1053 lines
23 KiB
C++
1053 lines
23 KiB
C++
//menu.cpp
|
|
|
|
#include "lcd.h"
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <avr/pgmspace.h>
|
|
#include <util/delay.h>
|
|
#include "Timer.h"
|
|
|
|
#include "Configuration.h"
|
|
#include "pins.h"
|
|
#include <binary.h>
|
|
//#include <Arduino.h>
|
|
#include "Marlin.h"
|
|
#include "fastio.h"
|
|
//-//
|
|
#include "sound.h"
|
|
|
|
|
|
// commands
|
|
#define LCD_CLEARDISPLAY 0x01
|
|
#define LCD_RETURNHOME 0x02
|
|
#define LCD_ENTRYMODESET 0x04
|
|
#define LCD_DISPLAYCONTROL 0x08
|
|
#define LCD_CURSORSHIFT 0x10
|
|
#define LCD_FUNCTIONSET 0x20
|
|
#define LCD_SETCGRAMADDR 0x40
|
|
#define LCD_SETDDRAMADDR 0x80
|
|
|
|
// flags for display entry mode
|
|
#define LCD_ENTRYRIGHT 0x00
|
|
#define LCD_ENTRYLEFT 0x02
|
|
#define LCD_ENTRYSHIFTINCREMENT 0x01
|
|
#define LCD_ENTRYSHIFTDECREMENT 0x00
|
|
|
|
// flags for display on/off control
|
|
#define LCD_DISPLAYON 0x04
|
|
#define LCD_DISPLAYOFF 0x00
|
|
#define LCD_CURSORON 0x02
|
|
#define LCD_CURSOROFF 0x00
|
|
#define LCD_BLINKON 0x01
|
|
#define LCD_BLINKOFF 0x00
|
|
|
|
// flags for display/cursor shift
|
|
#define LCD_DISPLAYMOVE 0x08
|
|
#define LCD_CURSORMOVE 0x00
|
|
#define LCD_MOVERIGHT 0x04
|
|
#define LCD_MOVELEFT 0x00
|
|
|
|
// flags for function set
|
|
#define LCD_8BITMODE 0x10
|
|
#define LCD_4BITMODE 0x00
|
|
#define LCD_2LINE 0x08
|
|
#define LCD_1LINE 0x00
|
|
#define LCD_5x10DOTS 0x04
|
|
#define LCD_5x8DOTS 0x00
|
|
|
|
|
|
FILE _lcdout; // = {0}; Global variable is always zero initialized, no need to explicitly state that.
|
|
|
|
|
|
uint8_t lcd_rs_pin; // LOW: command. HIGH: character.
|
|
uint8_t lcd_rw_pin; // LOW: write to LCD. HIGH: read from LCD.
|
|
uint8_t lcd_enable_pin; // activated by a HIGH pulse.
|
|
uint8_t lcd_data_pins[8];
|
|
|
|
uint8_t lcd_displayfunction;
|
|
uint8_t lcd_displaycontrol;
|
|
uint8_t lcd_displaymode;
|
|
|
|
uint8_t lcd_numlines;
|
|
uint8_t lcd_currline;
|
|
|
|
uint8_t lcd_escape[8];
|
|
|
|
|
|
void lcd_pulseEnable(void)
|
|
{
|
|
digitalWrite(lcd_enable_pin, LOW);
|
|
delayMicroseconds(1);
|
|
digitalWrite(lcd_enable_pin, HIGH);
|
|
delayMicroseconds(1); // enable pulse must be >450ns
|
|
digitalWrite(lcd_enable_pin, LOW);
|
|
delayMicroseconds(100); // commands need > 37us to settle
|
|
}
|
|
|
|
void lcd_write4bits(uint8_t value)
|
|
{
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
pinMode(lcd_data_pins[i], OUTPUT);
|
|
digitalWrite(lcd_data_pins[i], (value >> i) & 0x01);
|
|
}
|
|
lcd_pulseEnable();
|
|
}
|
|
|
|
void lcd_write8bits(uint8_t value)
|
|
{
|
|
for (int i = 0; i < 8; i++)
|
|
{
|
|
pinMode(lcd_data_pins[i], OUTPUT);
|
|
digitalWrite(lcd_data_pins[i], (value >> i) & 0x01);
|
|
}
|
|
lcd_pulseEnable();
|
|
}
|
|
|
|
// write either command or data, with automatic 4/8-bit selection
|
|
void lcd_send(uint8_t value, uint8_t mode)
|
|
{
|
|
digitalWrite(lcd_rs_pin, mode);
|
|
// if there is a RW pin indicated, set it low to Write
