Prusa-Firmware/Firmware/mmu.cpp
2019-03-04 17:09:11 +01:00

1496 lines
44 KiB
C++

//! @file
#include "mmu.h"
#include "planner.h"
#include "language.h"
#include "lcd.h"
#include "uart2.h"
#include "temperature.h"
#include "Configuration_prusa.h"
#include "fsensor.h"
#include "cardreader.h"
#include "ultralcd.h"
#include "sound.h"
#include "printers.h"
#include <avr/pgmspace.h>
#include "io_atmega2560.h"
#include "AutoDeplete.h"
#ifdef TMC2130
#include "tmc2130.h"
#endif //TMC2130
#define MMU_TODELAY 100
#define MMU_TIMEOUT 10
#define MMU_CMD_TIMEOUT 45000ul //45s timeout for mmu commands (except P0)
#define MMU_P0_TIMEOUT 3000ul //timeout for P0 command: 3seconds
#define MMU_MAX_RESEND_ATTEMPTS 2
#ifdef MMU_HWRESET
#define MMU_RST_PIN 76
#endif //MMU_HWRESET
namespace
{
enum class S : uint_least8_t
{
WaitStealthMode,
GetFindaInit,
GetBuildNr,
GetVersion,
Init,
Disabled,
Idle,
GetFinda,
WaitCmd, //!< wait for command response
Pause,
GetDrvError, //!< get power failures count
};
}
bool mmu_enabled = false;
bool mmu_ready = false;
bool mmu_fil_loaded = false; //if true: blocks execution of duplicit T-codes
static S mmu_state = S::Disabled;
MmuCmd mmu_cmd = MmuCmd::None;
//idler ir sensor
uint8_t mmu_idl_sens = 0;
bool ir_sensor_detected = false;
bool mmu_loading_flag = false; //when set to true, we assume that mmu2 unload was finished and loading phase is now performed; printer can send 'A' to mmu2 to abort loading process
uint8_t mmu_extruder = MMU_FILAMENT_UNKNOWN;
//! This variable probably has no meaning and is planed to be removed
uint8_t tmp_extruder = MMU_FILAMENT_UNKNOWN;
int8_t mmu_finda = -1;
int16_t mmu_version = -1;
int16_t mmu_buildnr = -1;
uint32_t mmu_last_request = 0;
uint32_t mmu_last_response = 0;
MmuCmd mmu_last_cmd = MmuCmd::None;
uint16_t mmu_power_failures = 0;
#ifdef MMU_DEBUG
static const auto DEBUG_PUTS_P = puts_P;
static const auto DEBUG_PRINTF_P = printf_P;
#else //MMU_DEBUG
#define DEBUG_PUTS_P(str)
#define DEBUG_PRINTF_P( __fmt, ... )
#endif //MMU_DEBUG
#if defined(MMU_FINDA_DEBUG) && defined(MMU_DEBUG)
static const auto FDEBUG_PUTS_P = puts_P;
static const auto FDEBUG_PRINTF_P = printf_P;
#else
#define FDEBUG_PUTS_P(str)
#define FDEBUG_PRINTF_P( __fmt, ... )
#endif //defined(MMU_FINDA_DEBUG) && defined(MMU_DEBUG)
//clear rx buffer
void mmu_clr_rx_buf(void)
{
while (fgetc(uart2io) >= 0);
}
//send command - puts
int mmu_puts_P(const char* str)
{
mmu_clr_rx_buf(); //clear rx buffer
int r = fputs_P(str, uart2io); //send command
mmu_last_request = _millis();
return r;
}
//send command - printf
int mmu_printf_P(const char* format, ...)
{
va_list args;
va_start(args, format);
mmu_clr_rx_buf(); //clear rx buffer
int r = vfprintf_P(uart2io, format, args); //send command
va_end(args);
mmu_last_request = _millis();
return r;
}
//check 'ok' response
int8_t mmu_rx_ok(void)
{
int8_t res = uart2_rx_str_P(PSTR("ok\n"));
if (res == 1) mmu_last_response = _millis();
return res;
}
//check 'start' response
int8_t mmu_rx_start(void)
{
int8_t res = uart2_rx_str_P(PSTR("start\n"));
if (res == 1) mmu_last_response = _millis();
return res;
}
//initialize mmu2 unit - first part - should be done at begining of startup process
void mmu_init(void)
{
#ifdef MMU_HWRESET
digitalWrite(MMU_RST_PIN, HIGH);
pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
#endif //MMU_HWRESET
uart2_init(); //init uart2
_delay_ms(10); //wait 10ms for sure
mmu_reset(); //reset mmu (HW or SW), do not wait for response
mmu_state = S::Init;
PIN_INP(IR_SENSOR_PIN); //input mode
PIN_SET(IR_SENSOR_PIN); //pullup
}
//if IR_SENSOR defined, always returns true
//otherwise check for ir sensor and returns true if idler IR sensor was detected, otherwise returns false
bool check_for_ir_sensor()
{
#ifdef IR_SENSOR
return true;
#else //IR_SENSOR
bool detected = false;
//if IR_SENSOR_PIN input is low and pat9125sensor is not present we detected idler sensor
