be just fine.
|
|
unsigned long fan_speed;
|
|
volatile char busy;
|
|
|
|
|
|
// Pre-calculated division for the calculate_trapezoid_for_block() routine to run faster.
|
|
float speed_factor;
|
|
|
|
#ifdef LIN_ADVANCE
|
|
bool use_advance_lead; // Whether the current block uses LA
|
|
uint16_t advance_rate, // Step-rate for extruder speed
|
|
max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!)
|
|
final_adv_steps; // advance steps due to exit speed
|
|
uint8_t advance_step_loops; // Number of stepper ticks for each advance isr
|
|
float adv_comp; // Precomputed E compression factor
|
|
#endif
|
|
|
|
// Save/recovery state data
|
|
float gcode_target[NUM_AXIS]; // Target (abs mm) of the original Gcode instruction
|
|
uint16_t gcode_feedrate; // Default and/or move feedrate
|
|
uint16_t sdlen; // Length of the Gcode instruction
|
|
} block_t;
|
|
|
|
#ifdef LIN_ADVANCE
|
|
extern float extruder_advance_K; // Linear-advance K factor
|
|
#endif
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
// this holds the required transform to compensate for bed level
|
|
extern matrix_3x3 plan_bed_level_matrix;
|
|
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
// Initialize the motion plan subsystem
|
|
void plan_init();
|
|
|
|
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
|
|
// millimaters. Feed rate specifies the speed of the motion.
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
|
|
|
|
// Get the position applying the bed level matrix if enabled
|
|
vector_3 plan_get_position();
|
|
#else
|
|
|
|
/// Extracting common call of
|
|
/// plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], ...
|
|
/// saves almost 5KB.
|
|
/// The performance penalty is negligible, since these planned lines are usually maintenance moves with the extruder.
|
|
void plan_buffer_line_curposXYZE(float feed_rate, uint8_t extruder);
|
|
|
|
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, uint8_t extruder, const float* gcode_target = NULL);
|
|
//void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
// Set position. Used for G92 instructions.
|
|
//#ifdef ENABLE_AUTO_BED_LEVELING
|
|
void plan_set_position(float x, float y, float z, const float &e);
|
|
//#else
|
|
//void plan_set_position(const float &x, const float &y, const float &z, const float &e);
|
|
//#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
void plan_set_z_position(const float &z);
|
|
void plan_set_e_position(const float &e);
|
|
|
|
// Reset the E position to zero at the start of the next segment
|
|
void plan_reset_next_e();
|
|
|
|
extern bool e_active();
|
|
|
|
void check_axes_activity();
|
|
|
|
// Use M203 to override by software
|
|
extern float* max_feedrate;
|
|
|
|
|
|
// Use M201 to override by software
|
|
extern unsigned long* max_acceleration_units_per_sq_second;
|
|
extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
|
|
|
extern long position[NUM_AXIS];
|
|
extern uint8_t maxlimit_status;
|
|
|
|
|
|
#ifdef AUTOTEMP
|
|
extern bool autotemp_enabled;
|
|
extern float autotemp_max;
|
|
extern float autotemp_min;
|
|
extern float autotemp_factor;
|
|
#endif
|
|
|
|
|
|
|
|
|
|
extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
|
|
// Index of the next block to be pushed into the planner queue.
|
|
extern volatile unsigned char block_buffer_head;
|
|
// Index of the first block in the planner queue.
|
|
// This is the block, which is being currently processed by the stepper routine,
|
|
// or which is first to be processed by the stepper routine.
|
|
extern volatile unsigned char block_buffer_tail;
|
|
// Called when the current block is no longer needed. Discards the block and makes the memory
|
|
// available for new blocks.
|
|
FORCE_INLINE void plan_discard_current_block()
|
|
{
|
|
if (block_buffer_head != block_buffer_tail) {
|
|
block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
|
|
}
|
|
}
|
|
|
|
// Gets the current block. This is the block to be exectuted by the stepper routine.
|
|
// Mark this block as busy, so its velocities and acceperations will be no more recalculated
|
|
// by the planner routine.
|
|
// Returns NULL if buffer empty
|
|
FORCE_INLINE block_t *plan_get_current_block()
|
|
{
|
|
if (block_buffer_head == block_buffer_tail) {
|
|
return(NULL);
|
|
}
|
|
block_t *block = &block_buffer[block_buffer_tail];
|
|
block->busy = true;
|
|
return(block);
|
|
}
|
|
|
|
// Returns true if the buffer has a queued block, false otherwise
|
|
FORCE_INLINE bool blocks_queued() {
|
|
return (block_buffer_head != block_buffer_tail);
|
|
}
|
|
|
|
//return the nr of buffered moves
|
|
FORCE_INLINE uint8_t moves_planned() {
|
|
return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
|
|
}
|
|
|
|
FORCE_INLINE bool planner_queue_full() {
|
|
unsigned char next_block_index = block_buffer_head;
|
|
if (++ next_block_index == BLOCK_BUFFER_SIZE)
|
|
next_block_index = 0;
|
|
return block_buffer_tail == next_block_index;
|
|
}
|
|
|
|
// Abort the stepper routine, clean up the block queue,
|
|
// wait for the steppers to stop,
|
|
// update planner's current position and the current_position of the front end.
|
|
extern void planner_abort_hard();
|
|
extern bool waiting_inside_plan_buffer_line_print_aborted;
|
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
void set_extrude_min_temp(float temp);
|
|
#endif
|
|
|
|
void reset_acceleration_rates();
|
|
#endif
|
|
|
|
void update_mode_profile();
|
|
|
|
unsigned char number_of_blocks();
|
|
|
|
// #define PLANNER_DIAGNOSTICS
|
|
#ifdef PLANNER_DIAGNOSTICS
|
|
// Diagnostic functions to display planner buffer underflow on the display.
|
|
extern uint8_t planner_queue_min();
|
|
// Diagnostic function: Reset the minimum planner segments.
|
|
extern void planner_queue_min_reset();
|
|
#endif /* PLANNER_DIAGNOSTICS */
|
|
|
|
extern void planner_add_sd_length(uint16_t sdlen);
|
|
|
|
extern uint16_t planner_calc_sd_length();
|