|
|
if (lcd_rw_pin != 255) digitalWrite(lcd_rw_pin, LOW);
|
|
if (lcd_displayfunction & LCD_8BITMODE)
|
|
lcd_write8bits(value);
|
|
else
|
|
{
|
|
lcd_write4bits(value>>4);
|
|
lcd_write4bits(value);
|
|
}
|
|
}
|
|
|
|
void lcd_command(uint8_t value)
|
|
{
|
|
lcd_send(value, LOW);
|
|
}
|
|
|
|
void lcd_clear(void);
|
|
void lcd_home(void);
|
|
void lcd_no_display(void);
|
|
void lcd_display(void);
|
|
void lcd_no_cursor(void);
|
|
void lcd_cursor(void);
|
|
void lcd_no_blink(void);
|
|
void lcd_blink(void);
|
|
void lcd_scrollDisplayLeft(void);
|
|
void lcd_scrollDisplayRight(void);
|
|
void lcd_leftToRight(void);
|
|
void lcd_rightToLeft(void);
|
|
void lcd_autoscroll(void);
|
|
void lcd_no_autoscroll(void);
|
|
void lcd_set_cursor(uint8_t col, uint8_t row);
|
|
void lcd_createChar_P(uint8_t location, const uint8_t* charmap);
|
|
|
|
uint8_t lcd_escape_write(uint8_t chr);
|
|
|
|
uint8_t lcd_write(uint8_t value)
|
|
{
|
|
if (value == '\n')
|
|
{
|
|
if (lcd_currline > 3) lcd_currline = -1;
|
|
lcd_set_cursor(0, lcd_currline + 1); // LF
|
|
return 1;
|
|
}
|
|
if (lcd_escape[0] || (value == 0x1b))
|
|
return lcd_escape_write(value);
|
|
lcd_send(value, HIGH);
|
|
return 1; // assume sucess
|
|
}
|
|
|
|
static void lcd_begin(uint8_t lines, uint8_t dotsize, uint8_t clear)
|
|
{
|
|
if (lines > 1) lcd_displayfunction |= LCD_2LINE;
|
|
lcd_numlines = lines;
|
|
lcd_currline = 0;
|
|
// for some 1 line displays you can select a 10 pixel high font
|
|
if ((dotsize != 0) && (lines == 1)) lcd_displayfunction |= LCD_5x10DOTS;
|
|
// SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!
|
|
// according to datasheet, we need at least 40ms after power rises above 2.7V
|
|
// before sending commands. Arduino can turn on way befer 4.5V so we'll wait 50
|
|
_delay_us(50000);
|
|
// Now we pull both RS and R/W low to begin commands
|
|
digitalWrite(lcd_rs_pin, LOW);
|
|
digitalWrite(lcd_enable_pin, LOW);
|
|
if (lcd_rw_pin != 255)
|
|
digitalWrite(lcd_rw_pin, LOW);
|
|
//put the LCD into 4 bit or 8 bit mode
|
|
if (!(lcd_displayfunction & LCD_8BITMODE))
|
|
{
|
|
// this is according to the hitachi HD44780 datasheet
|
|
// figure 24, pg 46
|
|
// we start in 8bit mode, try to set 4 bit mode
|
|
lcd_write4bits(0x03);
|
|
_delay_us(4500); // wait min 4.1ms
|
|
// second try
|
|
lcd_write4bits(0x03);
|
|
_delay_us(4500); // wait min 4.1ms
|
|
// third go!
|
|
lcd_write4bits(0x03);
|
|
_delay_us(150);
|
|
// finally, set to 4-bit interface
|
|
lcd_write4bits(0x02);
|
|
}
|
|
else
|
|
{
|
|
// this is according to the hitachi HD44780 datasheet
|
|
// page 45 figure 23
|
|
// Send function set command sequence
|
|
lcd_command(LCD_FUNCTIONSET | lcd_displayfunction);
|
|
_delay_us(4500); // wait more than 4.1ms
|
|
// second try
|
|
lcd_command(LCD_FUNCTIONSET | lcd_displayfunction);
|
|
_delay_us(150);
|
|
// third go
|
|
lcd_command(LCD_FUNCTIONSET | lcd_displayfunction);
|
|
}
|
|
// finally, set # lines, font size, etc.
