Prusa-Firmware/Firmware/lcd.cpp

1049 lines
23 KiB
C++

//menu.cpp
#include "lcd.h"
#include <stdio.h>
#include <stdarg.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include "Timer.h"
#include "Configuration.h"
#include "pins.h"
#include <binary.h>
//#include <Arduino.h>
#include "Marlin.h"
#include "fastio.h"
//-//
#include "sound.h"
// commands
#define LCD_CLEARDISPLAY 0x01
#define LCD_RETURNHOME 0x02
#define LCD_ENTRYMODESET 0x04
#define LCD_DISPLAYCONTROL 0x08
#define LCD_CURSORSHIFT 0x10
#define LCD_FUNCTIONSET 0x20
#define LCD_SETCGRAMADDR 0x40
#define LCD_SETDDRAMADDR 0x80
// flags for display entry mode
#define LCD_ENTRYRIGHT 0x00
#define LCD_ENTRYLEFT 0x02
#define LCD_ENTRYSHIFTINCREMENT 0x01
#define LCD_ENTRYSHIFTDECREMENT 0x00
// flags for display on/off control
#define LCD_DISPLAYON 0x04
#define LCD_DISPLAYOFF 0x00
#define LCD_CURSORON 0x02
#define LCD_CURSOROFF 0x00
#define LCD_BLINKON 0x01
#define LCD_BLINKOFF 0x00
// flags for display/cursor shift
#define LCD_DISPLAYMOVE 0x08
#define LCD_CURSORMOVE 0x00
#define LCD_MOVERIGHT 0x04
#define LCD_MOVELEFT 0x00
// flags for function set
#define LCD_8BITMODE 0x10
#define LCD_4BITMODE 0x00
#define LCD_2LINE 0x08
#define LCD_1LINE 0x00
#define LCD_5x10DOTS 0x04
#define LCD_5x8DOTS 0x00
FILE _lcdout; // = {0}; Global variable is always zero initialized, no need to explicitly state that.
uint8_t lcd_rs_pin; // LOW: command. HIGH: character.
uint8_t lcd_rw_pin; // LOW: write to LCD. HIGH: read from LCD.
uint8_t lcd_enable_pin; // activated by a HIGH pulse.
uint8_t lcd_data_pins[8];
uint8_t lcd_displayfunction;
uint8_t lcd_displaycontrol;
uint8_t lcd_displaymode;
uint8_t lcd_numlines;
uint8_t lcd_currline;
uint8_t lcd_escape[8];
void lcd_pulseEnable(void)
{
digitalWrite(lcd_enable_pin, LOW);
delayMicroseconds(1);
digitalWrite(lcd_enable_pin, HIGH);
delayMicroseconds(1); // enable pulse must be >450ns
digitalWrite(lcd_enable_pin, LOW);
delayMicroseconds(100); // commands need > 37us to settle
}
void lcd_write4bits(uint8_t value)
{
for (int i = 0; i < 4; i++)
{
pinMode(lcd_data_pins[i], OUTPUT);
digitalWrite(lcd_data_pins[i], (value >> i) & 0x01);
}
lcd_pulseEnable();
}
void lcd_write8bits(uint8_t value)
{
for (int i = 0; i < 8; i++)
{
pinMode(lcd_data_pins[i], OUTPUT);
digitalWrite(lcd_data_pins[i], (value >> i) & 0x01);
}
lcd_pulseEnable();
}
// write either command or data, with automatic 4/8-bit selection
void lcd_send(uint8_t value, uint8_t mode)
{
digitalWrite(lcd_rs_pin, mode);
// if there is a RW pin indicated, set it low to Write
if (lcd_rw_pin != 255) digitalWrite(lcd_rw_pin, LOW);
if (lcd_displayfunction & LCD_8BITMODE)
lcd_write8bits(value);
else
{
lcd_write4bits(value>>4);
lcd_write4bits(value);
}
}
void lcd_command(uint8_t value)
{
lcd_send(value, LOW);
}
void lcd_clear(void);
void lcd_home(void);
void lcd_no_display(void);
void lcd_display(void);
void lcd_no_cursor(void);
void lcd_cursor(void);
void lcd_no_blink(void);
void lcd_blink(void);
void lcd_scrollDisplayLeft(void);
void lcd_scrollDisplayRight(void);
void lcd_leftToRight(void);
void lcd_rightToLeft(void);
void lcd_autoscroll(void);
void lcd_no_autoscroll(void);
void lcd_set_cursor(uint8_t col, uint8_t row);
void lcd_createChar_P(uint8_t location, const uint8_t* charmap);
uint8_t lcd_escape_write(uint8_t chr);
uint8_t lcd_write(uint8_t value)
{
if (value == '\n')
{
if (lcd_currline > 3) lcd_currline = -1;
lcd_set_cursor(0, lcd_currline + 1); // LF
return 1;
}
if (lcd_escape[0] || (value == 0x1b))
return lcd_escape_write(value);
lcd_send(value, HIGH);
return 1; // assume sucess
}
static void lcd_begin(uint8_t lines, uint8_t dotsize, uint8_t clear)
{
if (lines > 1) lcd_displayfunction |= LCD_2LINE;
lcd_numlines = lines;
lcd_currline = 0;
// for some 1 line displays you can select a 10 pixel high font
if ((dotsize != 0) && (lines == 1)) lcd_displayfunction |= LCD_5x10DOTS;
// SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!