if ((PIN_GET(IR_SENSOR_PIN) == 0)
#ifdef PAT9125
&& fsensor_not_responding
#endif //PAT9125
)
{
detected = true;
//printf_P(PSTR("Idler IR sensor detected\n"));
}
else
{
//printf_P(PSTR("Idler IR sensor not detected\n"));
}
return detected;
#endif //IR_SENSOR
}
static bool activate_stealth_mode()
{
#if defined (MMU_FORCE_STEALTH_MODE)
return true;
#elif defined (SILENT_MODE_STEALTH)
return (eeprom_read_byte((uint8_t*)EEPROM_SILENT) == SILENT_MODE_STEALTH);
#else
return false;
#endif
}
//mmu main loop - state machine processing
void mmu_loop(void)
{
static uint8_t mmu_attempt_nr = 0;
// printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
switch (mmu_state)
{
case S::Disabled:
return;
case S::Init:
if (mmu_rx_start() > 0)
{
DEBUG_PUTS_P(PSTR("MMU => 'start'"));
DEBUG_PUTS_P(PSTR("MMU <= 'S1'"));
mmu_puts_P(PSTR("S1\n")); //send 'read version' request
mmu_state = S::GetVersion;
}
else if (_millis() > 30000) //30sec after reset disable mmu
{
puts_P(PSTR("MMU not responding - DISABLED"));
mmu_state = S::Disabled;
}
return;
case S::GetVersion:
if (mmu_rx_ok() > 0)
{
fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
DEBUG_PRINTF_P(PSTR("MMU => '%dok'\n"), mmu_version);
DEBUG_PUTS_P(PSTR("MMU <= 'S2'"));
mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
mmu_state = S::GetBuildNr;
}
return;
case S::GetBuildNr:
if (mmu_rx_ok() > 0)
{
fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
DEBUG_PRINTF_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
bool version_valid = mmu_check_version();
if (!version_valid) mmu_show_warning();
else puts_P(PSTR("MMU version valid"));
if (!activate_stealth_mode())
{
FDEBUG_PUTS_P(PSTR("MMU <= 'P0'"));
mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
mmu_state = S::GetFindaInit;
}
else
{
DEBUG_PUTS_P(PSTR("MMU <= 'M1'"));
mmu_puts_P(PSTR("M1\n")); //set mmu mode to stealth
mmu_state = S::WaitStealthMode;
}
}
return;
case S::WaitStealthMode:
if (mmu_rx_ok() > 0)
{
FDEBUG_PUTS_P(PSTR("MMU <= 'P0'"));
mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
mmu_state = S::GetFindaInit;
}
return;
case S::GetFindaInit:
if (mmu_rx_ok() > 0)
{
fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
FDEBUG_PRINTF_P(PSTR("MMU => '%dok'\n"), mmu_finda);
puts_P(PSTR("MMU - ENABLED"));
mmu_enabled = true;
mmu_state = S::Idle;
}
return;
case S::Idle:
if (mmu_cmd != MmuCmd::None) //command request ?
{
if ((mmu_cmd >= MmuCmd::T0) && (mmu_cmd <= MmuCmd::T4))
{
const uint8_t filament = mmu_cmd - MmuCmd::T0;
DEBUG_PRINTF_P(PSTR("MMU <= 'T%d'\n"), filament);
mmu_printf_P(PSTR("T%d\n"), filament);
mmu_state = S::WaitCmd; // wait for response
mmu_fil_loaded = true;
mmu_idl_sens = 1;
}
else if ((mmu_cmd >= MmuCmd::L0) && (mmu_cmd <= MmuCmd::L4))
{
const uint8_t filament = mmu_cmd - MmuCmd::L0;
DEBUG_PRINTF_P(PSTR("MMU <= 'L%d'\n"), filament);
mmu_printf_P(PSTR("L%d\n"), filament);
mmu_state = S::WaitCmd; // wait for response
}
else if (mmu_cmd == MmuCmd::C0)
{
DEBUG_PRINTF_P(PSTR("MMU <= 'C0'\n"));
mmu_puts_P(PSTR("C0\n")); //send 'continue loading'
mmu_state = S::WaitCmd;
mmu_idl_sens = 1;
}
else if (mmu_cmd == MmuCmd::U0)
{
DEBUG_PRINTF_P(PSTR("MMU <= 'U0'\n"));
mmu_puts_P(PSTR("U0\n")); //send 'unload current filament'
mmu_fil_loaded = false;
mmu_state = S::WaitCmd;
}
else if ((mmu_cmd >= MmuCmd::E0) && (mmu_cmd <= MmuCmd::E4))
{
const uint8_t filament = mmu_cmd - MmuCmd::E0;
DEBUG_PRINTF_P(PSTR("MMU <= 'E%d'\n"), filament);
mmu_printf_P(PSTR("E%d\n"), filament); //send eject filament
mmu_fil_loaded = false;
mmu_state = S::WaitCmd;
}
else if ((mmu_cmd >= MmuCmd::K0) && (mmu_cmd <= MmuCmd::K4))
{
const uint8_t filament = mmu_cmd - MmuCmd::K0;
DEBUG_PRINTF_P(PSTR("MMU <= 'K%d'\n"), filament);
mmu_printf_P(PSTR("K%d\n"), filament); //send eject filament
mmu_fil_loaded = false;
mmu_state = S::WaitCmd;
}
else if (mmu_cmd == MmuCmd::R0)
{
DEBUG_PRINTF_P(PSTR("MMU <= 'R0'\n"));