|
|
lcd_command(LCD_FUNCTIONSET | lcd_displayfunction);
|
|
_delay_us(60);
|
|
// turn the display on with no cursor or blinking default
|
|
lcd_displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF;
|
|
lcd_display();
|
|
_delay_us(60);
|
|
// clear it off
|
|
if (clear) lcd_clear();
|
|
_delay_us(3000);
|
|
// Initialize to default text direction (for romance languages)
|
|
lcd_displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT;
|
|
// set the entry mode
|
|
lcd_command(LCD_ENTRYMODESET | lcd_displaymode);
|
|
_delay_us(60);
|
|
lcd_escape[0] = 0;
|
|
}
|
|
|
|
int lcd_putchar(char c, FILE *)
|
|
{
|
|
lcd_write(c);
|
|
return 0;
|
|
}
|
|
|
|
void lcd_init(void)
|
|
{
|
|
uint8_t fourbitmode = 1;
|
|
lcd_rs_pin = LCD_PINS_RS;
|
|
lcd_rw_pin = 255;
|
|
lcd_enable_pin = LCD_PINS_ENABLE;
|
|
lcd_data_pins[0] = LCD_PINS_D4;
|
|
lcd_data_pins[1] = LCD_PINS_D5;
|
|
lcd_data_pins[2] = LCD_PINS_D6;
|
|
lcd_data_pins[3] = LCD_PINS_D7;
|
|
lcd_data_pins[4] = 0;
|
|
lcd_data_pins[5] = 0;
|
|
lcd_data_pins[6] = 0;
|
|
lcd_data_pins[7] = 0;
|
|
pinMode(lcd_rs_pin, OUTPUT);
|
|
// we can save 1 pin by not using RW. Indicate by passing 255 instead of pin#
|
|
if (lcd_rw_pin != 255) pinMode(lcd_rw_pin, OUTPUT);
|
|
pinMode(lcd_enable_pin, OUTPUT);
|
|
if (fourbitmode) lcd_displayfunction = LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS;
|
|
else lcd_displayfunction = LCD_8BITMODE | LCD_1LINE | LCD_5x8DOTS;
|
|
lcd_begin(LCD_HEIGHT, LCD_5x8DOTS, 1);
|
|
//lcd_clear();
|
|
fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
|
|
}
|
|
|
|
void lcd_refresh(void)
|
|
{
|
|
lcd_begin(LCD_HEIGHT, LCD_5x8DOTS, 1);
|
|
lcd_set_custom_characters();
|
|
}
|
|
|
|
void lcd_refresh_noclear(void)
|
|
{
|
|
lcd_begin(LCD_HEIGHT, LCD_5x8DOTS, 0);
|
|
lcd_set_custom_characters();
|
|
}
|
|
|
|
|
|
|
|
void lcd_clear(void)
|
|
{
|
|
lcd_command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
|
|
_delay_us(1600); // this command takes a long time
|
|
}
|
|
|
|
void lcd_home(void)
|
|
{
|
|
lcd_command(LCD_RETURNHOME); // set cursor position to zero
|
|
_delay_us(1600); // this command takes a long time!
|
|
}
|
|
|
|
// Turn the display on/off (quickly)
|
|
void lcd_no_display(void)
|
|
{
|
|
lcd_displaycontrol &= ~LCD_DISPLAYON;
|
|
lcd_command(LCD_DISPLAYCONTROL | lcd_displaycontrol);
|
|
}
|
|
|
|
void lcd_display(void)
|
|
{
|
|
lcd_displaycontrol |= LCD_DISPLAYON;
|
|
lcd_command(LCD_DISPLAYCONTROL | lcd_displaycontrol);
|
|
}
|
|
|
|
// Turns the underline cursor on/off
|
|
void lcd_no_cursor(void)
|
|
{
|
|
lcd_displaycontrol &= ~LCD_CURSORON;
|
|
lcd_command(LCD_DISPLAYCONTROL | lcd_displaycontrol);
|
|
}
|
|
|
|
void lcd_cursor(void)
|
|
{
|
|
lcd_displaycontrol |= LCD_CURSORON;
|
|
lcd_command(LCD_DISPLAYCONTROL | lcd_displaycontrol);
|
|
}
|
|
|
|
// Turn on and off the blinking cursor
|
|
void lcd_no_blink(void)
|
|
{
|
|
lcd_displaycontrol &= ~LCD_BLINKON;
|
|
lcd_command(LCD_DISPLAYCONTROL | lcd_displaycontrol);
|
|
}
|
|
|
|
void lcd_blink(void)
|
|
{
|
|
lcd_displaycontrol |= LCD_BLINKON;
|
|
lcd_command(LCD_DISPLAYCONTROL | lcd_displaycontrol);
|
|
}
|
|
|
|
// These commands scroll the display without changing the RAM
|
|
void lcd_scrollDisplayLeft(void)
|
|
{
|
|
lcd_command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVELEFT);
|
|
}
|
|
|
|
void lcd_scrollDisplayRight(void)
|
|
{
|
|
lcd_command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVERIGHT);
|
|
}
|
|
|
|
// This is for text that flows Left to Right
|
|
void lcd_leftToRight(void)
|
|
{
|
|
lcd_displaymode |= LCD_ENTRYLEFT;
|
|
lcd_command(LCD_ENTRYMODESET | lcd_displaymode);
|
|
}
|
|
|
|
// This is for text that flows Right to Left