// according to datasheet, we need at least 40ms after power rises above 2.7V
// before sending commands. Arduino can turn on way befer 4.5V so we'll wait 50
_delay_us(50000);
// Now we pull both RS and R/W low to begin commands
digitalWrite(lcd_rs_pin, LOW);
digitalWrite(lcd_enable_pin, LOW);
if (lcd_rw_pin != 255)
digitalWrite(lcd_rw_pin, LOW);
//put the LCD into 4 bit or 8 bit mode
if (!(lcd_displayfunction & LCD_8BITMODE))
{
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
// we start in 8bit mode, try to set 4 bit mode
lcd_write4bits(0x03);
_delay_us(4500); // wait min 4.1ms
// second try
lcd_write4bits(0x03);
_delay_us(4500); // wait min 4.1ms
// third go!
lcd_write4bits(0x03);
_delay_us(150);
// finally, set to 4-bit interface
lcd_write4bits(0x02);
}
else
{
// this is according to the hitachi HD44780 datasheet
// page 45 figure 23
// Send function set command sequence
lcd_command(LCD_FUNCTIONSET | lcd_displayfunction);
_delay_us(4500); // wait more than 4.1ms
// second try
lcd_command(LCD_FUNCTIONSET | lcd_displayfunction);
_delay_us(150);
// third go
lcd_command(LCD_FUNCTIONSET | lcd_displayfunction);
}
// finally, set # lines, font size, etc.
lcd_command(LCD_FUNCTIONSET | lcd_displayfunction);
_delay_us(60);
// turn the display on with no cursor or blinking default
lcd_displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF;
lcd_display();
_delay_us(60);
// clear it off
if (clear) lcd_clear();
_delay_us(3000);
// Initialize to default text direction (for romance languages)
lcd_displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT;
// set the entry mode
lcd_command(LCD_ENTRYMODESET | lcd_displaymode);
_delay_us(60);
lcd_escape[0] = 0;
}
int lcd_putchar(char c, FILE *stream)
{
lcd_write(c);
return 0;
}
void lcd_init(void)
{
uint8_t fourbitmode = 1;
lcd_rs_pin = LCD_PINS_RS;
lcd_rw_pin = 255;
lcd_enable_pin = LCD_PINS_ENABLE;
lcd_data_pins[0] = LCD_PINS_D4;
lcd_data_pins[1] = LCD_PINS_D5;
lcd_data_pins[2] = LCD_PINS_D6;
lcd_data_pins[3] = LCD_PINS_D7;
lcd_data_pins[4] = 0;
lcd_data_pins[5] = 0;
lcd_data_pins[6] = 0;
lcd_data_pins[7] = 0;
pinMode(lcd_rs_pin, OUTPUT);
// we can save 1 pin by not using RW. Indicate by passing 255 instead of pin#
if (lcd_rw_pin != 255) pinMode(lcd_rw_pin, OUTPUT);
pinMode(lcd_enable_pin, OUTPUT);
if (fourbitmode) lcd_displayfunction = LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS;
else lcd_displayfunction = LCD_8BITMODE | LCD_1LINE | LCD_5x8DOTS;
lcd_begin(LCD_HEIGHT, LCD_5x8DOTS, 1);
//lcd_clear();
fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
}
void lcd_refresh(void)
{
lcd_begin(LCD_HEIGHT, LCD_5x8DOTS, 1);
lcd_set_custom_characters();
}
void lcd_refresh_noclear(void)
{
lcd_begin(LCD_HEIGHT, LCD_5x8DOTS, 0);
lcd_set_custom_characters();
}
void lcd_clear(void)
{
lcd_command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
_delay_us(1600); // this command takes a long time
}
void lcd_home(void)
{
lcd_command(LCD_RETURNHOME); // set cursor position to zero
_delay_us(1600); // this command takes a long time!