mmu_puts_P(PSTR("R0\n")); //send recover after eject
mmu_state = S::WaitCmd;
}
else if (mmu_cmd == MmuCmd::S3)
{
DEBUG_PRINTF_P(PSTR("MMU <= 'S3'\n"));
mmu_puts_P(PSTR("S3\n")); //send power failures request
mmu_state = S::GetDrvError;
}
else if (mmu_cmd == MmuCmd::W0)
{
DEBUG_PRINTF_P(PSTR("MMU <= 'W0'\n"));
mmu_puts_P(PSTR("W0\n"));
mmu_state = S::Pause;
}
mmu_last_cmd = mmu_cmd;
mmu_cmd = MmuCmd::None;
}
else if ((mmu_last_response + 300) < _millis()) //request every 300ms
{
#ifndef IR_SENSOR
if(check_for_ir_sensor()) ir_sensor_detected = true;
#endif //IR_SENSOR not defined
FDEBUG_PUTS_P(PSTR("MMU <= 'P0'"));
mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
mmu_state = S::GetFinda;
}
return;
case S::GetFinda: //response to command P0
if (mmu_idl_sens)
{
if (PIN_GET(IR_SENSOR_PIN) == 0 && mmu_loading_flag)
{
#ifdef MMU_DEBUG
printf_P(PSTR("MMU <= 'A'\n"));
#endif //MMU_DEBUG
mmu_puts_P(PSTR("A\n")); //send 'abort' request
mmu_idl_sens = 0;
//printf_P(PSTR("MMU IDLER_SENSOR = 0 - ABORT\n"));
}
//else
//printf_P(PSTR("MMU IDLER_SENSOR = 1 - WAIT\n"));
}
if (mmu_rx_ok() > 0)
{
fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
FDEBUG_PRINTF_P(PSTR("MMU => '%dok'\n"), mmu_finda);
//printf_P(PSTR("Eact: %d\n"), int(e_active()));
if (!mmu_finda && CHECK_FSENSOR && fsensor_enabled) {
fsensor_stop_and_save_print();
enquecommand_front_P(PSTR("FSENSOR_RECOVER")); //then recover
ad_markDepleted(mmu_extruder);
if (lcd_autoDepleteEnabled() && !ad_allDepleted())
{
enquecommand_front_P(PSTR("M600 AUTO")); //save print and run M600 command
}
else
{
enquecommand_front_P(PSTR("M600")); //save print and run M600 command
}
}
mmu_state = S::Idle;
if (mmu_cmd == MmuCmd::None)
mmu_ready = true;
}
else if ((mmu_last_request + MMU_P0_TIMEOUT) < _millis())
{ //resend request after timeout (30s)
mmu_state = S::Idle;
}
return;
case S::WaitCmd: //response to mmu commands
if (mmu_idl_sens)
{
if (PIN_GET(IR_SENSOR_PIN) == 0 && mmu_loading_flag)
{
DEBUG_PRINTF_P(PSTR("MMU <= 'A'\n"));
mmu_puts_P(PSTR("A\n")); //send 'abort' request
mmu_idl_sens = 0;
//printf_P(PSTR("MMU IDLER_SENSOR = 0 - ABORT\n"));
}
//else
//printf_P(PSTR("MMU IDLER_SENSOR = 1 - WAIT\n"));
}
if (mmu_rx_ok() > 0)
{
DEBUG_PRINTF_P(PSTR("MMU => 'ok'\n"));
mmu_attempt_nr = 0;
mmu_last_cmd = MmuCmd::None;
mmu_ready = true;
mmu_state = S::Idle;
}
else if ((mmu_last_request + MMU_CMD_TIMEOUT) < _millis())
{ //resend request after timeout (5 min)
if (mmu_last_cmd >= MmuCmd::T0 && mmu_last_cmd <= MmuCmd::T4)
{
if (mmu_attempt_nr++ < MMU_MAX_RESEND_ATTEMPTS) {
DEBUG_PRINTF_P(PSTR("MMU retry attempt nr. %d\n"), mmu_attempt_nr - 1);
mmu_cmd = mmu_last_cmd;
}
else {
mmu_cmd = MmuCmd::None;
mmu_last_cmd = MmuCmd::None; //check
mmu_attempt_nr = 0;
}
}
mmu_state = S::Idle;
}
return;
case S::Pause:
if (mmu_rx_ok() > 0)
{
DEBUG_PRINTF_P(PSTR("MMU => 'ok', resume print\n"));
mmu_attempt_nr = 0;
mmu_last_cmd = MmuCmd::None;
mmu_ready = true;
mmu_state = S::Idle;
lcd_resume_print();
}
if (mmu_cmd != MmuCmd::None)
{
mmu_state = S::Idle;
}
return;
case S::GetDrvError:
if (mmu_rx_ok() > 0)
{
fscanf_P(uart2io, PSTR("%d"), &mmu_power_failures); //scan power failures
DEBUG_PRINTF_P(PSTR("MMU => 'ok'\n"));
mmu_last_cmd = MmuCmd::None;
mmu_ready = true;
mmu_state = S::Idle;
}
else if ((mmu_last_request + MMU_CMD_TIMEOUT) < _millis())
{ //resend request after timeout (5 min)
mmu_state = S::Idle;
}
}
}
void mmu_reset(void)
{
#ifdef MMU_HWRESET //HW - pulse reset pin
digitalWrite(MMU_RST_PIN, LOW);
_delay_us(100);
digitalWrite(MMU_RST_PIN, HIGH);
#else //SW - send X0 command
mmu_puts_P(PSTR("X0\n"));
#endif
}
int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
{
printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
unsigned char timeout = MMU_TIMEOUT; //10x100ms
while ((mmu_rx_ok() <= 0) && (--timeout))
delay_keep_alive(MMU_TODELAY);
return timeout?1:0;
}
//! @brief Enqueue MMUv2 command
//!
