Prusa-Firmware/Firmware/ultralcd.cpp

8128 lines
224 KiB
C++

#include "temperature.h"
#include "ultralcd.h"
#ifdef ULTRA_LCD
#include "MenuStack.h"
#include "Marlin.h"
#include "language.h"
#include "cardreader.h"
#include "temperature.h"
#include "stepper.h"
#include "ConfigurationStore.h"
#include <string.h>
#include "Timer.h"
#include "util.h"
#include "mesh_bed_leveling.h"
//#include "Configuration.h"
#include "cmdqueue.h"
#include "SdFatUtil.h"
#ifdef PAT9125
#include "pat9125.h"
#endif //PAT9125
#ifdef TMC2130
#include "tmc2130.h"
#endif //TMC2130
#define _STRINGIFY(s) #s
int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */
extern int lcd_change_fil_state;
extern bool fans_check_enabled;
extern bool filament_autoload_enabled;
#ifdef PAT9125
extern bool fsensor_not_responding;
extern bool fsensor_enabled;
#endif //PAT9125
//Function pointer to menu functions.
static void lcd_sd_updir();
struct EditMenuParentState
{
//prevMenu and prevEncoderPosition are used to store the previous menu location when editing settings.
menuFunc_t prevMenu;
uint16_t prevEncoderPosition;
//Variables used when editing values.
const char* editLabel;
void* editValue;
int32_t minEditValue, maxEditValue;
// menuFunc_t callbackFunc;
};
union MenuData
{
struct BabyStep
{
// 29B total
int8_t status;
int babystepMem[3];
float babystepMemMM[3];
} babyStep;
struct SupportMenu
{
// 6B+16B=22B total
int8_t status;
bool is_flash_air;
uint8_t ip[4];
char ip_str[3*4+3+1];
} supportMenu;
struct AdjustBed
{
// 6+13+16=35B
// editMenuParentState is used when an edit menu is entered, so it knows
// the return menu and encoder state.
struct EditMenuParentState editMenuParentState;
int8_t status;
int8_t left;
int8_t right;
int8_t front;
int8_t rear;
int left2;
int right2;
int front2;
int rear2;
} adjustBed;
struct TuneMenu
{
// editMenuParentState is used when an edit menu is entered, so it knows
// the return menu and encoder state.
struct EditMenuParentState editMenuParentState;
// To recognize, whether the menu has been just initialized.
int8_t status;
// Backup of extrudemultiply, to recognize, that the value has been changed and
// it needs to be applied.
int16_t extrudemultiply;
} tuneMenu;
// editMenuParentState is used when an edit menu is entered, so it knows
// the return menu and encoder state.
struct EditMenuParentState editMenuParentState;
struct AutoLoadFilamentMenu
{
//Timer timer;
char dummy;
} autoLoadFilamentMenu;
};
// State of the currently active menu.
// C Union manages sharing of the static memory by all the menus.
union MenuData menuData = { 0 };
union Data
{
byte b[2];
int value;
};
static MenuStack menuStack;
int8_t ReInitLCD = 0;
int8_t SDscrool = 0;
int8_t SilentModeMenu = SILENT_MODE_OFF;
int8_t FSensorStateMenu = 1;
int8_t CrashDetectMenu = 1;
extern void fsensor_block();
extern void fsensor_unblock();
extern bool fsensor_enable();
extern void fsensor_disable();
#ifdef TMC2130
extern void crashdet_enable();
extern void crashdet_disable();
#endif //TMC2130
#ifdef SNMM
uint8_t snmm_extruder = 0;
#endif
#ifdef SDCARD_SORT_ALPHA
bool presort_flag = false;
#endif
int lcd_commands_type=LCD_COMMAND_IDLE;
int lcd_commands_step=0;
bool isPrintPaused = false;
uint8_t farm_mode = 0;
int farm_no = 0;
int farm_timer = 8;
int farm_status = 0;
unsigned long allert_timer = millis();
bool printer_connected = true;
unsigned long display_time; //just timer for showing pid finished message on lcd;
float pid_temp = DEFAULT_PID_TEMP;
bool long_press_active = false;
long long_press_timer = millis();
unsigned long button_blanking_time = millis();
bool button_pressed = false;
bool menuExiting = false;
#ifdef FILAMENT_LCD_DISPLAY
unsigned long message_millis = 0;
#endif
#ifdef ULTIPANEL
static float manual_feedrate[] = MANUAL_FEEDRATE;
#endif // ULTIPANEL
/* !Configuration settings */
uint8_t lcd_status_message_level;
char lcd_status_message[LCD_WIDTH + 1] = ""; //////WELCOME!
unsigned char firstrun = 1;
#include "ultralcd_implementation_hitachi_HD44780.h"
/** forward declarations **/
static const char* lcd_display_message_fullscreen_nonBlocking_P(const char *msg, uint8_t &nlines);
// void copy_and_scalePID_i();
// void copy_and_scalePID_d();
/* Different menus */
static void lcd_status_screen();
#ifdef ULTIPANEL
extern bool powersupply;
static void lcd_main_menu();
static void lcd_tune_menu();
static void lcd_prepare_menu();
//static void lcd_move_menu();
static void lcd_settings_menu();
static void lcd_calibration_menu();
static void lcd_language_menu();
static void lcd_control_temperature_menu();
static void lcd_control_temperature_preheat_pla_settings_menu();
static void lcd_control_temperature_preheat_abs_settings_menu();
static void lcd_control_motion_menu();
static void lcd_control_volumetric_menu();
static void lcd_settings_menu_back();
static void prusa_stat_printerstatus(int _status);
static void prusa_stat_farm_number();
static void prusa_stat_temperatures();
static void prusa_stat_printinfo();
static void lcd_farm_no();
static void lcd_menu_extruder_info();
#if defined(TMC2130) || defined(PAT9125)
static void lcd_menu_fails_stats();
#endif //TMC2130 or PAT9125
void lcd_finishstatus();
#ifdef DOGLCD
static void lcd_set_contrast();
#endif
static void lcd_control_retract_menu();
static void lcd_sdcard_menu();
#ifdef DELTA_CALIBRATION_MENU
static void lcd_delta_calibrate_menu();
#endif // DELTA_CALIBRATION_MENU
static void lcd_quick_feedback();//Cause an LCD refresh, and give the user visual or audible feedback that something has happened
/* Different types of actions that can be used in menu items. */
static void menu_action_back(menuFunc_t data = 0);
#define menu_action_back_RAM menu_action_back
static void menu_action_submenu(menuFunc_t data);
static void menu_action_gcode(const char* pgcode);
static void menu_action_function(menuFunc_t data);
static void menu_action_setlang(unsigned char lang);
static void menu_action_sdfile(const char* filename, char* longFilename);
static void menu_action_sddirectory(const char* filename, char* longFilename);
static void menu_action_setting_edit_bool(const char* pstr, bool* ptr);
static void menu_action_setting_edit_wfac(const char* pstr, uint8_t* ptr, uint8_t minValue, uint8_t maxValue);
static void menu_action_setting_edit_mres(const char* pstr, uint8_t* ptr, uint8_t minValue, uint8_t maxValue);
static void menu_action_setting_edit_byte3(const char* pstr, uint8_t* ptr, uint8_t minValue, uint8_t maxValue);
static void menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue);
static void menu_action_setting_edit_float3(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float32(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float43(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float5(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float51(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float52(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue);
/*
static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float3(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float32(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float43(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float5(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float51(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float52(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue, menuFunc_t callbackFunc);
*/
#define ENCODER_FEEDRATE_DEADZONE 10
#if !defined(LCD_I2C_VIKI)
#ifndef ENCODER_STEPS_PER_MENU_ITEM
#define ENCODER_STEPS_PER_MENU_ITEM 5
#endif
#ifndef ENCODER_PULSES_PER_STEP
#define ENCODER_PULSES_PER_STEP 1
#endif
#else
#ifndef ENCODER_STEPS_PER_MENU_ITEM
#define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation
#endif
#ifndef ENCODER_PULSES_PER_STEP
#define ENCODER_PULSES_PER_STEP 1
#endif
#endif
/* Helper macros for menus */
#define START_MENU() do { \
if (encoderPosition > 0x8000) encoderPosition = 0; \
if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM < currentMenuViewOffset) currentMenuViewOffset = encoderPosition / ENCODER_STEPS_PER_MENU_ITEM;\
uint8_t _lineNr = currentMenuViewOffset, _menuItemNr; \
bool wasClicked = LCD_CLICKED;\
for(uint8_t _drawLineNr = 0; _drawLineNr < LCD_HEIGHT; _drawLineNr++, _lineNr++) { \
_menuItemNr = 0;
#define MENU_ITEM(type, label, args...) do { \
if (_menuItemNr == _lineNr) { \
if (lcdDrawUpdate) { \
const char* _label_pstr = (label); \
if ((encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) { \
lcd_implementation_drawmenu_ ## type ## _selected (_drawLineNr, _label_pstr , ## args ); \
}else{\
lcd_implementation_drawmenu_ ## type (_drawLineNr, _label_pstr , ## args ); \
}\
}\
if (wasClicked && (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) {\
lcd_quick_feedback(); \
menu_action_ ## type ( args ); \
return;\
}\
}\
_menuItemNr++;\
} while(0)
#define MENU_ITEM_DUMMY() do { _menuItemNr++; } while(0)
#define MENU_ITEM_EDIT(type, label, args...) MENU_ITEM(setting_edit_ ## type, label, (label) , ## args )
#define MENU_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, (label) , ## args )
#define END_MENU() \
if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM >= _menuItemNr) encoderPosition = _menuItemNr * ENCODER_STEPS_PER_MENU_ITEM - 1; \
if ((uint8_t)(encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) >= currentMenuViewOffset + LCD_HEIGHT) { currentMenuViewOffset = (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) - LCD_HEIGHT + 1; lcdDrawUpdate = 1; _lineNr = currentMenuViewOffset - 1; _drawLineNr = -1; } \
} } while(0)
/** Used variables to keep track of the menu */
#ifndef REPRAPWORLD_KEYPAD
volatile uint8_t buttons;//Contains the bits of the currently pressed buttons.
#else
volatile uint8_t buttons_reprapworld_keypad; // to store the reprapworld_keypad shift register values
#endif
#ifdef LCD_HAS_SLOW_BUTTONS
volatile uint8_t slow_buttons;//Contains the bits of the currently pressed buttons.
#endif
uint8_t currentMenuViewOffset; /* scroll offset in the current menu */
uint8_t lastEncoderBits;
uint32_t encoderPosition;
#if (SDCARDDETECT > 0)
bool lcd_oldcardstatus;
#endif
#endif //ULTIPANEL
menuFunc_t currentMenu = lcd_status_screen; /* function pointer to the currently active menu */
uint32_t lcd_next_update_millis;
uint8_t lcd_status_update_delay;
bool ignore_click = false;
bool wait_for_unclick;
uint8_t lcdDrawUpdate = 2; /* Set to none-zero when the LCD needs to draw, decreased after every draw. Set to 2 in LCD routines so the LCD gets at least 1 full redraw (first redraw is partial) */
// place-holders for Ki and Kd edits
#ifdef PIDTEMP
// float raw_Ki, raw_Kd;
#endif
/**
* @brief Go to menu
*
* In MENU_ITEM(submenu,... ) use MENU_ITEM(back,...) or
* menu_action_back() and menu_action_submenu() instead, otherwise menuStack will be broken.
*
* It is acceptable to call lcd_goto_menu(menu) directly from MENU_ITEM(function,...), if destination menu
* is the same, from which function was called.
*
* @param menu target menu
* @param encoder position in target menu
* @param feedback
* * true sound feedback (click)
* * false no feedback
* @param reset_menu_state
* * true reset menu state global union
* * false do not reset menu state global union
*/
static void lcd_goto_menu(menuFunc_t menu, const uint32_t encoder = 0, const bool feedback = true, bool reset_menu_state = true)
{
asm("cli");
if (currentMenu != menu)
{
currentMenu = menu;
encoderPosition = encoder;
asm("sei");
if (reset_menu_state)
{
// Resets the global shared C union.
// This ensures, that the menu entered will find out, that it shall initialize itself.
memset(&menuData, 0, sizeof(menuData));
}
if (feedback) lcd_quick_feedback();
// For LCD_PROGRESS_BAR re-initialize the custom characters
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
lcd_set_custom_characters(menu == lcd_status_screen);
#endif
}
else
asm("sei");
}
/* Main status screen. It's up to the implementation specific part to show what is needed. As this is very display dependent */
// Language selection dialog not active.
#define LANGSEL_OFF 0
// Language selection dialog modal, entered from the info screen. This is the case on firmware boot up,
// if the language index stored in the EEPROM is not valid.
#define LANGSEL_MODAL 1
// Language selection dialog entered from the Setup menu.
#define LANGSEL_ACTIVE 2
// Language selection dialog status
unsigned char langsel = LANGSEL_OFF;
void set_language_from_EEPROM() {
unsigned char eep = eeprom_read_byte((unsigned char*)EEPROM_LANG);
if (eep < LANG_NUM)
{
lang_selected = eep;
// Language is valid, no need to enter the language selection screen.
langsel = LANGSEL_OFF;
}
else
{
lang_selected = LANG_ID_DEFAULT;
// Invalid language, enter the language selection screen in a modal mode.
langsel = LANGSEL_MODAL;
}
}
static void lcd_status_screen()
{
if (firstrun == 1)
{
firstrun = 0;
set_language_from_EEPROM();
if(lcd_status_message_level == 0){
strncpy_P(lcd_status_message, WELCOME_MSG, LCD_WIDTH);
lcd_finishstatus();
}
if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
{
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
}
if (langsel) {
//strncpy_P(lcd_status_message, PSTR(">>>>>>>>>>>> PRESS v"), LCD_WIDTH);
// Entering the language selection screen in a modal mode.
}
}
if (lcd_status_update_delay)
lcd_status_update_delay--;
else
lcdDrawUpdate = 1;
if (lcdDrawUpdate)
{
ReInitLCD++;
if (ReInitLCD == 30) {
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
currentMenu == lcd_status_screen
#endif
);
ReInitLCD = 0 ;
} else {
if ((ReInitLCD % 10) == 0) {
//lcd_implementation_nodisplay();
lcd_implementation_init_noclear( // to maybe revive the LCD if static electricity killed it.
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
currentMenu == lcd_status_screen
#endif
);
}
}
//lcd_implementation_display();
lcd_implementation_status_screen();
//lcd_implementation_clear();
if (farm_mode)
{
farm_timer--;
if (farm_timer < 1)
{
farm_timer = 10;
prusa_statistics(0);
}
switch (farm_timer)
{
case 8:
prusa_statistics(21);
break;
case 5:
if (IS_SD_PRINTING)
{
prusa_statistics(20);
}
break;
}
} // end of farm_mode
lcd_status_update_delay = 10; /* redraw the main screen every second. This is easier then trying keep track of all things that change on the screen */
if (lcd_commands_type != LCD_COMMAND_IDLE)
{
lcd_commands();
}
} // end of lcdDrawUpdate
#ifdef ULTIPANEL
bool current_click = LCD_CLICKED;
if (ignore_click) {
if (wait_for_unclick) {
if (!current_click) {
ignore_click = wait_for_unclick = false;
}
else {
current_click = false;
}
}
else if (current_click) {
lcd_quick_feedback();
wait_for_unclick = true;
current_click = false;
}
}
//if (--langsel ==0) {langsel=1;current_click=true;}
if (current_click && (lcd_commands_type != LCD_COMMAND_STOP_PRINT)) //click is aborted unless stop print finishes
{
menuStack.reset(); //redundant, as already done in lcd_return_to_status(), just to be sure
menu_action_submenu(lcd_main_menu);
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
currentMenu == lcd_status_screen
#endif
);
#ifdef FILAMENT_LCD_DISPLAY
message_millis = millis(); // get status message to show up for a while
#endif
}
#ifdef ULTIPANEL_FEEDMULTIPLY
// Dead zone at 100% feedrate
if ((feedmultiply < 100 && (feedmultiply + int(encoderPosition)) > 100) ||
(feedmultiply > 100 && (feedmultiply + int(encoderPosition)) < 100))
{
encoderPosition = 0;
feedmultiply = 100;
}
if (feedmultiply == 100 && int(encoderPosition) > ENCODER_FEEDRATE_DEADZONE)
{
feedmultiply += int(encoderPosition) - ENCODER_FEEDRATE_DEADZONE;
encoderPosition = 0;
}
else if (feedmultiply == 100 && int(encoderPosition) < -ENCODER_FEEDRATE_DEADZONE)
{
feedmultiply += int(encoderPosition) + ENCODER_FEEDRATE_DEADZONE;
encoderPosition = 0;
}
else if (feedmultiply != 100)
{
feedmultiply += int(encoderPosition);
encoderPosition = 0;
}
#endif //ULTIPANEL_FEEDMULTIPLY
if (feedmultiply < 10)
feedmultiply = 10;
else if (feedmultiply > 999)
feedmultiply = 999;
#endif //ULTIPANEL
/*if (farm_mode && !printer_connected) {
lcd.setCursor(0, 3);
lcd_printPGM(MSG_PRINTER_DISCONNECTED);
}*/
//#define FSENS_FACTOR (2580.8/50) //filament sensor factor [steps / encoder counts]
//#define FSENS_FACTOR (2580.8/45.3) //filament sensor factor [steps / encoder counts]
//lcd.setCursor(0, 3);
//lcd_implementation_print(" ");
//lcd.setCursor(0, 3);
//lcd_implementation_print(pat9125_x);
//lcd.setCursor(6, 3);
//lcd_implementation_print(pat9125_y);
//lcd.setCursor(12, 3);
//lcd_implementation_print(pat9125_b);
}
#ifdef ULTIPANEL
void lcd_commands()
{
if (lcd_commands_type == LCD_COMMAND_LONG_PAUSE)
{
if(lcd_commands_step == 0) {
if (card.sdprinting) {
card.pauseSDPrint();
lcd_setstatuspgm(MSG_FINISHING_MOVEMENTS);
lcdDrawUpdate = 3;
lcd_commands_step = 1;
}
else {
lcd_commands_type = 0;
}
}
if (lcd_commands_step == 1 && !blocks_queued() && !homing_flag) {
lcd_setstatuspgm(MSG_PRINT_PAUSED);
isPrintPaused = true;
long_pause();
lcd_commands_type = 0;
lcd_commands_step = 0;
}
}
if (lcd_commands_type == LCD_COMMAND_LONG_PAUSE_RESUME) {
char cmd1[30];
if (lcd_commands_step == 0) {
lcdDrawUpdate = 3;
lcd_commands_step = 4;
}
if (lcd_commands_step == 1 && !blocks_queued() && cmd_buffer_empty()) { //recover feedmultiply; cmd_buffer_empty() ensures that card.sdprinting is synchronized with buffered commands and thus print cant be paused until resume is finished
sprintf_P(cmd1, PSTR("M220 S%d"), saved_feedmultiply);
enquecommand(cmd1);
isPrintPaused = false;
pause_time += (millis() - start_pause_print); //accumulate time when print is paused for correct statistics calculation
card.startFileprint();
lcd_commands_step = 0;
lcd_commands_type = 0;
}
if (lcd_commands_step == 2 && !blocks_queued()) { //turn on fan, move Z and unretract
sprintf_P(cmd1, PSTR("M106 S%d"), fanSpeedBckp);
enquecommand(cmd1);
strcpy(cmd1, "G1 Z");
strcat(cmd1, ftostr32(pause_lastpos[Z_AXIS]));
enquecommand(cmd1);
if (axis_relative_modes[3] == false) {
enquecommand_P(PSTR("M83")); // set extruder to relative mode
enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION))); //unretract
enquecommand_P(PSTR("M82")); // set extruder to absolute mode
}
else {
enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION))); //unretract
}
lcd_commands_step = 1;
}
if (lcd_commands_step == 3 && !blocks_queued()) { //wait for nozzle to reach target temp
strcpy(cmd1, "M109 S");
strcat(cmd1, ftostr3(HotendTempBckp));
enquecommand(cmd1);
lcd_commands_step = 2;
}
if (lcd_commands_step == 4 && !blocks_queued()) { //set temperature back and move xy
strcpy(cmd1, "M104 S");
strcat(cmd1, ftostr3(HotendTempBckp));
enquecommand(cmd1);
enquecommand_P(PSTR("G90")); //absolute positioning
strcpy(cmd1, "G1 X");
strcat(cmd1, ftostr32(pause_lastpos[X_AXIS]));
strcat(cmd1, " Y");
strcat(cmd1, ftostr32(pause_lastpos[Y_AXIS]));
enquecommand(cmd1);
lcd_setstatuspgm(MSG_RESUMING_PRINT);
lcd_commands_step = 3;
}
}
#ifdef SNMM
if (lcd_commands_type == LCD_COMMAND_V2_CAL)
{
char cmd1[30];
float width = 0.4;
float length = 20 - width;
float extr = count_e(0.2, width, length);
float extr_short_segment = count_e(0.2, width, width);
if (lcd_commands_step>1) lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; //if user dont confirm live adjust Z value by pressing the knob, we are saving last value by timeout to status screen
if (lcd_commands_step == 0)
{
lcd_commands_step = 10;
}
if (lcd_commands_step == 10 && !blocks_queued() && cmd_buffer_empty())
{
enquecommand_P(PSTR("M107"));
enquecommand_P(PSTR("M104 S" STRINGIFY(PLA_PREHEAT_HOTEND_TEMP)));
enquecommand_P(PSTR("M140 S" STRINGIFY(PLA_PREHEAT_HPB_TEMP)));
enquecommand_P(PSTR("M190 S" STRINGIFY(PLA_PREHEAT_HPB_TEMP)));
enquecommand_P(PSTR("M109 S" STRINGIFY(PLA_PREHEAT_HOTEND_TEMP)));
enquecommand_P(PSTR("T0"));
enquecommand_P(MSG_M117_V2_CALIBRATION);
enquecommand_P(PSTR("G87")); //sets calibration status
enquecommand_P(PSTR("G28"));
enquecommand_P(PSTR("G21")); //set units to millimeters
enquecommand_P(PSTR("G90")); //use absolute coordinates
enquecommand_P(PSTR("M83")); //use relative distances for extrusion
enquecommand_P(PSTR("G92 E0"));
enquecommand_P(PSTR("M203 E100"));
enquecommand_P(PSTR("M92 E140"));
lcd_commands_step = 9;
}
if (lcd_commands_step == 9 && !blocks_queued() && cmd_buffer_empty())
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
enquecommand_P(PSTR("G1 Z0.250 F7200.000"));
enquecommand_P(PSTR("G1 X50.0 E80.0 F1000.0"));
enquecommand_P(PSTR("G1 X160.0 E20.0 F1000.0"));
enquecommand_P(PSTR("G1 Z0.200 F7200.000"));
enquecommand_P(PSTR("G1 X220.0 E13 F1000.0"));
enquecommand_P(PSTR("G1 X240.0 E0 F1000.0"));
enquecommand_P(PSTR("G92 E0.0"));
enquecommand_P(PSTR("G21"));
enquecommand_P(PSTR("G90"));
enquecommand_P(PSTR("M83"));
enquecommand_P(PSTR("G1 E-4 F2100.00000"));
enquecommand_P(PSTR("G1 Z0.150 F7200.000"));
enquecommand_P(PSTR("M204 S1000"));
enquecommand_P(PSTR("G1 F4000"));
lcd_implementation_clear();
lcd_goto_menu(lcd_babystep_z, 0, false);
lcd_commands_step = 8;
}
if (lcd_commands_step == 8 && !blocks_queued() && cmd_buffer_empty()) //draw meander
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
enquecommand_P(PSTR("G1 X50 Y155"));
enquecommand_P(PSTR("G1 X60 Y155 E4"));
enquecommand_P(PSTR("G1 F1080"));
enquecommand_P(PSTR("G1 X75 Y155 E2.5"));
enquecommand_P(PSTR("G1 X100 Y155 E2"));
enquecommand_P(PSTR("G1 X200 Y155 E2.62773"));
enquecommand_P(PSTR("G1 X200 Y135 E0.66174"));
enquecommand_P(PSTR("G1 X50 Y135 E3.62773"));
enquecommand_P(PSTR("G1 X50 Y115 E0.49386"));
enquecommand_P(PSTR("G1 X200 Y115 E3.62773"));
enquecommand_P(PSTR("G1 X200 Y95 E0.49386"));
enquecommand_P(PSTR("G1 X50 Y95 E3.62773"));
enquecommand_P(PSTR("G1 X50 Y75 E0.49386"));
enquecommand_P(PSTR("G1 X200 Y75 E3.62773"));
enquecommand_P(PSTR("G1 X200 Y55 E0.49386"));
enquecommand_P(PSTR("G1 X50 Y55 E3.62773"));
lcd_commands_step = 7;
}
if (lcd_commands_step == 7 && !blocks_queued() && cmd_buffer_empty())
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
strcpy(cmd1, "G1 X50 Y35 E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
for (int i = 0; i < 4; i++) {
strcpy(cmd1, "G1 X70 Y");
strcat(cmd1, ftostr32(35 - i*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
strcpy(cmd1, "G1 X50 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (i + 1)*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
}
lcd_commands_step = 6;
}
if (lcd_commands_step == 6 && !blocks_queued() && cmd_buffer_empty())
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
for (int i = 4; i < 8; i++) {
strcpy(cmd1, "G1 X70 Y");
strcat(cmd1, ftostr32(35 - i*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
strcpy(cmd1, "G1 X50 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (i + 1)*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
}
lcd_commands_step = 5;
}
if (lcd_commands_step == 5 && !blocks_queued() && cmd_buffer_empty())
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
for (int i = 8; i < 12; i++) {
strcpy(cmd1, "G1 X70 Y");
strcat(cmd1, ftostr32(35 - i*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
strcpy(cmd1, "G1 X50 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (i + 1)*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
}
lcd_commands_step = 4;
}
if (lcd_commands_step == 4 && !blocks_queued() && cmd_buffer_empty())
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
for (int i = 12; i < 16; i++) {
strcpy(cmd1, "G1 X70 Y");
strcat(cmd1, ftostr32(35 - i*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
strcpy(cmd1, "G1 X50 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (i + 1)*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