}
// Turn the display on/off (quickly)
void lcd_no_display(void)
{
lcd_displaycontrol &= ~LCD_DISPLAYON;
lcd_command(LCD_DISPLAYCONTROL | lcd_displaycontrol);
}
void lcd_display(void)
{
lcd_displaycontrol |= LCD_DISPLAYON;
lcd_command(LCD_DISPLAYCONTROL | lcd_displaycontrol);
}
// Turns the underline cursor on/off
void lcd_no_cursor(void)
{
lcd_displaycontrol &= ~LCD_CURSORON;
lcd_command(LCD_DISPLAYCONTROL | lcd_displaycontrol);
}
void lcd_cursor(void)
{
lcd_displaycontrol |= LCD_CURSORON;
lcd_command(LCD_DISPLAYCONTROL | lcd_displaycontrol);
}
// Turn on and off the blinking cursor
void lcd_no_blink(void)
{
lcd_displaycontrol &= ~LCD_BLINKON;
lcd_command(LCD_DISPLAYCONTROL | lcd_displaycontrol);
}
void lcd_blink(void)
{
lcd_displaycontrol |= LCD_BLINKON;
lcd_command(LCD_DISPLAYCONTROL | lcd_displaycontrol);
}
// These commands scroll the display without changing the RAM
void lcd_scrollDisplayLeft(void)
{
lcd_command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVELEFT);
}
void lcd_scrollDisplayRight(void)
{
lcd_command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVERIGHT);
}
// This is for text that flows Left to Right
void lcd_leftToRight(void)
{
lcd_displaymode |= LCD_ENTRYLEFT;
lcd_command(LCD_ENTRYMODESET | lcd_displaymode);
}
// This is for text that flows Right to Left
void lcd_rightToLeft(void)
{
lcd_displaymode &= ~LCD_ENTRYLEFT;
lcd_command(LCD_ENTRYMODESET | lcd_displaymode);
}
// This will 'right justify' text from the cursor
void lcd_autoscroll(void)
{
lcd_displaymode |= LCD_ENTRYSHIFTINCREMENT;
lcd_command(LCD_ENTRYMODESET | lcd_displaymode);
}
// This will 'left justify' text from the cursor
void lcd_no_autoscroll(void)
{
lcd_displaymode &= ~LCD_ENTRYSHIFTINCREMENT;
lcd_command(LCD_ENTRYMODESET | lcd_displaymode);
}
void lcd_set_cursor(uint8_t col, uint8_t row)
{
int row_offsets[] = { 0x00, 0x40, 0x14, 0x54 };
if ( row >= lcd_numlines )
row = lcd_numlines-1; // we count rows starting w/0
lcd_currline = row;
lcd_command(LCD_SETDDRAMADDR | (col + row_offsets[row]));
}
// Allows us to fill the first 8 CGRAM locations
// with custom characters
void lcd_createChar_P(uint8_t location, const uint8_t* charmap)
{
location &= 0x7; // we only have 8 locations 0-7
lcd_command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
lcd_send(pgm_read_byte(&charmap[i]), HIGH);
}
//Supported VT100 escape codes:
//EraseScreen "\x1b[2J"
//CursorHome "\x1b[%d;%dH"
//CursorShow "\x1b[?25h"
//CursorHide "\x1b[?25l"
uint8_t lcd_escape_write(uint8_t chr)
{
#define escape_cnt (lcd_escape[0]) //escape character counter
#define is_num_msk (lcd_escape[1]) //numeric character bit mask
#define chr_is_num (is_num_msk & 0x01) //current character is numeric
#define e_2_is_num (is_num_msk & 0x04) //escape char 2 is numeric
#define e_3_is_num (is_num_msk & 0x08) //...