//! Call manage_response() after enqueuing to process command.
//! If T command is enqueued, it disables current for extruder motor if TMC2130 driver present.
//! If T or L command is enqueued, it marks filament loaded in AutoDeplete module.
void mmu_command(MmuCmd cmd)
{
if ((cmd >= MmuCmd::T0) && (cmd <= MmuCmd::T4))
{
//disable extruder motor
#ifdef TMC2130
tmc2130_set_pwr(E_AXIS, 0);
#endif //TMC2130
//printf_P(PSTR("E-axis disabled\n"));
ad_markLoaded(cmd - MmuCmd::T0);
}
if ((cmd >= MmuCmd::L0) && (cmd <= MmuCmd::L4))
{
ad_markLoaded(cmd - MmuCmd::L0);
}
mmu_cmd = cmd;
mmu_ready = false;
}
//! @brief Rotate extruder idler to catch filament
//! @par synchronize
//! * true blocking call
//! * false non-blocking call
void mmu_load_step(bool synchronize)
{
current_position[E_AXIS] = current_position[E_AXIS] + MMU_LOAD_FEEDRATE * 0.1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMU_LOAD_FEEDRATE, active_extruder);
if (synchronize) st_synchronize();
}
//! @brief Is nozzle hot enough to move extruder wheels and do we have idler sensor?
//!
//! Do load steps only if temperature is higher then min. temp for safe extrusion and
//! idler sensor present.
//! Otherwise "cold extrusion prevented" would be send to serial line periodically
//! and watchdog reset will be triggered by lack of keep_alive processing.
//!
//! @retval true temperature is high enough to move extruder
//! @retval false temperature is not high enough to move extruder, turned
//! off E-stepper to prevent over-heating and allow filament pull-out if necessary
bool can_extrude()
{
if ((degHotend(active_extruder) < EXTRUDE_MINTEMP) || !ir_sensor_detected)
{
disable_e0();
delay_keep_alive(100);
return false;
}
return true;
}
static void get_response_print_info(uint8_t move) {
printf_P(PSTR("mmu_get_response - begin move: "), move);
switch (move) {
case MMU_LOAD_MOVE: printf_P(PSTR("load\n")); break;
case MMU_UNLOAD_MOVE: printf_P(PSTR("unload\n")); break;
case MMU_TCODE_MOVE: printf_P(PSTR("T-code\n")); break;
case MMU_NO_MOVE: printf_P(PSTR("no move\n")); break;
default: printf_P(PSTR("error: unknown move\n")); break;
}
}
bool mmu_get_response(uint8_t move)
{
get_response_print_info(move);
KEEPALIVE_STATE(IN_PROCESS);
while (mmu_cmd != MmuCmd::None)
{
delay_keep_alive(100);
}
while (!mmu_ready)
{
if ((mmu_state != S::WaitCmd) && (mmu_last_cmd == MmuCmd::None))
break;
switch (move) {
case MMU_LOAD_MOVE:
mmu_loading_flag = true;
if (can_extrude()) mmu_load_step();
//don't rely on "ok" signal from mmu unit; if filament detected by idler sensor during loading stop loading movements to prevent infinite loading
if (PIN_GET(IR_SENSOR_PIN) == 0) move = MMU_NO_MOVE;
break;
case MMU_UNLOAD_MOVE:
if (PIN_GET(IR_SENSOR_PIN) == 0) //filament is still detected by idler sensor, printer helps with unlading
{
if (can_extrude())
{
printf_P(PSTR("Unload 1\n"));
current_position[E_AXIS] = current_position[E_AXIS] - MMU_LOAD_FEEDRATE * MMU_LOAD_TIME_MS*0.001;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMU_LOAD_FEEDRATE, active_extruder);
st_synchronize();
}
}
else //filament was unloaded from idler, no additional movements needed
{
printf_P(PSTR("Unloading finished 1\n"));
disable_e0(); //turn off E-stepper to prevent overheating and alow filament pull-out if necessary
move = MMU_NO_MOVE;
}
break;
case MMU_TCODE_MOVE: //first do unload and then continue with infinite loading movements
if (PIN_GET(IR_SENSOR_PIN) == 0) //filament detected by idler sensor, we must unload first
{
if (can_extrude())
{
printf_P(PSTR("Unload 2\n"));
current_position[E_AXIS] = current_position[E_AXIS] - MMU_LOAD_FEEDRATE * MMU_LOAD_TIME_MS*0.001;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMU_LOAD_FEEDRATE, active_extruder);
st_synchronize();
}
}
else //delay to allow mmu unit to pull out filament from bondtech gears and then start with infinite loading
{
printf_P(PSTR("Unloading finished 2\n"));
disable_e0(); //turn off E-stepper to prevent overheating and alow filament pull-out if necessary
delay_keep_alive(MMU_LOAD_TIME_MS);
move = MMU_LOAD_MOVE;
get_response_print_info(move);
}
break;
case MMU_NO_MOVE:
default:
delay_keep_alive(100);
break;
}
}
printf_P(PSTR("mmu_get_response() returning: %d\n"), mmu_ready);
bool ret = mmu_ready;
mmu_ready = false;
// printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
return ret;
}
//! @brief Wait for active extruder to reach temperature set
//!