}
lcd_commands_step = 3;
}
if (lcd_commands_step == 3 && !blocks_queued() && cmd_buffer_empty())
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
enquecommand_P(PSTR("G1 E-0.07500 F2100.00000"));
enquecommand_P(PSTR("G4 S0"));
enquecommand_P(PSTR("G1 E-4 F2100.00000"));
enquecommand_P(PSTR("G1 Z0.5 F7200.000"));
enquecommand_P(PSTR("G1 X245 Y1"));
enquecommand_P(PSTR("G1 X240 E4"));
enquecommand_P(PSTR("G1 F4000"));
enquecommand_P(PSTR("G1 X190 E2.7"));
enquecommand_P(PSTR("G1 F4600"));
enquecommand_P(PSTR("G1 X110 E2.8"));
enquecommand_P(PSTR("G1 F5200"));
enquecommand_P(PSTR("G1 X40 E3"));
enquecommand_P(PSTR("G1 E-15.0000 F5000"));
enquecommand_P(PSTR("G1 E-50.0000 F5400"));
enquecommand_P(PSTR("G1 E-15.0000 F3000"));
enquecommand_P(PSTR("G1 E-12.0000 F2000"));
enquecommand_P(PSTR("G1 F1600"));
lcd_commands_step = 2;
}
if (lcd_commands_step == 2 && !blocks_queued() && cmd_buffer_empty())
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
enquecommand_P(PSTR("G1 X0 Y1 E3.0000"));
enquecommand_P(PSTR("G1 X50 Y1 E-5.0000"));
enquecommand_P(PSTR("G1 F2000"));
enquecommand_P(PSTR("G1 X0 Y1 E5.0000"));
enquecommand_P(PSTR("G1 X50 Y1 E-5.0000"));
enquecommand_P(PSTR("G1 F2400"));
enquecommand_P(PSTR("G1 X0 Y1 E5.0000"));
enquecommand_P(PSTR("G1 X50 Y1 E-5.0000"));
enquecommand_P(PSTR("G1 F2400"));
enquecommand_P(PSTR("G1 X0 Y1 E5.0000"));
enquecommand_P(PSTR("G1 X50 Y1 E-3.0000"));
enquecommand_P(PSTR("G4 S0"));
enquecommand_P(PSTR("M107"));
enquecommand_P(PSTR("M104 S0"));
enquecommand_P(PSTR("M140 S0"));
enquecommand_P(PSTR("G1 X10 Y180 F4000"));
enquecommand_P(PSTR("G1 Z10 F1300.000"));
enquecommand_P(PSTR("M84"));
lcd_commands_step = 1;
}
if (lcd_commands_step == 1 && !blocks_queued() && cmd_buffer_empty())
{
lcd_setstatuspgm(WELCOME_MSG);
lcd_commands_step = 0;
lcd_commands_type = 0;
if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
lcd_wizard(10);
}
}
}
#else //if not SNMM
if (lcd_commands_type == LCD_COMMAND_V2_CAL)
{
char cmd1[30];
float width = 0.4;
float length = 20 - width;
float extr = count_e(0.2, width, length);
float extr_short_segment = count_e(0.2, width, width);
if(lcd_commands_step>1) lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; //if user dont confirm live adjust Z value by pressing the knob, we are saving last value by timeout to status screen
if (lcd_commands_step == 0)
{
lcd_commands_step = 9;
}
if (lcd_commands_step == 9 && !blocks_queued() && cmd_buffer_empty())
{
enquecommand_P(PSTR("M107"));
enquecommand_P(PSTR("M104 S" STRINGIFY(PLA_PREHEAT_HOTEND_TEMP)));
enquecommand_P(PSTR("M140 S" STRINGIFY(PLA_PREHEAT_HPB_TEMP)));
enquecommand_P(PSTR("M190 S" STRINGIFY(PLA_PREHEAT_HPB_TEMP)));
enquecommand_P(PSTR("M109 S" STRINGIFY(PLA_PREHEAT_HOTEND_TEMP)));
enquecommand_P(MSG_M117_V2_CALIBRATION);
enquecommand_P(PSTR("G87")); //sets calibration status
enquecommand_P(PSTR("G28"));
enquecommand_P(PSTR("G92 E0.0"));
lcd_commands_step = 8;
}
if (lcd_commands_step == 8 && !blocks_queued() && cmd_buffer_empty())
{
lcd_implementation_clear();
menuStack.reset();
menu_action_submenu(lcd_babystep_z);
enquecommand_P(PSTR("G1 X60.0 E9.0 F1000.0")); //intro line
enquecommand_P(PSTR("G1 X100.0 E12.5 F1000.0")); //intro line
enquecommand_P(PSTR("G92 E0.0"));
enquecommand_P(PSTR("G21")); //set units to millimeters
enquecommand_P(PSTR("G90")); //use absolute coordinates
enquecommand_P(PSTR("M83")); //use relative distances for extrusion
enquecommand_P(PSTR("G1 E-1.50000 F2100.00000"));
enquecommand_P(PSTR("G1 Z0.150 F7200.000"));
enquecommand_P(PSTR("M204 S1000")); //set acceleration
enquecommand_P(PSTR("G1 F4000"));
lcd_commands_step = 7;
}
if (lcd_commands_step == 7 && !blocks_queued() && cmd_buffer_empty()) //draw meander
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
//just opposite direction
/*enquecommand_P(PSTR("G1 X50 Y55"));
enquecommand_P(PSTR("G1 F1080"));
enquecommand_P(PSTR("G1 X200 Y55 E3.62773"));
enquecommand_P(PSTR("G1 X200 Y75 E0.49386"));
enquecommand_P(PSTR("G1 X50 Y75 E3.62773"));
enquecommand_P(PSTR("G1 X50 Y95 E0.49386"));
enquecommand_P(PSTR("G1 X200 Y95 E3.62773"));
enquecommand_P(PSTR("G1 X200 Y115 E0.49386"));
enquecommand_P(PSTR("G1 X50 Y115 E3.62773"));
enquecommand_P(PSTR("G1 X50 Y135 E0.49386"));
enquecommand_P(PSTR("G1 X200 Y135 E3.62773"));
enquecommand_P(PSTR("G1 X200 Y155 E0.66174"));
enquecommand_P(PSTR("G1 X100 Y155 E2.62773"));
enquecommand_P(PSTR("G1 X75 Y155 E2"));
enquecommand_P(PSTR("G1 X50 Y155 E2.5"));
enquecommand_P(PSTR("G1 E - 0.07500 F2100.00000"));*/
enquecommand_P(PSTR("G1 X50 Y155"));
enquecommand_P(PSTR("G1 F1080"));
enquecommand_P(PSTR("G1 X75 Y155 E2.5"));
enquecommand_P(PSTR("G1 X100 Y155 E2"));
enquecommand_P(PSTR("G1 X200 Y155 E2.62773"));
enquecommand_P(PSTR("G1 X200 Y135 E0.66174"));
enquecommand_P(PSTR("G1 X50 Y135 E3.62773"));
enquecommand_P(PSTR("G1 X50 Y115 E0.49386"));
enquecommand_P(PSTR("G1 X200 Y115 E3.62773"));
enquecommand_P(PSTR("G1 X200 Y95 E0.49386"));
enquecommand_P(PSTR("G1 X50 Y95 E3.62773"));
enquecommand_P(PSTR("G1 X50 Y75 E0.49386"));
enquecommand_P(PSTR("G1 X200 Y75 E3.62773"));
enquecommand_P(PSTR("G1 X200 Y55 E0.49386"));
enquecommand_P(PSTR("G1 X50 Y55 E3.62773"));
strcpy(cmd1, "G1 X50 Y35 E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
lcd_commands_step = 6;
}
if (lcd_commands_step == 6 && !blocks_queued() && cmd_buffer_empty())
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
for (int i = 0; i < 4; i++) {
strcpy(cmd1, "G1 X70 Y");
strcat(cmd1, ftostr32(35 - i*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
strcpy(cmd1, "G1 X50 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (i + 1)*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
}
lcd_commands_step = 5;
}
if (lcd_commands_step == 5 && !blocks_queued() && cmd_buffer_empty())
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
for (int i = 4; i < 8; i++) {
strcpy(cmd1, "G1 X70 Y");
strcat(cmd1, ftostr32(35 - i*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
strcpy(cmd1, "G1 X50 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (i + 1)*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
}
lcd_commands_step = 4;
}
if (lcd_commands_step == 4 && !blocks_queued() && cmd_buffer_empty())
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
for (int i = 8; i < 12; i++) {
strcpy(cmd1, "G1 X70 Y");
strcat(cmd1, ftostr32(35 - i*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
strcpy(cmd1, "G1 X50 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (i + 1)*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
}
lcd_commands_step = 3;
}
if (lcd_commands_step == 3 && !blocks_queued() && cmd_buffer_empty())
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
for (int i = 12; i < 16; i++) {
strcpy(cmd1, "G1 X70 Y");
strcat(cmd1, ftostr32(35 - i*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
strcpy(cmd1, "G1 X50 Y");
strcat(cmd1, ftostr32(35 - (2 * i + 1)*width));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr));
enquecommand(cmd1);
strcpy(cmd1, "G1 Y");
strcat(cmd1, ftostr32(35 - (i + 1)*width * 2));
strcat(cmd1, " E");
strcat(cmd1, ftostr43(extr_short_segment));
enquecommand(cmd1);
}
lcd_commands_step = 2;
}
if (lcd_commands_step == 2 && !blocks_queued() && cmd_buffer_empty())
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
enquecommand_P(PSTR("G1 E-0.07500 F2100.00000"));
enquecommand_P(PSTR("M107")); //turn off printer fan
enquecommand_P(PSTR("M104 S0")); // turn off temperature
enquecommand_P(PSTR("M140 S0")); // turn off heatbed
enquecommand_P(PSTR("G1 Z10 F1300.000"));
enquecommand_P(PSTR("G1 X10 Y180 F4000")); //home X axis
enquecommand_P(PSTR("M84"));// disable motors
lcd_timeoutToStatus = millis() - 1; //if user dont confirm live adjust Z value by pressing the knob, we are saving last value by timeout to status screen
lcd_commands_step = 1;
}
if (lcd_commands_step == 1 && !blocks_queued() && cmd_buffer_empty())
{
lcd_setstatuspgm(WELCOME_MSG);
lcd_commands_step = 0;
lcd_commands_type = 0;
if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
lcd_wizard(10);
}
}
}
#endif // not SNMM
if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) /// stop print
{
if (lcd_commands_step == 0)
{
lcd_commands_step = 6;
custom_message = true;
}
if (lcd_commands_step == 1 && !blocks_queued())
{
lcd_commands_step = 0;
lcd_commands_type = 0;
lcd_setstatuspgm(WELCOME_MSG);
custom_message_type = 0;
custom_message = false;
isPrintPaused = false;
}
if (lcd_commands_step == 2 && !blocks_queued())
{
setTargetBed(0);
enquecommand_P(PSTR("M104 S0")); //set hotend temp to 0
manage_heater();
lcd_setstatuspgm(WELCOME_MSG);
cancel_heatup = false;
lcd_commands_step = 1;
}
if (lcd_commands_step == 3 && !blocks_queued())
{
// M84: Disable steppers.
enquecommand_P(PSTR("M84"));
autotempShutdown();
lcd_commands_step = 2;
}
if (lcd_commands_step == 4 && !blocks_queued())
{
lcd_setstatuspgm(MSG_PLEASE_WAIT);
// G90: Absolute positioning.
enquecommand_P(PSTR("G90"));
// M83: Set extruder to relative mode.
enquecommand_P(PSTR("M83"));
#ifdef X_CANCEL_POS
enquecommand_P(PSTR("G1 X" STRINGIFY(X_CANCEL_POS) " Y" STRINGIFY(Y_CANCEL_POS) " E0 F7000"));
#else
enquecommand_P(PSTR("G1 X50 Y" STRINGIFY(Y_MAX_POS) " E0 F7000"));
#endif
lcd_ignore_click(false);
#ifdef SNMM
lcd_commands_step = 8;
#else
lcd_commands_step = 3;
#endif
}
if (lcd_commands_step == 5 && !blocks_queued())
{
lcd_setstatuspgm(MSG_PRINT_ABORTED);
// G91: Set to relative positioning.
enquecommand_P(PSTR("G91"));
// Lift up.
enquecommand_P(PSTR("G1 Z15 F1500"));
if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) lcd_commands_step = 4;
else lcd_commands_step = 3;
}
if (lcd_commands_step == 6 && !blocks_queued())
{
lcd_setstatuspgm(MSG_PRINT_ABORTED);
cancel_heatup = true;
setTargetBed(0);
#ifndef SNMM
setTargetHotend(0, 0); //heating when changing filament for multicolor
setTargetHotend(0, 1);
setTargetHotend(0, 2);
#endif
manage_heater();
custom_message = true;
custom_message_type = 2;
lcd_commands_step = 5;
}
if (lcd_commands_step == 7 && !blocks_queued()) {
switch(snmm_stop_print_menu()) {
case 0: enquecommand_P(PSTR("M702")); break;//all
case 1: enquecommand_P(PSTR("M702 U")); break; //used
case 2: enquecommand_P(PSTR("M702 C")); break; //current
default: enquecommand_P(PSTR("M702")); break;
}
lcd_commands_step = 3;
}
if (lcd_commands_step == 8 && !blocks_queued()) { //step 8 is here for delay (going to next step after execution of all gcodes from step 4)
lcd_commands_step = 7;
}
}
if (lcd_commands_type == 3)
{
lcd_commands_type = 0;
}
if (lcd_commands_type == LCD_COMMAND_FARM_MODE_CONFIRM) /// farm mode confirm
{
if (lcd_commands_step == 0) { lcd_commands_step = 6; custom_message = true; }
if (lcd_commands_step == 1 && !blocks_queued())
{
lcd_confirm_print();
lcd_commands_step = 0;
lcd_commands_type = 0;
}
if (lcd_commands_step == 2 && !blocks_queued())
{
lcd_commands_step = 1;
}
if (lcd_commands_step == 3 && !blocks_queued())
{
lcd_commands_step = 2;
}
if (lcd_commands_step == 4 && !blocks_queued())
{
enquecommand_P(PSTR("G90"));
enquecommand_P(PSTR("G1 X" STRINGIFY(X_CANCEL_POS) " Y" STRINGIFY(Y_CANCEL_POS) " E0 F7000"));
lcd_commands_step = 3;
}
if (lcd_commands_step == 5 && !blocks_queued())
{
lcd_commands_step = 4;
}
if (lcd_commands_step == 6 && !blocks_queued())
{
enquecommand_P(PSTR("G91"));
enquecommand_P(PSTR("G1 Z15 F1500"));
st_synchronize();
#ifdef SNMM
lcd_commands_step = 7;
#else
lcd_commands_step = 5;
#endif
}
}
if (lcd_commands_type == LCD_COMMAND_PID_EXTRUDER) {
char cmd1[30];
if (lcd_commands_step == 0) {
custom_message_type = 3;
custom_message_state = 1;
custom_message = true;
lcdDrawUpdate = 3;
lcd_commands_step = 3;
}
if (lcd_commands_step == 3 && !blocks_queued()) { //PID calibration
strcpy(cmd1, "M303 E0 S");
strcat(cmd1, ftostr3(pid_temp));
enquecommand(cmd1);
lcd_setstatuspgm(MSG_PID_RUNNING);
lcd_commands_step = 2;
}
if (lcd_commands_step == 2 && pid_tuning_finished) { //saving to eeprom
pid_tuning_finished = false;
custom_message_state = 0;
lcd_setstatuspgm(MSG_PID_FINISHED);
if (_Kp != 0 || _Ki != 0 || _Kd != 0) {
strcpy(cmd1, "M301 P");
strcat(cmd1, ftostr32(_Kp));
strcat(cmd1, " I");
strcat(cmd1, ftostr32(_Ki));
strcat(cmd1, " D");
strcat(cmd1, ftostr32(_Kd));
enquecommand(cmd1);
enquecommand_P(PSTR("M500"));
}
else {
SERIAL_ECHOPGM("Invalid PID cal. results. Not stored to EEPROM.");
}
display_time = millis();
lcd_commands_step = 1;
}
if ((lcd_commands_step == 1) && ((millis()- display_time)>2000)) { //calibration finished message
lcd_setstatuspgm(WELCOME_MSG);
custom_message_type = 0;
custom_message = false;
pid_temp = DEFAULT_PID_TEMP;
lcd_commands_step = 0;
lcd_commands_type = 0;
}
}
}
static float count_e(float layer_heigth, float extrusion_width, float extrusion_length) {
//returns filament length in mm which needs to be extrude to form line with extrusion_length * extrusion_width * layer heigth dimensions
float extr = extrusion_length * layer_heigth * extrusion_width / (M_PI * pow(1.75, 2) / 4);
return extr;
}
static void lcd_return_to_status() {
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
currentMenu == lcd_status_screen
#endif
);
lcd_goto_menu(lcd_status_screen, 0, false);
menuStack.reset();
}
void lcd_sdcard_pause() {
lcd_return_to_status();
lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
}
static void lcd_sdcard_resume() {
lcd_return_to_status();
lcd_reset_alert_level(); //for fan speed error
lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
}
float move_menu_scale;
static void lcd_move_menu_axis();
/* Menu implementation */
void lcd_preheat_farm()
{
setTargetHotend0(FARM_PREHEAT_HOTEND_TEMP);
setTargetBed(FARM_PREHEAT_HPB_TEMP);
fanSpeed = 0;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_farm_nozzle()
{
setTargetHotend0(FARM_PREHEAT_HOTEND_TEMP);
setTargetBed(0);
fanSpeed = 0;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_pla()
{
setTargetHotend0(PLA_PREHEAT_HOTEND_TEMP);
setTargetBed(PLA_PREHEAT_HPB_TEMP);
fanSpeed = 0;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_abs()
{
setTargetHotend0(ABS_PREHEAT_HOTEND_TEMP);
setTargetBed(ABS_PREHEAT_HPB_TEMP);
fanSpeed = 0;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_pp()
{
setTargetHotend0(PP_PREHEAT_HOTEND_TEMP);
setTargetBed(PP_PREHEAT_HPB_TEMP);
fanSpeed = 0;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_pet()
{
setTargetHotend0(PET_PREHEAT_HOTEND_TEMP);
setTargetBed(PET_PREHEAT_HPB_TEMP);
fanSpeed = 0;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_hips()
{
setTargetHotend0(HIPS_PREHEAT_HOTEND_TEMP);
setTargetBed(HIPS_PREHEAT_HPB_TEMP);
fanSpeed = 0;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_flex()
{
setTargetHotend0(FLEX_PREHEAT_HOTEND_TEMP);
setTargetBed(FLEX_PREHEAT_HPB_TEMP);
fanSpeed = 0;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_cooldown()
{
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
setTargetBed(0);
fanSpeed = 0;
lcd_return_to_status();
}
static void lcd_menu_extruder_info()
{
int fan_speed_RPM[2];
#ifdef PAT9125
pat9125_update();
#endif //PAT9125
fan_speed_RPM[0] = 60*fan_speed[0];
fan_speed_RPM[1] = 60*fan_speed[1];
// Display Nozzle fan RPM
lcd.setCursor(0, 0);
lcd_printPGM(MSG_INFO_NOZZLE_FAN);
lcd.setCursor(11, 0);
lcd.print(" ");
lcd.setCursor(12, 0);
lcd.print(itostr4(fan_speed_RPM[0]));
lcd.print(" RPM");
// Display Nozzle fan RPM
#if (defined(TACH_1))
lcd.setCursor(0, 1);
lcd_printPGM(MSG_INFO_PRINT_FAN);
lcd.setCursor(11, 1);
lcd.print(" ");
lcd.setCursor(12, 1);
lcd.print(itostr4(fan_speed_RPM[1]));
lcd.print(" RPM");
#endif
#ifdef PAT9125
// Display X and Y difference from Filament sensor
lcd.setCursor(0, 2);
lcd.print("Fil. Xd:");
lcd.print(itostr3(pat9125_x));
lcd.print(" ");
lcd.setCursor(12, 2);
lcd.print("Yd:");
lcd.print(itostr3(pat9125_y));
// Display Light intensity from Filament sensor
/* Frame_Avg register represents the average brightness of all pixels within a frame (324 pixels). This
value ranges from 0(darkest) to 255(brightest). */
lcd.setCursor(0, 3);
lcd.print("Int: ");
lcd.setCursor(5, 3);
lcd.print(itostr3(pat9125_b));
// Display LASER shutter time from Filament sensor
/* Shutter register is an index of LASER shutter time. It is automatically controlled by the chip's internal
auto-exposure algorithm. When the chip is tracking on a good reflection surface, the Shutter is small.
When the chip is tracking on a poor reflection surface, the Shutter is large. Value ranges from 0 to
46. */
lcd.setCursor(10, 3);
lcd.print("Shut: ");
lcd.setCursor(15, 3);
lcd.print(itostr3(pat9125_s));
#endif //PAT9125
if (lcd_clicked())
{
lcd_quick_feedback();
lcd_return_to_status();
}
}
#if defined(TMC2130) && defined(PAT9125)
static void lcd_menu_fails_stats_total()
{
//01234567890123456789
//Total failures
// Power failures 000
// Filam. runouts 000
// Crash X 000 Y 000
//////////////////////
uint16_t power = eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT);
uint16_t filam = eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT);
uint16_t crashX = eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT);
uint16_t crashY = eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT);
fprintf_P(lcdout, PSTR(ESC_H(0,0)"Total failures"ESC_H(1,1)"Power failures %-3d"ESC_H(1,2)"Filam. runouts %-3d"ESC_H(1,3)"Crash X %-3d Y %-3d"), power, filam, crashX, crashY);
if (lcd_clicked())
{
lcd_quick_feedback();
menu_action_back();
}
}
static void lcd_menu_fails_stats_print()
{
//01234567890123456789
//Last print failures
// Power failures 000
// Filam. runouts 000
// Crash X 000 Y 000
//////////////////////
uint8_t power = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
uint8_t filam = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT);
uint8_t crashX = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X);
uint8_t crashY = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y);
fprintf_P(lcdout, PSTR(ESC_H(0,0)"Last print failures"ESC_H(1,1)"Power failures %-3d"ESC_H(1,2)"Filam. runouts %-3d"ESC_H(1,3)"Crash X %-3d Y %-3d"), power, filam, crashX, crashY);
if (lcd_clicked())
{
lcd_quick_feedback();
menu_action_back();
}
}
/**
* @brief Open fail statistics menu
*
* This version of function is used, when there is filament sensor,
* power failure and crash detection.
* There are Last print and Total menu items.
*/
static void lcd_menu_fails_stats()
{
START_MENU();
MENU_ITEM(back, MSG_MAIN, 0);
MENU_ITEM(submenu, PSTR("Last print"), lcd_menu_fails_stats_print);
MENU_ITEM(submenu, PSTR("Total"), lcd_menu_fails_stats_total);
END_MENU();
}
#else if defined(PAT9125)
/**
* @brief Print last print and total filament run outs
*
* This version of function is used, when there is filament sensor,
* but no other sensors (e.g. power failure, crash detection).
*
* Example screen:
* @code
* 01234567890123456789
* Last print failures
* Filam. runouts 0
* Total failures
* Filam. runouts 5
* @endcode
*/
static void lcd_menu_fails_stats()
{
uint8_t filamentLast = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT);
uint16_t filamentTotal = eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT);
fprintf_P(lcdout, PSTR(ESC_H(0,0)"Last print failures"ESC_H(1,1)"Filam. runouts %-3d"ESC_H(0,2)"Total failures"ESC_H(1,3)"Filam. runouts %-3d"), filamentLast, filamentTotal);
if (lcd_clicked())
{
menu_action_back();
}
}
#endif //TMC2130
#ifdef DEBUG_BUILD
#ifdef DEBUG_STACK_MONITOR
extern uint16_t SP_min;
extern char* __malloc_heap_start;
extern char* __malloc_heap_end;
#endif //DEBUG_STACK_MONITOR
static void lcd_menu_debug()
{
#ifdef DEBUG_STACK_MONITOR
fprintf_P(lcdout, PSTR(ESC_H(1,1)"RAM statistics"ESC_H(5,1)"SP_min: 0x%04x"ESC_H(1,2)"heap_start: 0x%04x"ESC_H(3,3)"heap_end: 0x%04x"), SP_min, __malloc_heap_start, __malloc_heap_end);
#endif //DEBUG_STACK_MONITOR
if (lcd_clicked())
{
lcd_quick_feedback();
lcd_return_to_status();
}
}
#endif /* DEBUG_BUILD */
static void lcd_menu_temperatures()
{
fprintf_P(lcdout, PSTR(ESC_H(1,0)"Nozzle: %d%c" ESC_H(1,1)"Bed: %d%c"), (int)current_temperature[0], '\x01', (int)current_temperature_bed, '\x01');
#ifdef AMBIENT_THERMISTOR
fprintf_P(lcdout, PSTR(ESC_H(1,2)"Ambient: %d%c" ESC_H(1,3)"PINDA: %d%c"), (int)current_temperature_ambient, '\x01', (int)current_temperature_pinda, '\x01');
#else //AMBIENT_THERMISTOR
fprintf_P(lcdout, PSTR(ESC_H(1,2)"PINDA: %d%c"), (int)current_temperature_pinda, '\x01');
#endif //AMBIENT_THERMISTOR
if (lcd_clicked())
{
lcd_quick_feedback();
lcd_return_to_status();
}
}
#if defined (VOLT_BED_PIN) || defined (VOLT_PWR_PIN)
#define VOLT_DIV_R1 10000
#define VOLT_DIV_R2 2370
#define VOLT_DIV_FAC ((float)VOLT_DIV_R2 / (VOLT_DIV_R2 + VOLT_DIV_R1))
#define VOLT_DIV_REF 5
static void lcd_menu_voltages()
{
float volt_pwr = VOLT_DIV_REF * ((float)current_voltage_raw_pwr / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC;
//float volt_bed = VOLT_DIV_REF * ((float)current_voltage_raw_bed / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC;
//fprintf_P(lcdout, PSTR(ESC_H(1,1)"PWR: %d.%01dV" ESC_H(1,2)"BED: %d.%01dV"), (int)volt_pwr, (int)(10*fabs(volt_pwr - (int)volt_pwr)), (int)volt_bed, (int)(10*fabs(volt_bed - (int)volt_bed)));
fprintf_P(lcdout, PSTR( ESC_H(1,1)"PWR: %d.%01dV"), (int)volt_pwr, (int)(10*fabs(volt_pwr - (int)volt_pwr))) ;
if (lcd_clicked())
{
lcd_quick_feedback();
lcd_return_to_status();
}
}
#endif //defined VOLT_BED_PIN || defined VOLT_PWR_PIN
#ifdef TMC2130
static void lcd_menu_belt_status()
{
fprintf_P(lcdout, PSTR(ESC_H(1,0) "Belt status" ESC_H(2,1) "X %d" ESC_H(2,2) "Y %d" ), eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_X)), eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_Y)));
if (lcd_clicked())
{
lcd_quick_feedback();
lcd_return_to_status();
}
}
#endif //TMC2130
extern void stop_and_save_print_to_ram(float z_move, float e_move);
extern void restore_print_from_ram_and_continue(float e_move);
static void lcd_menu_test_save()
{
stop_and_save_print_to_ram(10, -0.8);
}
static void lcd_menu_test_restore()
{
restore_print_from_ram_and_continue(0.8);
}
static void lcd_preheat_menu()
{
START_MENU();
MENU_ITEM(back, MSG_MAIN, 0);
if (farm_mode) {
MENU_ITEM(function, PSTR("farm - " STRINGIFY(FARM_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FARM_PREHEAT_HPB_TEMP)), lcd_preheat_farm);
MENU_ITEM(function, PSTR("nozzle - " STRINGIFY(FARM_PREHEAT_HOTEND_TEMP) "/0"), lcd_preheat_farm_nozzle);
MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown);
MENU_ITEM(function, PSTR("ABS - " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP)), lcd_preheat_abs);
} else {
MENU_ITEM(function, PSTR("PLA - " STRINGIFY(PLA_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PLA_PREHEAT_HPB_TEMP)), lcd_preheat_pla);
MENU_ITEM(function, PSTR("PET - " STRINGIFY(PET_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PET_PREHEAT_HPB_TEMP)), lcd_preheat_pet);
MENU_ITEM(function, PSTR("ABS - " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP)), lcd_preheat_abs);
MENU_ITEM(function, PSTR("HIPS - " STRINGIFY(HIPS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(HIPS_PREHEAT_HPB_TEMP)), lcd_preheat_hips);
MENU_ITEM(function, PSTR("PP - " STRINGIFY(PP_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PP_PREHEAT_HPB_TEMP)), lcd_preheat_pp);
MENU_ITEM(function, PSTR("FLEX - " STRINGIFY(FLEX_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FLEX_PREHEAT_HPB_TEMP)), lcd_preheat_flex);
MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown);
}
END_MENU();
}
static void lcd_support_menu()
{
if (menuData.supportMenu.status == 0 || lcdDrawUpdate == 2) {
// Menu was entered or SD card status has changed (plugged in or removed).