#define e_4_is_num (is_num_msk & 0x10)
#define e_5_is_num (is_num_msk & 0x20)
#define e_6_is_num (is_num_msk & 0x40)
#define e_7_is_num (is_num_msk & 0x80)
#define e2_num (lcd_escape[2] - '0') //number from character 2
#define e3_num (lcd_escape[3] - '0') //number from character 3
#define e23_num (10*e2_num+e3_num) //number from characters 2 and 3
#define e4_num (lcd_escape[4] - '0') //number from character 4
#define e5_num (lcd_escape[5] - '0') //number from character 5
#define e45_num (10*e4_num+e5_num) //number from characters 4 and 5
#define e6_num (lcd_escape[6] - '0') //number from character 6
#define e56_num (10*e5_num+e6_num) //number from characters 5 and 6
if (escape_cnt > 1) // escape length > 1 = "\x1b["
{
lcd_escape[escape_cnt] = chr; // store current char
if ((chr >= '0') && (chr <= '9')) // char is numeric
is_num_msk |= (1 | (1 << escape_cnt)); //set mask
else
is_num_msk &= ~1; //clear mask
}
switch (escape_cnt++)
{
case 0:
if (chr == 0x1b) return 1; // escape = "\x1b"
break;
case 1:
is_num_msk = 0x00; // reset 'is number' bit mask
if (chr == '[') return 1; // escape = "\x1b["
break;
case 2:
switch (chr)
{
case '2': return 1; // escape = "\x1b[2"
case '?': return 1; // escape = "\x1b[?"
default:
if (chr_is_num) return 1; // escape = "\x1b[%1d"
}
break;
case 3:
switch (lcd_escape[2])
{
case '?': // escape = "\x1b[?"
if (chr == '2') return 1; // escape = "\x1b[?2"
break;
case '2':
if (chr == 'J') // escape = "\x1b[2J"
{ lcd_clear(); lcd_currline = 0; break; } // EraseScreen
default:
if (e_2_is_num && // escape = "\x1b[%1d"
((chr == ';') || // escape = "\x1b[%1d;"
chr_is_num)) // escape = "\x1b[%2d"
return 1;
}
break;
case 4:
switch (lcd_escape[2])
{
case '?': // "\x1b[?"
if ((lcd_escape[3] == '2') && (chr == '5')) return 1; // escape = "\x1b[?25"
break;
default:
if (e_2_is_num) // escape = "\x1b[%1d"
{
if ((lcd_escape[3] == ';') && chr_is_num) return 1; // escape = "\x1b[%1d;%1d"
else if (e_3_is_num && (chr == ';')) return 1; // escape = "\x1b[%2d;"
}
}
break;
case 5:
switch (lcd_escape[2])
{
case '?':
if ((lcd_escape[3] == '2') && (lcd_escape[4] == '5')) // escape = "\x1b[?25"
switch (chr)
{
case 'h': // escape = "\x1b[?25h"
lcd_cursor(); // CursorShow
break;
case 'l': // escape = "\x1b[?25l"
lcd_no_cursor(); // CursorHide
break;
}
break;
default:
if (e_2_is_num) // escape = "\x1b[%1d"
{
if ((lcd_escape[3] == ';') && e_4_is_num) // escape = "\x1b%1d;%1dH"
{
if (chr == 'H') // escape = "\x1b%1d;%1dH"
lcd_set_cursor(e4_num, e2_num); // CursorHome
else if (chr_is_num)
return 1; // escape = "\x1b%1d;%2d"
}
else if (e_3_is_num && (lcd_escape[4] == ';') && chr_is_num)
return 1; // escape = "\x1b%2d;%1d"
}
}
break;
case 6:
if (e_2_is_num) // escape = "\x1b[%1d"
{
if ((lcd_escape[3] == ';') && e_4_is_num && e_5_is_num && (chr == 'H')) // escape = "\x1b%1d;%2dH"
lcd_set_cursor(e45_num, e2_num); // CursorHome
else if (e_3_is_num && (lcd_escape[4] == ';') && e_5_is_num) // escape = "\x1b%2d;%1d"
{
if (chr == 'H') // escape = "\x1b%2d;%1dH"
lcd_set_cursor(e5_num, e23_num); // CursorHome
else if (chr_is_num) // "\x1b%2d;%2d"
return 1;
}
}
break;
case 7:
if (e_2_is_num && e_3_is_num && (lcd_escape[4] == ';')) // "\x1b[%2d;"
if (e_5_is_num && e_6_is_num && (chr == 'H')) // "\x1b[%2d;%2dH"
lcd_set_cursor(e56_num, e23_num); // CursorHome
break;
}
escape_cnt = 0; // reset escape
return 1; // assume sucess
}
int lcd_putc(int c)
{
return fputc(c, lcdout);
}
int lcd_puts_P(const char* str)
{
return fputs_P(str, lcdout);
}
int lcd_puts_at_P(uint8_t c, uint8_t r, const char* str)
{
lcd_set_cursor(c, r);
return fputs_P(str, lcdout);
}
int lcd_printf_P(const char* format, ...)