//! This function is blocking and showing lcd_wait_for_heater() screen
//! which is constantly updated with nozzle temperature.
void mmu_wait_for_heater_blocking()
{
while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)
{
delay_keep_alive(1000);
lcd_wait_for_heater();
}
}
void manage_response(bool move_axes, bool turn_off_nozzle, uint8_t move)
{
bool response = false;
mmu_print_saved = false;
bool lcd_update_was_enabled = false;
float hotend_temp_bckp = degTargetHotend(active_extruder);
float z_position_bckp = current_position[Z_AXIS];
float x_position_bckp = current_position[X_AXIS];
float y_position_bckp = current_position[Y_AXIS];
uint8_t screen = 0; //used for showing multiscreen messages
mmu_loading_flag = false;
while(!response)
{
response = mmu_get_response(move); //wait for "ok" from mmu
if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
uint8_t mmu_fail = eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL);
uint16_t mmu_fail_tot = eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT);
if(mmu_fail < 255) eeprom_update_byte((uint8_t*)EEPROM_MMU_FAIL, mmu_fail + 1);
if(mmu_fail_tot < 65535) eeprom_update_word((uint16_t*)EEPROM_MMU_FAIL_TOT, mmu_fail_tot + 1);
if (lcd_update_enabled) {
lcd_update_was_enabled = true;
lcd_update_enable(false);
}
st_synchronize();
mmu_print_saved = true;
printf_P(PSTR("MMU not responding\n"));
hotend_temp_bckp = degTargetHotend(active_extruder);
if (move_axes) {
z_position_bckp = current_position[Z_AXIS];
x_position_bckp = current_position[X_AXIS];
y_position_bckp = current_position[Y_AXIS];
//lift z
current_position[Z_AXIS] += Z_PAUSE_LIFT;
if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
st_synchronize();
//Move XY to side
current_position[X_AXIS] = X_PAUSE_POS;
current_position[Y_AXIS] = Y_PAUSE_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
st_synchronize();
}
if (turn_off_nozzle) {
//set nozzle target temperature to 0
setAllTargetHotends(0);
}
disable_e0(); //turn off E-stepper to prevent overheating and alow filament pull-out if necessary
}
//first three lines are used for printing multiscreen message; last line contains measured and target nozzle temperature
if (screen == 0) { //screen 0
lcd_display_message_fullscreen_P(_i("MMU needs user attention."));
screen++;
}
else { //screen 1
if((degTargetHotend(active_extruder) == 0) && turn_off_nozzle) lcd_display_message_fullscreen_P(_i("Press the knob to resume nozzle temperature."));
else lcd_display_message_fullscreen_P(_i("Fix the issue and then press button on MMU unit."));
screen=0;
}
lcd_set_degree();
//5 seconds delay
for (uint8_t i = 0; i < 5; i++) {
if (lcd_clicked()) {
setTargetHotend(hotend_temp_bckp, active_extruder);
/// mmu_cmd = mmu_last_cmd;
break;
}
//Print the hotend temperature (9 chars total) and fill rest of the line with space
lcd_set_cursor(0, 4); //line 4
int chars = lcd_printf_P(_N("%c%3d/%d%c"), LCD_STR_THERMOMETER[0],(int)(degHotend(active_extruder) + 0.5), (int)(degTargetHotend(active_extruder) + 0.5), LCD_STR_DEGREE[0]);
lcd_space(9 - chars);
delay_keep_alive(1000);
}
}
else if (mmu_print_saved) {
printf_P(PSTR("MMU starts responding\n"));
mmu_loading_flag = false;
if (turn_off_nozzle)
{
lcd_clear();
setTargetHotend(hotend_temp_bckp, active_extruder);
if (((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)) {
lcd_display_message_fullscreen_P(_i("MMU OK. Resuming temperature..."));
delay_keep_alive(3000);
}
mmu_wait_for_heater_blocking();
}
if (move_axes) {
lcd_clear();
lcd_display_message_fullscreen_P(_i("MMU OK. Resuming position..."));
current_position[X_AXIS] = x_position_bckp;
current_position[Y_AXIS] = y_position_bckp;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
st_synchronize();
current_position[Z_AXIS] = z_position_bckp;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
st_synchronize();
}
else {
lcd_clear();
lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
}
}
}
if (lcd_update_was_enabled) lcd_update_enable(true);
#ifdef TMC2130
//enable extruder motor (disabled in mmu_command, start of T-code processing)
tmc2130_set_pwr(E_AXIS, 1);
//printf_P(PSTR("E-axis enabled\n"));
#endif //TMC2130
}
//! @brief load filament to nozzle of multimaterial printer
//!
//! This function is used only only after T? (user select filament) and M600 (change filament).
//! It is not used after T0 .. T4 command (select filament), in such case, gcode is responsible for loading
//! filament to nozzle.