|
|
void lcd_rightToLeft(void)
|
|
{
|
|
lcd_displaymode &= ~LCD_ENTRYLEFT;
|
|
lcd_command(LCD_ENTRYMODESET | lcd_displaymode);
|
|
}
|
|
|
|
// This will 'right justify' text from the cursor
|
|
void lcd_autoscroll(void)
|
|
{
|
|
lcd_displaymode |= LCD_ENTRYSHIFTINCREMENT;
|
|
lcd_command(LCD_ENTRYMODESET | lcd_displaymode);
|
|
}
|
|
|
|
// This will 'left justify' text from the cursor
|
|
void lcd_no_autoscroll(void)
|
|
{
|
|
lcd_displaymode &= ~LCD_ENTRYSHIFTINCREMENT;
|
|
lcd_command(LCD_ENTRYMODESET | lcd_displaymode);
|
|
}
|
|
|
|
void lcd_set_cursor(uint8_t col, uint8_t row)
|
|
{
|
|
int row_offsets[] = { 0x00, 0x40, 0x14, 0x54 };
|
|
if ( row >= lcd_numlines )
|
|
row = lcd_numlines-1; // we count rows starting w/0
|
|
lcd_currline = row;
|
|
lcd_command(LCD_SETDDRAMADDR | (col + row_offsets[row]));
|
|
}
|
|
|
|
// Allows us to fill the first 8 CGRAM locations
|
|
// with custom characters
|
|
void lcd_createChar_P(uint8_t location, const uint8_t* charmap)
|
|
{
|
|
location &= 0x7; // we only have 8 locations 0-7
|
|
lcd_command(LCD_SETCGRAMADDR | (location << 3));
|
|
for (int i=0; i<8; i++)
|
|
lcd_send(pgm_read_byte(&charmap[i]), HIGH);
|
|
}
|
|
|
|
//Supported VT100 escape codes:
|
|
//EraseScreen "\x1b[2J"
|
|
//CursorHome "\x1b[%d;%dH"
|
|
//CursorShow "\x1b[?25h"
|
|
//CursorHide "\x1b[?25l"
|
|
uint8_t lcd_escape_write(uint8_t chr)
|
|
{
|
|
#define escape_cnt (lcd_escape[0]) //escape character counter
|
|
#define is_num_msk (lcd_escape[1]) //numeric character bit mask
|
|
#define chr_is_num (is_num_msk & 0x01) //current character is numeric
|
|
#define e_2_is_num (is_num_msk & 0x04) //escape char 2 is numeric
|
|
#define e_3_is_num (is_num_msk & 0x08) //...
|
|
#define e_4_is_num (is_num_msk & 0x10)
|
|
#define e_5_is_num (is_num_msk & 0x20)
|
|
#define e_6_is_num (is_num_msk & 0x40)
|
|
#define e_7_is_num (is_num_msk & 0x80)
|
|
#define e2_num (lcd_escape[2] - '0') //number from character 2
|
|
#define e3_num (lcd_escape[3] - '0') //number from character 3
|
|
#define e23_num (10*e2_num+e3_num) //number from characters 2 and 3
|
|
#define e4_num (lcd_escape[4] - '0') //number from character 4
|
|
#define e5_num (lcd_escape[5] - '0') //number from character 5
|
|
#define e45_num (10*e4_num+e5_num) //number from characters 4 and 5
|
|
#define e6_num (lcd_escape[6] - '0') //number from character 6
|
|
#define e56_num (10*e5_num+e6_num) //number from characters 5 and 6
|
|
if (escape_cnt > 1) // escape length > 1 = "\x1b["
|
|
{
|
|
lcd_escape[escape_cnt] = chr; // store current char
|
|
if ((chr >= '0') && (chr <= '9')) // char is numeric
|
|
is_num_msk |= (1 | (1 << escape_cnt)); //set mask
|
|
else
|
|
is_num_msk &= ~1; //clear mask
|
|
}
|
|
switch (escape_cnt++)
|
|
{
|
|
case 0:
|
|
if (chr == 0x1b) return 1; // escape = "\x1b"
|
|
break;
|
|
case 1:
|
|
is_num_msk = 0x00; // reset 'is number' bit mask
|
|
if (chr == '[') return 1; // escape = "\x1b["
|
|
break;
|
|
case 2:
|
|
switch (chr)
|
|
{
|
|
case '2': return 1; // escape = "\x1b[2"
|
|
case '?': return 1; // escape = "\x1b[?"
|
|
default:
|
|
if (chr_is_num) return 1; // escape = "\x1b[%1d"
|
|
}
|
|
break;
|
|
case 3:
|
|
switch (lcd_escape[2])
|
|
{
|
|
case '?': // escape = "\x1b[?"
|
|
if (chr == '2') return 1; // escape = "\x1b[?2"
|
|
break;
|
|
case '2':
|
|
if (chr == 'J') // escape = "\x1b[2J"
|
|
{ lcd_clear(); lcd_currline = 0; break; } // EraseScreen
|
|
default:
|
|
if (e_2_is_num && // escape = "\x1b[%1d"
|
|
((chr == ';') || // escape = "\x1b[%1d;"
|
|
chr_is_num)) // escape = "\x1b[%2d"
|
|
return 1;
|
|
}
|
|
break;
|
|
case 4:
|
|
switch (lcd_escape[2])
|
|
{
|
|
case '?': // "\x1b[?"