{
va_list args;
va_start(args, format);
int ret = vfprintf_P(lcdout, format, args);
va_end(args);
return ret;
}
void lcd_print(const char* s)
{
while (*s) lcd_write(*(s++));
}
void lcd_print(char c, int base)
{
lcd_print((long) c, base);
}
void lcd_print(unsigned char b, int base)
{
lcd_print((unsigned long) b, base);
}
void lcd_print(int n, int base)
{
lcd_print((long) n, base);
}
void lcd_print(unsigned int n, int base)
{
lcd_print((unsigned long) n, base);
}
void lcd_print(long n, int base)
{
if (base == 0)
lcd_write(n);
else if (base == 10)
{
if (n < 0)
{
lcd_print('-');
n = -n;
}
lcd_printNumber(n, 10);
}
else
lcd_printNumber(n, base);
}
void lcd_print(unsigned long n, int base)
{
if (base == 0)
lcd_write(n);
else
lcd_printNumber(n, base);
}
void lcd_print(double n, int digits)
{
lcd_printFloat(n, digits);
}
void lcd_printNumber(unsigned long n, uint8_t base)
{
unsigned char buf[8 * sizeof(long)]; // Assumes 8-bit chars.
unsigned long i = 0;
if (n == 0)
{
lcd_print('0');
return;
}
while (n > 0)
{
buf[i++] = n % base;
n /= base;
}
for (; i > 0; i--)
lcd_print((char) (buf[i - 1] < 10 ? '0' + buf[i - 1] : 'A' + buf[i - 1] - 10));
}
void lcd_printFloat(double number, uint8_t digits)
{
// Handle negative numbers
if (number < 0.0)
{
lcd_print('-');
number = -number;
}
// Round correctly so that print(1.999, 2) prints as "2.00"
double rounding = 0.5;
for (uint8_t i=0; i<digits; ++i)
rounding /= 10.0;
number += rounding;
// Extract the integer part of the number and print it
unsigned long int_part = (unsigned long)number;
double remainder = number - (double)int_part;
lcd_print(int_part);
// Print the decimal point, but only if there are digits beyond
if (digits > 0)
lcd_print('.');
// Extract digits from the remainder one at a time
while (digits-- > 0)
{
remainder *= 10.0;
int toPrint = int(remainder);
lcd_print(toPrint);
remainder -= toPrint;
}
}
uint8_t lcd_draw_update = 2;
int32_t lcd_encoder = 0;
uint8_t lcd_encoder_bits = 0;
int8_t lcd_encoder_diff = 0;
uint8_t lcd_buttons = 0;
uint8_t lcd_button_pressed = 0;
uint8_t lcd_update_enabled = 1;
uint32_t lcd_next_update_millis = 0;
uint8_t lcd_status_update_delay = 0;
uint8_t lcd_long_press_active = 0;
lcd_longpress_func_t lcd_longpress_func = 0;
lcd_charsetup_func_t lcd_charsetup_func = 0;
lcd_lcdupdate_func_t lcd_lcdupdate_func = 0;
static ShortTimer buttonBlanking;
ShortTimer longPressTimer;
LongTimer lcd_timeoutToStatus;
uint8_t lcd_clicked(void)
{
bool clicked = LCD_CLICKED;
if(clicked) lcd_button_pressed = 1;
return clicked;
}
void lcd_beeper_quick_feedback(void)
{
SET_OUTPUT(BEEPER);
//-//
Sound_MakeSound(e_SOUND_TYPE_ButtonEcho);
/*
for(int8_t i = 0; i < 10; i++)
{
WRITE(BEEPER,HIGH);
delayMicroseconds(100);
WRITE(BEEPER,LOW);
delayMicroseconds(100);
}
*/
}
void lcd_quick_feedback(void)
{
lcd_draw_update = 2;
lcd_button_pressed = false;
lcd_beeper_quick_feedback();
}
void lcd_update(uint8_t lcdDrawUpdateOverride)
{
if (lcd_draw_update < lcdDrawUpdateOverride)
lcd_draw_update = lcdDrawUpdateOverride;
if (!lcd_update_enabled)
return;
lcd_buttons_update();
if (lcd_lcdupdate_func)
lcd_lcdupdate_func();
}
void lcd_update_enable(uint8_t enabled)
{
if (lcd_update_enabled != enabled)
{
lcd_update_enabled = enabled;
if (enabled)
{ // Reset encoder position. This is equivalent to re-entering a menu.