//!
void mmu_load_to_nozzle()
{
st_synchronize();
bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
if (ir_sensor_detected)
{
current_position[E_AXIS] += 3.0f;
}
else
{
current_position[E_AXIS] += 7.2f;
}
float feedrate = 562;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 14.4f;
feedrate = 871;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 36.0f;
feedrate = 1393;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 14.4f;
feedrate = 871;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
st_synchronize();
if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
}
void mmu_M600_wait_and_beep() {
//Beep and wait for user to remove old filament and prepare new filament for load
KEEPALIVE_STATE(PAUSED_FOR_USER);
int counterBeep = 0;
lcd_display_message_fullscreen_P(_i("Remove old filament and press the knob to start loading new filament."));
bool bFirst=true;
while (!lcd_clicked()){
manage_heater();
manage_inactivity(true);
#if BEEPER > 0
if (counterBeep == 500) {
counterBeep = 0;
}
SET_OUTPUT(BEEPER);
if (counterBeep == 0) {
if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
{
bFirst=false;
WRITE(BEEPER, HIGH);
}
}
if (counterBeep == 20) {
WRITE(BEEPER, LOW);
}
counterBeep++;
#endif //BEEPER > 0
delay_keep_alive(4);
}
WRITE(BEEPER, LOW);
}
void mmu_M600_load_filament(bool automatic)
{
//load filament for mmu v2
tmp_extruder = mmu_extruder;
if (!automatic) {
#ifdef MMU_M600_SWITCH_EXTRUDER
bool yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
if(yes) tmp_extruder = choose_extruder_menu();
#endif //MMU_M600_SWITCH_EXTRUDER
}
else {
tmp_extruder = ad_getAlternative(tmp_extruder);
}
lcd_update_enable(false);
lcd_clear();
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
lcd_print(" ");
lcd_print(tmp_extruder + 1);
snmm_filaments_used |= (1 << tmp_extruder); //for stop print
// printf_P(PSTR("T code: %d \n"), tmp_extruder);
// mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
mmu_command(MmuCmd::T0 + tmp_extruder);
manage_response(false, true, MMU_LOAD_MOVE);
mmu_continue_loading();
mmu_extruder = tmp_extruder; //filament change is finished
mmu_load_to_nozzle();
load_filament_final_feed();
st_synchronize();
}
#ifdef SNMM
void extr_mov(float shift, float feed_rate)
{ //move extruder no matter what the current heater temperature is
set_extrude_min_temp(.0);
current_position[E_AXIS] += shift;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
set_extrude_min_temp(EXTRUDE_MINTEMP);
}
#endif //SNMM
void change_extr(int
#ifdef SNMM
extr
#endif //SNMM
) { //switches multiplexer for extruders
#ifdef SNMM
st_synchronize();
_delay(100);
disable_e0();
disable_e1();
disable_e2();
mmu_extruder = extr;
pinMode(E_MUX0_PIN, OUTPUT);
pinMode(E_MUX1_PIN, OUTPUT);
switch (extr) {
case 1:
WRITE(E_MUX0_PIN, HIGH);
WRITE(E_MUX1_PIN, LOW);
break;
case 2:
WRITE(E_MUX0_PIN, LOW);
WRITE(E_MUX1_PIN, HIGH);
break;
case 3:
WRITE(E_MUX0_PIN, HIGH);
WRITE(E_MUX1_PIN, HIGH);
break;
default:
WRITE(E_MUX0_PIN, LOW);
WRITE(E_MUX1_PIN, LOW);
break;
}
_delay(100);
#endif
}
int get_ext_nr()
{ //reads multiplexer input pins and return current extruder number (counted from 0)
#ifndef SNMM
return(mmu_extruder); //update needed
#else
return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
#endif
}
void display_loading()
{
switch (mmu_extruder)
{
case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
}
}
void extr_adj(int extruder) //loading filament for SNMM
{
#ifndef SNMM
MmuCmd cmd = MmuCmd::L0 + extruder;
if (cmd > MmuCmd::L4)
{
printf_P(PSTR("Filament out of range %d \n"),extruder);
return;
}
mmu_command(cmd);
//show which filament is currently loaded
lcd_update_enable(false);
lcd_clear();
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
//if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
//else lcd.print(" ");
lcd_print(" ");
lcd_print(extruder + 1);
// get response
manage_response(false, false);
lcd_update_enable(true);
//lcd_return_to_status();
#else
bool correct;
max_feedrate[E_AXIS] =80;
//max_feedrate[E_AXIS] = 50;
START:
lcd_clear();
lcd_set_cursor(0, 0);
switch (extruder) {
case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
}
KEEPALIVE_STATE(PAUSED_FOR_USER);
do{
extr_mov(0.001,1000);
delay_keep_alive(2);
} while (!lcd_clicked());
//delay_keep_alive(500);
KEEPALIVE_STATE(IN_HANDLER);
st_synchronize();
//correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
//if (!correct) goto START;
//extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
//extr_mov(BOWDEN_LENGTH/2.f, 500);
extr_mov(bowden_length[extruder], 500);
lcd_clear();
lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
else lcd_print(" ");
lcd_print(mmu_extruder + 1);
lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
st_synchronize();
max_feedrate[E_AXIS] = 50;
lcd_update_enable(true);
lcd_return_to_status();
lcdDrawUpdate = 2;
#endif
}
struct E_step
{
float extrude; //!< extrude distance in mm
float feed_rate; //!< feed rate in mm/s
};