|
|
if ((lcd_escape[3] == '2') && (chr == '5')) return 1; // escape = "\x1b[?25"
|
|
break;
|
|
default:
|
|
if (e_2_is_num) // escape = "\x1b[%1d"
|
|
{
|
|
if ((lcd_escape[3] == ';') && chr_is_num) return 1; // escape = "\x1b[%1d;%1d"
|
|
else if (e_3_is_num && (chr == ';')) return 1; // escape = "\x1b[%2d;"
|
|
}
|
|
}
|
|
break;
|
|
case 5:
|
|
switch (lcd_escape[2])
|
|
{
|
|
case '?':
|
|
if ((lcd_escape[3] == '2') && (lcd_escape[4] == '5')) // escape = "\x1b[?25"
|
|
switch (chr)
|
|
{
|
|
case 'h': // escape = "\x1b[?25h"
|
|
lcd_cursor(); // CursorShow
|
|
break;
|
|
case 'l': // escape = "\x1b[?25l"
|
|
lcd_no_cursor(); // CursorHide
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
if (e_2_is_num) // escape = "\x1b[%1d"
|
|
{
|
|
if ((lcd_escape[3] == ';') && e_4_is_num) // escape = "\x1b%1d;%1dH"
|
|
{
|
|
if (chr == 'H') // escape = "\x1b%1d;%1dH"
|
|
lcd_set_cursor(e4_num, e2_num); // CursorHome
|
|
else if (chr_is_num)
|
|
return 1; // escape = "\x1b%1d;%2d"
|
|
}
|
|
else if (e_3_is_num && (lcd_escape[4] == ';') && chr_is_num)
|
|
return 1; // escape = "\x1b%2d;%1d"
|
|
}
|
|
}
|
|
break;
|
|
case 6:
|
|
if (e_2_is_num) // escape = "\x1b[%1d"
|
|
{
|
|
if ((lcd_escape[3] == ';') && e_4_is_num && e_5_is_num && (chr == 'H')) // escape = "\x1b%1d;%2dH"
|
|
lcd_set_cursor(e45_num, e2_num); // CursorHome
|
|
else if (e_3_is_num && (lcd_escape[4] == ';') && e_5_is_num) // escape = "\x1b%2d;%1d"
|
|
{
|
|
if (chr == 'H') // escape = "\x1b%2d;%1dH"
|
|
lcd_set_cursor(e5_num, e23_num); // CursorHome
|
|
else if (chr_is_num) // "\x1b%2d;%2d"
|
|
return 1;
|
|
}
|
|
}
|
|
break;
|
|
case 7:
|
|
if (e_2_is_num && e_3_is_num && (lcd_escape[4] == ';')) // "\x1b[%2d;"
|
|
if (e_5_is_num && e_6_is_num && (chr == 'H')) // "\x1b[%2d;%2dH"
|
|
lcd_set_cursor(e56_num, e23_num); // CursorHome
|
|
break;
|
|
}
|
|
escape_cnt = 0; // reset escape
|
|
return 1; // assume sucess
|
|
}
|
|
|
|
|
|
|
|
|
|
int lcd_putc(int c)
|
|
{
|
|
return fputc(c, lcdout);
|
|
}
|
|
|
|
int lcd_puts_P(const char* str)
|
|
{
|
|
return fputs_P(str, lcdout);
|
|
}
|
|
|
|
int lcd_puts_at_P(uint8_t c, uint8_t r, const char* str)
|
|
{
|
|
lcd_set_cursor(c, r);
|
|
return fputs_P(str, lcdout);
|
|
}
|
|
|
|
int lcd_printf_P(const char* format, ...)
|
|
{
|
|
va_list args;
|
|
va_start(args, format);
|
|
int ret = vfprintf_P(lcdout, format, args);
|
|
va_end(args);
|
|
return ret;
|
|
}
|
|
|
|
void lcd_space(uint8_t n)
|
|
{
|
|
while (n--) lcd_putc(' ');
|
|
}
|
|
|
|
|
|
void lcd_print(const char* s)
|
|
{
|
|
while (*s) lcd_write(*(s++));
|
|
}
|
|
|
|
void lcd_print(char c, int base)
|
|
{
|
|
lcd_print((long) c, base);
|
|
}
|
|
|
|
void lcd_print(unsigned char b, int base)
|
|
{
|
|
lcd_print((unsigned long) b, base);
|
|
}
|
|
|
|
void lcd_print(int n, int base)
|
|
{
|
|
lcd_print((long) n, base);
|
|
}
|
|
|
|
void lcd_print(unsigned int n, int base)
|
|
{
|
|
lcd_print((unsigned long) n, base);
|
|
}
|
|
|
|
void lcd_print(long n, int base)
|
|
{
|
|
if (base == 0)
|
|
lcd_write(n);
|
|
else if (base == 10)
|
|
{
|
|
if (n < 0)
|
|
{
|
|
lcd_print('-');
|
|
n = -n;
|
|
}
|
|
lcd_printNumber(n, 10);
|
|
}
|
|
else
|
|
lcd_printNumber(n, base);
|
|
}
|
|
|
|
void lcd_print(unsigned long n, int base)
|
|
{
|
|
if (base == 0)
|
|
lcd_write(n);
|
|
else
|
|
lcd_printNumber(n, base);
|
|
}
|
|
|
|
void lcd_print(double n, int digits)
|
|
{
|
|
lcd_printFloat(n, digits);
|
|
}
|
|
|
|
|
|
void lcd_printNumber(unsigned long n, uint8_t base)
|
|
{
|
|
unsigned char buf[8 * sizeof(long)]; // Assumes 8-bit chars.