// Initialize its status.
menuData.supportMenu.status = 1;
menuData.supportMenu.is_flash_air = card.ToshibaFlashAir_isEnabled() && card.ToshibaFlashAir_GetIP(menuData.supportMenu.ip);
if (menuData.supportMenu.is_flash_air)
sprintf_P(menuData.supportMenu.ip_str, PSTR("%d.%d.%d.%d"),
menuData.supportMenu.ip[0], menuData.supportMenu.ip[1],
menuData.supportMenu.ip[2], menuData.supportMenu.ip[3]);
} else if (menuData.supportMenu.is_flash_air &&
menuData.supportMenu.ip[0] == 0 && menuData.supportMenu.ip[1] == 0 &&
menuData.supportMenu.ip[2] == 0 && menuData.supportMenu.ip[3] == 0 &&
++ menuData.supportMenu.status == 16) {
// Waiting for the FlashAir card to get an IP address from a router. Force an update.
menuData.supportMenu.status = 0;
}
START_MENU();
MENU_ITEM(back, MSG_MAIN, 0);
MENU_ITEM(back, PSTR("Firmware:"), 0);
MENU_ITEM(back, PSTR(" " FW_VERSION_FULL), 0);
#if (FW_DEV_VERSION != FW_VERSION_GOLD) && (FW_DEV_VERSION != FW_VERSION_RC)
MENU_ITEM(back, PSTR(" repo " FW_REPOSITORY), 0);
#endif
// Ideally this block would be optimized out by the compiler.
/* const uint8_t fw_string_len = strlen_P(FW_VERSION_STR_P());
if (fw_string_len < 6) {
MENU_ITEM(back, PSTR(MSG_FW_VERSION " - " FW_version), 0);
} else {
MENU_ITEM(back, PSTR("FW - " FW_version), 0);
}*/
MENU_ITEM(back, MSG_PRUSA3D, 0);
MENU_ITEM(back, MSG_PRUSA3D_FORUM, 0);
MENU_ITEM(back, MSG_PRUSA3D_HOWTO, 0);
MENU_ITEM(back, PSTR("------------"), 0);
MENU_ITEM(back, PSTR(FILAMENT_SIZE), 0);
MENU_ITEM(back, PSTR(ELECTRONICS),0);
MENU_ITEM(back, PSTR(NOZZLE_TYPE),0);
MENU_ITEM(back, PSTR("------------"), 0);
MENU_ITEM(back, MSG_DATE, 0);
MENU_ITEM(back, PSTR(__DATE__), 0);
// Show the FlashAir IP address, if the card is available.
if (menuData.supportMenu.is_flash_air) {
MENU_ITEM(back, PSTR("------------"), 0);
MENU_ITEM(back, PSTR("FlashAir IP Addr:"), 0);
MENU_ITEM(back_RAM, menuData.supportMenu.ip_str, 0);
}
#ifndef MK1BP
MENU_ITEM(back, PSTR("------------"), 0);
if (!IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL)) MENU_ITEM(function, MSG_XYZ_DETAILS, lcd_service_mode_show_result);
MENU_ITEM(submenu, MSG_INFO_EXTRUDER, lcd_menu_extruder_info);
#ifdef TMC2130
MENU_ITEM(submenu, MSG_MENU_BELT_STATUS, lcd_menu_belt_status);
#endif //TMC2130
MENU_ITEM(submenu, MSG_MENU_TEMPERATURES, lcd_menu_temperatures);
#if defined (VOLT_BED_PIN) || defined (VOLT_PWR_PIN)
MENU_ITEM(submenu, MSG_MENU_VOLTAGES, lcd_menu_voltages);
#endif //defined VOLT_BED_PIN || defined VOLT_PWR_PIN
#ifdef DEBUG_BUILD
MENU_ITEM(submenu, PSTR("Debug"), lcd_menu_debug);
#endif /* DEBUG_BUILD */
#endif //MK1BP
END_MENU();
}
void lcd_set_fan_check() {
fans_check_enabled = !fans_check_enabled;
eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED, fans_check_enabled);
lcd_goto_menu(lcd_settings_menu); //doesn't break menuStack
}
void lcd_set_filament_autoload() {
filament_autoload_enabled = !filament_autoload_enabled;
eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, filament_autoload_enabled);
lcd_goto_menu(lcd_settings_menu); //doesn't break menuStack
}
void lcd_unLoadFilament()
{
if (degHotend0() > EXTRUDE_MINTEMP) {
enquecommand_P(PSTR("M702")); //unload filament
} else {
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_ERROR);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PREHEAT_NOZZLE);
delay(2000);
lcd_implementation_clear();
}
menu_action_back();
}
void lcd_change_filament() {
lcd_implementation_clear();
lcd.setCursor(0, 1);
lcd_printPGM(MSG_CHANGING_FILAMENT);
}
void lcd_wait_interact() {
lcd_implementation_clear();
lcd.setCursor(0, 1);
#ifdef SNMM
lcd_printPGM(MSG_PREPARE_FILAMENT);
#else
lcd_printPGM(MSG_INSERT_FILAMENT);
#endif
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PRESS);
}
void lcd_change_success() {
lcd_implementation_clear();
lcd.setCursor(0, 2);
lcd_printPGM(MSG_CHANGE_SUCCESS);
}
void lcd_loading_color() {
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_LOADING_COLOR);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PLEASE_WAIT);
for (int i = 0; i < 20; i++) {
lcd.setCursor(i, 3);
lcd.print(".");
for (int j = 0; j < 10 ; j++) {
manage_heater();
manage_inactivity(true);
delay(85);
}
}
}
void lcd_loading_filament() {
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_LOADING_FILAMENT);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PLEASE_WAIT);
for (int i = 0; i < 20; i++) {
lcd.setCursor(i, 3);
lcd.print(".");
for (int j = 0; j < 10 ; j++) {
manage_heater();
manage_inactivity(true);
#ifdef SNMM
delay(153);
#else
delay(137);
#endif
}
}
}
void lcd_alright() {
int enc_dif = 0;
int cursor_pos = 1;
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_CORRECTLY);
lcd.setCursor(1, 1);
lcd_printPGM(MSG_YES);
lcd.setCursor(1, 2);
lcd_printPGM(MSG_NOT_LOADED);
lcd.setCursor(1, 3);
lcd_printPGM(MSG_NOT_COLOR);
lcd.setCursor(0, 1);
lcd.print(">");
enc_dif = encoderDiff;
while (lcd_change_fil_state == 0) {
manage_heater();
manage_inactivity(true);
if ( abs((enc_dif - encoderDiff)) > 4 ) {
if ( (abs(enc_dif - encoderDiff)) > 1 ) {
if (enc_dif > encoderDiff ) {
cursor_pos --;
}
if (enc_dif < encoderDiff ) {
cursor_pos ++;
}
if (cursor_pos > 3) {
cursor_pos = 3;
}
if (cursor_pos < 1) {
cursor_pos = 1;
}
lcd.setCursor(0, 1);
lcd.print(" ");
lcd.setCursor(0, 2);
lcd.print(" ");
lcd.setCursor(0, 3);
lcd.print(" ");
lcd.setCursor(0, cursor_pos);
lcd.print(">");
enc_dif = encoderDiff;
delay(100);
}
}
if (lcd_clicked()) {
lcd_change_fil_state = cursor_pos;
delay(500);
}
};
lcd_implementation_clear();
lcd_return_to_status();
}
#ifdef PAT9125
static void lcd_menu_AutoLoadFilament()
{
if (degHotend0() > EXTRUDE_MINTEMP)
{
uint8_t nlines;
lcd_display_message_fullscreen_nonBlocking_P(MSG_AUTOLOADING_ENABLED,nlines);
}
else
{
Timer* ptimer = (Timer*)&(menuData.autoLoadFilamentMenu.dummy);
if (!ptimer->running()) ptimer->start();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_ERROR);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PREHEAT_NOZZLE);
if (ptimer->expired(2000ul)) menu_action_back();
}
if (lcd_clicked()) menu_action_back();
}
#endif //PAT9125
static void lcd_LoadFilament()
{
if (degHotend0() > EXTRUDE_MINTEMP)
{
custom_message = true;
loading_flag = true;
enquecommand_P(PSTR("M701")); //load filament
SERIAL_ECHOLN("Loading filament");
lcd_return_to_status();
}
else
{
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_ERROR);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PREHEAT_NOZZLE);
delay(2000);
lcd_implementation_clear();
}
}
void lcd_menu_statistics()
{
if (IS_SD_PRINTING)
{
int _met = total_filament_used / 100000;
int _cm = (total_filament_used - (_met * 100000))/10;
int _t = (millis() - starttime) / 1000;
int _h = _t / 3600;
int _m = (_t - (_h * 3600)) / 60;
int _s = _t - ((_h * 3600) + (_m * 60));
lcd.setCursor(0, 0);
lcd_printPGM(MSG_STATS_FILAMENTUSED);
lcd.setCursor(6, 1);
lcd.print(itostr3(_met));
lcd.print("m ");
lcd.print(ftostr32ns(_cm));
lcd.print("cm");
lcd.setCursor(0, 2);
lcd_printPGM(MSG_STATS_PRINTTIME);
lcd.setCursor(8, 3);
lcd.print(itostr2(_h));
lcd.print("h ");
lcd.print(itostr2(_m));
lcd.print("m ");
lcd.print(itostr2(_s));
lcd.print("s");
if (lcd_clicked())
{
lcd_quick_feedback();
lcd_return_to_status();
}
}
else
{
unsigned long _filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
unsigned long _time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //in minutes
uint8_t _hours, _minutes;
uint32_t _days;
float _filament_m = (float)_filament;
int _filament_km = (_filament >= 100000) ? _filament / 100000 : 0;
if (_filament_km > 0) _filament_m = _filament - (_filament_km * 100000);
_days = _time / 1440;
_hours = (_time - (_days * 1440)) / 60;
_minutes = _time - ((_days * 1440) + (_hours * 60));
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_STATS_TOTALFILAMENT);
lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)), 1);
lcd.print(ftostr32ns(_filament_m));
if (_filament_km > 0)
{
lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)) - 3, 1);
lcd.print("km");
lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)) - 8, 1);
lcd.print(itostr4(_filament_km));
}
lcd.setCursor(18, 1);
lcd.print("m");
lcd.setCursor(0, 2);
lcd_printPGM(MSG_STATS_TOTALPRINTTIME);;
lcd.setCursor(18, 3);
lcd.print("m");
lcd.setCursor(14, 3);
lcd.print(itostr3(_minutes));
lcd.setCursor(14, 3);
lcd.print(":");
lcd.setCursor(12, 3);
lcd.print("h");
lcd.setCursor(9, 3);
lcd.print(itostr3(_hours));
lcd.setCursor(9, 3);
lcd.print(":");
lcd.setCursor(7, 3);
lcd.print("d");
lcd.setCursor(4, 3);
lcd.print(itostr3(_days));
KEEPALIVE_STATE(PAUSED_FOR_USER);
while (!lcd_clicked())
{
manage_heater();
manage_inactivity(true);
delay(100);
}
KEEPALIVE_STATE(NOT_BUSY);
lcd_quick_feedback();
lcd_return_to_status();
}
}
static void _lcd_move(const char *name, int axis, int min, int max) {
if (encoderPosition != 0) {
refresh_cmd_timeout();
if (! planner_queue_full()) {
current_position[axis] += float((int)encoderPosition) * move_menu_scale;
if (min_software_endstops && current_position[axis] < min) current_position[axis] = min;
if (max_software_endstops && current_position[axis] > max) current_position[axis] = max;
encoderPosition = 0;
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis] / 60, active_extruder);
lcdDrawUpdate = 1;
}
}
if (lcdDrawUpdate) lcd_implementation_drawedit(name, ftostr31(current_position[axis]));
if (LCD_CLICKED) menu_action_back(); {
}
}
static void lcd_move_e()
{
if (degHotend0() > EXTRUDE_MINTEMP) {
if (encoderPosition != 0)
{
refresh_cmd_timeout();
if (! planner_queue_full()) {
current_position[E_AXIS] += float((int)encoderPosition) * move_menu_scale;
encoderPosition = 0;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[E_AXIS] / 60, active_extruder);
lcdDrawUpdate = 1;
}
}
if (lcdDrawUpdate)
{
lcd_implementation_drawedit(PSTR("Extruder"), ftostr31(current_position[E_AXIS]));
}
if (LCD_CLICKED) menu_action_back();
}
else {
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_ERROR);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PREHEAT_NOZZLE);
delay(2000);
lcd_return_to_status();
}
}
void lcd_service_mode_show_result() {
float angleDiff;
lcd_set_custom_characters_degree();
count_xyz_details();
angleDiff = eeprom_read_float((float*)(EEPROM_XYZ_CAL_SKEW));
lcd_update_enable(false);
lcd_implementation_clear();
lcd_printPGM(MSG_Y_DISTANCE_FROM_MIN);
lcd_print_at_PGM(0, 1, MSG_LEFT);
lcd_print_at_PGM(0, 2, MSG_RIGHT);
for (int i = 0; i < 2; i++) {
if(distance_from_min[i] < 200) {
lcd_print_at_PGM(11, i + 1, PSTR(""));
lcd.print(distance_from_min[i]);
lcd_print_at_PGM((distance_from_min[i] < 0) ? 17 : 16, i + 1, PSTR("mm"));
} else lcd_print_at_PGM(11, i + 1, PSTR("N/A"));
}
delay_keep_alive(500);
KEEPALIVE_STATE(PAUSED_FOR_USER);
while (!lcd_clicked()) {
delay_keep_alive(100);
}
delay_keep_alive(500);
lcd_implementation_clear();
lcd_printPGM(MSG_MEASURED_SKEW);
if (angleDiff < 100) {
lcd.setCursor(15, 0);
lcd.print(angleDiff * 180 / M_PI);
lcd.print(LCD_STR_DEGREE);
}else lcd_print_at_PGM(16, 0, PSTR("N/A"));
lcd_print_at_PGM(0, 1, PSTR("--------------------"));
lcd_print_at_PGM(0, 2, MSG_SLIGHT_SKEW);
lcd_print_at_PGM(15, 2, PSTR(""));
lcd.print(bed_skew_angle_mild * 180 / M_PI);
lcd.print(LCD_STR_DEGREE);
lcd_print_at_PGM(0, 3, MSG_SEVERE_SKEW);
lcd_print_at_PGM(15, 3, PSTR(""));
lcd.print(bed_skew_angle_extreme * 180 / M_PI);
lcd.print(LCD_STR_DEGREE);
delay_keep_alive(500);
while (!lcd_clicked()) {
delay_keep_alive(100);
}
KEEPALIVE_STATE(NOT_BUSY);
delay_keep_alive(500);
lcd_set_custom_characters_arrows();
lcd_return_to_status();
lcd_update_enable(true);
lcd_update(2);
}
// Save a single axis babystep value.
void EEPROM_save_B(int pos, int* value)
{
union Data data;
data.value = *value;
eeprom_update_byte((unsigned char*)pos, data.b[0]);
eeprom_update_byte((unsigned char*)pos + 1, data.b[1]);
}
// Read a single axis babystep value.
void EEPROM_read_B(int pos, int* value)
{
union Data data;
data.b[0] = eeprom_read_byte((unsigned char*)pos);
data.b[1] = eeprom_read_byte((unsigned char*)pos + 1);
*value = data.value;
}
static void lcd_move_x() {
_lcd_move(PSTR("X"), X_AXIS, X_MIN_POS, X_MAX_POS);
}
static void lcd_move_y() {
_lcd_move(PSTR("Y"), Y_AXIS, Y_MIN_POS, Y_MAX_POS);
}
static void lcd_move_z() {
_lcd_move(PSTR("Z"), Z_AXIS, Z_MIN_POS, Z_MAX_POS);
}
static void _lcd_babystep(int axis, const char *msg)
{
if (menuData.babyStep.status == 0) {
// Menu was entered.
// Initialize its status.
menuData.babyStep.status = 1;
check_babystep();
EEPROM_read_B(EEPROM_BABYSTEP_X, &menuData.babyStep.babystepMem[0]);
EEPROM_read_B(EEPROM_BABYSTEP_Y, &menuData.babyStep.babystepMem[1]);
EEPROM_read_B(EEPROM_BABYSTEP_Z, &menuData.babyStep.babystepMem[2]);
menuData.babyStep.babystepMemMM[0] = menuData.babyStep.babystepMem[0]/axis_steps_per_unit[X_AXIS];
menuData.babyStep.babystepMemMM[1] = menuData.babyStep.babystepMem[1]/axis_steps_per_unit[Y_AXIS];
menuData.babyStep.babystepMemMM[2] = menuData.babyStep.babystepMem[2]/axis_steps_per_unit[Z_AXIS];
lcdDrawUpdate = 1;
//SERIAL_ECHO("Z baby step: ");
//SERIAL_ECHO(menuData.babyStep.babystepMem[2]);
// Wait 90 seconds before closing the live adjust dialog.
lcd_timeoutToStatus = millis() + 90000;
}
if (encoderPosition != 0)
{
if (homing_flag) encoderPosition = 0;
menuData.babyStep.babystepMem[axis] += (int)encoderPosition;
if (axis == 2) {
if (menuData.babyStep.babystepMem[axis] < Z_BABYSTEP_MIN) menuData.babyStep.babystepMem[axis] = Z_BABYSTEP_MIN; //-3999 -> -9.99 mm
else if (menuData.babyStep.babystepMem[axis] > Z_BABYSTEP_MAX) menuData.babyStep.babystepMem[axis] = Z_BABYSTEP_MAX; //0
else {
CRITICAL_SECTION_START
babystepsTodo[axis] += (int)encoderPosition;
CRITICAL_SECTION_END
}
}
menuData.babyStep.babystepMemMM[axis] = menuData.babyStep.babystepMem[axis]/axis_steps_per_unit[axis];
delay(50);
encoderPosition = 0;
lcdDrawUpdate = 1;
}
if (lcdDrawUpdate)
lcd_implementation_drawedit_2(msg, ftostr13ns(menuData.babyStep.babystepMemMM[axis]));
if (LCD_CLICKED || menuExiting) {
// Only update the EEPROM when leaving the menu.
EEPROM_save_B(
(axis == 0) ? EEPROM_BABYSTEP_X : ((axis == 1) ? EEPROM_BABYSTEP_Y : EEPROM_BABYSTEP_Z),
&menuData.babyStep.babystepMem[axis]);
}
if (LCD_CLICKED) menu_action_back();
}
static void lcd_babystep_x() {
_lcd_babystep(X_AXIS, (MSG_BABYSTEPPING_X));
}
static void lcd_babystep_y() {
_lcd_babystep(Y_AXIS, (MSG_BABYSTEPPING_Y));
}
static void lcd_babystep_z() {
_lcd_babystep(Z_AXIS, (MSG_BABYSTEPPING_Z));
}
static void lcd_adjust_bed();
/**
* @brief adjust bed reset menu item function
*
* To be used as MENU_ITEM(function,...) inside lcd_adjust_bed submenu. In such case lcd_goto_menu usage
* is correct and doesn't break menuStack.
* Because we did not leave the menu, the menuData did not reset.
* Force refresh of the bed leveling data.
*/
static void lcd_adjust_bed_reset()
{
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT , 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR , 0);
lcd_goto_menu(lcd_adjust_bed, 0, false); //doesn't break menuStack
menuData.adjustBed.status = 0;
}
void adjust_bed_reset() {
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
menuData.adjustBed.left = menuData.adjustBed.left2 = 0;
menuData.adjustBed.right = menuData.adjustBed.right2 = 0;
menuData.adjustBed.front = menuData.adjustBed.front2 = 0;
menuData.adjustBed.rear = menuData.adjustBed.rear2 = 0;
}
#define BED_ADJUSTMENT_UM_MAX 50
static void lcd_adjust_bed()
{
if (menuData.adjustBed.status == 0) {
// Menu was entered.
// Initialize its status.
menuData.adjustBed.status = 1;
bool valid = false;
menuData.adjustBed.left = menuData.adjustBed.left2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT);
menuData.adjustBed.right = menuData.adjustBed.right2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT);
menuData.adjustBed.front = menuData.adjustBed.front2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT);
menuData.adjustBed.rear = menuData.adjustBed.rear2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR);
if (eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1 &&
menuData.adjustBed.left >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.left <= BED_ADJUSTMENT_UM_MAX &&
menuData.adjustBed.right >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.right <= BED_ADJUSTMENT_UM_MAX &&
menuData.adjustBed.front >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.front <= BED_ADJUSTMENT_UM_MAX &&
menuData.adjustBed.rear >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.rear <= BED_ADJUSTMENT_UM_MAX)
valid = true;
if (! valid) {
// Reset the values: simulate an edit.
menuData.adjustBed.left2 = 0;
menuData.adjustBed.right2 = 0;
menuData.adjustBed.front2 = 0;
menuData.adjustBed.rear2 = 0;
}
lcdDrawUpdate = 1;
eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
}
if (menuData.adjustBed.left != menuData.adjustBed.left2)
eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT, menuData.adjustBed.left = menuData.adjustBed.left2);
if (menuData.adjustBed.right != menuData.adjustBed.right2)
eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, menuData.adjustBed.right = menuData.adjustBed.right2);
if (menuData.adjustBed.front != menuData.adjustBed.front2)
eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT, menuData.adjustBed.front = menuData.adjustBed.front2);
if (menuData.adjustBed.rear != menuData.adjustBed.rear2)
eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR, menuData.adjustBed.rear = menuData.adjustBed.rear2);
START_MENU();
MENU_ITEM(back, MSG_SETTINGS, 0);
MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_LEFT, &menuData.adjustBed.left2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_RIGHT, &menuData.adjustBed.right2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_FRONT, &menuData.adjustBed.front2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_REAR, &menuData.adjustBed.rear2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
MENU_ITEM(function, MSG_BED_CORRECTION_RESET, lcd_adjust_bed_reset);
END_MENU();
}
void pid_extruder() {
lcd_implementation_clear();
lcd.setCursor(1, 0);
lcd_printPGM(MSG_SET_TEMPERATURE);
pid_temp += int(encoderPosition);
if (pid_temp > HEATER_0_MAXTEMP) pid_temp = HEATER_0_MAXTEMP;
if (pid_temp < HEATER_0_MINTEMP) pid_temp = HEATER_0_MINTEMP;
encoderPosition = 0;
lcd.setCursor(1, 2);
lcd.print(ftostr3(pid_temp));
if (lcd_clicked()) {
lcd_commands_type = LCD_COMMAND_PID_EXTRUDER;
lcd_return_to_status();
lcd_update(2);
}
}
void lcd_adjust_z() {
int enc_dif = 0;
int cursor_pos = 1;
int fsm = 0;
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_ADJUSTZ);
lcd.setCursor(1, 1);
lcd_printPGM(MSG_YES);
lcd.setCursor(1, 2);
lcd_printPGM(MSG_NO);
lcd.setCursor(0, 1);
lcd.print(">");
enc_dif = encoderDiff;
while (fsm == 0) {
manage_heater();
manage_inactivity(true);
if ( abs((enc_dif - encoderDiff)) > 4 ) {
if ( (abs(enc_dif - encoderDiff)) > 1 ) {
if (enc_dif > encoderDiff ) {
cursor_pos --;
}
if (enc_dif < encoderDiff ) {
cursor_pos ++;
}
if (cursor_pos > 2) {
cursor_pos = 2;
}
if (cursor_pos < 1) {
cursor_pos = 1;
}
lcd.setCursor(0, 1);
lcd.print(" ");
lcd.setCursor(0, 2);
lcd.print(" ");
lcd.setCursor(0, cursor_pos);
lcd.print(">");
enc_dif = encoderDiff;
delay(100);
}
}
if (lcd_clicked()) {
fsm = cursor_pos;
if (fsm == 1) {
int babystepLoadZ = 0;
EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystepLoadZ);
CRITICAL_SECTION_START
babystepsTodo[Z_AXIS] = babystepLoadZ;
CRITICAL_SECTION_END
} else {
int zero = 0;
EEPROM_save_B(EEPROM_BABYSTEP_X, &zero);
EEPROM_save_B(EEPROM_BABYSTEP_Y, &zero);
EEPROM_save_B(EEPROM_BABYSTEP_Z, &zero);
}
delay(500);
}
};
lcd_implementation_clear();
lcd_return_to_status();
}
bool lcd_wait_for_pinda(float temp) {
lcd_set_custom_characters_degree();
setTargetHotend(0, 0);
setTargetBed(0);
Timer pinda_timeout;
pinda_timeout.start();
bool target_temp_reached = true;
while (current_temperature_pinda > temp){
lcd_display_message_fullscreen_P(MSG_WAITING_TEMP_PINDA);
lcd.setCursor(0, 4);
lcd.print(LCD_STR_THERMOMETER[0]);
lcd.print(ftostr3(current_temperature_pinda));
lcd.print("/");
lcd.print(ftostr3(temp));
lcd.print(LCD_STR_DEGREE);
delay_keep_alive(1000);
serialecho_temperatures();
if (pinda_timeout.expired(8 * 60 * 1000ul)) { //PINDA cooling from 60 C to 35 C takes about 7 minutes
target_temp_reached = false;
break;
}
}
lcd_set_custom_characters_arrows();
lcd_update_enable(true);
return(target_temp_reached);
}
void lcd_wait_for_heater() {
lcd_display_message_fullscreen_P(MSG_WIZARD_HEATING);
lcd.setCursor(0, 4);
lcd.print(LCD_STR_THERMOMETER[0]);
lcd.print(ftostr3(degHotend(active_extruder)));
lcd.print("/");
lcd.print(ftostr3(degTargetHotend(active_extruder)));
lcd.print(LCD_STR_DEGREE);
}
void lcd_wait_for_cool_down() {
lcd_set_custom_characters_degree();
setTargetHotend(0,0);
setTargetBed(0);
while ((degHotend(0)>MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) {
lcd_display_message_fullscreen_P(MSG_WAITING_TEMP);
lcd.setCursor(0, 4);
lcd.print(LCD_STR_THERMOMETER[0]);
lcd.print(ftostr3(degHotend(0)));
lcd.print("/0");
lcd.print(LCD_STR_DEGREE);
lcd.setCursor(9, 4);
lcd.print(LCD_STR_BEDTEMP[0]);
lcd.print(ftostr3(degBed()));
lcd.print("/0");
lcd.print(LCD_STR_DEGREE);
lcd_set_custom_characters();
delay_keep_alive(1000);
serialecho_temperatures();
}
lcd_set_custom_characters_arrows();
lcd_update_enable(true);
}
// Lets the user move the Z carriage up to the end stoppers.