static const E_step ramming_sequence[] PROGMEM =
{
{1.0, 1000.0/60},
{1.0, 1500.0/60},
{2.0, 2000.0/60},
{1.5, 3000.0/60},
{2.5, 4000.0/60},
{-15.0, 5000.0/60},
{-14.0, 1200.0/60},
{-6.0, 600.0/60},
{10.0, 700.0/60},
{-10.0, 400.0/60},
{-50.0, 2000.0/60},
};
//! @brief Unload sequence to optimize shape of the tip of the unloaded filament
void mmu_filament_ramming()
{
for(uint8_t i = 0; i < (sizeof(ramming_sequence)/sizeof(E_step));++i)
{
current_position[E_AXIS] += pgm_read_float(&(ramming_sequence[i].extrude));
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], pgm_read_float(&(ramming_sequence[i].feed_rate)), active_extruder);
st_synchronize();
}
}
//-//
void extr_unload_()
{
//if(bFilamentAction)
if(0)
{
bFilamentAction=false;
extr_unload();
}
else {
eFilamentAction=e_FILAMENT_ACTION_mmuUnLoad;
bFilamentFirstRun=false;
if(target_temperature[0]>=EXTRUDE_MINTEMP)
{
bFilamentPreheatState=true;
mFilamentItem(target_temperature[0],target_temperature_bed);
}
// else menu_submenu(mFilamentMenu);
else mFilamentMenu();
}
}
//! @brief show which filament is currently unloaded
void extr_unload_view()
{
lcd_clear();
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
lcd_print(" ");
if (mmu_extruder == MMU_FILAMENT_UNKNOWN) lcd_print(" ");
else lcd_print(mmu_extruder + 1);
}
void extr_unload()
{ //unload just current filament for multimaterial printers
#ifdef SNMM
float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
#endif
if (degHotend0() > EXTRUDE_MINTEMP)
{
#ifndef SNMM
st_synchronize();
menu_submenu(extr_unload_view);
mmu_filament_ramming();
mmu_command(MmuCmd::U0);
// get response
manage_response(false, true, MMU_UNLOAD_MOVE);
menu_back();
#else //SNMM
lcd_clear();
lcd_display_message_fullscreen_P(PSTR(""));
max_feedrate[E_AXIS] = 50;
lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
lcd_print(" ");
lcd_print(mmu_extruder + 1);
lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
if (current_position[Z_AXIS] < 15) {
current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
}
current_position[E_AXIS] += 10; //extrusion
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
st_current_set(2, E_MOTOR_HIGH_CURRENT);
if (current_temperature[0] < 230) { //PLA & all other filaments
current_position[E_AXIS] += 5.4;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
current_position[E_AXIS] += 3.2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[E_AXIS] += 3;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
}
else { //ABS
current_position[E_AXIS] += 3.1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
current_position[E_AXIS] += 3.1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
current_position[E_AXIS] += 4;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
/*current_position[X_AXIS] += 23; //delay
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
current_position[X_AXIS] -= 23; //delay
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
delay_keep_alive(4700);
}
max_feedrate[E_AXIS] = 80;
current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
st_synchronize();
//st_current_init();
if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
else st_current_set(2, tmp_motor_loud[2]);
lcd_update_enable(true);
lcd_return_to_status();
max_feedrate[E_AXIS] = 50;
#endif //SNMM
}
else
{
show_preheat_nozzle_warning();
}
}
//wrapper functions for loading filament
void extr_adj_0()
{
#ifndef SNMM
enquecommand_P(PSTR("M701 E0"));
#else
change_extr(0);
extr_adj(0);
#endif
}
void extr_adj_1()
{
#ifndef SNMM
enquecommand_P(PSTR("M701 E1"));
#else
change_extr(1);
extr_adj(1);
#endif
}
void extr_adj_2()
{
#ifndef SNMM
enquecommand_P(PSTR("M701 E2"));
#else
change_extr(2);
extr_adj(2);
#endif
}
void extr_adj_3()
{
#ifndef SNMM
enquecommand_P(PSTR("M701 E3"));
#else
change_extr(3);
extr_adj(3);
#endif
}
void extr_adj_4()
{
#ifndef SNMM
enquecommand_P(PSTR("M701 E4"));
#else
change_extr(4);
extr_adj(4);
#endif
}
void load_all()
{
#ifndef SNMM
enquecommand_P(PSTR("M701 E0"));
enquecommand_P(PSTR("M701 E1"));
enquecommand_P(PSTR("M701 E2"));
enquecommand_P(PSTR("M701 E3"));
enquecommand_P(PSTR("M701 E4"));
#else
for (int i = 0; i < 4; i++)
{
change_extr(i);
extr_adj(i);
}
#endif
}
//wrapper functions for changing extruders
void extr_change_0()
{
change_extr(0);
lcd_return_to_status();
}
void extr_change_1()
{
change_extr(1);
lcd_return_to_status();
}
void extr_change_2()
{
change_extr(2);
lcd_return_to_status();
}
void extr_change_3()
{
change_extr(3);
lcd_return_to_status();
}
#ifdef SNMM
//wrapper functions for unloading filament
void extr_unload_all()
{
if (degHotend0() > EXTRUDE_MINTEMP)
{
for (int i = 0; i < 4; i++)
{
change_extr(i);
extr_unload();
}
}
else
{
show_preheat_nozzle_warning();
lcd_return_to_status();
}
}
//unloading just used filament (for snmm)
void extr_unload_used()
{
if (degHotend0() > EXTRUDE_MINTEMP) {
for (int i = 0; i < 4; i++) {
if (snmm_filaments_used & (1 << i)) {
change_extr(i);
extr_unload();
}
}