|
|
unsigned long i = 0;
|
|
if (n == 0)
|
|
{
|
|
lcd_print('0');
|
|
return;
|
|
}
|
|
while (n > 0)
|
|
{
|
|
buf[i++] = n % base;
|
|
n /= base;
|
|
}
|
|
for (; i > 0; i--)
|
|
lcd_print((char) (buf[i - 1] < 10 ? '0' + buf[i - 1] : 'A' + buf[i - 1] - 10));
|
|
}
|
|
|
|
void lcd_printFloat(double number, uint8_t digits)
|
|
{
|
|
// Handle negative numbers
|
|
if (number < 0.0)
|
|
{
|
|
lcd_print('-');
|
|
number = -number;
|
|
}
|
|
// Round correctly so that print(1.999, 2) prints as "2.00"
|
|
double rounding = 0.5;
|
|
for (uint8_t i=0; i<digits; ++i)
|
|
rounding /= 10.0;
|
|
number += rounding;
|
|
// Extract the integer part of the number and print it
|
|
unsigned long int_part = (unsigned long)number;
|
|
double remainder = number - (double)int_part;
|
|
lcd_print(int_part);
|
|
// Print the decimal point, but only if there are digits beyond
|
|
if (digits > 0)
|
|
lcd_print('.');
|
|
// Extract digits from the remainder one at a time
|
|
while (digits-- > 0)
|
|
{
|
|
remainder *= 10.0;
|
|
int toPrint = int(remainder);
|
|
lcd_print(toPrint);
|
|
remainder -= toPrint;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uint8_t lcd_draw_update = 2;
|
|
int32_t lcd_encoder = 0;
|
|
uint8_t lcd_encoder_bits = 0;
|
|
int8_t lcd_encoder_diff = 0;
|
|
|
|
uint8_t lcd_buttons = 0;
|
|
uint8_t lcd_button_pressed = 0;
|
|
uint8_t lcd_update_enabled = 1;
|
|
|
|
uint32_t lcd_next_update_millis = 0;
|
|
uint8_t lcd_status_update_delay = 0;
|
|
|
|
uint8_t lcd_long_press_active = 0;
|
|
|
|
lcd_longpress_func_t lcd_longpress_func = 0;
|
|
|
|
lcd_charsetup_func_t lcd_charsetup_func = 0;
|
|
|
|
lcd_lcdupdate_func_t lcd_lcdupdate_func = 0;
|
|
|
|
static ShortTimer buttonBlanking;
|
|
ShortTimer longPressTimer;
|
|
LongTimer lcd_timeoutToStatus;
|
|
|
|
|
|
uint8_t lcd_clicked(void)
|
|
{
|
|
bool clicked = LCD_CLICKED;
|
|
if(clicked) lcd_button_pressed = 1;
|
|
return clicked;
|
|
}
|
|
|
|
void lcd_beeper_quick_feedback(void)
|
|
{
|
|
SET_OUTPUT(BEEPER);
|
|
//-//
|
|
Sound_MakeSound(e_SOUND_TYPE_ButtonEcho);
|
|
/*
|
|
for(int8_t i = 0; i < 10; i++)
|
|
{
|
|
WRITE(BEEPER,HIGH);
|
|
delayMicroseconds(100);
|
|
WRITE(BEEPER,LOW);
|
|
delayMicroseconds(100);
|
|
}
|
|
*/
|
|
}
|
|
|
|
void lcd_quick_feedback(void)
|
|
{
|
|
lcd_draw_update = 2;
|
|
lcd_button_pressed = false;
|
|
lcd_beeper_quick_feedback();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void lcd_update(uint8_t lcdDrawUpdateOverride)
|
|
{
|
|
if (lcd_draw_update < lcdDrawUpdateOverride)
|
|
lcd_draw_update = lcdDrawUpdateOverride;
|
|
if (!lcd_update_enabled)
|
|
return;
|
|
lcd_buttons_update();
|
|
if (lcd_lcdupdate_func)
|
|
lcd_lcdupdate_func();
|
|
}
|
|
|
|
void lcd_update_enable(uint8_t enabled)
|
|
{
|
|
if (lcd_update_enabled != enabled)
|
|
{
|
|
lcd_update_enabled = enabled;
|
|
if (enabled)
|
|
{ // Reset encoder position. This is equivalent to re-entering a menu.
|
|
lcd_encoder = 0;
|
|
lcd_encoder_diff = 0;
|
|
// Enabling the normal LCD update procedure.
|
|
// Reset the timeout interval.
|
|
lcd_timeoutToStatus.start();
|
|
// Force the keypad update now.
|
|
lcd_next_update_millis = millis() - 1;
|
|
// Full update.
|
|
lcd_clear();
|
|
if (lcd_charsetup_func)
|
|
lcd_charsetup_func();
|
|
lcd_update(2);
|
|
} else
|
|
{
|
|
// Clear the LCD always, or let it to the caller?
