78ebd522b6
Implemented bed skew calibration by matching a precise physical model to the measured data using the least squares method. Rewrote handling of the command buffer to preserve memory and allow pushing the commands to the front of the queue.
180 lines
6.2 KiB
C++
180 lines
6.2 KiB
C++
#include "mesh_bed_leveling.h"
|
|
#include "mesh_bed_calibration.h"
|
|
#include "Configuration.h"
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
|
|
mesh_bed_leveling mbl;
|
|
|
|
mesh_bed_leveling::mesh_bed_leveling() { reset(); }
|
|
|
|
void mesh_bed_leveling::reset() {
|
|
active = 0;
|
|
for (int y = 0; y < MESH_NUM_Y_POINTS; y++)
|
|
for (int x = 0; x < MESH_NUM_X_POINTS; x++)
|
|
z_values[y][x] = 0;
|
|
}
|
|
|
|
static inline bool vec_undef(const float v[2])
|
|
{
|
|
const uint32_t *vx = (const uint32_t*)v;
|
|
return vx[0] == 0x0FFFFFFFF || vx[1] == 0x0FFFFFFFF;
|
|
}
|
|
|
|
void mesh_bed_leveling::get_meas_xy(int ix, int iy, float &x, float &y, bool use_default)
|
|
{
|
|
#if 0
|
|
float cntr[2] = {
|
|
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0)),
|
|
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4))
|
|
};
|
|
float vec_x[2] = {
|
|
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0)),
|
|
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4))
|
|
};
|
|
float vec_y[2] = {
|
|
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0)),
|
|
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4))
|
|
};
|
|
|
|
if (use_default || vec_undef(cntr) || vec_undef(vec_x) || vec_undef(vec_y)) {
|
|
// Default, uncorrected positions of the calibration points. Works well for correctly built printers.
|
|
x = float(MESH_MIN_X) + float(MEAS_NUM_X_DIST) * float(ix) - X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
//FIXME
|
|
//x -= 5.f;
|
|
y = float(MESH_MIN_Y) + float(MEAS_NUM_Y_DIST) * float(iy) - Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
} else {
|
|
#if 0
|
|
SERIAL_ECHO("Running bed leveling. Calibration data: ");
|
|
SERIAL_ECHO(cntr[0]);
|
|
SERIAL_ECHO(",");
|
|
SERIAL_ECHO(cntr[1]);
|
|
SERIAL_ECHO(", x: ");
|
|
SERIAL_ECHO(vec_x[0]);
|
|
SERIAL_ECHO(",");
|
|
SERIAL_ECHO(vec_x[1]);
|
|
SERIAL_ECHO(", y: ");
|
|
SERIAL_ECHO(vec_y[0]);
|
|
SERIAL_ECHO(",");
|
|
SERIAL_ECHO(vec_y[1]);
|
|
SERIAL_ECHOLN("");
|
|
#endif
|
|
|
|
x = cntr[0];
|
|
y = cntr[1];
|
|
if (ix < 1) {
|
|
x -= vec_x[0];
|
|
y -= vec_x[1];
|
|
} else if (ix > 1) {
|
|
x += vec_x[0];
|
|
y += vec_x[1];
|
|
}
|
|
if (iy < 1) {
|
|
x -= vec_y[0];
|
|
y -= vec_y[1];
|
|
} else if (iy > 1) {
|
|
x += vec_y[0];
|
|
y += vec_y[1];
|
|
}
|
|
|
|
#if 0
|
|
SERIAL_ECHO("Calibration point position: ");
|
|
SERIAL_ECHO(x);
|
|
SERIAL_ECHO(",");
|
|
SERIAL_ECHO(y);
|
|
SERIAL_ECHOLN("");
|
|
#endif
|
|
}
|
|
#else
|
|
// Default, uncorrected positions of the calibration points.
|
|
// This coordinate will be corrected by the planner.
|
|
x = pgm_read_float(bed_ref_points + 2 * (iy * 3 + ix));
|
|
y = pgm_read_float(bed_ref_points + 2 * (iy * 3 + ix) + 1);
|
|
#endif
|
|
}
|
|
|
|
#if MESH_NUM_X_POINTS>=5 && MESH_NUM_Y_POINTS>=5 && (MESH_NUM_X_POINTS&1)==1 && (MESH_NUM_Y_POINTS&1)==1
|
|
// Works for an odd number of MESH_NUM_X_POINTS and MESH_NUM_Y_POINTS
|
|
|
|
// #define MBL_BILINEAR
|
|
void mesh_bed_leveling::upsample_3x3()
|
|
{
|
|
int idx0 = 0;
|
|
int idx1 = MESH_NUM_X_POINTS / 2;
|
|
int idx2 = MESH_NUM_X_POINTS - 1;
|
|
{
|
|
// First interpolate the points in X axis.