// When done, it sets the current Z to Z_MAX_POS and returns true.
// Otherwise the Z calibration is not changed and false is returned.
#ifndef TMC2130
bool lcd_calibrate_z_end_stop_manual(bool only_z)
{
bool clean_nozzle_asked = false;
// Don't know where we are. Let's claim we are Z=0, so the soft end stops will not be triggered when moving up.
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
// Until confirmed by the confirmation dialog.
for (;;) {
unsigned long previous_millis_cmd = millis();
const char *msg = only_z ? MSG_MOVE_CARRIAGE_TO_THE_TOP_Z : MSG_MOVE_CARRIAGE_TO_THE_TOP;
const char *msg_next = lcd_display_message_fullscreen_P(msg);
const bool multi_screen = msg_next != NULL;
unsigned long previous_millis_msg = millis();
// Until the user finishes the z up movement.
encoderDiff = 0;
encoderPosition = 0;
for (;;) {
// if (millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS)
// goto canceled;
manage_heater();
manage_inactivity(true);
if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP) {
delay(50);
previous_millis_cmd = millis();
encoderPosition += abs(encoderDiff / ENCODER_PULSES_PER_STEP);
encoderDiff = 0;
if (! planner_queue_full()) {
// Only move up, whatever direction the user rotates the encoder.
current_position[Z_AXIS] += fabs(encoderPosition);
encoderPosition = 0;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[Z_AXIS] / 60, active_extruder);
}
}
if (lcd_clicked()) {
// Abort a move if in progress.
planner_abort_hard();
while (lcd_clicked()) ;
delay(10);
while (lcd_clicked()) ;
break;
}
if (multi_screen && millis() - previous_millis_msg > 5000) {
if (msg_next == NULL)
msg_next = msg;
msg_next = lcd_display_message_fullscreen_P(msg_next);
previous_millis_msg = millis();
}
}
if (! clean_nozzle_asked) {
lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
clean_nozzle_asked = true;
}
// Let the user confirm, that the Z carriage is at the top end stoppers.
int8_t result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CONFIRM_CARRIAGE_AT_THE_TOP, false);
if (result == -1)
goto canceled;
else if (result == 1)
goto calibrated;
// otherwise perform another round of the Z up dialog.
}
calibrated:
// Let the machine think the Z axis is a bit higher than it is, so it will not home into the bed
// during the search for the induction points.
current_position[Z_AXIS] = Z_MAX_POS-3.f;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
if(only_z){
lcd_display_message_fullscreen_P(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1);
lcd_implementation_print_at(0, 3, 1);
lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);
}else{
//lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
lcd_implementation_print_at(0, 2, 1);
lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
}
return true;
canceled:
return false;
}
#endif // TMC2130
static inline bool pgm_is_whitespace(const char *c_addr)
{
const char c = pgm_read_byte(c_addr);
return c == ' ' || c == '\t' || c == '\r' || c == '\n';
}
static inline bool pgm_is_interpunction(const char *c_addr)
{
const char c = pgm_read_byte(c_addr);
return c == '.' || c == ',' || c == ':'|| c == ';' || c == '?' || c == '!' || c == '/';
}
/**
* @brief show full screen message
*
* This function is non-blocking
* @param msg message to be displayed from PROGMEM
* @param nlines
* @return rest of the text (to be displayed on next page)
*/
static const char* lcd_display_message_fullscreen_nonBlocking_P(const char *msg, uint8_t &nlines)
{
lcd.setCursor(0, 0);
const char *msgend = msg;
uint8_t row = 0;
bool multi_screen = false;
for (; row < 4; ++ row) {
while (pgm_is_whitespace(msg))
++ msg;
if (pgm_read_byte(msg) == 0)
// End of the message.
break;
lcd.setCursor(0, row);
uint8_t linelen = min(strlen_P(msg), 20);
const char *msgend2 = msg + linelen;
msgend = msgend2;
if (row == 3 && linelen == 20) {
// Last line of the display, full line shall be displayed.
// Find out, whether this message will be split into multiple screens.
while (pgm_is_whitespace(msgend))
++ msgend;
multi_screen = pgm_read_byte(msgend) != 0;
if (multi_screen)
msgend = (msgend2 -= 2);
}
if (pgm_read_byte(msgend) != 0 && ! pgm_is_whitespace(msgend) && ! pgm_is_interpunction(msgend)) {
// Splitting a word. Find the start of the current word.
while (msgend > msg && ! pgm_is_whitespace(msgend - 1))
-- msgend;
if (msgend == msg)
// Found a single long word, which cannot be split. Just cut it.
msgend = msgend2;
}
for (; msg < msgend; ++ msg) {
char c = char(pgm_read_byte(msg));
if (c == '~')
c = ' ';
lcd.print(c);
}
}
if (multi_screen) {
// Display the "next screen" indicator character.
// lcd_set_custom_characters_arrows();
lcd_set_custom_characters_nextpage();
lcd.setCursor(19, 3);
// Display the down arrow.
lcd.print(char(1));
}
nlines = row;
return multi_screen ? msgend : NULL;
}
const char* lcd_display_message_fullscreen_P(const char *msg, uint8_t &nlines)
{
// Disable update of the screen by the usual lcd_update() routine.
lcd_update_enable(false);
lcd_implementation_clear();
return lcd_display_message_fullscreen_nonBlocking_P(msg, nlines);
}
/**
* @brief show full screen message and wait
*
* This function is blocking.
* @param msg message to be displayed from PROGMEM
*/
void lcd_show_fullscreen_message_and_wait_P(const char *msg)
{
const char *msg_next = lcd_display_message_fullscreen_P(msg);
bool multi_screen = msg_next != NULL;
lcd_set_custom_characters_nextpage();
KEEPALIVE_STATE(PAUSED_FOR_USER);
// Until confirmed by a button click.
for (;;) {
if (!multi_screen) {
lcd.setCursor(19, 3);
// Display the confirm char.
lcd.print(char(2));
}
// Wait for 5 seconds before displaying the next text.
for (uint8_t i = 0; i < 100; ++ i) {
delay_keep_alive(50);
if (lcd_clicked()) {
while (lcd_clicked()) ;
delay(10);
while (lcd_clicked()) ;
if (msg_next == NULL) {
KEEPALIVE_STATE(IN_HANDLER);
lcd_set_custom_characters();
lcd_update_enable(true);
lcd_update(2);
return;
}
else {
break;
}
}
}
if (multi_screen) {
if (msg_next == NULL)
msg_next = msg;
msg_next = lcd_display_message_fullscreen_P(msg_next);
if (msg_next == NULL) {
lcd.setCursor(19, 3);
// Display the confirm char.
lcd.print(char(2));
}
}
}
}
void lcd_wait_for_click()
{
KEEPALIVE_STATE(PAUSED_FOR_USER);
for (;;) {
manage_heater();
manage_inactivity(true);
if (lcd_clicked()) {
while (lcd_clicked()) ;
delay(10);
while (lcd_clicked()) ;
KEEPALIVE_STATE(IN_HANDLER);
return;
}
}
}
int8_t lcd_show_multiscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting, bool default_yes) //currently just max. n*4 + 3 lines supported (set in language header files)
{
const char *msg_next = lcd_display_message_fullscreen_P(msg);
bool multi_screen = msg_next != NULL;
bool yes = default_yes ? true : false;
// Wait for user confirmation or a timeout.
unsigned long previous_millis_cmd = millis();
int8_t enc_dif = encoderDiff;
//KEEPALIVE_STATE(PAUSED_FOR_USER);
for (;;) {
for (uint8_t i = 0; i < 100; ++i) {
delay_keep_alive(50);
if (allow_timeouting && millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS)
return -1;
manage_heater();
manage_inactivity(true);
if (abs(enc_dif - encoderDiff) > 4) {
if (msg_next == NULL) {
lcd.setCursor(0, 3);
if (enc_dif < encoderDiff && yes) {
lcd_printPGM((PSTR(" ")));
lcd.setCursor(7, 3);
lcd_printPGM((PSTR(">")));
yes = false;
}
else if (enc_dif > encoderDiff && !yes) {
lcd_printPGM((PSTR(">")));
lcd.setCursor(7, 3);
lcd_printPGM((PSTR(" ")));
yes = true;
}
enc_dif = encoderDiff;
}
else {
break; //turning knob skips waiting loop
}
}
if (lcd_clicked()) {
while (lcd_clicked());
delay(10);
while (lcd_clicked());
if (msg_next == NULL) {
//KEEPALIVE_STATE(IN_HANDLER);
lcd_set_custom_characters();
return yes;
}
else break;
}
}
if (multi_screen) {
if (msg_next == NULL) {
msg_next = msg;
}
msg_next = lcd_display_message_fullscreen_P(msg_next);
}
if (msg_next == NULL) {
lcd.setCursor(0, 3);
if (yes) lcd_printPGM(PSTR(">"));
lcd.setCursor(1, 3);
lcd_printPGM(MSG_YES);
lcd.setCursor(7, 3);
if (!yes) lcd_printPGM(PSTR(">"));
lcd.setCursor(8, 3);
lcd_printPGM(MSG_NO);
}
}
}
int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting, bool default_yes)
{
lcd_display_message_fullscreen_P(msg);
if (default_yes) {
lcd.setCursor(0, 2);
lcd_printPGM(PSTR(">"));
lcd_printPGM(MSG_YES);
lcd.setCursor(1, 3);
lcd_printPGM(MSG_NO);
}
else {
lcd.setCursor(1, 2);
lcd_printPGM(MSG_YES);
lcd.setCursor(0, 3);
lcd_printPGM(PSTR(">"));
lcd_printPGM(MSG_NO);
}
bool yes = default_yes ? true : false;
// Wait for user confirmation or a timeout.
unsigned long previous_millis_cmd = millis();
int8_t enc_dif = encoderDiff;
KEEPALIVE_STATE(PAUSED_FOR_USER);
for (;;) {
if (allow_timeouting && millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS)
return -1;
manage_heater();
manage_inactivity(true);
if (abs(enc_dif - encoderDiff) > 4) {
lcd.setCursor(0, 2);
if (enc_dif < encoderDiff && yes) {
lcd_printPGM((PSTR(" ")));
lcd.setCursor(0, 3);
lcd_printPGM((PSTR(">")));
yes = false;
}
else if (enc_dif > encoderDiff && !yes) {
lcd_printPGM((PSTR(">")));
lcd.setCursor(0, 3);
lcd_printPGM((PSTR(" ")));
yes = true;
}
enc_dif = encoderDiff;
}
if (lcd_clicked()) {
while (lcd_clicked());
delay(10);
while (lcd_clicked());
KEEPALIVE_STATE(IN_HANDLER);
return yes;
}
}
}
void lcd_bed_calibration_show_result(BedSkewOffsetDetectionResultType result, uint8_t point_too_far_mask)
{
const char *msg = NULL;
if (result == BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND) {
lcd_show_fullscreen_message_and_wait_P(MSG_BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND);
} else if (result == BED_SKEW_OFFSET_DETECTION_FITTING_FAILED) {
if (point_too_far_mask == 0)
msg = MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
else if (point_too_far_mask == 2 || point_too_far_mask == 7)
// Only the center point or all the three front points.
msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_BOTH_FAR;
else if (point_too_far_mask & 1 == 0)
// The right and maybe the center point out of reach.
msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_RIGHT_FAR;
else
// The left and maybe the center point out of reach.
msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_LEFT_FAR;
lcd_show_fullscreen_message_and_wait_P(msg);
} else {
if (point_too_far_mask != 0) {
if (point_too_far_mask == 2 || point_too_far_mask == 7)
// Only the center point or all the three front points.
msg = MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_BOTH_FAR;
else if (point_too_far_mask & 1 == 0)
// The right and maybe the center point out of reach.
msg = MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_RIGHT_FAR;
else
// The left and maybe the center point out of reach.
msg = MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_LEFT_FAR;
lcd_show_fullscreen_message_and_wait_P(msg);
}
if (point_too_far_mask == 0 || result > 0) {
switch (result) {
default:
// should not happen
msg = MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
break;
case BED_SKEW_OFFSET_DETECTION_PERFECT:
msg = MSG_BED_SKEW_OFFSET_DETECTION_PERFECT;
break;
case BED_SKEW_OFFSET_DETECTION_SKEW_MILD:
msg = MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD;
break;
case BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME:
msg = MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
break;
}
lcd_show_fullscreen_message_and_wait_P(msg);
}
}
}
void lcd_temp_cal_show_result(bool result) {
custom_message_type = 0;
custom_message = false;
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
setTargetBed(0); //set bed target temperature back to 0
if (result == true) {
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
temp_cal_active = true;
eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
}
else {
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
SERIAL_ECHOLNPGM("Temperature calibration failed. Continue with pressing the knob.");
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_FAILED);
temp_cal_active = false;
eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 0);
}
lcd_update_enable(true);
lcd_update(2);
}
static void lcd_show_end_stops() {
lcd.setCursor(0, 0);
lcd_printPGM((PSTR("End stops diag")));
lcd.setCursor(0, 1);
lcd_printPGM((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("X1")) : (PSTR("X0")));
lcd.setCursor(0, 2);
lcd_printPGM((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("Y1")) : (PSTR("Y0")));
lcd.setCursor(0, 3);
lcd_printPGM((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("Z1")) : (PSTR("Z0")));
}
static void menu_show_end_stops() {
lcd_show_end_stops();
if (LCD_CLICKED) lcd_goto_menu(lcd_calibration_menu); //doesn't break menuStack
}
// Lets the user move the Z carriage up to the end stoppers.
// When done, it sets the current Z to Z_MAX_POS and returns true.
// Otherwise the Z calibration is not changed and false is returned.
void lcd_diag_show_end_stops()
{
int enc_dif = encoderDiff;
lcd_implementation_clear();
for (;;) {
manage_heater();
manage_inactivity(true);
lcd_show_end_stops();
if (lcd_clicked()) {
while (lcd_clicked()) ;
delay(10);
while (lcd_clicked()) ;
break;
}
}
lcd_implementation_clear();
lcd_return_to_status();
}
void prusa_statistics(int _message, uint8_t _fil_nr) {
#ifdef DEBUG_DISABLE_PRUSA_STATISTICS
return;
#endif //DEBUG_DISABLE_PRUSA_STATISTICS
switch (_message)
{
case 0: // default message
if (IS_SD_PRINTING)
{
SERIAL_ECHO("{");
prusa_stat_printerstatus(4);
prusa_stat_farm_number();
prusa_stat_printinfo();
SERIAL_ECHOLN("}");
status_number = 4;
}
else
{
SERIAL_ECHO("{");
prusa_stat_printerstatus(1);
prusa_stat_farm_number();
SERIAL_ECHOLN("}");
status_number = 1;
}
break;
case 1: // 1 heating
farm_status = 2;
SERIAL_ECHO("{");
prusa_stat_printerstatus(2);
prusa_stat_farm_number();
SERIAL_ECHOLN("}");
status_number = 2;
farm_timer = 1;
break;
case 2: // heating done
farm_status = 3;
SERIAL_ECHO("{");
prusa_stat_printerstatus(3);
prusa_stat_farm_number();
SERIAL_ECHOLN("}");
status_number = 3;
farm_timer = 1;
if (IS_SD_PRINTING)
{
farm_status = 4;
SERIAL_ECHO("{");
prusa_stat_printerstatus(4);
prusa_stat_farm_number();
SERIAL_ECHOLN("}");
status_number = 4;
}
else
{
SERIAL_ECHO("{");
prusa_stat_printerstatus(3);
prusa_stat_farm_number();
SERIAL_ECHOLN("}");
status_number = 3;
}
farm_timer = 1;
break;
case 3: // filament change
break;
case 4: // print succesfull
SERIAL_ECHO("{[RES:1][FIL:");
MYSERIAL.print(int(_fil_nr));
SERIAL_ECHO("]");
prusa_stat_printerstatus(status_number);
prusa_stat_farm_number();
SERIAL_ECHOLN("}");
farm_timer = 2;
break;
case 5: // print not succesfull
SERIAL_ECHO("{[RES:0][FIL:");
MYSERIAL.print(int(_fil_nr));
SERIAL_ECHO("]");
prusa_stat_printerstatus(status_number);
prusa_stat_farm_number();
SERIAL_ECHOLN("}");
farm_timer = 2;
break;
case 6: // print done
SERIAL_ECHO("{[PRN:8]");
prusa_stat_farm_number();
SERIAL_ECHOLN("}");
status_number = 8;
farm_timer = 2;
break;
case 7: // print done - stopped
SERIAL_ECHO("{[PRN:9]");
prusa_stat_farm_number();
SERIAL_ECHOLN("}");
status_number = 9;
farm_timer = 2;
break;
case 8: // printer started
SERIAL_ECHO("{[PRN:0][PFN:");
status_number = 0;
SERIAL_ECHO(farm_no);
SERIAL_ECHOLN("]}");
farm_timer = 2;
break;
case 20: // echo farm no
SERIAL_ECHO("{");
prusa_stat_printerstatus(status_number);
prusa_stat_farm_number();
SERIAL_ECHOLN("}");
farm_timer = 4;
break;
case 21: // temperatures
SERIAL_ECHO("{");
prusa_stat_temperatures();
prusa_stat_farm_number();
prusa_stat_printerstatus(status_number);
SERIAL_ECHOLN("}");
break;
case 22: // waiting for filament change
SERIAL_ECHO("{[PRN:5]");
prusa_stat_farm_number();
SERIAL_ECHOLN("}");
status_number = 5;
break;
case 90: // Error - Thermal Runaway
SERIAL_ECHO("{[ERR:1]");
prusa_stat_farm_number();
SERIAL_ECHOLN("}");
break;
case 91: // Error - Thermal Runaway Preheat
SERIAL_ECHO("{[ERR:2]");
prusa_stat_farm_number();
SERIAL_ECHOLN("}");
break;
case 92: // Error - Min temp
SERIAL_ECHO("{[ERR:3]");
prusa_stat_farm_number();
SERIAL_ECHOLN("}");
break;
case 93: // Error - Max temp
SERIAL_ECHO("{[ERR:4]");
prusa_stat_farm_number();
SERIAL_ECHOLN("}");
break;
case 99: // heartbeat
SERIAL_ECHO("{[PRN:99]");
prusa_stat_temperatures();
SERIAL_ECHO("[PFN:");
SERIAL_ECHO(farm_no);
SERIAL_ECHO("]");
SERIAL_ECHOLN("}");
break;
}
}
static void prusa_stat_printerstatus(int _status)
{
SERIAL_ECHO("[PRN:");
SERIAL_ECHO(_status);
SERIAL_ECHO("]");
}
static void prusa_stat_farm_number() {
SERIAL_ECHO("[PFN:");
SERIAL_ECHO(farm_no);
SERIAL_ECHO("]");
}
static void prusa_stat_temperatures()
{
SERIAL_ECHO("[ST0:");
SERIAL_ECHO(target_temperature[0]);
SERIAL_ECHO("][STB:");
SERIAL_ECHO(target_temperature_bed);
SERIAL_ECHO("][AT0:");
SERIAL_ECHO(current_temperature[0]);
SERIAL_ECHO("][ATB:");
SERIAL_ECHO(current_temperature_bed);
SERIAL_ECHO("]");
}
static void prusa_stat_printinfo()
{
SERIAL_ECHO("[TFU:");
SERIAL_ECHO(total_filament_used);
SERIAL_ECHO("][PCD:");
SERIAL_ECHO(itostr3(card.percentDone()));
SERIAL_ECHO("][FEM:");
SERIAL_ECHO(itostr3(feedmultiply));
SERIAL_ECHO("][FNM:");
SERIAL_ECHO(longFilenameOLD);
SERIAL_ECHO("][TIM:");
if (starttime != 0)
{
SERIAL_ECHO(millis() / 1000 - starttime / 1000);
}
else
{
SERIAL_ECHO(0);
}
SERIAL_ECHO("][FWR:");
SERIAL_ECHO(FW_VERSION);
SERIAL_ECHO("]");
}
/*
void lcd_pick_babystep(){
int enc_dif = 0;
int cursor_pos = 1;
int fsm = 0;
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_PICK_Z);
lcd.setCursor(3, 2);
lcd.print("1");
lcd.setCursor(3, 3);
lcd.print("2");
lcd.setCursor(12, 2);
lcd.print("3");
lcd.setCursor(12, 3);
lcd.print("4");
lcd.setCursor(1, 2);
lcd.print(">");
enc_dif = encoderDiff;
while (fsm == 0) {
manage_heater();
manage_inactivity(true);
if ( abs((enc_dif - encoderDiff)) > 4 ) {
if ( (abs(enc_dif - encoderDiff)) > 1 ) {
if (enc_dif > encoderDiff ) {
cursor_pos --;
}
if (enc_dif < encoderDiff ) {
cursor_pos ++;
}
if (cursor_pos > 4) {
cursor_pos = 4;
}
if (cursor_pos < 1) {
cursor_pos = 1;
}
lcd.setCursor(1, 2);
lcd.print(" ");
lcd.setCursor(1, 3);
lcd.print(" ");
lcd.setCursor(10, 2);
lcd.print(" ");
lcd.setCursor(10, 3);
lcd.print(" ");
if (cursor_pos < 3) {
lcd.setCursor(1, cursor_pos+1);
lcd.print(">");
}else{
lcd.setCursor(10, cursor_pos-1);
lcd.print(">");
}
enc_dif = encoderDiff;
delay(100);
}
}
if (lcd_clicked()) {
fsm = cursor_pos;
int babyStepZ;
EEPROM_read_B(EEPROM_BABYSTEP_Z0+((fsm-1)*2),&babyStepZ);
EEPROM_save_B(EEPROM_BABYSTEP_Z,&babyStepZ);
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
delay(500);
}
};
lcd_implementation_clear();
lcd_return_to_status();
}
*/
void lcd_move_menu_axis()
{
START_MENU();
MENU_ITEM(back, MSG_SETTINGS, 0);
MENU_ITEM(submenu, MSG_MOVE_X, lcd_move_x);
MENU_ITEM(submenu, MSG_MOVE_Y, lcd_move_y);
MENU_ITEM(submenu, MSG_MOVE_Z, lcd_move_z);
MENU_ITEM(submenu, MSG_MOVE_E, lcd_move_e);
END_MENU();
}
static void lcd_move_menu_1mm()
{
move_menu_scale = 1.0;
lcd_move_menu_axis();
}
void EEPROM_save(int pos, uint8_t* value, uint8_t size)
{
do
{
eeprom_write_byte((unsigned char*)pos, *value);
pos++;
value++;
} while (--size);
}
void EEPROM_read(int pos, uint8_t* value, uint8_t size)
{
do
{
*value = eeprom_read_byte((unsigned char*)pos);
pos++;
value++;
} while (--size);
}
#ifdef SDCARD_SORT_ALPHA
static void lcd_sort_type_set() {
uint8_t sdSort;
EEPROM_read(EEPROM_SD_SORT, (uint8_t*)&sdSort, sizeof(sdSort));
switch (sdSort) {
case SD_SORT_TIME: sdSort = SD_SORT_ALPHA; break;
case SD_SORT_ALPHA: sdSort = SD_SORT_NONE; break;
default: sdSort = SD_SORT_TIME;
}
eeprom_update_byte((unsigned char *)EEPROM_SD_SORT, sdSort);
presort_flag = true;
lcd_goto_menu(lcd_settings_menu); //doesn't break menuStack
}
#endif //SDCARD_SORT_ALPHA
#ifdef TMC2130
static void lcd_crash_mode_info()
{
lcd_update_enable(true);
static uint32_t tim = 0;
if ((tim + 1000) < millis())
{
fputs_P(MSG_CRASH_DET_ONLY_IN_NORMAL, lcdout);
tim = millis();
}
if (lcd_clicked())
menu_action_back();
}
static void lcd_crash_mode_info2()
{
lcd_update_enable(true);
static uint32_t tim = 0;
if ((tim + 1000) < millis())
{
fputs_P(MSG_CRASH_DET_STEALTH_FORCE_OFF, lcdout);
tim = millis();
}
if (lcd_clicked())
menu_action_back();
}
#endif //TMC2130
#ifdef PAT9125
static void lcd_filament_autoload_info()
{
lcd_show_fullscreen_message_and_wait_P(MSG_AUTOLOADING_ONLY_IF_FSENS_ON);
}
static void lcd_fsensor_fail()
{
lcd_show_fullscreen_message_and_wait_P(MSG_FSENS_NOT_RESPONDING);
}
#endif //PAT9125
static void lcd_silent_mode_set() {
switch (SilentModeMenu) {
#ifdef TMC2130
case SILENT_MODE_NORMAL: SilentModeMenu = SILENT_MODE_STEALTH; break;
case SILENT_MODE_STEALTH: SilentModeMenu = SILENT_MODE_NORMAL; break;
default: SilentModeMenu = SILENT_MODE_NORMAL; break; // (probably) not needed
#else
case SILENT_MODE_POWER: SilentModeMenu = SILENT_MODE_SILENT; break;
case SILENT_MODE_SILENT: SilentModeMenu = SILENT_MODE_AUTO; break;
case SILENT_MODE_AUTO: SilentModeMenu = SILENT_MODE_POWER; break;
default: SilentModeMenu = SILENT_MODE_POWER; break; // (probably) not needed
#endif //TMC2130
}
eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
#ifdef TMC2130
// Wait until the planner queue is drained and the stepper routine achieves
// an idle state.
st_synchronize();
if (tmc2130_wait_standstill_xy(1000)) {}
// MYSERIAL.print("standstill OK");
// else
// MYSERIAL.print("standstill NG!");
cli();
tmc2130_mode = (SilentModeMenu != SILENT_MODE_NORMAL)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
tmc2130_init();
// We may have missed a stepper timer interrupt due to the time spent in tmc2130_init.
