Prusa-Firmware/Firmware/sm4.c
2018-07-12 17:38:13 +02:00

195 lines
4.9 KiB
C

//sm4.c - simple 4-axis stepper control
#include "sm4.h"
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <math.h>
#include "Arduino.h"
#include "boards.h"
#define false 0
#define true 1
#include "Configuration_prusa.h"
#ifdef NEW_XYZCAL
// Signal pinouts
// direction signal - MiniRambo
//#define X_DIR_PIN 48 //PL1 (-)
//#define Y_DIR_PIN 49 //PL0 (-)
//#define Z_DIR_PIN 47 //PL2 (-)
//#define E0_DIR_PIN 43 //PL6 (+)
//direction signal - EinsyRambo
//#define X_DIR_PIN 49 //PL0 (+)
//#define Y_DIR_PIN 48 //PL1 (-)
//#define Z_DIR_PIN 47 //PL2 (+)
//#define E0_DIR_PIN 43 //PL6 (-)
//step signal pinout - common for all rambo boards
//#define X_STEP_PIN 37 //PC0 (+)
//#define Y_STEP_PIN 36 //PC1 (+)
//#define Z_STEP_PIN 35 //PC2 (+)
//#define E0_STEP_PIN 34 //PC3 (+)
sm4_stop_cb_t sm4_stop_cb = 0;
sm4_update_pos_cb_t sm4_update_pos_cb = 0;
sm4_calc_delay_cb_t sm4_calc_delay_cb = 0;
uint16_t sm4_cpu_time = 0;
uint8_t sm4_get_dir(uint8_t axis)
{
switch (axis)
{
#if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3))
case 0: return (PORTL & 2)?0:1;
case 1: return (PORTL & 1)?0:1;
case 2: return (PORTL & 4)?0:1;
case 3: return (PORTL & 64)?1:0;
#elif ((MOTHERBOARD == BOARD_EINSY_1_0a))
case 0: return (PORTL & 1)?1:0;
case 1: return (PORTL & 2)?0:1;
case 2: return (PORTL & 4)?1:0;
case 3: return (PORTL & 64)?0:1;
#endif
}
return 0;
}
void sm4_set_dir(uint8_t axis, uint8_t dir)
{
switch (axis)
{
#if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3))
case 0: if (!dir) PORTL |= 2; else PORTL &= ~2; break;
case 1: if (!dir) PORTL |= 1; else PORTL &= ~1; break;
case 2: if (!dir) PORTL |= 4; else PORTL &= ~4; break;
case 3: if (dir) PORTL |= 64; else PORTL &= ~64; break;
#elif ((MOTHERBOARD == BOARD_EINSY_1_0a))
case 0: if (dir) PORTL |= 1; else PORTL &= ~1; break;
case 1: if (!dir) PORTL |= 2; else PORTL &= ~2; break;
case 2: if (dir) PORTL |= 4; else PORTL &= ~4; break;
case 3: if (!dir) PORTL |= 64; else PORTL &= ~64; break;
#endif
}
asm("nop");
}
uint8_t sm4_get_dir_bits(void)
{
uint8_t register dir_bits = 0;
uint8_t register portL = PORTL;
//TODO -optimize in asm
#if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3))
if (portL & 2) dir_bits |= 1;
if (portL & 1) dir_bits |= 2;
if (portL & 4) dir_bits |= 4;
if (portL & 64) dir_bits |= 8;
dir_bits ^= 0x07; //invert XYZ, do not invert E
#elif ((MOTHERBOARD == BOARD_EINSY_1_0a))
if (portL & 1) dir_bits |= 1;
if (portL & 2) dir_bits |= 2;
if (portL & 4) dir_bits |= 4;
if (portL & 64) dir_bits |= 8;
dir_bits ^= 0x0a; //invert YE, do not invert XZ
#endif
return dir_bits;
}
void sm4_set_dir_bits(uint8_t dir_bits)
{
uint8_t register portL = PORTL;
portL &= 0xb8; //set direction bits to zero
//TODO -optimize in asm
#if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3))
dir_bits ^= 0x07; //invert XYZ, do not invert E
if (dir_bits & 1) portL |= 2; //set X direction bit
if (dir_bits & 2) portL |= 1; //set Y direction bit
if (dir_bits & 4) portL |= 4; //set Z direction bit
if (dir_bits & 8) portL |= 64; //set E direction bit
#elif ((MOTHERBOARD == BOARD_EINSY_1_0a))
dir_bits ^= 0x0a; //invert YE, do not invert XZ
if (dir_bits & 1) portL |= 1; //set X direction bit
if (dir_bits & 2) portL |= 2; //set Y direction bit
if (dir_bits & 4) portL |= 4; //set Z direction bit
if (dir_bits & 8) portL |= 64; //set E direction bit
#endif
PORTL = portL;
asm("nop");
}
void sm4_do_step(uint8_t axes_mask)
{
#if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3) || (MOTHERBOARD == BOARD_EINSY_1_0a))
uint8_t register portC = PORTC & 0xf0;
PORTC = portC | (axes_mask & 0x0f); //set step signals by mask
asm("nop");
PORTC = portC; //set step signals to zero
asm("nop");
#endif //((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3) || (MOTHERBOARD == BOARD_EINSY_1_0a))
}
uint16_t sm4_line_xyze_ui(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t de)
{
uint16_t dd = (uint16_t)(sqrt((float)(((uint32_t)dx)*dx + ((uint32_t)dy*dy) + ((uint32_t)dz*dz) + ((uint32_t)de*de))) + 0.5);
uint16_t nd = dd;
uint16_t cx = dd;
uint16_t cy = dd;
uint16_t cz = dd;
uint16_t ce = dd;
uint16_t x = 0;
uint16_t y = 0;
uint16_t z = 0;
uint16_t e = 0;
while (nd)
{
if (sm4_stop_cb && (*sm4_stop_cb)()) break;
uint8_t sm = 0; //step mask
if (cx <= dx)
{
sm |= 1;
cx += dd;
x++;
}
if (cy <= dy)
{
sm |= 2;
cy += dd;
y++;
}
if (cz <= dz)
{
sm |= 4;
cz += dd;
z++;
}
if (ce <= de)
{
sm |= 4;
ce += dd;
e++;
}
cx -= dx;
cy -= dy;
cz -= dz;
ce -= de;
sm4_do_step(sm);
uint16_t delay = SM4_DEFDELAY;
if (sm4_calc_delay_cb) delay = (*sm4_calc_delay_cb)(nd, dd);
if (delay) delayMicroseconds(delay);
nd--;
}
if (sm4_update_pos_cb) (*sm4_update_pos_cb)(x, y, z, e);
return nd;
}
#endif //NEW_XYZCAL