|
|
static const float x0 = MESH_MIN_X;
|
|
static const float x1 = 0.5f * float(MESH_MIN_X + MESH_MAX_X);
|
|
static const float x2 = MESH_MAX_X;
|
|
for (int j = 0; j < 3; ++ j) {
|
|
// 1) Copy the source points to their new destination.
|
|
z_values[j][idx2] = z_values[j][2];
|
|
z_values[j][idx1] = z_values[j][1];
|
|
// 2) Interpolate the remaining values by Largrangian polynomials.
|
|
for (int i = idx0 + 1; i < idx2; ++ i) {
|
|
if (i == idx1)
|
|
continue;
|
|
float x = get_x(i);
|
|
#ifdef MBL_BILINEAR
|
|
z_values[j][i] = (x < x1) ?
|
|
((z_values[j][idx0] * (x - x0) + z_values[j][idx1] * (x1 - x)) / (x1 - x0)) :
|
|
((z_values[j][idx1] * (x - x1) + z_values[j][idx2] * (x2 - x)) / (x2 - x1));
|
|
#else
|
|
z_values[j][i] =
|
|
z_values[j][idx0] * (x - x1) * (x - x2) / ((x0 - x1) * (x0 - x2)) +
|
|
z_values[j][idx1] * (x - x0) * (x - x2) / ((x1 - x0) * (x1 - x2)) +
|
|
z_values[j][idx2] * (x - x0) * (x - x1) / ((x2 - x0) * (x2 - x1));
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
{
|
|
// Second interpolate the points in Y axis.
|
|
static const float y0 = MESH_MIN_Y;
|
|
static const float y1 = 0.5f * float(MESH_MIN_Y + MESH_MAX_Y);
|
|
static const float y2 = MESH_MAX_Y;
|
|
for (int i = 0; i < MESH_NUM_X_POINTS; ++ i) {
|
|
// 1) Copy the intermediate points to their new destination.
|
|
z_values[idx2][i] = z_values[2][i];
|
|
z_values[idx1][i] = z_values[1][i];
|
|
// 2) Interpolate the remaining values by Largrangian polynomials.
|
|
for (int j = 1; j + 1 < MESH_NUM_Y_POINTS; ++ j) {
|
|
if (j == idx1)
|
|
continue;
|
|
float y = get_y(j);
|
|
#ifdef MBL_BILINEAR
|
|
z_values[j][i] = (y < y1) ?
|
|
((z_values[idx0][i] * (y - y0) + z_values[idx1][i] * (y1 - y)) / (y1 - y0)) :
|
|
((z_values[idx1][i] * (y - y1) + z_values[idx2][i] * (y2 - y)) / (y2 - y1));
|
|
#else
|
|
z_values[j][i] =
|
|
z_values[idx0][i] * (y - y1) * (y - y2) / ((y0 - y1) * (y0 - y2)) +
|
|
z_values[idx1][i] * (y - y0) * (y - y2) / ((y1 - y0) * (y1 - y2)) +
|
|
z_values[idx2][i] * (y - y0) * (y - y1) / ((y2 - y0) * (y2 - y1));
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
// Relax the non-measured points.
|
|
const float weight = 0.2f;
|
|
for (uint8_t iter = 0; iter < 20; ++ iter) {
|
|
for (int8_t j = 1; j < 6; ++ j) {
|
|
for (int8_t i = 1; i < 6; ++ i) {
|
|
if (i == 3 || j == 3)
|
|
continue;
|
|
if ((i % 3) == 0 && (j % 3) == 0)
|
|
continue;
|
|
float avg = 0.25f * (z_values[j][i-1]+z_values[j][i+1]+z_values[j-1][i]+z_values[j+1][i]);
|
|
z_values[j][i] = (1.f-weight)*z_values[j][i] + weight*avg;
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
}
|
|
#endif
|
|
|
|
#endif // MESH_BED_LEVELING
|