// Be safe than sorry, reset the stepper timer before re-enabling interrupts.
st_reset_timer();
sei();
#endif //TMC2130
st_current_init();
#ifdef TMC2130
if (CrashDetectMenu && (SilentModeMenu != SILENT_MODE_NORMAL))
menu_action_submenu(lcd_crash_mode_info2);
#endif //TMC2130
}
#ifdef TMC2130
static void lcd_crash_mode_set()
{
CrashDetectMenu = !CrashDetectMenu; //set also from crashdet_enable() and crashdet_disable()
if (CrashDetectMenu==0) {
crashdet_disable();
}else{
crashdet_enable();
}
if (IS_SD_PRINTING || is_usb_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL)) lcd_goto_menu(lcd_tune_menu, 9);
else lcd_goto_menu(lcd_settings_menu, 9);
}
#endif //TMC2130
static void lcd_set_lang(unsigned char lang) {
lang_selected = lang;
firstrun = 1;
eeprom_update_byte((unsigned char *)EEPROM_LANG, lang);
/*langsel=0;*/
if (langsel == LANGSEL_MODAL)
// From modal mode to an active mode? This forces the menu to return to the setup menu.
langsel = LANGSEL_ACTIVE;
}
#ifdef PAT9125
static void lcd_fsensor_state_set()
{
FSensorStateMenu = !FSensorStateMenu; //set also from fsensor_enable() and fsensor_disable()
if (FSensorStateMenu==0) {
fsensor_disable();
if ((filament_autoload_enabled == true)){
lcd_filament_autoload_info();
}
}else{
fsensor_enable();
if (fsensor_not_responding)
{
lcd_fsensor_fail();
}
}
if (IS_SD_PRINTING || is_usb_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL)) lcd_goto_menu(lcd_tune_menu);
else lcd_goto_menu(lcd_settings_menu); //doesn't break menuStack
}
#endif //PAT9125
#if !SDSORT_USES_RAM
void lcd_set_degree() {
lcd_set_custom_characters_degree();
}
void lcd_set_progress() {
lcd_set_custom_characters_progress();
}
#endif
void lcd_force_language_selection() {
eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_FORCE_SELECTION);
}
static void lcd_language_menu()
{
START_MENU();
if (langsel == LANGSEL_OFF) {
MENU_ITEM(back, MSG_SETTINGS, 0);
} else if (langsel == LANGSEL_ACTIVE) {
MENU_ITEM(back, MSG_WATCH, 0);
}
for (int i=0;i<LANG_NUM;i++){
MENU_ITEM(setlang, MSG_LANGUAGE_NAME_EXPLICIT(i), i);
}
END_MENU();
}
void lcd_mesh_bedleveling()
{
mesh_bed_run_from_menu = true;
enquecommand_P(PSTR("G80"));
lcd_return_to_status();
}
void lcd_mesh_calibration()
{
enquecommand_P(PSTR("M45"));
lcd_return_to_status();
}
void lcd_mesh_calibration_z()
{
enquecommand_P(PSTR("M45 Z"));
lcd_return_to_status();
}
void lcd_pinda_calibration_menu()
{
START_MENU();
MENU_ITEM(back, MSG_MENU_CALIBRATION, 0);
MENU_ITEM(submenu, MSG_CALIBRATE_PINDA, lcd_calibrate_pinda);
END_MENU();
}
void lcd_temp_calibration_set() {
temp_cal_active = !temp_cal_active;
eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, temp_cal_active);
st_current_init();
lcd_goto_menu(lcd_settings_menu); //doesn't break menuStack
}
#ifdef HAS_SECOND_SERIAL_PORT
void lcd_second_serial_set() {
if(selectedSerialPort == 1) selectedSerialPort = 0;
else selectedSerialPort = 1;
eeprom_update_byte((unsigned char *)EEPROM_SECOND_SERIAL_ACTIVE, selectedSerialPort);
MYSERIAL.begin(BAUDRATE);
lcd_goto_menu(lcd_settings_menu);//doesn't break menuStack
}
#endif //HAS_SECOND_SERIAL_PORT
void lcd_calibrate_pinda() {
enquecommand_P(PSTR("G76"));
lcd_return_to_status();
}
#ifndef SNMM
/*void lcd_calibrate_extruder() {
if (degHotend0() > EXTRUDE_MINTEMP)
{
current_position[E_AXIS] = 0; //set initial position to zero
plan_set_e_position(current_position[E_AXIS]);
//long steps_start = st_get_position(E_AXIS);
long steps_final;
float e_steps_per_unit;
float feedrate = (180 / axis_steps_per_unit[E_AXIS]) * 1; //3 //initial automatic extrusion feedrate (depends on current value of axis_steps_per_unit to avoid too fast extrusion)
float e_shift_calibration = (axis_steps_per_unit[E_AXIS] > 180 ) ? ((180 / axis_steps_per_unit[E_AXIS]) * 70): 70; //length of initial automatic extrusion sequence
const char *msg_e_cal_knob = MSG_E_CAL_KNOB;
const char *msg_next_e_cal_knob = lcd_display_message_fullscreen_P(msg_e_cal_knob);
const bool multi_screen = msg_next_e_cal_knob != NULL;
unsigned long msg_millis;
lcd_show_fullscreen_message_and_wait_P(MSG_MARK_FIL);
lcd_implementation_clear();
lcd.setCursor(0, 1); lcd_printPGM(MSG_PLEASE_WAIT);
current_position[E_AXIS] += e_shift_calibration;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate, active_extruder);
st_synchronize();
lcd_display_message_fullscreen_P(msg_e_cal_knob);
msg_millis = millis();
while (!LCD_CLICKED) {
if (multi_screen && millis() - msg_millis > 5000) {
if (msg_next_e_cal_knob == NULL)
msg_next_e_cal_knob = msg_e_cal_knob;
msg_next_e_cal_knob = lcd_display_message_fullscreen_P(msg_next_e_cal_knob);
msg_millis = millis();
}
//manage_inactivity(true);
manage_heater();
if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP) { //adjusting mark by knob rotation
delay_keep_alive(50);
//previous_millis_cmd = millis();
encoderPosition += (encoderDiff / ENCODER_PULSES_PER_STEP);
encoderDiff = 0;
if (!planner_queue_full()) {
current_position[E_AXIS] += float(abs((int)encoderPosition)) * 0.01; //0.05
encoderPosition = 0;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate, active_extruder);
}
}
}
steps_final = current_position[E_AXIS] * axis_steps_per_unit[E_AXIS];
//steps_final = st_get_position(E_AXIS);
lcdDrawUpdate = 1;
e_steps_per_unit = ((float)(steps_final)) / 100.0f;
if (e_steps_per_unit < MIN_E_STEPS_PER_UNIT) e_steps_per_unit = MIN_E_STEPS_PER_UNIT;
if (e_steps_per_unit > MAX_E_STEPS_PER_UNIT) e_steps_per_unit = MAX_E_STEPS_PER_UNIT;
lcd_implementation_clear();
axis_steps_per_unit[E_AXIS] = e_steps_per_unit;
enquecommand_P(PSTR("M500")); //store settings to eeprom
//lcd_implementation_drawedit(PSTR("Result"), ftostr31(axis_steps_per_unit[E_AXIS]));
//delay_keep_alive(2000);
delay_keep_alive(500);
lcd_show_fullscreen_message_and_wait_P(MSG_CLEAN_NOZZLE_E);
lcd_update_enable(true);
lcdDrawUpdate = 2;
}
else
{
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_ERROR);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PREHEAT_NOZZLE);
delay(2000);
lcd_implementation_clear();
}
lcd_return_to_status();
}
void lcd_extr_cal_reset() {
float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
axis_steps_per_unit[E_AXIS] = tmp1[3];
//extrudemultiply = 100;
enquecommand_P(PSTR("M500"));
}*/
#endif
void lcd_toshiba_flash_air_compatibility_toggle()
{
card.ToshibaFlashAir_enable(! card.ToshibaFlashAir_isEnabled());
eeprom_update_byte((uint8_t*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY, card.ToshibaFlashAir_isEnabled());
}
void lcd_v2_calibration() {
bool loaded = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_PLA_FILAMENT_LOADED, false, true);
if (loaded) {
lcd_commands_type = LCD_COMMAND_V2_CAL;
}
else {
lcd_display_message_fullscreen_P(MSG_PLEASE_LOAD_PLA);
for (int i = 0; i < 20; i++) { //wait max. 2s
delay_keep_alive(100);
if (lcd_clicked()) {
while (lcd_clicked());
delay(10);
while (lcd_clicked());
break;
}
}
}
lcd_return_to_status();
lcd_update_enable(true);
}
void lcd_wizard() {
bool result = true;
if (calibration_status() != CALIBRATION_STATUS_ASSEMBLED) {
result = lcd_show_multiscreen_message_yes_no_and_wait_P(MSG_WIZARD_RERUN, false, false);
}
if (result) {
calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
lcd_wizard(0);
}
else {
lcd_return_to_status();
lcd_update_enable(true);
lcd_update(2);
}
}
void lcd_wizard(int state) {
bool end = false;
int wizard_event;
const char *msg = NULL;
while (!end) {
switch (state) {
case 0: // run wizard?
wizard_event = lcd_show_multiscreen_message_yes_no_and_wait_P(MSG_WIZARD_WELCOME, false, true);
if (wizard_event) {
state = 1;
eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1);
}
else {
eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 0);
end = true;
}
break;
case 1: // restore calibration status
switch (calibration_status()) {
case CALIBRATION_STATUS_ASSEMBLED: state = 2; break; //run selftest
case CALIBRATION_STATUS_XYZ_CALIBRATION: state = 3; break; //run xyz cal.
case CALIBRATION_STATUS_Z_CALIBRATION: state = 4; break; //run z cal.
case CALIBRATION_STATUS_LIVE_ADJUST: state = 5; break; //run live adjust
case CALIBRATION_STATUS_CALIBRATED: end = true; eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 0); break;
default: state = 2; break; //if calibration status is unknown, run wizard from the beginning
}
break;
case 2: //selftest
lcd_show_fullscreen_message_and_wait_P(MSG_WIZARD_SELFTEST);
wizard_event = lcd_selftest();
if (wizard_event) {
calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
state = 3;
}
else end = true;
break;
case 3: //xyz cal.
lcd_show_fullscreen_message_and_wait_P(MSG_WIZARD_XYZ_CAL);
wizard_event = gcode_M45(false, 0);
if (wizard_event) state = 5;
else end = true;
break;
case 4: //z cal.
lcd_show_fullscreen_message_and_wait_P(MSG_WIZARD_Z_CAL);
wizard_event = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
if (!wizard_event) lcd_show_fullscreen_message_and_wait_P(MSG_PLACE_STEEL_SHEET);
wizard_event = gcode_M45(true, 0);
if (wizard_event) state = 11; //shipped, no need to set first layer, go to final message directly
else end = true;
break;
case 5: //is filament loaded?
//start to preheat nozzle and bed to save some time later
setTargetHotend(PLA_PREHEAT_HOTEND_TEMP, 0);
setTargetBed(PLA_PREHEAT_HPB_TEMP);
wizard_event = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_WIZARD_FILAMENT_LOADED, false);
if (wizard_event) state = 8;
else state = 6;
break;
case 6: //waiting for preheat nozzle for PLA;
#ifndef SNMM
lcd_display_message_fullscreen_P(MSG_WIZARD_WILL_PREHEAT);
current_position[Z_AXIS] = 100; //move in z axis to make space for loading filament
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
delay_keep_alive(2000);
lcd_display_message_fullscreen_P(MSG_WIZARD_HEATING);
while (abs(degHotend(0) - PLA_PREHEAT_HOTEND_TEMP) > 3) {
lcd_display_message_fullscreen_P(MSG_WIZARD_HEATING);
lcd.setCursor(0, 4);
lcd.print(LCD_STR_THERMOMETER[0]);
lcd.print(ftostr3(degHotend(0)));
lcd.print("/");
lcd.print(PLA_PREHEAT_HOTEND_TEMP);
lcd.print(LCD_STR_DEGREE);
lcd_set_custom_characters();
delay_keep_alive(1000);
}
#endif //not SNMM
state = 7;
break;
case 7: //load filament
#ifdef PAT9125
fsensor_block();
#endif //PAT9125
lcd_show_fullscreen_message_and_wait_P(MSG_WIZARD_LOAD_FILAMENT);
lcd_update_enable(false);
lcd_implementation_clear();
lcd_print_at_PGM(0, 2, MSG_LOADING_FILAMENT);
#ifdef SNMM
change_extr(0);
#endif
gcode_M701();
#ifdef PAT9125
fsensor_unblock();
#endif //PAT9125
state = 9;
break;
case 8:
wizard_event = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_WIZARD_PLA_FILAMENT, false, true);
if (wizard_event) state = 9;
else end = true;
break;
case 9:
lcd_show_fullscreen_message_and_wait_P(MSG_WIZARD_V2_CAL);
lcd_show_fullscreen_message_and_wait_P(MSG_WIZARD_V2_CAL_2);
lcd_commands_type = LCD_COMMAND_V2_CAL;
end = true;
break;
case 10: //repeat first layer cal.?
wizard_event = lcd_show_multiscreen_message_yes_no_and_wait_P(MSG_WIZARD_REPEAT_V2_CAL, false);
if (wizard_event) {
//reset status and live adjust z value in eeprom
calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
lcd_show_fullscreen_message_and_wait_P(MSG_WIZARD_CLEAN_HEATBED);
state = 9;
}
else {
state = 11;
}
break;
case 11: //we are finished
eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 0);
end = true;
break;
default: break;
}
}
SERIAL_ECHOPGM("State: ");
MYSERIAL.println(state);
switch (state) { //final message
case 0: //user dont want to use wizard
msg = MSG_WIZARD_QUIT;
break;
case 1: //printer was already calibrated
msg = MSG_WIZARD_DONE;
break;
case 2: //selftest
msg = MSG_WIZARD_CALIBRATION_FAILED;
break;
case 3: //xyz cal.
msg = MSG_WIZARD_CALIBRATION_FAILED;
break;
case 4: //z cal.
msg = MSG_WIZARD_CALIBRATION_FAILED;
break;
case 8:
msg = MSG_WIZARD_INSERT_CORRECT_FILAMENT;
break;
case 9: break; //exit wizard for v2 calibration, which is implemted in lcd_commands (we need lcd_update running)
case 11: //we are finished
msg = MSG_WIZARD_DONE;
lcd_reset_alert_level();
lcd_setstatuspgm(WELCOME_MSG);
break;
default:
msg = MSG_WIZARD_QUIT;
break;
}
if (state != 9) lcd_show_fullscreen_message_and_wait_P(msg);
lcd_update_enable(true);
lcd_return_to_status();
lcd_update(2);
}
static void lcd_settings_menu()
{
EEPROM_read(EEPROM_SILENT, (uint8_t*)&SilentModeMenu, sizeof(SilentModeMenu));
START_MENU();
MENU_ITEM(back, MSG_MAIN, lcd_settings_menu_back);
MENU_ITEM(submenu, MSG_TEMPERATURE, lcd_control_temperature_menu);
if (!homing_flag)
{
MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu_1mm);
}
if (!isPrintPaused)
{
MENU_ITEM(gcode, MSG_DISABLE_STEPPERS, PSTR("M84"));
}
#ifndef TMC2130
if (!farm_mode) { //dont show in menu if we are in farm mode
switch (SilentModeMenu) {
case SILENT_MODE_POWER: MENU_ITEM(function, MSG_SILENT_MODE_OFF, lcd_silent_mode_set); break;
case SILENT_MODE_SILENT: MENU_ITEM(function, MSG_SILENT_MODE_ON, lcd_silent_mode_set); break;
case SILENT_MODE_AUTO: MENU_ITEM(function, MSG_AUTO_MODE_ON, lcd_silent_mode_set); break;
default: MENU_ITEM(function, MSG_SILENT_MODE_OFF, lcd_silent_mode_set); break; // (probably) not needed
}
}
#endif //TMC2130
#ifdef PAT9125
#ifndef DEBUG_DISABLE_FSENSORCHECK
if (FSensorStateMenu == 0) {
if (fsensor_not_responding){
// Filament sensor not working
MENU_ITEM(function, MSG_FSENSOR_NA, lcd_fsensor_state_set);
MENU_ITEM(function, MSG_FSENS_AUTOLOAD_NA, lcd_fsensor_fail);
}
else{
// Filament sensor turned off, working, no problems
MENU_ITEM(function, MSG_FSENSOR_OFF, lcd_fsensor_state_set);
MENU_ITEM(function, MSG_FSENS_AUTOLOAD_NA, lcd_filament_autoload_info);
}
} else {
// Filament sensor turned on, working, no problems
MENU_ITEM(function, MSG_FSENSOR_ON, lcd_fsensor_state_set);
if ((filament_autoload_enabled == true)) {
MENU_ITEM(function, MSG_FSENS_AUTOLOAD_ON, lcd_set_filament_autoload);
}
else {
MENU_ITEM(function, MSG_FSENS_AUTOLOAD_OFF, lcd_set_filament_autoload);
}
}
#endif //DEBUG_DISABLE_FSENSORCHECK
#endif //PAT9125
if (fans_check_enabled == true) {
MENU_ITEM(function, MSG_FANS_CHECK_ON, lcd_set_fan_check);
}
else {
MENU_ITEM(function, MSG_FANS_CHECK_OFF, lcd_set_fan_check);
}
#ifdef TMC2130
//*** MaR::180416_01a
if (SilentModeMenu == SILENT_MODE_NORMAL) MENU_ITEM(function, MSG_STEALTH_MODE_OFF, lcd_silent_mode_set);
else MENU_ITEM(function, MSG_STEALTH_MODE_ON, lcd_silent_mode_set);
if (SilentModeMenu == SILENT_MODE_NORMAL)
{
if (CrashDetectMenu == 0) MENU_ITEM(function, MSG_CRASHDETECT_OFF, lcd_crash_mode_set);
else MENU_ITEM(function, MSG_CRASHDETECT_ON, lcd_crash_mode_set);
}
else MENU_ITEM(submenu, MSG_CRASHDETECT_NA, lcd_crash_mode_info);
MENU_ITEM_EDIT(wfac, MSG_EXTRUDER_CORRECTION, &tmc2130_wave_fac[E_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);
#endif //TMC2130
if (temp_cal_active == false) {
MENU_ITEM(function, MSG_TEMP_CALIBRATION_OFF, lcd_temp_calibration_set);
}
else {
MENU_ITEM(function, MSG_TEMP_CALIBRATION_ON, lcd_temp_calibration_set);
}
#ifdef HAS_SECOND_SERIAL_PORT
if (selectedSerialPort == 0) {
MENU_ITEM(function, MSG_SECOND_SERIAL_OFF, lcd_second_serial_set);
}
else {
MENU_ITEM(function, MSG_SECOND_SERIAL_ON, lcd_second_serial_set);
}
#endif //HAS_SECOND_SERIAL
if (!isPrintPaused && !homing_flag)
{
MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z);
}
MENU_ITEM(submenu, MSG_LANGUAGE_SELECT, lcd_language_menu);
if (card.ToshibaFlashAir_isEnabled()) {
MENU_ITEM(function, MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_ON, lcd_toshiba_flash_air_compatibility_toggle);
} else {
MENU_ITEM(function, MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_OFF, lcd_toshiba_flash_air_compatibility_toggle);
}
#ifdef SDCARD_SORT_ALPHA
if (!farm_mode) {
uint8_t sdSort;
EEPROM_read(EEPROM_SD_SORT, (uint8_t*)&sdSort, sizeof(sdSort));
switch (sdSort) {
case SD_SORT_TIME: MENU_ITEM(function, MSG_SORT_TIME, lcd_sort_type_set); break;
case SD_SORT_ALPHA: MENU_ITEM(function, MSG_SORT_ALPHA, lcd_sort_type_set); break;
default: MENU_ITEM(function, MSG_SORT_NONE, lcd_sort_type_set);
}
}
#endif // SDCARD_SORT_ALPHA
if (farm_mode)
{
MENU_ITEM(submenu, PSTR("Farm number"), lcd_farm_no);
MENU_ITEM(function, PSTR("Disable farm mode"), lcd_disable_farm_mode);
}
END_MENU();
}
static void lcd_selftest_()
{
lcd_selftest();
}
#ifdef TMC2130
static void lcd_ustep_linearity_menu_save()
{
eeprom_update_word((uint16_t*)EEPROM_TMC2130_WAVE_X_FAC, tmc2130_wave_fac[X_AXIS]);
eeprom_update_word((uint16_t*)EEPROM_TMC2130_WAVE_Y_FAC, tmc2130_wave_fac[Y_AXIS]);
eeprom_update_word((uint16_t*)EEPROM_TMC2130_WAVE_Z_FAC, tmc2130_wave_fac[Z_AXIS]);
eeprom_update_word((uint16_t*)EEPROM_TMC2130_WAVE_E_FAC, tmc2130_wave_fac[E_AXIS]);
}
#endif //TMC2130
static void lcd_settings_menu_back()
{
#ifdef TMC2130
bool changed = false;
if (tmc2130_wave_fac[E_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[E_AXIS] = 0;
changed |= (eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_E_FAC) != tmc2130_wave_fac[E_AXIS]);
lcd_ustep_linearity_menu_save();
if (changed) tmc2130_init();
#endif //TMC2130
currentMenu = lcd_main_menu;
lcd_main_menu();
}
#ifdef EXPERIMENTAL_FEATURES
static void lcd_experimantal_menu();
static void lcd_homing_accuracy_menu();
static void lcd_accurate_home_set()
{
tmc2130_home_enabled = tmc2130_home_enabled?0:1;
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED, tmc2130_home_enabled);
}
static void lcd_homing_accuracy_menu_advanced_reset()
{
tmc2130_home_bsteps[X_AXIS] = 48;
tmc2130_home_fsteps[X_AXIS] = 48;
tmc2130_home_bsteps[Y_AXIS] = 48;
tmc2130_home_fsteps[Y_AXIS] = 48;
}
static void lcd_homing_accuracy_menu_advanced_save()
{
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN, tmc2130_home_origin[X_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS, tmc2130_home_bsteps[X_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS, tmc2130_home_fsteps[X_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN, tmc2130_home_origin[Y_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS, tmc2130_home_bsteps[Y_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS, tmc2130_home_fsteps[Y_AXIS]);
}
static void lcd_homing_accuracy_menu_advanced_back()
{
lcd_homing_accuracy_menu_advanced_save();
currentMenu = lcd_homing_accuracy_menu;
lcd_homing_accuracy_menu();
}
static void lcd_homing_accuracy_menu_advanced()
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
START_MENU();
MENU_ITEM(back, PSTR("Homing accuracy"), lcd_homing_accuracy_menu_advanced_back);
MENU_ITEM(function, PSTR("Reset def. steps"), lcd_homing_accuracy_menu_advanced_reset);
MENU_ITEM_EDIT(byte3, PSTR("X-origin"), &tmc2130_home_origin[X_AXIS], 0, 63);
MENU_ITEM_EDIT(byte3, PSTR("Y-origin"), &tmc2130_home_origin[Y_AXIS], 0, 63);
MENU_ITEM_EDIT(byte3, PSTR("X-bsteps"), &tmc2130_home_bsteps[X_AXIS], 0, 128);
MENU_ITEM_EDIT(byte3, PSTR("Y-bsteps"), &tmc2130_home_bsteps[Y_AXIS], 0, 128);
MENU_ITEM_EDIT(byte3, PSTR("X-fsteps"), &tmc2130_home_fsteps[X_AXIS], 0, 128);
MENU_ITEM_EDIT(byte3, PSTR("Y-fsteps"), &tmc2130_home_fsteps[Y_AXIS], 0, 128);
END_MENU();
}
static void lcd_homing_accuracy_menu()
{
START_MENU();
MENU_ITEM(back, PSTR("Experimental"), 0);
MENU_ITEM(function, tmc2130_home_enabled?PSTR("Accur. homing On"):PSTR("Accur. homing Off"), lcd_accurate_home_set);
MENU_ITEM(gcode, PSTR("Calibrate X"), PSTR("G28XC"));
MENU_ITEM(gcode, PSTR("Calibrate Y"), PSTR("G28YC"));
MENU_ITEM(submenu, PSTR("Advanced"), lcd_homing_accuracy_menu_advanced);
END_MENU();
}
static void lcd_ustep_resolution_menu_save()
{
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
}
static void lcd_ustep_resolution_menu_back()
{
float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT;
bool changed = false;
if (tmc2130_mres[X_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES))
{
axis_steps_per_unit[X_AXIS] = tmp1[X_AXIS] * tmc2130_mres2usteps(tmc2130_mres[X_AXIS]) / TMC2130_USTEPS_XY;
changed = true;
}
if (tmc2130_mres[Y_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES))
{
axis_steps_per_unit[Y_AXIS] = tmp1[Y_AXIS] * tmc2130_mres2usteps(tmc2130_mres[Y_AXIS]) / TMC2130_USTEPS_XY;
changed = true;
}
if (tmc2130_mres[Z_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES))
{
axis_steps_per_unit[Z_AXIS] = tmp1[Z_AXIS] * tmc2130_mres2usteps(tmc2130_mres[Z_AXIS]) / TMC2130_USTEPS_Z;
changed = true;
}
if (tmc2130_mres[E_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES))
{
axis_steps_per_unit[E_AXIS] = tmp1[E_AXIS] * tmc2130_mres2usteps(tmc2130_mres[E_AXIS]) / TMC2130_USTEPS_E;
changed = true;
}
if (changed)
{
lcd_ustep_resolution_menu_save();
Config_StoreSettings(EEPROM_OFFSET);
tmc2130_init();
}
currentMenu = lcd_experimantal_menu;
lcd_experimantal_menu();
}
static void lcd_ustep_resolution_reset_def_xyze()
{
tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT;
axis_steps_per_unit[X_AXIS] = tmp1[X_AXIS];
axis_steps_per_unit[Y_AXIS] = tmp1[Y_AXIS];
axis_steps_per_unit[Z_AXIS] = tmp1[Z_AXIS];
axis_steps_per_unit[E_AXIS] = tmp1[E_AXIS];
}
static void lcd_ustep_resolution_menu()
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
START_MENU();
MENU_ITEM(back, PSTR("Experimental"), lcd_ustep_resolution_menu_back);
MENU_ITEM(function, PSTR("Reset defaults"), lcd_ustep_resolution_reset_def_xyze);
MENU_ITEM_EDIT(mres, PSTR("X-resolution"), &tmc2130_mres[X_AXIS], 4, 4);
MENU_ITEM_EDIT(mres, PSTR("Y-resolution"), &tmc2130_mres[Y_AXIS], 4, 4);
MENU_ITEM_EDIT(mres, PSTR("Z-resolution"), &tmc2130_mres[Z_AXIS], 4, 4);
MENU_ITEM_EDIT(mres, PSTR("E-resolution"), &tmc2130_mres[E_AXIS], 2, 5);
END_MENU();
}
static void lcd_ustep_linearity_menu_back()
{
bool changed = false;
if (tmc2130_wave_fac[X_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[X_AXIS] = 0;
if (tmc2130_wave_fac[Y_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[Y_AXIS] = 0;
if (tmc2130_wave_fac[Z_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[Z_AXIS] = 0;
if (tmc2130_wave_fac[E_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[E_AXIS] = 0;
changed |= (eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_X_FAC) != tmc2130_wave_fac[X_AXIS]);
changed |= (eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_Y_FAC) != tmc2130_wave_fac[Y_AXIS]);
changed |= (eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_Z_FAC) != tmc2130_wave_fac[Z_AXIS]);
changed |= (eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_E_FAC) != tmc2130_wave_fac[E_AXIS]);
lcd_ustep_linearity_menu_save();
if (changed) tmc2130_init();
currentMenu = lcd_experimantal_menu;
lcd_experimantal_menu();
}
static void lcd_ustep_linearity_menu_recomended()
{
tmc2130_wave_fac[X_AXIS] = 220;
tmc2130_wave_fac[Y_AXIS] = 220;
tmc2130_wave_fac[Z_AXIS] = 220;
tmc2130_wave_fac[E_AXIS] = 220;
}
static void lcd_ustep_linearity_menu_reset()
{
tmc2130_wave_fac[X_AXIS] = 0;
tmc2130_wave_fac[Y_AXIS] = 0;
tmc2130_wave_fac[Z_AXIS] = 0;
tmc2130_wave_fac[E_AXIS] = 0;
}
static void lcd_ustep_linearity_menu()
{
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
START_MENU();
MENU_ITEM(back, PSTR("Experimental"), lcd_ustep_linearity_menu_back);
MENU_ITEM(function, PSTR("Reset correction"), lcd_ustep_linearity_menu_reset);
MENU_ITEM(function, PSTR("Recomended config"), lcd_ustep_linearity_menu_recomended);
MENU_ITEM_EDIT(wfac, PSTR("X-correction"), &tmc2130_wave_fac[X_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);
MENU_ITEM_EDIT(wfac, PSTR("Y-correction"), &tmc2130_wave_fac[Y_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);
MENU_ITEM_EDIT(wfac, PSTR("Z-correction"), &tmc2130_wave_fac[Z_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);
MENU_ITEM_EDIT(wfac, PSTR("E-correction"), &tmc2130_wave_fac[E_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);
END_MENU();
}
static void lcd_experimantal_menu_save_all()
{
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED, tmc2130_home_enabled);
lcd_ustep_resolution_menu_save();
lcd_ustep_linearity_menu_save();
Config_StoreSettings(EEPROM_OFFSET);
}
static void lcd_experimantal_menu_disable_all()
{
tmc2130_home_enabled = 0;
lcd_ustep_resolution_reset_def_xyze();
lcd_ustep_linearity_menu_reset();
lcd_experimantal_menu_save_all();
tmc2130_init();
}
static void lcd_experimantal_menu()
{
START_MENU();
MENU_ITEM(back, MSG_MAIN, 0);
MENU_ITEM(function, PSTR("All Xfeatures off"), lcd_experimantal_menu_disable_all);
MENU_ITEM(submenu, PSTR("Homing accuracy"), lcd_homing_accuracy_menu);
MENU_ITEM(submenu, PSTR("uStep resolution"), lcd_ustep_resolution_menu);
MENU_ITEM(submenu, PSTR("uStep linearity"), lcd_ustep_linearity_menu);
END_MENU();
}
#endif //EXPERIMENTAL_FEATURES
static void lcd_calibration_menu()
{
START_MENU();
MENU_ITEM(back, MSG_MAIN, 0);
if (!isPrintPaused)
{
MENU_ITEM(function, MSG_WIZARD, lcd_wizard);
MENU_ITEM(submenu, MSG_V2_CALIBRATION, lcd_v2_calibration);
MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28 W"));
MENU_ITEM(function, MSG_SELFTEST, lcd_selftest_v);
#ifdef MK1BP
// MK1
// "Calibrate Z"
MENU_ITEM(gcode, MSG_HOMEYZ, PSTR("G28 Z"));
#else //MK1BP
// MK2
MENU_ITEM(function, MSG_CALIBRATE_BED, lcd_mesh_calibration);
// "Calibrate Z" with storing the reference values to EEPROM.