lcd_encoder = 0;
lcd_encoder_diff = 0;
// Enabling the normal LCD update procedure.
// Reset the timeout interval.
lcd_timeoutToStatus.start();
// Force the keypad update now.
lcd_next_update_millis = millis() - 1;
// Full update.
lcd_clear();
if (lcd_charsetup_func)
lcd_charsetup_func();
lcd_update(2);
} else
{
// Clear the LCD always, or let it to the caller?
}
}
}
void lcd_buttons_update(void)
{
static bool _lock = false;
if (_lock) return;
_lock = true;
uint8_t newbutton = 0;
if (READ(BTN_EN1) == 0) newbutton |= EN_A;
if (READ(BTN_EN2) == 0) newbutton |= EN_B;
if (lcd_update_enabled)
{ //if we are in non-modal mode, long press can be used and short press triggers with button release
if (READ(BTN_ENC) == 0)
{ //button is pressed
lcd_timeoutToStatus.start();
if (!buttonBlanking.running() || buttonBlanking.expired(BUTTON_BLANKING_TIME)) {
buttonBlanking.start();
if ((lcd_button_pressed == 0) && (lcd_long_press_active == 0))
{
longPressTimer.start();
lcd_button_pressed = 1;
}
else
{
if (longPressTimer.expired(LONG_PRESS_TIME))
{
lcd_long_press_active = 1;
if (lcd_longpress_func)
lcd_longpress_func();
}
}
}
}
else
{ //button not pressed
if (lcd_button_pressed)
{ //button was released
buttonBlanking.start();
if (lcd_long_press_active == 0)
{ //button released before long press gets activated
newbutton |= EN_C;
}
//else if (menu_menu == lcd_move_z) lcd_quick_feedback();
//lcd_button_pressed is set back to false via lcd_quick_feedback function
}
else
lcd_long_press_active = 0;
}
}
else
{ //we are in modal mode
if (READ(BTN_ENC) == 0)
newbutton |= EN_C;
}
lcd_buttons = newbutton;
//manage encoder rotation
uint8_t enc = 0;
if (lcd_buttons & EN_A) enc |= B01;
if (lcd_buttons & EN_B) enc |= B10;
if (enc != lcd_encoder_bits)
{
switch (enc)
{
case encrot0:
if (lcd_encoder_bits == encrot3)
lcd_encoder_diff++;
else if (lcd_encoder_bits == encrot1)
lcd_encoder_diff--;
break;
case encrot1:
if (lcd_encoder_bits == encrot0)
lcd_encoder_diff++;
else if (lcd_encoder_bits == encrot2)
lcd_encoder_diff--;
break;
case encrot2:
if (lcd_encoder_bits == encrot1)
lcd_encoder_diff++;
else if (lcd_encoder_bits == encrot3)
lcd_encoder_diff--;
break;
case encrot3:
if (lcd_encoder_bits == encrot2)
lcd_encoder_diff++;
else if (lcd_encoder_bits == encrot0)
lcd_encoder_diff--;
break;
}
}
lcd_encoder_bits = enc;
_lock = false;
}
////////////////////////////////////////////////////////////////////////////////
// Custom character data
const uint8_t lcd_chardata_bedTemp[8] PROGMEM = {
B00000,
B11111,
B10101,
B10001,
B10101,
B11111,
B00000,
B00000}; //thanks Sonny Mounicou
const uint8_t lcd_chardata_degree[8] PROGMEM = {
B01100,
B10010,
B10010,
B01100,
B00000,
B00000,
B00000,
B00000};
const uint8_t lcd_chardata_thermometer[8] PROGMEM = {