|
|
}
|
|
}
|
|
}
|
|
|
|
extern LongTimer safetyTimer;
|
|
void lcd_buttons_update(void)
|
|
{
|
|
static bool _lock = false;
|
|
if (_lock) return;
|
|
_lock = true;
|
|
uint8_t newbutton = 0;
|
|
if (READ(BTN_EN1) == 0) newbutton |= EN_A;
|
|
if (READ(BTN_EN2) == 0) newbutton |= EN_B;
|
|
if (lcd_update_enabled)
|
|
{ //if we are in non-modal mode, long press can be used and short press triggers with button release
|
|
if (READ(BTN_ENC) == 0)
|
|
{ //button is pressed
|
|
lcd_timeoutToStatus.start();
|
|
if (!buttonBlanking.running() || buttonBlanking.expired(BUTTON_BLANKING_TIME)) {
|
|
buttonBlanking.start();
|
|
safetyTimer.start();
|
|
if ((lcd_button_pressed == 0) && (lcd_long_press_active == 0))
|
|
{
|
|
longPressTimer.start();
|
|
lcd_button_pressed = 1;
|
|
}
|
|
else
|
|
{
|
|
if (longPressTimer.expired(LONG_PRESS_TIME))
|
|
{
|
|
lcd_long_press_active = 1;
|
|
if (lcd_longpress_func)
|
|
lcd_longpress_func();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{ //button not pressed
|
|
if (lcd_button_pressed)
|
|
{ //button was released
|
|
buttonBlanking.start();
|
|
if (lcd_long_press_active == 0)
|
|
{ //button released before long press gets activated
|
|
newbutton |= EN_C;
|
|
}
|
|
//else if (menu_menu == lcd_move_z) lcd_quick_feedback();
|
|
//lcd_button_pressed is set back to false via lcd_quick_feedback function
|
|
}
|
|
else
|
|
lcd_long_press_active = 0;
|
|
}
|
|
}
|
|
else
|
|
{ //we are in modal mode
|
|
if (READ(BTN_ENC) == 0)
|
|
newbutton |= EN_C;
|
|
}
|
|
|
|
lcd_buttons = newbutton;
|
|
//manage encoder rotation
|
|
uint8_t enc = 0;
|
|
if (lcd_buttons & EN_A) enc |= B01;
|
|
if (lcd_buttons & EN_B) enc |= B10;
|
|
if (enc != lcd_encoder_bits)
|
|
{
|
|
switch (enc)
|
|
{
|
|
case encrot0:
|
|
if (lcd_encoder_bits == encrot3)
|
|
lcd_encoder_diff++;
|
|
else if (lcd_encoder_bits == encrot1)
|
|
lcd_encoder_diff--;
|
|
break;
|
|
case encrot1:
|
|
if (lcd_encoder_bits == encrot0)
|
|
lcd_encoder_diff++;
|
|
else if (lcd_encoder_bits == encrot2)
|
|
lcd_encoder_diff--;
|
|
break;
|
|
case encrot2:
|
|
if (lcd_encoder_bits == encrot1)
|
|
lcd_encoder_diff++;
|
|
else if (lcd_encoder_bits == encrot3)
|
|
lcd_encoder_diff--;
|
|
break;
|
|
case encrot3:
|
|
if (lcd_encoder_bits == encrot2)
|
|
lcd_encoder_diff++;
|
|
else if (lcd_encoder_bits == encrot0)
|
|
lcd_encoder_diff--;
|
|
break;
|
|
}
|
|
}
|
|
lcd_encoder_bits = enc;
|
|
_lock = false;
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Custom character data
|
|
|
|
const uint8_t lcd_chardata_bedTemp[8] PROGMEM = {
|
|
B00000,
|
|
B11111,
|
|
B10101,
|
|
B10001,
|
|
B10101,
|
|
B11111,
|
|
B00000,
|
|
B00000}; //thanks Sonny Mounicou
|
|
|
|
const uint8_t lcd_chardata_degree[8] PROGMEM = {
|
|
B01100,
|
|
B10010,
|
|
B10010,
|
|
B01100,
|
|
B00000,
|
|
B00000,
|
|
B00000,
|
|
B00000};
|
|
|
|
const uint8_t lcd_chardata_thermometer[8] PROGMEM = {
|
|
B00100,
|
|
B01010,
|
|
B01010,
|
|
B01010,
|
|
B01010,
|
|
B10001,
|
|
B10001,
|
|
B01110};
|
|
|
|
const uint8_t lcd_chardata_uplevel[8] PROGMEM = {
|
|
B00100,
|
|
B01110,
|
|
B11111,
|
|
B00100,
|
|
B11100,
|
|
B00000,
|
|
B00000,
|
|
B00000}; //thanks joris