MENU_ITEM(submenu, MSG_HOMEYZ, lcd_mesh_calibration_z);
#ifndef SNMM
//MENU_ITEM(function, MSG_CALIBRATE_E, lcd_calibrate_extruder);
#endif
// "Mesh Bed Leveling"
MENU_ITEM(submenu, MSG_MESH_BED_LEVELING, lcd_mesh_bedleveling);
#endif //MK1BP
MENU_ITEM(submenu, MSG_BED_CORRECTION_MENU, lcd_adjust_bed);
MENU_ITEM(submenu, MSG_PID_EXTRUDER, pid_extruder);
MENU_ITEM(submenu, MSG_SHOW_END_STOPS, menu_show_end_stops);
#ifndef MK1BP
MENU_ITEM(gcode, MSG_CALIBRATE_BED_RESET, PSTR("M44"));
#endif //MK1BP
#ifndef SNMM
//MENU_ITEM(function, MSG_RESET_CALIBRATE_E, lcd_extr_cal_reset);
#endif
#ifndef MK1BP
MENU_ITEM(submenu, MSG_CALIBRATION_PINDA_MENU, lcd_pinda_calibration_menu);
#endif //MK1BP
}
END_MENU();
}
/*
void lcd_mylang_top(int hlaska) {
lcd.setCursor(0,0);
lcd.print(" ");
lcd.setCursor(0,0);
lcd_printPGM(MSG_ALL[hlaska-1][LANGUAGE_SELECT]);
}
void lcd_mylang_drawmenu(int cursor) {
int first = 0;
if (cursor>2) first = cursor-2;
if (cursor==LANG_NUM) first = LANG_NUM-3;
lcd.setCursor(0, 1);
lcd.print(" ");
lcd.setCursor(1, 1);
lcd_printPGM(MSG_ALL[first][LANGUAGE_NAME]);
lcd.setCursor(0, 2);
lcd.print(" ");
lcd.setCursor(1, 2);
lcd_printPGM(MSG_ALL[first+1][LANGUAGE_NAME]);
lcd.setCursor(0, 3);
lcd.print(" ");
lcd.setCursor(1, 3);
lcd_printPGM(MSG_ALL[first+2][LANGUAGE_NAME]);
if (cursor==1) lcd.setCursor(0, 1);
if (cursor>1 && cursor<LANG_NUM) lcd.setCursor(0, 2);
if (cursor==LANG_NUM) lcd.setCursor(0, 3);
lcd.print(">");
if (cursor<LANG_NUM-1) {
lcd.setCursor(19,3);
lcd.print("\x01");
}
if (cursor>2) {
lcd.setCursor(19,1);
lcd.print("^");
}
}
*/
void lcd_mylang_drawmenu(int cursor) {
int first = 0;
if (cursor>3) first = cursor-3;
if (cursor==LANG_NUM && LANG_NUM>4) first = LANG_NUM-4;
if (cursor==LANG_NUM && LANG_NUM==4) first = LANG_NUM-4;
lcd.setCursor(0, 0);
lcd.print(" ");
lcd.setCursor(1, 0);
lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+0));
lcd.setCursor(0, 1);
lcd.print(" ");
lcd.setCursor(1, 1);
lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+1));
lcd.setCursor(0, 2);
lcd.print(" ");
if (LANG_NUM > 2){
lcd.setCursor(1, 2);
lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+2));
}
lcd.setCursor(0, 3);
lcd.print(" ");
if (LANG_NUM>3) {
lcd.setCursor(1, 3);
lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+3));
}
if (cursor==1) lcd.setCursor(0, 0);
if (cursor==2) lcd.setCursor(0, 1);
if (cursor>2) lcd.setCursor(0, 2);
if (cursor==LANG_NUM && LANG_NUM>3) lcd.setCursor(0, 3);
lcd.print(">");
if (cursor<LANG_NUM-1 && LANG_NUM>4) {
lcd.setCursor(19,3);
lcd.print("\x01");
}
if (cursor>3 && LANG_NUM>4) {
lcd.setCursor(19,0);
lcd.print("^");
}
}
void lcd_mylang_drawcursor(int cursor) {
if (cursor==1) lcd.setCursor(0, 1);
if (cursor>1 && cursor<LANG_NUM) lcd.setCursor(0, 2);
if (cursor==LANG_NUM) lcd.setCursor(0, 3);
lcd.print(">");
}
void lcd_mylang() {
int enc_dif = 0;
int cursor_pos = 1;
lang_selected=255;
int hlaska=1;
int counter=0;
lcd_set_custom_characters_arrows();
lcd_implementation_clear();
//lcd_mylang_top(hlaska);
lcd_mylang_drawmenu(cursor_pos);
enc_dif = encoderDiff;
while ( (lang_selected == 255) ) {
manage_heater();
manage_inactivity(true);
if ( abs((enc_dif - encoderDiff)) > 4 ) {
//if ( (abs(enc_dif - encoderDiff)) > 1 ) {
if (enc_dif > encoderDiff ) {
cursor_pos --;
}
if (enc_dif < encoderDiff ) {
cursor_pos ++;
}
if (cursor_pos > LANG_NUM) {
cursor_pos = LANG_NUM;
}
if (cursor_pos < 1) {
cursor_pos = 1;
}
lcd_mylang_drawmenu(cursor_pos);
enc_dif = encoderDiff;
delay(100);
//}
} else delay(20);
if (lcd_clicked()) {
lcd_set_lang(cursor_pos-1);
delay(500);
}
/*
if (++counter == 80) {
hlaska++;
if(hlaska>LANG_NUM) hlaska=1;
lcd_mylang_top(hlaska);
lcd_mylang_drawcursor(cursor_pos);
counter=0;
}
*/
};
if(MYSERIAL.available() > 1){
lang_selected = 0;
firstrun = 0;
}
lcd_set_custom_characters_degree();
lcd_implementation_clear();
lcd_return_to_status();
}
void bowden_menu() {
int enc_dif = encoderDiff;
int cursor_pos = 0;
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd.print(">");
for (int i = 0; i < 4; i++) {
lcd.setCursor(1, i);
lcd.print("Extruder ");
lcd.print(i);
lcd.print(": ");
EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
lcd.print(bowden_length[i] - 48);
}
enc_dif = encoderDiff;
while (1) {
manage_heater();
manage_inactivity(true);
if (abs((enc_dif - encoderDiff)) > 2) {
if (enc_dif > encoderDiff) {
cursor_pos--;
}
if (enc_dif < encoderDiff) {
cursor_pos++;
}
if (cursor_pos > 3) {
cursor_pos = 3;
}
if (cursor_pos < 0) {
cursor_pos = 0;
}
lcd.setCursor(0, 0);
lcd.print(" ");
lcd.setCursor(0, 1);
lcd.print(" ");
lcd.setCursor(0, 2);
lcd.print(" ");
lcd.setCursor(0, 3);
lcd.print(" ");
lcd.setCursor(0, cursor_pos);
lcd.print(">");
enc_dif = encoderDiff;
delay(100);
}
if (lcd_clicked()) {
while (lcd_clicked());
delay(10);
while (lcd_clicked());
lcd_implementation_clear();
while (1) {
manage_heater();
manage_inactivity(true);
lcd.setCursor(1, 1);
lcd.print("Extruder ");
lcd.print(cursor_pos);
lcd.print(": ");
lcd.setCursor(13, 1);
lcd.print(bowden_length[cursor_pos] - 48);
if (abs((enc_dif - encoderDiff)) > 2) {
if (enc_dif > encoderDiff) {
bowden_length[cursor_pos]--;
lcd.setCursor(13, 1);
lcd.print(bowden_length[cursor_pos] - 48);
enc_dif = encoderDiff;
}
if (enc_dif < encoderDiff) {
bowden_length[cursor_pos]++;
lcd.setCursor(13, 1);
lcd.print(bowden_length[cursor_pos] - 48);
enc_dif = encoderDiff;
}
}
delay(100);
if (lcd_clicked()) {
while (lcd_clicked());
delay(10);
while (lcd_clicked());
EEPROM_save_B(EEPROM_BOWDEN_LENGTH + cursor_pos * 2, &bowden_length[cursor_pos]);
if (lcd_show_fullscreen_message_yes_no_and_wait_P(PSTR("Continue with another bowden?"))) {
lcd_update_enable(true);
lcd_implementation_clear();
enc_dif = encoderDiff;
lcd.setCursor(0, cursor_pos);
lcd.print(">");
for (int i = 0; i < 4; i++) {
lcd.setCursor(1, i);
lcd.print("Extruder ");
lcd.print(i);
lcd.print(": ");
EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
lcd.print(bowden_length[i] - 48);
}
break;
}
else return;
}
}
}
}
}
static char snmm_stop_print_menu() { //menu for choosing which filaments will be unloaded in stop print
lcd_implementation_clear();
lcd_print_at_PGM(0,0,MSG_UNLOAD_FILAMENT); lcd.print(":");
lcd.setCursor(0, 1); lcd.print(">");
lcd_print_at_PGM(1,1,MSG_ALL);
lcd_print_at_PGM(1,2,MSG_USED);
lcd_print_at_PGM(1,3,MSG_CURRENT);
char cursor_pos = 1;
int enc_dif = 0;
KEEPALIVE_STATE(PAUSED_FOR_USER);
while (1) {
manage_heater();
manage_inactivity(true);
if (abs((enc_dif - encoderDiff)) > 4) {
if ((abs(enc_dif - encoderDiff)) > 1) {
if (enc_dif > encoderDiff) cursor_pos--;
if (enc_dif < encoderDiff) cursor_pos++;
if (cursor_pos > 3) cursor_pos = 3;
if (cursor_pos < 1) cursor_pos = 1;
lcd.setCursor(0, 1);
lcd.print(" ");
lcd.setCursor(0, 2);
lcd.print(" ");
lcd.setCursor(0, 3);
lcd.print(" ");
lcd.setCursor(0, cursor_pos);
lcd.print(">");
enc_dif = encoderDiff;
delay(100);
}
}
if (lcd_clicked()) {
while (lcd_clicked());
delay(10);
while (lcd_clicked());
KEEPALIVE_STATE(IN_HANDLER);
return(cursor_pos - 1);
}
}
}
char choose_extruder_menu() {
int items_no = 4;
int first = 0;
int enc_dif = 0;
char cursor_pos = 1;
enc_dif = encoderDiff;
lcd_implementation_clear();
lcd_printPGM(MSG_CHOOSE_EXTRUDER);
lcd.setCursor(0, 1);
lcd.print(">");
for (int i = 0; i < 3; i++) {
lcd_print_at_PGM(1, i + 1, MSG_EXTRUDER);
}
KEEPALIVE_STATE(PAUSED_FOR_USER);
while (1) {
for (int i = 0; i < 3; i++) {
lcd.setCursor(2 + strlen_P(MSG_EXTRUDER), i+1);
lcd.print(first + i + 1);
}
manage_heater();
manage_inactivity(true);
if (abs((enc_dif - encoderDiff)) > 4) {
if ((abs(enc_dif - encoderDiff)) > 1) {
if (enc_dif > encoderDiff) {
cursor_pos--;
}
if (enc_dif < encoderDiff) {
cursor_pos++;
}
if (cursor_pos > 3) {
cursor_pos = 3;
if (first < items_no - 3) {
first++;
lcd_implementation_clear();
lcd_printPGM(MSG_CHOOSE_EXTRUDER);
for (int i = 0; i < 3; i++) {
lcd_print_at_PGM(1, i + 1, MSG_EXTRUDER);
}
}
}
if (cursor_pos < 1) {
cursor_pos = 1;
if (first > 0) {
first--;
lcd_implementation_clear();
lcd_printPGM(MSG_CHOOSE_EXTRUDER);
for (int i = 0; i < 3; i++) {
lcd_print_at_PGM(1, i + 1, MSG_EXTRUDER);
}
}
}
lcd.setCursor(0, 1);
lcd.print(" ");
lcd.setCursor(0, 2);
lcd.print(" ");
lcd.setCursor(0, 3);
lcd.print(" ");
lcd.setCursor(0, cursor_pos);
lcd.print(">");
enc_dif = encoderDiff;
delay(100);
}
}
if (lcd_clicked()) {
lcd_update(2);
while (lcd_clicked());
delay(10);
while (lcd_clicked());
KEEPALIVE_STATE(IN_HANDLER);
return(cursor_pos + first - 1);
}
}
}
char reset_menu() {
#ifdef SNMM
int items_no = 5;
#else
int items_no = 4;
#endif
static int first = 0;
int enc_dif = 0;
char cursor_pos = 0;
const char *item [items_no];
item[0] = "Language";
item[1] = "Statistics";
item[2] = "Shipping prep";
item[3] = "All Data";
#ifdef SNMM
item[4] = "Bowden length";
#endif // SNMM
enc_dif = encoderDiff;
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd.print(">");
while (1) {
for (int i = 0; i < 4; i++) {
lcd.setCursor(1, i);
lcd.print(item[first + i]);
}
manage_heater();
manage_inactivity(true);
if (abs((enc_dif - encoderDiff)) > 4) {
if ((abs(enc_dif - encoderDiff)) > 1) {
if (enc_dif > encoderDiff) {
cursor_pos--;
}
if (enc_dif < encoderDiff) {
cursor_pos++;
}
if (cursor_pos > 3) {
cursor_pos = 3;
if (first < items_no - 4) {
first++;
lcd_implementation_clear();
}
}
if (cursor_pos < 0) {
cursor_pos = 0;
if (first > 0) {
first--;
lcd_implementation_clear();
}
}
lcd.setCursor(0, 0);
lcd.print(" ");
lcd.setCursor(0, 1);
lcd.print(" ");
lcd.setCursor(0, 2);
lcd.print(" ");
lcd.setCursor(0, 3);
lcd.print(" ");
lcd.setCursor(0, cursor_pos);
lcd.print(">");
enc_dif = encoderDiff;
delay(100);
}
}
if (lcd_clicked()) {
while (lcd_clicked());
delay(10);
while (lcd_clicked());
return(cursor_pos + first);
}
}
}
static void lcd_disable_farm_mode() {
int8_t disable = lcd_show_fullscreen_message_yes_no_and_wait_P(PSTR("Disable farm mode?"), true, false); //allow timeouting, default no
if (disable) {
enquecommand_P(PSTR("G99"));
lcd_return_to_status();
}
else {
lcd_goto_menu(lcd_settings_menu); //doesn't break menuStack
}
lcd_update_enable(true);
lcdDrawUpdate = 2;
}
static void lcd_ping_allert() {
if ((abs(millis() - allert_timer)*0.001) > PING_ALLERT_PERIOD) {
allert_timer = millis();
SET_OUTPUT(BEEPER);
for (int i = 0; i < 2; i++) {
WRITE(BEEPER, HIGH);
delay(50);
WRITE(BEEPER, LOW);
delay(100);
}
}
};
#ifdef SNMM
static void extr_mov(float shift, float feed_rate) { //move extruder no matter what the current heater temperature is
set_extrude_min_temp(.0);
current_position[E_AXIS] += shift;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
set_extrude_min_temp(EXTRUDE_MINTEMP);
}
void change_extr(int extr) { //switches multiplexer for extruders
st_synchronize();
delay(100);
disable_e0();
disable_e1();
disable_e2();
snmm_extruder = extr;
pinMode(E_MUX0_PIN, OUTPUT);
pinMode(E_MUX1_PIN, OUTPUT);
switch (extr) {
case 1:
WRITE(E_MUX0_PIN, HIGH);
WRITE(E_MUX1_PIN, LOW);
break;
case 2:
WRITE(E_MUX0_PIN, LOW);
WRITE(E_MUX1_PIN, HIGH);
break;
case 3:
WRITE(E_MUX0_PIN, HIGH);
WRITE(E_MUX1_PIN, HIGH);
break;
default:
WRITE(E_MUX0_PIN, LOW);
WRITE(E_MUX1_PIN, LOW);
break;
}
delay(100);
}
static int get_ext_nr() { //reads multiplexer input pins and return current extruder number (counted from 0)
return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
}
void display_loading() {
switch (snmm_extruder) {
case 1: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T1); break;
case 2: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T2); break;
case 3: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T3); break;
default: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T0); break;
}
}
void extr_adj(int extruder) //loading filament for SNMM
{
bool correct;
max_feedrate[E_AXIS] =80;
//max_feedrate[E_AXIS] = 50;
START:
lcd_implementation_clear();
lcd.setCursor(0, 0);
switch (extruder) {
case 1: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T1); break;
case 2: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T2); break;
case 3: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T3); break;
default: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T0); break;
}
KEEPALIVE_STATE(PAUSED_FOR_USER);
do{
extr_mov(0.001,1000);
delay_keep_alive(2);
} while (!lcd_clicked());
//delay_keep_alive(500);
KEEPALIVE_STATE(IN_HANDLER);
st_synchronize();
//correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
//if (!correct) goto START;
//extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
//extr_mov(BOWDEN_LENGTH/2.f, 500);
extr_mov(bowden_length[extruder], 500);
lcd_implementation_clear();
lcd.setCursor(0, 0); lcd_printPGM(MSG_LOADING_FILAMENT);
if(strlen(MSG_LOADING_FILAMENT)>18) lcd.setCursor(0, 1);
else lcd.print(" ");
lcd.print(snmm_extruder + 1);
lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
st_synchronize();
max_feedrate[E_AXIS] = 50;
lcd_update_enable(true);
lcd_return_to_status();
lcdDrawUpdate = 2;
}
void extr_unload() { //unloads filament
float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
if (degHotend0() > EXTRUDE_MINTEMP) {
lcd_implementation_clear();
lcd_display_message_fullscreen_P(PSTR(""));
max_feedrate[E_AXIS] = 50;
lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
lcd.print(" ");
lcd.print(snmm_extruder + 1);
lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
if (current_position[Z_AXIS] < 15) {
current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
}
current_position[E_AXIS] += 10; //extrusion
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
st_current_set(2, E_MOTOR_HIGH_CURRENT);
if (current_temperature[0] < 230) { //PLA & all other filaments
current_position[E_AXIS] += 5.4;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
current_position[E_AXIS] += 3.2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[E_AXIS] += 3;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
}
else { //ABS
current_position[E_AXIS] += 3.1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
current_position[E_AXIS] += 3.1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
current_position[E_AXIS] += 4;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
/*current_position[X_AXIS] += 23; //delay
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
current_position[X_AXIS] -= 23; //delay
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
delay_keep_alive(4700);
}
max_feedrate[E_AXIS] = 80;
current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
st_synchronize();
//st_current_init();
if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
else st_current_set(2, tmp_motor_loud[2]);
lcd_update_enable(true);
lcd_return_to_status();
max_feedrate[E_AXIS] = 50;
}
else {
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_ERROR);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PREHEAT_NOZZLE);
delay(2000);
lcd_implementation_clear();
}
lcd_return_to_status();
}
//wrapper functions for loading filament
static void extr_adj_0(){
change_extr(0);
extr_adj(0);
}
static void extr_adj_1() {
change_extr(1);
extr_adj(1);
}
static void extr_adj_2() {
change_extr(2);
extr_adj(2);
}
static void extr_adj_3() {
change_extr(3);
extr_adj(3);
}
static void load_all() {
for (int i = 0; i < 4; i++) {
change_extr(i);
extr_adj(i);
}
}
//wrapper functions for changing extruders
static void extr_change_0() {
change_extr(0);
lcd_return_to_status();
}
static void extr_change_1() {
change_extr(1);
lcd_return_to_status();
}
static void extr_change_2() {
change_extr(2);
lcd_return_to_status();
}
static void extr_change_3() {
change_extr(3);
lcd_return_to_status();
}
//wrapper functions for unloading filament
void extr_unload_all() {
if (degHotend0() > EXTRUDE_MINTEMP) {
for (int i = 0; i < 4; i++) {
change_extr(i);
extr_unload();
}
}
else {
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_ERROR);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PREHEAT_NOZZLE);
delay(2000);
lcd_implementation_clear();
lcd_return_to_status();
}
