256 lines
9.6 KiB
C
256 lines
9.6 KiB
C
/*
|
|
planner.h - buffers movement commands and manages the acceleration profile plan
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// This module is to be considered a sub-module of stepper.c. Please don't include
|
|
// this file from any other module.
|
|
|
|
#ifndef planner_h
|
|
#define planner_h
|
|
|
|
#include "Marlin.h"
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
#include "vector_3.h"
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
enum BlockFlag {
|
|
// Planner flag to recalculate trapezoids on entry junction.
|
|
// This flag has an optimization purpose only.
|
|
BLOCK_FLAG_RECALCULATE = 1,
|
|
// Planner flag for nominal speed always reached. That means, the segment is long enough, that the nominal speed
|
|
// may be reached if accelerating from a safe speed (in the regard of jerking from zero speed).
|
|
BLOCK_FLAG_NOMINAL_LENGTH = 2,
|
|
// If set, the machine will start from a halt at the start of this block,
|
|
// respecting the maximum allowed jerk.
|
|
BLOCK_FLAG_START_FROM_FULL_HALT = 4,
|
|
// If set, the stepper interrupt expects, that the number of steps to tick will be lower
|
|
// than 32767, therefore the DDA algorithm may run with 16bit resolution only.
|
|
// In addition, the stepper routine will not do any end stop checking for higher performance.
|
|
BLOCK_FLAG_DDA_LOWRES = 8,
|
|
};
|
|
|
|
union dda_isteps_t
|
|
{
|
|
int32_t wide;
|
|
struct {
|
|
int16_t lo;
|
|
int16_t hi;
|
|
};
|
|
};
|
|
|
|
union dda_usteps_t
|
|
{
|
|
uint32_t wide;
|
|
struct {
|
|
uint16_t lo;
|
|
uint16_t hi;
|
|
};
|
|
};
|
|
|
|
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
|
|
// the source g-code and may never actually be reached if acceleration management is active.
|
|
typedef struct {
|
|
// Fields used by the bresenham algorithm for tracing the line
|
|
// steps_x.y,z, step_event_count, acceleration_rate, direction_bits and active_extruder are set by plan_buffer_line().
|
|
dda_isteps_t steps_x, steps_y, steps_z, steps_e; // Step count along each axis
|
|
dda_usteps_t step_event_count; // The number of step events required to complete this block
|
|
long acceleration_rate; // The acceleration rate used for acceleration calculation
|
|
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
|
|
unsigned char active_extruder; // Selects the active extruder
|
|
// accelerate_until and decelerate_after are set by calculate_trapezoid_for_block() and they need to be synchronized with the stepper interrupt controller.
|
|
long accelerate_until; // The index of the step event on which to stop acceleration
|
|
long decelerate_after; // The index of the step event on which to start decelerating
|
|
|
|
// Fields used by the motion planner to manage acceleration
|
|
// float speed_x, speed_y, speed_z, speed_e; // Nominal mm/sec for each axis
|
|
// The nominal speed for this block in mm/sec.
|
|
// This speed may or may not be reached due to the jerk and acceleration limits.
|
|
float nominal_speed;
|
|
// Entry speed at previous-current junction in mm/sec, respecting the acceleration and jerk limits.
|
|
// The entry speed limit of the current block equals the exit speed of the preceding block.
|
|
float entry_speed;
|
|
// Maximum allowable junction entry speed in mm/sec. This value is also a maximum exit speed of the previous block.
|
|
float max_entry_speed;
|
|
// The total travel of this block in mm
|
|
float millimeters;
|
|
// acceleration mm/sec^2
|
|
float acceleration;
|
|
|
|
// Bit flags defined by the BlockFlag enum.
|
|
uint8_t flag;
|
|
|
|
// Settings for the trapezoid generator (runs inside an interrupt handler).
|
|
// Changing the following values in the planner needs to be synchronized with the interrupt handler by disabling the interrupts.
|
|
//FIXME nominal_rate, initial_rate and final_rate are limited to uint16_t by MultiU24X24toH16 in the stepper interrupt anyway!
|
|
unsigned long nominal_rate; // The nominal step rate for this block in step_events/sec
|
|
unsigned long initial_rate; // The jerk-adjusted step rate at start of block
|
|
unsigned long final_rate; // The minimal rate at exit
|
|
unsigned long acceleration_st; // acceleration steps/sec^2
|
|
//FIXME does it have to be unsigned long? Probably uint8_t would be just fine.
|
|
unsigned long fan_speed;
|
|
volatile char busy;
|
|
|
|
|
|
// Pre-calculated division for the calculate_trapezoid_for_block() routine to run faster.
|
|
float speed_factor;
|
|
|
|
#ifdef LIN_ADVANCE
|
|
bool use_advance_lead;
|
|
unsigned long abs_adv_steps_multiplier8; // Factorised by 2^8 to avoid float
|
|
#endif
|
|
|
|
uint16_t sdlen;
|
|
} block_t;
|
|
|
|
#ifdef LIN_ADVANCE
|
|
extern float extruder_advance_k, advance_ed_ratio;
|
|
#endif
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
// this holds the required transform to compensate for bed level
|
|
extern matrix_3x3 plan_bed_level_matrix;
|
|
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
// Initialize the motion plan subsystem
|
|
void plan_init();
|
|
|
|
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
|
|
// millimaters. Feed rate specifies the speed of the motion.