|
|
|
|
const uint8_t lcd_chardata_refresh[8] PROGMEM = {
|
|
B00000,
|
|
B00110,
|
|
B11001,
|
|
B11000,
|
|
B00011,
|
|
B10011,
|
|
B01100,
|
|
B00000}; //thanks joris
|
|
|
|
const uint8_t lcd_chardata_folder[8] PROGMEM = {
|
|
B00000,
|
|
B11100,
|
|
B11111,
|
|
B10001,
|
|
B10001,
|
|
B11111,
|
|
B00000,
|
|
B00000}; //thanks joris
|
|
|
|
/*const uint8_t lcd_chardata_feedrate[8] PROGMEM = {
|
|
B11100,
|
|
B10000,
|
|
B11000,
|
|
B10111,
|
|
B00101,
|
|
B00110,
|
|
B00101,
|
|
B00000};*/ //thanks Sonny Mounicou
|
|
|
|
/*const uint8_t lcd_chardata_feedrate[8] PROGMEM = {
|
|
B11100,
|
|
B10100,
|
|
B11000,
|
|
B10100,
|
|
B00000,
|
|
B00111,
|
|
B00010,
|
|
B00010};*/
|
|
|
|
/*const uint8_t lcd_chardata_feedrate[8] PROGMEM = {
|
|
B01100,
|
|
B10011,
|
|
B00000,
|
|
B01100,
|
|
B10011,
|
|
B00000,
|
|
B01100,
|
|
B10011};*/
|
|
|
|
const uint8_t lcd_chardata_feedrate[8] PROGMEM = {
|
|
B00000,
|
|
B00100,
|
|
B10010,
|
|
B01001,
|
|
B10010,
|
|
B00100,
|
|
B00000,
|
|
B00000};
|
|
|
|
const uint8_t lcd_chardata_clock[8] PROGMEM = {
|
|
B00000,
|
|
B01110,
|
|
B10011,
|
|
B10101,
|
|
B10001,
|
|
B01110,
|
|
B00000,
|
|
B00000}; //thanks Sonny Mounicou
|
|
|
|
const uint8_t lcd_chardata_arrup[8] PROGMEM = {
|
|
B00100,
|
|
B01110,
|
|
B11111,
|
|
B00000,
|
|
B00000,
|
|
B00000,
|
|
B00000,
|
|
B00000};
|
|
|
|
const uint8_t lcd_chardata_arrdown[8] PROGMEM = {
|
|
B00000,
|
|
B00000,
|
|
B00000,
|
|
B00000,
|
|
B00000,
|
|
B10001,
|
|
B01010,
|
|
B00100};
|
|
|
|
|
|
|
|
void lcd_set_custom_characters(void)
|
|
{
|
|
lcd_createChar_P(LCD_STR_BEDTEMP[0], lcd_chardata_bedTemp);
|
|
lcd_createChar_P(LCD_STR_DEGREE[0], lcd_chardata_degree);
|
|
lcd_createChar_P(LCD_STR_THERMOMETER[0], lcd_chardata_thermometer);
|
|
lcd_createChar_P(LCD_STR_UPLEVEL[0], lcd_chardata_uplevel);
|
|
lcd_createChar_P(LCD_STR_REFRESH[0], lcd_chardata_refresh);
|
|
lcd_createChar_P(LCD_STR_FOLDER[0], lcd_chardata_folder);
|
|
lcd_createChar_P(LCD_STR_FEEDRATE[0], lcd_chardata_feedrate);
|
|
lcd_createChar_P(LCD_STR_CLOCK[0], lcd_chardata_clock);
|
|
//lcd_createChar_P(LCD_STR_ARROW_UP[0], lcd_chardata_arrup);
|
|
//lcd_createChar_P(LCD_STR_ARROW_DOWN[0], lcd_chardata_arrdown);
|
|
}
|
|
|
|
void lcd_set_custom_characters_arrows(void)
|
|
{
|
|
lcd_createChar_P(1, lcd_chardata_arrdown);
|
|
}
|
|
|
|
const uint8_t lcd_chardata_progress[8] PROGMEM = {
|
|
B11111,
|
|
B11111,
|
|
B11111,
|
|
B11111,
|
|
B11111,
|
|
B11111,
|
|
B11111,
|
|
B11111};
|
|
|
|
void lcd_set_custom_characters_progress(void)
|
|
{
|
|
lcd_createChar_P(1, lcd_chardata_progress);
|
|
}
|
|
|
|
const uint8_t lcd_chardata_arr2down[8] PROGMEM = {
|
|
B00000,
|
|
B00000,
|
|
B10001,
|
|
B01010,
|
|
B00100,
|
|
B10001,
|
|
B01010,
|
|
B00100};
|
|
|
|
const uint8_t lcd_chardata_confirm[8] PROGMEM = {
|
|
B00000,
|
|
B00001,
|
|
B00011,
|
|
B10110,
|
|
B11100,
|
|
B01000,
|
|
B00000};
|
|
|
|
void lcd_set_custom_characters_nextpage(void)
|
|
{
|
|
lcd_createChar_P(1, lcd_chardata_arr2down);
|
|
lcd_createChar_P(2, lcd_chardata_confirm);
|
|
}
|
|
|
|
void lcd_set_custom_characters_degree(void)
|
|
{
|
|
lcd_createChar_P(1, lcd_chardata_degree);
|
|
}
|
|
|