}
//unloading just used filament (for snmm)
void extr_unload_used() {
if (degHotend0() > EXTRUDE_MINTEMP) {
for (int i = 0; i < 4; i++) {
if (snmm_filaments_used & (1 << i)) {
change_extr(i);
extr_unload();
}
}
snmm_filaments_used = 0;
}
else {
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_ERROR);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PREHEAT_NOZZLE);
delay(2000);
lcd_implementation_clear();
lcd_return_to_status();
}
}
static void extr_unload_0() {
change_extr(0);
extr_unload();
}
static void extr_unload_1() {
change_extr(1);
extr_unload();
}
static void extr_unload_2() {
change_extr(2);
extr_unload();
}
static void extr_unload_3() {
change_extr(3);
extr_unload();
}
static void fil_load_menu()
{
START_MENU();
MENU_ITEM(back, MSG_MAIN, 0);
MENU_ITEM(function, MSG_LOAD_ALL, load_all);
MENU_ITEM(function, MSG_LOAD_FILAMENT_1, extr_adj_0);
MENU_ITEM(function, MSG_LOAD_FILAMENT_2, extr_adj_1);
MENU_ITEM(function, MSG_LOAD_FILAMENT_3, extr_adj_2);
MENU_ITEM(function, MSG_LOAD_FILAMENT_4, extr_adj_3);
END_MENU();
}
static void fil_unload_menu()
{
START_MENU();
MENU_ITEM(back, MSG_MAIN, 0);
MENU_ITEM(function, MSG_UNLOAD_ALL, extr_unload_all);
MENU_ITEM(function, MSG_UNLOAD_FILAMENT_1, extr_unload_0);
MENU_ITEM(function, MSG_UNLOAD_FILAMENT_2, extr_unload_1);
MENU_ITEM(function, MSG_UNLOAD_FILAMENT_3, extr_unload_2);
MENU_ITEM(function, MSG_UNLOAD_FILAMENT_4, extr_unload_3);
END_MENU();
}
static void change_extr_menu(){
START_MENU();
MENU_ITEM(back, MSG_MAIN, 0);
MENU_ITEM(function, MSG_EXTRUDER_1, extr_change_0);
MENU_ITEM(function, MSG_EXTRUDER_2, extr_change_1);
MENU_ITEM(function, MSG_EXTRUDER_3, extr_change_2);
MENU_ITEM(function, MSG_EXTRUDER_4, extr_change_3);
END_MENU();
}
#endif
static void lcd_farm_no()
{
char step = 0;
int enc_dif = 0;
int _farmno = farm_no;
int _ret = 0;
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd.print("Farm no");
do
{
if (abs((enc_dif - encoderDiff)) > 2) {
if (enc_dif > encoderDiff) {
switch (step) {
case(0): if (_farmno >= 100) _farmno -= 100; break;
case(1): if (_farmno % 100 >= 10) _farmno -= 10; break;
case(2): if (_farmno % 10 >= 1) _farmno--; break;
default: break;
}
}
if (enc_dif < encoderDiff) {
switch (step) {
case(0): if (_farmno < 900) _farmno += 100; break;
case(1): if (_farmno % 100 < 90) _farmno += 10; break;
case(2): if (_farmno % 10 <= 8)_farmno++; break;
default: break;
}
}
enc_dif = 0;
encoderDiff = 0;
}
lcd.setCursor(0, 2);
if (_farmno < 100) lcd.print("0");
if (_farmno < 10) lcd.print("0");
lcd.print(_farmno);
lcd.print(" ");
lcd.setCursor(0, 3);
lcd.print(" ");
lcd.setCursor(step, 3);
lcd.print("^");
delay(100);
if (lcd_clicked())
{
delay(200);
step++;
if(step == 3) {
_ret = 1;
farm_no = _farmno;
EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
prusa_statistics(20);
lcd_return_to_status();
}
}
manage_heater();
} while (_ret == 0);
}
unsigned char lcd_choose_color() {
//function returns index of currently chosen item
//following part can be modified from 2 to 255 items:
//-----------------------------------------------------
unsigned char items_no = 2;
const char *item[items_no];
item[0] = "Orange";
item[1] = "Black";
//-----------------------------------------------------
unsigned char active_rows;
static int first = 0;
int enc_dif = 0;
unsigned char cursor_pos = 1;
enc_dif = encoderDiff;
lcd_implementation_clear();
lcd.setCursor(0, 1);
lcd.print(">");
active_rows = items_no < 3 ? items_no : 3;
while (1) {
lcd_print_at_PGM(0, 0, PSTR("Choose color:"));
for (int i = 0; i < active_rows; i++) {
lcd.setCursor(1, i+1);
lcd.print(item[first + i]);
}
manage_heater();
manage_inactivity(true);
proc_commands();
if (abs((enc_dif - encoderDiff)) > 12) {
if (enc_dif > encoderDiff) {
cursor_pos--;
}
if (enc_dif < encoderDiff) {
cursor_pos++;
}
if (cursor_pos > active_rows) {
cursor_pos = active_rows;
if (first < items_no - active_rows) {
first++;
lcd_implementation_clear();
}
}
if (cursor_pos < 1) {
cursor_pos = 1;
if (first > 0) {
first--;
lcd_implementation_clear();
}
}
lcd.setCursor(0, 1);
lcd.print(" ");
lcd.setCursor(0, 2);
lcd.print(" ");
lcd.setCursor(0, 3);
lcd.print(" ");
lcd.setCursor(0, cursor_pos);
lcd.print(">");
enc_dif = encoderDiff;
delay(100);
}
if (lcd_clicked()) {
while (lcd_clicked());
delay(10);
while (lcd_clicked());
switch(cursor_pos + first - 1) {
case 0: return 1; break;
case 1: return 0; break;
default: return 99; break;
}
}
}
}
void lcd_confirm_print()
{
uint8_t filament_type;
int enc_dif = 0;
int cursor_pos = 1;
int _ret = 0;
int _t = 0;
enc_dif = encoderDiff;
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd.print("Print ok ?");
do
{
if (abs(enc_dif - encoderDiff) > 12) {
if (enc_dif > encoderDiff) {
cursor_pos--;
}
if (enc_dif < encoderDiff) {
cursor_pos++;
}
enc_dif = encoderDiff;
}
if (cursor_pos > 2) { cursor_pos = 2; }
if (cursor_pos < 1) { cursor_pos = 1; }
lcd.setCursor(0, 2); lcd.print(" ");
lcd.setCursor(0, 3); lcd.print(" ");
lcd.setCursor(2, 2);
lcd_printPGM(MSG_YES);
lcd.setCursor(2, 3);
lcd_printPGM(MSG_NO);
lcd.setCursor(0, 1 + cursor_pos);
lcd.print(">");
delay(100);
_t = _t + 1;
if (_t>100)
{
prusa_statistics(99);
_t = 0;
}
if (lcd_clicked())
{
if (cursor_pos == 1)
{
_ret = 1;
filament_type = lcd_choose_color();
prusa_statistics(4, filament_type);
no_response = true; //we need confirmation by recieving PRUSA thx
important_status = 4;
saved_filament_type = filament_type;
NcTime = millis();
}
if (cursor_pos == 2)
{
_ret = 2;
filament_type = lcd_choose_color();
prusa_statistics(5, filament_type);
no_response = true; //we need confirmation by recieving PRUSA thx
important_status = 5;
saved_filament_type = filament_type;
NcTime = millis();
}
}
manage_heater();
manage_inactivity();
proc_commands();
} while (_ret == 0);
}
extern bool saved_printing;
static void lcd_main_menu()
{
SDscrool = 0;
START_MENU();
// Majkl superawesome menu
MENU_ITEM(back, MSG_WATCH, 0);
#ifdef RESUME_DEBUG
if (!saved_printing)
MENU_ITEM(function, PSTR("tst - Save"), lcd_menu_test_save);
else
MENU_ITEM(function, PSTR("tst - Restore"), lcd_menu_test_restore);
#endif //RESUME_DEBUG
#ifdef TMC2130_DEBUG
MENU_ITEM(function, PSTR("recover print"), recover_print);
MENU_ITEM(function, PSTR("power panic"), uvlo_);
#endif //TMC2130_DEBUG
/* if (farm_mode && !IS_SD_PRINTING )
{
int tempScrool = 0;
if (lcdDrawUpdate == 0 && LCD_CLICKED == 0)
//delay(100);
return; // nothing to do (so don't thrash the SD card)
uint16_t fileCnt = card.getnrfilenames();
card.getWorkDirName();
if (card.filename[0] == '/')
{
#if SDCARDDETECT == -1
MENU_ITEM(function, MSG_REFRESH, lcd_sd_refresh);
#endif
} else {
MENU_ITEM(function, PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir);
}
for (uint16_t i = 0; i < fileCnt; i++)
{
if (_menuItemNr == _lineNr)
{
#ifndef SDCARD_RATHERRECENTFIRST
card.getfilename(i);
#else
card.getfilename(fileCnt - 1 - i);
#endif
if (card.filenameIsDir)
{
MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
} else {
MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, card.longFilename);
}
} else {
MENU_ITEM_DUMMY();
}
}
MENU_ITEM(back, PSTR("- - - - - - - - -"), 0);
}*/
if ( ( IS_SD_PRINTING || is_usb_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL)) && (current_position[Z_AXIS] < Z_HEIGHT_HIDE_LIVE_ADJUST_MENU) && !homing_flag && !mesh_bed_leveling_flag)
{
MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z);//8
}
if ( moves_planned() || IS_SD_PRINTING || is_usb_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL))
{
MENU_ITEM(submenu, MSG_TUNE, lcd_tune_menu);
} else
{
MENU_ITEM(submenu, MSG_PREHEAT, lcd_preheat_menu);
}
#ifdef SDSUPPORT
if (card.cardOK || lcd_commands_type == LCD_COMMAND_V2_CAL)
{
if (card.isFileOpen())
{
if (mesh_bed_leveling_flag == false && homing_flag == false) {
if (card.sdprinting)
{
MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause);
}
else
{
MENU_ITEM(function, MSG_RESUME_PRINT, lcd_sdcard_resume);
}
MENU_ITEM(submenu, MSG_STOP_PRINT, lcd_sdcard_stop);
}
}
else if (lcd_commands_type == LCD_COMMAND_V2_CAL && mesh_bed_leveling_flag == false && homing_flag == false) {
//MENU_ITEM(submenu, MSG_STOP_PRINT, lcd_sdcard_stop);
}
else
{
if (!is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
{
//if (farm_mode) MENU_ITEM(submenu, MSG_FARM_CARD_MENU, lcd_farm_sdcard_menu);
/*else*/ MENU_ITEM(submenu, MSG_CARD_MENU, lcd_sdcard_menu);
}
#if SDCARDDETECT < 1
MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21")); // SD-card changed by user
#endif
}
} else
{
MENU_ITEM(submenu, MSG_NO_CARD, lcd_sdcard_menu);
#if SDCARDDETECT < 1
MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface
#endif
}
#endif
if (IS_SD_PRINTING || is_usb_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL))
{
if (farm_mode)
{
MENU_ITEM(submenu, PSTR("Farm number"), lcd_farm_no);
}
}
else
{
#ifndef SNMM
#ifdef PAT9125
if ( ((filament_autoload_enabled == true) && (fsensor_enabled == true)))
MENU_ITEM(submenu, MSG_AUTOLOAD_FILAMENT, lcd_menu_AutoLoadFilament);
else
#endif //PAT9125
MENU_ITEM(function, MSG_LOAD_FILAMENT, lcd_LoadFilament);
MENU_ITEM(submenu, MSG_UNLOAD_FILAMENT, lcd_unLoadFilament);
#endif
#ifdef SNMM
MENU_ITEM(submenu, MSG_LOAD_FILAMENT, fil_load_menu);
MENU_ITEM(submenu, MSG_UNLOAD_FILAMENT, fil_unload_menu);
MENU_ITEM(submenu, MSG_CHANGE_EXTR, change_extr_menu);
#endif
MENU_ITEM(submenu, MSG_SETTINGS, lcd_settings_menu);
if(!isPrintPaused) MENU_ITEM(submenu, MSG_MENU_CALIBRATION, lcd_calibration_menu);
#ifdef EXPERIMENTAL_FEATURES
MENU_ITEM(submenu, PSTR("Experimantal"), lcd_experimantal_menu);
#endif //EXPERIMENTAL_FEATURES
}
if (!is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
{
MENU_ITEM(submenu, MSG_STATISTICS, lcd_menu_statistics);
}
#if defined(TMC2130) || defined(PAT9125)
MENU_ITEM(submenu, PSTR("Fail stats"), lcd_menu_fails_stats);
#endif
MENU_ITEM(submenu, MSG_SUPPORT, lcd_support_menu);
END_MENU();
}
void stack_error() {
SET_OUTPUT(BEEPER);
WRITE(BEEPER, HIGH);
delay(1000);
WRITE(BEEPER, LOW);
lcd_display_message_fullscreen_P(MSG_STACK_ERROR);
//err_triggered = 1;
while (1) delay_keep_alive(1000);
}
#ifdef DEBUG_STEPPER_TIMER_MISSED
bool stepper_timer_overflow_state = false;
uint16_t stepper_timer_overflow_max = 0;
uint16_t stepper_timer_overflow_last = 0;
uint16_t stepper_timer_overflow_cnt = 0;
void stepper_timer_overflow() {
char msg[28];
sprintf_P(msg, PSTR("#%d %d max %d"), ++ stepper_timer_overflow_cnt, stepper_timer_overflow_last >> 1, stepper_timer_overflow_max >> 1);
lcd_setstatus(msg);
stepper_timer_overflow_state = false;
if (stepper_timer_overflow_last > stepper_timer_overflow_max)
stepper_timer_overflow_max = stepper_timer_overflow_last;
SERIAL_ECHOPGM("Stepper timer overflow: ");
MYSERIAL.print(msg);
SERIAL_ECHOLNPGM("");
WRITE(BEEPER, LOW);
}
#endif /* DEBUG_STEPPER_TIMER_MISSED */
#ifdef SDSUPPORT
static void lcd_autostart_sd()
{
card.lastnr = 0;
card.setroot();
card.checkautostart(true);
}
#endif
static void lcd_silent_mode_set_tune() {
switch (SilentModeMenu) {
#ifdef TMC2130
case SILENT_MODE_NORMAL: SilentModeMenu = SILENT_MODE_STEALTH; break;
case SILENT_MODE_STEALTH: SilentModeMenu = SILENT_MODE_NORMAL; break;
default: SilentModeMenu = SILENT_MODE_NORMAL; break; // (probably) not needed
#else
case SILENT_MODE_POWER: SilentModeMenu = SILENT_MODE_SILENT; break;
case SILENT_MODE_SILENT: SilentModeMenu = SILENT_MODE_AUTO; break;
case SILENT_MODE_AUTO: SilentModeMenu = SILENT_MODE_POWER; break;
default: SilentModeMenu = SILENT_MODE_POWER; break; // (probably) not needed
#endif //TMC2130
}
eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
st_current_init();
menu_action_back();
}
static void lcd_colorprint_change() {
enquecommand_P(PSTR("M600"));
custom_message = true;
custom_message_type = 2; //just print status message
lcd_setstatuspgm(MSG_FINISHING_MOVEMENTS);
lcd_return_to_status();
lcdDrawUpdate = 3;
}
static void lcd_tune_menu()
{
if (menuData.tuneMenu.status == 0) {
// Menu was entered. Mark the menu as entered and save the current extrudemultiply value.
menuData.tuneMenu.status = 1;
menuData.tuneMenu.extrudemultiply = extrudemultiply;
} else if (menuData.tuneMenu.extrudemultiply != extrudemultiply) {
// extrudemultiply has been changed from the child menu. Apply the new value.
menuData.tuneMenu.extrudemultiply = extrudemultiply;
calculate_extruder_multipliers();
}
EEPROM_read(EEPROM_SILENT, (uint8_t*)&SilentModeMenu, sizeof(SilentModeMenu));
START_MENU();
MENU_ITEM(back, MSG_MAIN, 0); //1
MENU_ITEM_EDIT(int3, MSG_SPEED, &feedmultiply, 10, 999);//2
MENU_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 10);//3
MENU_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 10);//4
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);//5
MENU_ITEM_EDIT(int3, MSG_FLOW, &extrudemultiply, 10, 999);//6
#ifdef FILAMENTCHANGEENABLE
MENU_ITEM(function, MSG_FILAMENTCHANGE, lcd_colorprint_change);//7
#endif
#ifndef DEBUG_DISABLE_FSENSORCHECK
#ifdef PAT9125
if (FSensorStateMenu == 0) {
MENU_ITEM(function, MSG_FSENSOR_OFF, lcd_fsensor_state_set);
}
else {
MENU_ITEM(function, MSG_FSENSOR_ON, lcd_fsensor_state_set);
}
#endif //PAT9125
#endif //DEBUG_DISABLE_FSENSORCHECK
#ifdef TMC2130
//*** MaR::180416_01b
if (SilentModeMenu == SILENT_MODE_NORMAL) MENU_ITEM(function, MSG_STEALTH_MODE_OFF, lcd_silent_mode_set);
else MENU_ITEM(function, MSG_STEALTH_MODE_ON, lcd_silent_mode_set);
if (SilentModeMenu == SILENT_MODE_NORMAL)
{
if (CrashDetectMenu == 0) MENU_ITEM(function, MSG_CRASHDETECT_OFF, lcd_crash_mode_set);
else MENU_ITEM(function, MSG_CRASHDETECT_ON, lcd_crash_mode_set);
}
else MENU_ITEM(submenu, MSG_CRASHDETECT_NA, lcd_crash_mode_info);
#else //TMC2130
if (!farm_mode) { //dont show in menu if we are in farm mode
switch (SilentModeMenu) {
case SILENT_MODE_POWER: MENU_ITEM(function, MSG_SILENT_MODE_OFF, lcd_silent_mode_set); break;
case SILENT_MODE_SILENT: MENU_ITEM(function, MSG_SILENT_MODE_ON, lcd_silent_mode_set); break;
case SILENT_MODE_AUTO: MENU_ITEM(function, MSG_AUTO_MODE_ON, lcd_silent_mode_set); break;
default: MENU_ITEM(function, MSG_SILENT_MODE_OFF, lcd_silent_mode_set); break; // (probably) not needed
}
}
#endif //TMC2130
END_MENU();
}
static void lcd_move_menu_01mm()
{
move_menu_scale = 0.1;
lcd_move_menu_axis();
}
static void lcd_control_temperature_menu()
{
#ifdef PIDTEMP
// set up temp variables - undo the default scaling
// raw_Ki = unscalePID_i(Ki);
// raw_Kd = unscalePID_d(Kd);
#endif
START_MENU();
MENU_ITEM(back, MSG_SETTINGS, 0);
#if TEMP_SENSOR_0 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 10);
#endif
#if TEMP_SENSOR_1 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE1, &target_temperature[1], 0, HEATER_1_MAXTEMP - 10);
#endif
#if TEMP_SENSOR_2 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE2, &target_temperature[2], 0, HEATER_2_MAXTEMP - 10);
#endif
#if TEMP_SENSOR_BED != 0
MENU_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 3);
#endif
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
#if defined AUTOTEMP && (TEMP_SENSOR_0 != 0)
MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &autotemp_enabled);
MENU_ITEM_EDIT(float3, MSG_MIN, &autotemp_min, 0, HEATER_0_MAXTEMP - 10);
MENU_ITEM_EDIT(float3, MSG_MAX, &autotemp_max, 0, HEATER_0_MAXTEMP - 10);
MENU_ITEM_EDIT(float32, MSG_FACTOR, &autotemp_factor, 0.0, 1.0);
#endif
END_MENU();
}
#if SDCARDDETECT == -1
static void lcd_sd_refresh()
{
card.initsd();
currentMenuViewOffset = 0;
}
#endif
static void lcd_sd_updir()
{
SDscrool = 0;
card.updir();
currentMenuViewOffset = 0;
}
void lcd_print_stop() {
cancel_heatup = true;
#ifdef MESH_BED_LEVELING
mbl.active = false;
#endif
// Stop the stoppers, update the position from the stoppers.
if (mesh_bed_leveling_flag == false && homing_flag == false) {
planner_abort_hard();
// Because the planner_abort_hard() initialized current_position[Z] from the stepper,
// Z baystep is no more applied. Reset it.
babystep_reset();
}
// Clean the input command queue.