B00100,
B01010,
B01010,
B01010,
B01010,
B10001,
B10001,
B01110};
const uint8_t lcd_chardata_uplevel[8] PROGMEM = {
B00100,
B01110,
B11111,
B00100,
B11100,
B00000,
B00000,
B00000}; //thanks joris
const uint8_t lcd_chardata_refresh[8] PROGMEM = {
B00000,
B00110,
B11001,
B11000,
B00011,
B10011,
B01100,
B00000}; //thanks joris
const uint8_t lcd_chardata_folder[8] PROGMEM = {
B00000,
B11100,
B11111,
B10001,
B10001,
B11111,
B00000,
B00000}; //thanks joris
/*const uint8_t lcd_chardata_feedrate[8] PROGMEM = {
B11100,
B10000,
B11000,
B10111,
B00101,
B00110,
B00101,
B00000};*/ //thanks Sonny Mounicou
/*const uint8_t lcd_chardata_feedrate[8] PROGMEM = {
B11100,
B10100,
B11000,
B10100,
B00000,
B00111,
B00010,
B00010};*/
/*const uint8_t lcd_chardata_feedrate[8] PROGMEM = {
B01100,
B10011,
B00000,
B01100,
B10011,
B00000,
B01100,
B10011};*/
const uint8_t lcd_chardata_feedrate[8] PROGMEM = {
B00000,
B00100,
B10010,
B01001,
B10010,
B00100,
B00000,
B00000};
const uint8_t lcd_chardata_clock[8] PROGMEM = {
B00000,
B01110,
B10011,
B10101,
B10001,
B01110,
B00000,
B00000}; //thanks Sonny Mounicou
const uint8_t lcd_chardata_arrup[8] PROGMEM = {
B00100,
B01110,
B11111,
B00000,
B00000,
B00000,
B00000,
B00000};
const uint8_t lcd_chardata_arrdown[8] PROGMEM = {
B00000,
B00000,
B00000,
B00000,
B00000,
B10001,
B01010,
B00100};
void lcd_set_custom_characters(void)
{
lcd_createChar_P(LCD_STR_BEDTEMP[0], lcd_chardata_bedTemp);
lcd_createChar_P(LCD_STR_DEGREE[0], lcd_chardata_degree);
lcd_createChar_P(LCD_STR_THERMOMETER[0], lcd_chardata_thermometer);
lcd_createChar_P(LCD_STR_UPLEVEL[0], lcd_chardata_uplevel);
lcd_createChar_P(LCD_STR_REFRESH[0], lcd_chardata_refresh);
lcd_createChar_P(LCD_STR_FOLDER[0], lcd_chardata_folder);
lcd_createChar_P(LCD_STR_FEEDRATE[0], lcd_chardata_feedrate);
lcd_createChar_P(LCD_STR_CLOCK[0], lcd_chardata_clock);
//lcd_createChar_P(LCD_STR_ARROW_UP[0], lcd_chardata_arrup);
//lcd_createChar_P(LCD_STR_ARROW_DOWN[0], lcd_chardata_arrdown);
}
void lcd_set_custom_characters_arrows(void)
{
lcd_createChar_P(1, lcd_chardata_arrdown);
}
const uint8_t lcd_chardata_progress[8] PROGMEM = {
B11111,
B11111,
B11111,
B11111,
B11111,
B11111,
B11111,
B11111};
void lcd_set_custom_characters_progress(void)
{
lcd_createChar_P(1, lcd_chardata_progress);
}
const uint8_t lcd_chardata_arr2down[8] PROGMEM = {
B00000,
B00000,
B10001,
B01010,
B00100,
B10001,
B01010,
B00100};
const uint8_t lcd_chardata_confirm[8] PROGMEM = {
B00000,
B00001,
B00011,
B10110,
B11100,
B01000,
B00000};
void lcd_set_custom_characters_nextpage(void)
{
lcd_createChar_P(1, lcd_chardata_arr2down);
lcd_createChar_P(2, lcd_chardata_confirm);
}
void lcd_set_custom_characters_degree(void)
{
lcd_createChar_P(1, lcd_chardata_degree);
}