snmm_filaments_used = 0;
}
else {
show_preheat_nozzle_warning();
lcd_return_to_status();
}
}
#endif //SNMM
void extr_unload_0()
{
change_extr(0);
extr_unload();
}
void extr_unload_1()
{
change_extr(1);
extr_unload();
}
void extr_unload_2()
{
change_extr(2);
extr_unload();
}
void extr_unload_3()
{
change_extr(3);
extr_unload();
}
void extr_unload_4()
{
change_extr(4);
extr_unload();
}
bool mmu_check_version()
{
return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
}
void mmu_show_warning()
{
printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
kill(_i("Please update firmware in your MMU2. Waiting for reset."));
}
void lcd_mmu_load_to_nozzle(uint8_t filament_nr)
{
//-//
bFilamentAction=false; // NOT in "mmu_load_to_nozzle_menu()"
if (degHotend0() > EXTRUDE_MINTEMP)
{
tmp_extruder = filament_nr;
lcd_update_enable(false);
lcd_clear();
lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
lcd_print(" ");
lcd_print(tmp_extruder + 1);
mmu_command(MmuCmd::T0 + tmp_extruder);
manage_response(true, true, MMU_TCODE_MOVE);
mmu_continue_loading();
mmu_extruder = tmp_extruder; //filament change is finished
mmu_load_to_nozzle();
load_filament_final_feed();
st_synchronize();
custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
lcd_return_to_status();
lcd_update_enable(true);
lcd_load_filament_color_check();
lcd_setstatuspgm(_T(WELCOME_MSG));
custom_message_type = CUSTOM_MSG_TYPE_STATUS;
}
else
{
show_preheat_nozzle_warning();
}
}
void mmu_cut_filament(uint8_t filament_nr)
{
bFilamentAction=false; // NOT in "mmu_load_to_nozzle_menu()"
if (degHotend0() > EXTRUDE_MINTEMP)
{
LcdUpdateDisabler disableLcdUpdate;
lcd_clear();
lcd_set_cursor(0, 1); lcd_puts_P(_i("Cutting filament")); //// c=18 r=1
lcd_print(" ");
lcd_print(filament_nr + 1);
mmu_filament_ramming();
mmu_command(MmuCmd::K0 + filament_nr);
manage_response(false, false, MMU_UNLOAD_MOVE);
}
else
{
show_preheat_nozzle_warning();
}
}
void mmu_eject_filament(uint8_t filament, bool recover)
{
//-//
bFilamentAction=false; // NOT in "mmu_fil_eject_menu()"
if (filament < 5)
{
if (degHotend0() > EXTRUDE_MINTEMP)
{
st_synchronize();
{
LcdUpdateDisabler disableLcdUpdate;
lcd_clear();
lcd_set_cursor(0, 1); lcd_puts_P(_i("Ejecting filament"));
mmu_filament_ramming();
mmu_command(MmuCmd::E0 + filament);
manage_response(false, false, MMU_UNLOAD_MOVE);
if (recover)
{
lcd_show_fullscreen_message_and_wait_P(_i("Please remove filament and then press the knob."));
mmu_command(MmuCmd::R0);
manage_response(false, false);
}
}
}
else
{
show_preheat_nozzle_warning();
}
}
else
{
puts_P(PSTR("Filament nr out of range!"));
}
}
//! @brief load more
//!
//! Try to feed more filament from MMU if it is not detected by filament sensor.
//! Move filament back and forth to nozzle in order to detect jam.
//! If PTFE tube is jammed, this cause filament to be unloaded and no longer
//! detected by pulley IR sensor in next step.
static void load_more()
{
for (uint8_t i = 0; i < MMU_IDLER_SENSOR_ATTEMPTS_NR; i++)
{
if (PIN_GET(IR_SENSOR_PIN) == 0) break;
DEBUG_PRINTF_P(PSTR("Additional load attempt nr. %d\n"), i);
mmu_command(MmuCmd::C0);
manage_response(true, true, MMU_LOAD_MOVE);
}
current_position[E_AXIS] += 60;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMU_LOAD_FEEDRATE, active_extruder);
current_position[E_AXIS] -= 58;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMU_LOAD_FEEDRATE, active_extruder);
st_synchronize();
}
void mmu_continue_loading()
{
if (ir_sensor_detected)
{
load_more();
if (PIN_GET(IR_SENSOR_PIN) != 0) {
uint8_t mmu_load_fail = eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL);
uint16_t mmu_load_fail_tot = eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT);
if(mmu_load_fail < 255) eeprom_update_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL, mmu_load_fail + 1);
if(mmu_load_fail_tot < 65535) eeprom_update_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT, mmu_load_fail_tot + 1);
if (1 == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
{
mmu_command(MmuCmd::K0 + tmp_extruder);
manage_response(true, true, MMU_UNLOAD_MOVE);
}
mmu_command(MmuCmd::T0 + tmp_extruder);
manage_response(true, true, MMU_TCODE_MOVE);
load_more();
if (PIN_GET(IR_SENSOR_PIN) != 0)
{
//pause print, show error message and then repeat last T-code
stop_and_save_print_to_ram(0, 0);
//lift z
current_position[Z_AXIS] += Z_PAUSE_LIFT;
if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
st_synchronize();
//Move XY to side
current_position[X_AXIS] = X_PAUSE_POS;
current_position[Y_AXIS] = Y_PAUSE_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
st_synchronize();
mmu_command(MmuCmd::U0);
manage_response(false, true, MMU_UNLOAD_MOVE);
setAllTargetHotends(0);
lcd_setstatuspgm(_i("MMU load failed "));////MSG_RECOVERING_PRINT c=20 r=1
mmu_fil_loaded = false; //so we can retry same T-code again
isPrintPaused = true;
mmu_command(MmuCmd::W0);
}
}
}
else { //mmu_ir_sensor_detected == false
mmu_command(MmuCmd::C0);
}
}