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
|
|
|
|
// Get the position applying the bed level matrix if enabled
|
|
vector_3 plan_get_position();
|
|
#else
|
|
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
|
|
//void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
// Set position. Used for G92 instructions.
|
|
//#ifdef ENABLE_AUTO_BED_LEVELING
|
|
void plan_set_position(float x, float y, float z, const float &e);
|
|
//#else
|
|
//void plan_set_position(const float &x, const float &y, const float &z, const float &e);
|
|
//#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
void plan_set_z_position(const float &z);
|
|
void plan_set_e_position(const float &e);
|
|
|
|
extern bool e_active();
|
|
|
|
void check_axes_activity();
|
|
|
|
// Use M203 to override by software
|
|
extern float* max_feedrate;
|
|
|
|
|
|
// Use M201 to override by software
|
|
extern unsigned long* max_acceleration_units_per_sq_second;
|
|
extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
|
|
|
extern long position[NUM_AXIS];
|
|
extern uint8_t maxlimit_status;
|
|
|
|
|
|
#ifdef AUTOTEMP
|
|
extern bool autotemp_enabled;
|
|
extern float autotemp_max;
|
|
extern float autotemp_min;
|
|
extern float autotemp_factor;
|
|
#endif
|
|
|
|
|
|
|
|
|
|
extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
|
|
// Index of the next block to be pushed into the planner queue.
|
|
extern volatile unsigned char block_buffer_head;
|
|
// Index of the first block in the planner queue.
|
|
// This is the block, which is being currently processed by the stepper routine,
|
|
// or which is first to be processed by the stepper routine.
|
|
extern volatile unsigned char block_buffer_tail;
|
|
// Called when the current block is no longer needed. Discards the block and makes the memory
|
|
// available for new blocks.
|
|
FORCE_INLINE void plan_discard_current_block()
|
|
{
|
|
if (block_buffer_head != block_buffer_tail) {
|
|
block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
|
|
}
|
|
}
|
|
|
|
// Gets the current block. This is the block to be exectuted by the stepper routine.
|
|
// Mark this block as busy, so its velocities and acceperations will be no more recalculated
|
|
// by the planner routine.
|
|
// Returns NULL if buffer empty
|
|
FORCE_INLINE block_t *plan_get_current_block()
|
|
{
|
|
if (block_buffer_head == block_buffer_tail) {
|
|
return(NULL);
|
|
}
|
|
block_t *block = &block_buffer[block_buffer_tail];
|
|
block->busy = true;
|
|
return(block);
|
|
}
|
|
|
|
// Returns true if the buffer has a queued block, false otherwise
|
|
FORCE_INLINE bool blocks_queued() {
|
|
return (block_buffer_head != block_buffer_tail);
|
|
}
|
|
|
|
//return the nr of buffered moves
|
|
FORCE_INLINE uint8_t moves_planned() {
|
|
return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
|
|
}
|
|
|
|
FORCE_INLINE bool planner_queue_full() {
|
|
unsigned char next_block_index = block_buffer_head;
|
|
if (++ next_block_index == BLOCK_BUFFER_SIZE)
|
|
next_block_index = 0;
|
|
return block_buffer_tail == next_block_index;
|
|
}
|
|
|
|
// Abort the stepper routine, clean up the block queue,
|
|
// wait for the steppers to stop,
|
|
// update planner's current position and the current_position of the front end.
|
|
extern void planner_abort_hard();
|
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
void set_extrude_min_temp(float temp);
|
|
#endif
|
|
|
|
void reset_acceleration_rates();
|
|
#endif
|
|
|
|
void update_mode_profile();
|
|
|
|
unsigned char number_of_blocks();
|
|
|
|
// #define PLANNER_DIAGNOSTICS
|
|
#ifdef PLANNER_DIAGNOSTICS
|
|
// Diagnostic functions to display planner buffer underflow on the display.
|
|
extern uint8_t planner_queue_min();
|
|
// Diagnostic function: Reset the minimum planner segments.
|
|
extern void planner_queue_min_reset();
|
|
#endif /* PLANNER_DIAGNOSTICS */
|
|
|
|
extern void planner_add_sd_length(uint16_t sdlen);
|
|
|
|
extern uint16_t planner_calc_sd_length();
|