cmdqueue_reset();
lcd_setstatuspgm(MSG_PRINT_ABORTED);
lcd_update(2);
card.sdprinting = false;
card.closefile();
stoptime = millis();
unsigned long t = (stoptime - starttime - pause_time) / 1000; //time in s
pause_time = 0;
save_statistics(total_filament_used, t);
lcd_return_to_status();
lcd_ignore_click(true);
lcd_commands_step = 0;
lcd_commands_type = LCD_COMMAND_STOP_PRINT;
// Turn off the print fan
SET_OUTPUT(FAN_PIN);
WRITE(FAN_PIN, 0);
fanSpeed = 0;
}
void lcd_sdcard_stop()
{
lcd.setCursor(0, 0);
lcd_printPGM(MSG_STOP_PRINT);
lcd.setCursor(2, 2);
lcd_printPGM(MSG_NO);
lcd.setCursor(2, 3);
lcd_printPGM(MSG_YES);
lcd.setCursor(0, 2); lcd.print(" ");
lcd.setCursor(0, 3); lcd.print(" ");
if ((int32_t)encoderPosition > 2) { encoderPosition = 2; }
if ((int32_t)encoderPosition < 1) { encoderPosition = 1; }
lcd.setCursor(0, 1 + encoderPosition);
lcd.print(">");
if (lcd_clicked())
{
if ((int32_t)encoderPosition == 1)
{
lcd_return_to_status();
}
if ((int32_t)encoderPosition == 2)
{
lcd_print_stop();
}
}
}
/*
void getFileDescription(char *name, char *description) {
// get file description, ie the REAL filenam, ie the second line
card.openFile(name, true);
int i = 0;
// skip the first line (which is the version line)
while (true) {
uint16_t readByte = card.get();
if (readByte == '\n') {
break;
}
}
// read the second line (which is the description line)
while (true) {
uint16_t readByte = card.get();
if (i == 0) {
// skip the first '^'
readByte = card.get();
}
description[i] = readByte;
i++;
if (readByte == '\n') {
break;
}
}
card.closefile();
description[i-1] = 0;
}
*/
void lcd_sdcard_menu()
{
uint8_t sdSort = eeprom_read_byte((uint8_t*)EEPROM_SD_SORT);
int tempScrool = 0;
if (presort_flag == true) {
presort_flag = false;
card.presort();
}
if (lcdDrawUpdate == 0 && LCD_CLICKED == 0)
//delay(100);
return; // nothing to do (so don't thrash the SD card)
uint16_t fileCnt = card.getnrfilenames();
START_MENU();
MENU_ITEM(back, MSG_MAIN, 0);
card.getWorkDirName();
if (card.filename[0] == '/')
{
#if SDCARDDETECT == -1
MENU_ITEM(function, MSG_REFRESH, lcd_sd_refresh);
#endif
} else {
MENU_ITEM(function, PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir);
}
for (uint16_t i = 0; i < fileCnt; i++)
{
if (_menuItemNr == _lineNr)
{
const uint16_t nr = ((sdSort == SD_SORT_NONE) || farm_mode || (sdSort == SD_SORT_TIME)) ? (fileCnt - 1 - i) : i;
/*#ifdef SDCARD_RATHERRECENTFIRST
#ifndef SDCARD_SORT_ALPHA
fileCnt - 1 -
#endif
#endif
i;*/
#ifdef SDCARD_SORT_ALPHA
if (sdSort == SD_SORT_NONE) card.getfilename(nr);
else card.getfilename_sorted(nr);
#else
card.getfilename(nr);
#endif
if (card.filenameIsDir)
MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
else
MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, card.longFilename);
} else {
MENU_ITEM_DUMMY();
}
}
END_MENU();
}
//char description [10] [31];
/*void get_description() {
uint16_t fileCnt = card.getnrfilenames();
for (uint16_t i = 0; i < fileCnt; i++)
{
card.getfilename(fileCnt - 1 - i);
getFileDescription(card.filename, description[i]);
}
}*/
/*void lcd_farm_sdcard_menu()
{
static int i = 0;
if (i == 0) {
get_description();
i++;
}
//int j;
//char description[31];
int tempScrool = 0;
if (lcdDrawUpdate == 0 && LCD_CLICKED == 0)
//delay(100);
return; // nothing to do (so don't thrash the SD card)
uint16_t fileCnt = card.getnrfilenames();
START_MENU();
MENU_ITEM(back, MSG_MAIN, 0);
card.getWorkDirName();
if (card.filename[0] == '/')
{
#if SDCARDDETECT == -1
MENU_ITEM(function, MSG_REFRESH, lcd_sd_refresh);
#endif
}
else {
MENU_ITEM(function, PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir);
}
for (uint16_t i = 0; i < fileCnt; i++)
{
if (_menuItemNr == _lineNr)
{
#ifndef SDCARD_RATHERRECENTFIRST
card.getfilename(i);
#else
card.getfilename(fileCnt - 1 - i);
#endif
if (card.filenameIsDir)
{
MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
}
else {
MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, description[i]);
}
}
else {
MENU_ITEM_DUMMY();
}
}
END_MENU();
}*/
#define menu_edit_type(_type, _name, _strFunc, scale) \
void menu_edit_ ## _name () \
{ \
if ((int32_t)encoderPosition < 0) encoderPosition = 0; \
if ((int32_t)encoderPosition > menuData.editMenuParentState.maxEditValue) encoderPosition = menuData.editMenuParentState.maxEditValue; \
if (lcdDrawUpdate) \
lcd_implementation_drawedit(menuData.editMenuParentState.editLabel, _strFunc(((_type)((int32_t)encoderPosition + menuData.editMenuParentState.minEditValue)) / scale)); \
if (LCD_CLICKED) \
{ \
*((_type*)menuData.editMenuParentState.editValue) = ((_type)((int32_t)encoderPosition + menuData.editMenuParentState.minEditValue)) / scale; \
lcd_goto_menu(menuData.editMenuParentState.prevMenu, menuData.editMenuParentState.prevEncoderPosition, true, false); \
} \
} \
static void menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) \
{ \
asm("cli"); \
menuData.editMenuParentState.prevMenu = currentMenu; \
menuData.editMenuParentState.prevEncoderPosition = encoderPosition; \
asm("sei"); \
\
lcdDrawUpdate = 2; \
menuData.editMenuParentState.editLabel = pstr; \
menuData.editMenuParentState.editValue = ptr; \
menuData.editMenuParentState.minEditValue = minValue * scale; \
menuData.editMenuParentState.maxEditValue = maxValue * scale - menuData.editMenuParentState.minEditValue; \
lcd_goto_menu(menu_edit_ ## _name, (*ptr) * scale - menuData.editMenuParentState.minEditValue, true, false); \
\
}\
/*
void menu_edit_callback_ ## _name () { \
menu_edit_ ## _name (); \
if (LCD_CLICKED) (*callbackFunc)(); \
} \
static void menu_action_setting_edit_callback_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue, menuFunc_t callback) \
{ \
menuData.editMenuParentState.prevMenu = currentMenu; \
menuData.editMenuParentState.prevEncoderPosition = encoderPosition; \
\
lcdDrawUpdate = 2; \
lcd_goto_menu(menu_edit_callback_ ## _name, (*ptr) * scale - menuData.editMenuParentState.minEditValue, true, false); \
\
menuData.editMenuParentState.editLabel = pstr; \
menuData.editMenuParentState.editValue = ptr; \
menuData.editMenuParentState.minEditValue = minValue * scale; \
menuData.editMenuParentState.maxEditValue = maxValue * scale - menuData.editMenuParentState.minEditValue; \
callbackFunc = callback;\
}
*/
#ifdef TMC2130
extern char conv[8];
// Convert tmc2130 mres to string
char *mres_to_str3(const uint8_t &x)
{
return itostr3(256 >> x);
}
menu_edit_type(uint8_t, mres, mres_to_str3, 1)
// Convert tmc2130 wfac to string
char *wfac_to_str5(const uint8_t &x)
{
if (x >= TMC2130_WAVE_FAC1000_MIN)
{
conv[0] = '[';
ftostr43(((float)((uint16_t)x + 1000) / 1000), 1);
}
else strcpy_P(conv, MSG_EXTRUDER_CORRECTION_OFF);
conv[6] = ']';
conv[7] = ' ';
conv[8] = 0;
return conv;
}
menu_edit_type(uint8_t, wfac, wfac_to_str5, 1)
#endif //TMC2130
menu_edit_type(uint8_t, byte3, itostr3, 1)
menu_edit_type(int, int3, itostr3, 1)
menu_edit_type(float, float3, ftostr3, 1)
menu_edit_type(float, float32, ftostr32, 100)
menu_edit_type(float, float43, ftostr43, 1000)
menu_edit_type(float, float5, ftostr5, 0.01)
menu_edit_type(float, float51, ftostr51, 10)
menu_edit_type(float, float52, ftostr52, 100)
menu_edit_type(unsigned long, long5, ftostr5, 0.01)
static void lcd_selftest_v()
{
(void)lcd_selftest();
}
bool lcd_selftest()
{
int _progress = 0;
bool _result = true;
lcd_wait_for_cool_down();
lcd_implementation_clear();
lcd.setCursor(0, 0); lcd_printPGM(MSG_SELFTEST_START);
#ifdef TMC2130
FORCE_HIGH_POWER_START;
#endif // TMC2130
delay(2000);
KEEPALIVE_STATE(IN_HANDLER);
_progress = lcd_selftest_screen(-1, _progress, 3, true, 2000);
#if (defined(FANCHECK) && defined(TACH_0))
_result = lcd_selftest_fan_dialog(0);
#else //defined(TACH_0)
_result = lcd_selftest_manual_fan_check(0, false);
if (!_result)
{
const char *_err;
lcd_selftest_error(7, _err, _err); //extruder fan not spinning
}
#endif //defined(TACH_0)
if (_result)
{
_progress = lcd_selftest_screen(0, _progress, 3, true, 2000);
#if (defined(FANCHECK) && defined(TACH_1))
_result = lcd_selftest_fan_dialog(1);
#else //defined(TACH_1)
_result = lcd_selftest_manual_fan_check(1, false);
if (!_result)
{
const char *_err;
lcd_selftest_error(6, _err, _err); //print fan not spinning
}
#endif //defined(TACH_1)
}
if (_result)
{
_progress = lcd_selftest_screen(1, _progress, 3, true, 2000);
#ifndef TMC2130
_result = lcd_selfcheck_endstops();
#else
_result = true;
#endif
}
if (_result)
{
_progress = lcd_selftest_screen(3, _progress, 3, true, 1000);
_result = lcd_selfcheck_check_heater(false);
}
if (_result)
{
//current_position[Z_AXIS] += 15; //move Z axis higher to avoid false triggering of Z end stop in case that we are very low - just above heatbed
_progress = lcd_selftest_screen(4, _progress, 3, true, 2000);
#ifdef TMC2130
_result = lcd_selfcheck_axis_sg(X_AXIS);
#else
_result = lcd_selfcheck_axis(X_AXIS, X_MAX_POS);
#endif //TMC2130
}
if (_result)
{
_progress = lcd_selftest_screen(4, _progress, 3, true, 0);
#ifndef TMC2130
_result = lcd_selfcheck_pulleys(X_AXIS);
#endif
}
if (_result)
{
_progress = lcd_selftest_screen(5, _progress, 3, true, 1500);
#ifdef TMC2130
_result = lcd_selfcheck_axis_sg(Y_AXIS);
#else
_result = lcd_selfcheck_axis(Y_AXIS, Y_MAX_POS);
#endif // TMC2130
}
if (_result)
{
_progress = lcd_selftest_screen(5, _progress, 3, true, 0);
#ifndef TMC2130
_result = lcd_selfcheck_pulleys(Y_AXIS);
#endif // TMC2130
}
if (_result)
{
#ifdef TMC2130
tmc2130_home_exit();
enable_endstops(false);
#endif
current_position[X_AXIS] = current_position[X_AXIS] + 14;
current_position[Y_AXIS] = current_position[Y_AXIS] + 12;
//homeaxis(X_AXIS);
//homeaxis(Y_AXIS);
current_position[Z_AXIS] = current_position[Z_AXIS] + 10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
st_synchronize();
_progress = lcd_selftest_screen(6, _progress, 3, true, 1500);
_result = lcd_selfcheck_axis(2, Z_MAX_POS);
if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) {
enquecommand_P(PSTR("G28 W"));
enquecommand_P(PSTR("G1 Z15 F1000"));
}
}
#ifdef TMC2130
if (_result)
{
_progress = lcd_selftest_screen(13, 0, 2, true, 0);
bool bres = tmc2130_home_calibrate(X_AXIS);
_progress = lcd_selftest_screen(13, 1, 2, true, 0);
bres &= tmc2130_home_calibrate(Y_AXIS);
_progress = lcd_selftest_screen(13, 2, 2, true, 0);
if (bres)
eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED, 1);
_result = bres;
}
#endif //TMC2130
if (_result)
{
_progress = lcd_selftest_screen(7, _progress, 3, true, 2000); //check bed
_result = lcd_selfcheck_check_heater(true);
}
if (_result)
{
_progress = lcd_selftest_screen(8, _progress, 3, true, 2000); //bed ok
#ifdef PAT9125
_progress = lcd_selftest_screen(9, _progress, 3, true, 2000); //check filaments sensor
_result = lcd_selftest_fsensor();
#endif // PAT9125
}
if (_result)
{
#ifdef PAT9125
_progress = lcd_selftest_screen(10, _progress, 3, true, 2000); //fil sensor OK
#endif // PAT9125
_progress = lcd_selftest_screen(11, _progress, 3, true, 5000); //all correct
}
else
{
_progress = lcd_selftest_screen(12, _progress, 3, true, 5000);
}
lcd_reset_alert_level();
enquecommand_P(PSTR("M84"));
lcd_implementation_clear();
lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL;
if (_result)
{
LCD_ALERTMESSAGERPGM(MSG_SELFTEST_OK);
}
else
{
LCD_ALERTMESSAGERPGM(MSG_SELFTEST_FAILED);
}
#ifdef TMC2130
FORCE_HIGH_POWER_END;
#endif // TMC2130
KEEPALIVE_STATE(NOT_BUSY);
return(_result);
}
#ifdef TMC2130
static void reset_crash_det(char axis) {
current_position[axis] += 10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
st_synchronize();
if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET)) tmc2130_sg_stop_on_crash = true;
}
static bool lcd_selfcheck_axis_sg(char axis) {
// each axis length is measured twice
float axis_length, current_position_init, current_position_final;
float measured_axis_length[2];
float margin = 60;
float max_error_mm = 5;
switch (axis) {
case 0: axis_length = X_MAX_POS; break;
case 1: axis_length = Y_MAX_POS + 8; break;
default: axis_length = 210; break;
}
tmc2130_sg_stop_on_crash = false;
tmc2130_home_exit();
enable_endstops(true);
if (axis == X_AXIS) { //there is collision between cables and PSU cover in X axis if Z coordinate is too low
current_position[Z_AXIS] += 17;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
tmc2130_home_enter(Z_AXIS_MASK);
st_synchronize();
tmc2130_home_exit();
}
// first axis length measurement begin
current_position[axis] -= (axis_length + margin);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
st_synchronize();
tmc2130_sg_meassure_start(axis);
current_position_init = st_get_position_mm(axis);
current_position[axis] += 2 * margin;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
st_synchronize();
current_position[axis] += axis_length;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
st_synchronize();
uint16_t sg1 = tmc2130_sg_meassure_stop();
printf_P(PSTR("%c AXIS SG1=%d\n"), 'X'+axis, sg1);
eeprom_write_word(((uint16_t*)((axis == X_AXIS)?EEPROM_BELTSTATUS_X:EEPROM_BELTSTATUS_Y)), sg1);
current_position_final = st_get_position_mm(axis);
measured_axis_length[0] = abs(current_position_final - current_position_init);
// first measurement end and second measurement begin
current_position[axis] -= margin;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
st_synchronize();
current_position[axis] -= (axis_length + margin);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
st_synchronize();
current_position_init = st_get_position_mm(axis);
measured_axis_length[1] = abs(current_position_final - current_position_init);
//end of second measurement, now check for possible errors:
for(int i = 0; i < 2; i++){ //check if measured axis length corresponds to expected length
SERIAL_ECHOPGM("Measured axis length:");
MYSERIAL.println(measured_axis_length[i]);
if (abs(measured_axis_length[i] - axis_length) > max_error_mm) {
enable_endstops(false);
const char *_error_1;
const char *_error_2;
if (axis == X_AXIS) _error_1 = "X";
if (axis == Y_AXIS) _error_1 = "Y";
if (axis == Z_AXIS) _error_1 = "Z";
lcd_selftest_error(9, _error_1, _error_2);
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
reset_crash_det(axis);
return false;
}
}
SERIAL_ECHOPGM("Axis length difference:");
MYSERIAL.println(abs(measured_axis_length[0] - measured_axis_length[1]));
if (abs(measured_axis_length[0] - measured_axis_length[1]) > 1) { //check if difference between first and second measurement is low
//loose pulleys
const char *_error_1;
const char *_error_2;
if (axis == X_AXIS) _error_1 = "X";
if (axis == Y_AXIS) _error_1 = "Y";
if (axis == Z_AXIS) _error_1 = "Z";
lcd_selftest_error(8, _error_1, _error_2);
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
reset_crash_det(axis);
return false;
}
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
reset_crash_det(axis);
return true;
}
#endif //TMC2130
//#ifndef TMC2130
static bool lcd_selfcheck_axis(int _axis, int _travel)
{
// printf_P(PSTR("lcd_selfcheck_axis %d, %d\n"), _axis, _travel);
bool _stepdone = false;
bool _stepresult = false;
int _progress = 0;
int _travel_done = 0;
int _err_endstop = 0;
int _lcd_refresh = 0;
_travel = _travel + (_travel / 10);
do {
current_position[_axis] = current_position[_axis] - 1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
st_synchronize();
#ifdef TMC2130
if ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1))
#else //TMC2130
if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ||
((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) ||
((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1))
#endif //TMC2130
{
if (_axis == 0)
{
_stepresult = ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ? true : false;
_err_endstop = ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) ? 1 : 2;
}
if (_axis == 1)
{
_stepresult = ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) ? true : false;
_err_endstop = ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ? 0 : 2;
}
if (_axis == 2)
{
_stepresult = ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) ? true : false;
_err_endstop = ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ? 0 : 1;
printf_P(PSTR("lcd_selfcheck_axis %d, %d\n"), _stepresult, _err_endstop);
/*disable_x();
disable_y();
disable_z();*/
}
_stepdone = true;
}
if (_lcd_refresh < 6)
{
_lcd_refresh++;
}
else
{
_progress = lcd_selftest_screen(2 + _axis, _progress, 3, false, 0);
_lcd_refresh = 0;
}
manage_heater();
manage_inactivity(true);
//delay(100);
(_travel_done <= _travel) ? _travel_done++ : _stepdone = true;
} while (!_stepdone);
//current_position[_axis] = current_position[_axis] + 15;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
if (!_stepresult)
{
const char *_error_1;
const char *_error_2;
if (_axis == X_AXIS) _error_1 = "X";
if (_axis == Y_AXIS) _error_1 = "Y";
if (_axis == Z_AXIS) _error_1 = "Z";
if (_err_endstop == 0) _error_2 = "X";
if (_err_endstop == 1) _error_2 = "Y";
if (_err_endstop == 2) _error_2 = "Z";
if (_travel_done >= _travel)
{
lcd_selftest_error(5, _error_1, _error_2);
}
else
{
lcd_selftest_error(4, _error_1, _error_2);
}
}
return _stepresult;
}
#ifndef TMC2130
static bool lcd_selfcheck_pulleys(int axis)
{
float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
float current_position_init;
float move;
bool endstop_triggered = false;
int i;
unsigned long timeout_counter;
refresh_cmd_timeout();
manage_inactivity(true);
if (axis == 0) move = 50; //X_AXIS
else move = 50; //Y_AXIS
current_position_init = current_position[axis];
current_position[axis] += 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
for (i = 0; i < 5; i++) {
refresh_cmd_timeout();
current_position[axis] = current_position[axis] + move;
st_current_set(0, 850); //set motor current higher
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], 200, active_extruder);
st_synchronize();
//*** MaR::180416_02
if (SilentModeMenu != SILENT_MODE_OFF) st_current_set(0, tmp_motor[0]); //set back to normal operation currents
else st_current_set(0, tmp_motor_loud[0]); //set motor current back
current_position[axis] = current_position[axis] - move;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], 50, active_extruder);
st_synchronize();
if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ||
((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1)) {
lcd_selftest_error(8, (axis == 0) ? "X" : "Y", "");
return(false);
}
}
timeout_counter = millis() + 2500;
endstop_triggered = false;
manage_inactivity(true);
while (!endstop_triggered) {
if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ||
((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1)) {
endstop_triggered = true;
if (current_position_init - 1 <= current_position[axis] && current_position_init + 1 >= current_position[axis]) {
current_position[axis] += 15;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
st_synchronize();
return(true);
}
else {
lcd_selftest_error(8, (axis == 0) ? "X" : "Y", "");
return(false);
}
}
else {
current_position[axis] -= 1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
st_synchronize();
if (millis() > timeout_counter) {
lcd_selftest_error(8, (axis == 0) ? "X" : "Y", "");
return(false);
}
}
}
return(true);
}
#endif TMC2130
static bool lcd_selfcheck_endstops()
{
bool _result = true;
if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ||
((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) ||
((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1))
{
if ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) current_position[0] += 10;
if ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) current_position[1] += 10;
if ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) current_position[2] += 10;
}
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[0] / 60, active_extruder);
delay(500);
if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ||
((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) ||
((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1))
{
_result = false;
char _error[4] = "";
if ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) strcat(_error, "X");
if ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) strcat(_error, "Y");
if ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) strcat(_error, "Z");
lcd_selftest_error(3, _error, "");
}
manage_heater();
manage_inactivity(true);
return _result;
}
//#endif //not defined TMC2130
static bool lcd_selfcheck_check_heater(bool _isbed)
{
int _counter = 0;
int _progress = 0;
bool _stepresult = false;
bool _docycle = true;
int _checked_snapshot = (_isbed) ? degBed() : degHotend(0);
int _opposite_snapshot = (_isbed) ? degHotend(0) : degBed();
int _cycles = (_isbed) ? 180 : 60; //~ 90s / 30s
target_temperature[0] = (_isbed) ? 0 : 200;
target_temperature_bed = (_isbed) ? 100 : 0;
manage_heater();
manage_inactivity(true);
KEEPALIVE_STATE(NOT_BUSY); //we are sending temperatures on serial line, so no need to send host keepalive messages
do {
_counter++;
_docycle = (_counter < _cycles) ? true : false;
manage_heater();
manage_inactivity(true);
_progress = (_isbed) ? lcd_selftest_screen(7, _progress, 2, false, 400) : lcd_selftest_screen(3, _progress, 2, false, 400);
/*if (_isbed) {
MYSERIAL.print("Bed temp:");
MYSERIAL.println(degBed());
}
else {
MYSERIAL.print("Hotend temp:");
MYSERIAL.println(degHotend(0));
}*/
if(_counter%5 == 0) serialecho_temperatures(); //show temperatures once in two seconds
} while (_docycle);
target_temperature[0] = 0;
target_temperature_bed = 0;
manage_heater();
int _checked_result = (_isbed) ? degBed() - _checked_snapshot : degHotend(0) - _checked_snapshot;
int _opposite_result = (_isbed) ? degHotend(0) - _opposite_snapshot : degBed() - _opposite_snapshot;
/*
MYSERIAL.println("");
MYSERIAL.print("Checked result:");
MYSERIAL.println(_checked_result);
MYSERIAL.print("Opposite result:");
MYSERIAL.println(_opposite_result);
*/
if (_opposite_result < ((_isbed) ? 10 : 3))
{
if (_checked_result >= ((_isbed) ? 3 : 10))
{
_stepresult = true;
}
else
{
lcd_selftest_error(1, "", "");
}
}
else
{
lcd_selftest_error(2, "", "");
}
manage_heater();
manage_inactivity(true);
KEEPALIVE_STATE(IN_HANDLER);
return _stepresult;
}
static void lcd_selftest_error(int _error_no, const char *_error_1, const char *_error_2)
{
lcd_implementation_quick_feedback();
target_temperature[0] = 0;
target_temperature_bed = 0;
manage_heater();
manage_inactivity();
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_SELFTEST_ERROR);
lcd.setCursor(0, 1);
lcd_printPGM(MSG_SELFTEST_PLEASECHECK);
switch (_error_no)
{
case 1:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_SELFTEST_HEATERTHERMISTOR);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_NOTCONNECTED);
break;
case 2:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_SELFTEST_BEDHEATER);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_WIRINGERROR);
break;
case 3:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_SELFTEST_ENDSTOPS);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_WIRINGERROR);
lcd.setCursor(17, 3);
lcd.print(_error_1);
break;
case 4:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_SELFTEST_MOTOR);
lcd.setCursor(18, 2);
lcd.print(_error_1);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_ENDSTOP);
lcd.setCursor(18, 3);
lcd.print(_error_2);
break;
case 5:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_SELFTEST_ENDSTOP_NOTHIT);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_MOTOR);
lcd.setCursor(18, 3);
lcd.print(_error_1);
break;
case 6:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_SELFTEST_COOLING_FAN);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_WIRINGERROR);
lcd.setCursor(18, 3);
lcd.print(_error_1);
break;
case 7:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_SELFTEST_EXTRUDER_FAN);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_WIRINGERROR);
lcd.setCursor(18, 3);
lcd.print(_error_1);
break;
case 8:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_LOOSE_PULLEY);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_MOTOR);
lcd.setCursor(18, 3);
lcd.print(_error_1);
break;
case 9:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_SELFTEST_AXIS_LENGTH);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_AXIS);
lcd.setCursor(18, 3);
lcd.print(_error_1);
break;
case 10:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_SELFTEST_FANS);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_SWAPPED);
lcd.setCursor(18, 3);
lcd.print(_error_1);
break;
case 11:
lcd.setCursor(0, 2);
lcd_printPGM(MSG_FILAMENT_SENSOR);
lcd.setCursor(0, 3);
lcd_printPGM(MSG_SELFTEST_WIRINGERROR);
break;
}
delay(1000);
lcd_implementation_quick_feedback();
do {
delay(100);
manage_heater();
manage_inactivity();
} while (!lcd_clicked());
LCD_ALERTMESSAGERPGM(MSG_SELFTEST_FAILED);
lcd_return_to_status();
}
#ifdef PAT9125
static bool lcd_selftest_fsensor() {
fsensor_init();
if (fsensor_not_responding)
{
const char *_err;
lcd_selftest_error(11, _err, _err);
}
return(!fsensor_not_responding);
}
#endif //PAT9125
static bool lcd_selftest_manual_fan_check(int _fan, bool check_opposite)
{
bool _result = check_opposite;
lcd_implementation_clear();
lcd.setCursor(0, 0); lcd_printPGM(MSG_SELFTEST_FAN);
switch (_fan)
{
case 0:
// extruder cooling fan
lcd.setCursor(0, 1);
if(check_opposite == true) lcd_printPGM(MSG_SELFTEST_COOLING_FAN);
else lcd_printPGM(MSG_SELFTEST_EXTRUDER_FAN);
SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
break;
case 1:
// object cooling fan
lcd.setCursor(0, 1);
if (check_opposite == true) lcd_printPGM(MSG_SELFTEST_EXTRUDER_FAN);
else lcd_printPGM(MSG_SELFTEST_COOLING_FAN);
SET_OUTPUT(FAN_PIN);
analogWrite(FAN_PIN, 255);
break;
}
delay(500);
lcd.setCursor(1, 2); lcd_printPGM(MSG_SELFTEST_FAN_YES);
lcd.setCursor(0, 3); lcd.print(">");
lcd.setCursor(1, 3); lcd_printPGM(MSG_SELFTEST_FAN_NO);
int8_t enc_dif = 0;
KEEPALIVE_STATE(PAUSED_FOR_USER);
button_pressed = false;
do
{
switch (_fan)
{
case 0:
// extruder cooling fan
SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
break;
case 1:
// object cooling fan
SET_OUTPUT(FAN_PIN);
analogWrite(FAN_PIN, 255);
break;
}
if (abs((enc_dif - encoderDiff)) > 2) {
if (enc_dif > encoderDiff) {
_result = !check_opposite;
lcd.setCursor(0, 2); lcd.print(">");
lcd.setCursor(1, 2); lcd_printPGM(MSG_SELFTEST_FAN_YES);
lcd.setCursor(0, 3); lcd.print(" ");
lcd.setCursor(1, 3); lcd_printPGM(MSG_SELFTEST_FAN_NO);
}
if (enc_dif < encoderDiff) {
_result = check_opposite;
lcd.setCursor(0, 2); lcd.print(" ");
lcd.setCursor(1, 2); lcd_printPGM(MSG_SELFTEST_FAN_YES);
lcd.setCursor(0, 3); lcd.print(">");
lcd.setCursor(1, 3); lcd_printPGM(MSG_SELFTEST_FAN_NO);
}
enc_dif = 0;
encoderDiff = 0;
}
manage_heater();
delay(100);
} while (!lcd_clicked());
KEEPALIVE_STATE(IN_HANDLER);
SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
WRITE(EXTRUDER_0_AUTO_FAN_PIN, 0);
SET_OUTPUT(FAN_PIN);
analogWrite(FAN_PIN, 0);
fanSpeed = 0;
manage_heater();
return _result;
}
static bool lcd_selftest_fan_dialog(int _fan)
{
bool _result = true;
int _errno = 7;
switch (_fan) {
case 0:
fanSpeed = 0;
manage_heater(); //turn off fan
setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, 1); //extruder fan
delay(2000); //delay_keep_alive would turn off extruder fan, because temerature is too low
manage_heater(); //count average fan speed from 2s delay and turn off fans
if (!fan_speed[0]) _result = false;
//SERIAL_ECHOPGM("Extruder fan speed: ");
//MYSERIAL.println(fan_speed[0]);
//SERIAL_ECHOPGM("Print fan speed: ");
//MYSERIAL.print(fan_speed[1]);
break;
case 1:
//will it work with Thotend > 50 C ?
fanSpeed = 150; //print fan
for (uint8_t i = 0; i < 5; i++) {
delay_keep_alive(1000);
lcd.setCursor(18, 3);
lcd.print("-");
delay_keep_alive(1000);
lcd.setCursor(18, 3);
lcd.print("|");
}
fanSpeed = 0;
manage_heater(); //turn off fan
manage_inactivity(true); //to turn off print fan
if (!fan_speed[1]) {
_result = false; _errno = 6; //print fan not spinning
}
else if (fan_speed[1] < 34) { //fan is spinning, but measured RPM are too low for print fan, it must be left extruder fan
//check fans manually
_result = lcd_selftest_manual_fan_check(1, true); //turn on print fan and check that left extruder fan is not spinning
if (_result) {
_result = lcd_selftest_manual_fan_check(1, false); //print fan is stil turned on; check that it is spinning
if (!_result) _errno = 6; //print fan not spinning
}
else {
_errno = 10; //swapped fans
}
}
//SERIAL_ECHOPGM("Extruder fan speed: ");
//MYSERIAL.println(fan_speed[0]);
//SERIAL_ECHOPGM("Print fan speed: ");
//MYSERIAL.println(fan_speed[1]);
break;
}
if (!_result)
{
const char *_err;
lcd_selftest_error(_errno, _err, _err);
}
return _result;
}
static int lcd_selftest_screen(int _step, int _progress, int _progress_scale, bool _clear, int _delay)
{
lcd_next_update_millis = millis() + (LCD_UPDATE_INTERVAL * 10000);
int _step_block = 0;
const char *_indicator = (_progress > _progress_scale) ? "-" : "|";
if (_clear) lcd_implementation_clear();
lcd.setCursor(0, 0);
if (_step == -1) lcd_printPGM(MSG_SELFTEST_FAN);
if (_step == 0) lcd_printPGM(MSG_SELFTEST_FAN);
if (_step == 1) lcd_printPGM(MSG_SELFTEST_FAN);
if (_step == 2) lcd_printPGM(MSG_SELFTEST_CHECK_ENDSTOPS);
if (_step == 3) lcd_printPGM(MSG_SELFTEST_CHECK_HOTEND);
if (_step == 4) lcd_printPGM(MSG_SELFTEST_CHECK_X);
if (_step == 5) lcd_printPGM(MSG_SELFTEST_CHECK_Y);
if (_step == 6) lcd_printPGM(MSG_SELFTEST_CHECK_Z);
if (_step == 7) lcd_printPGM(MSG_SELFTEST_CHECK_BED);
if (_step == 8) lcd_printPGM(MSG_SELFTEST_CHECK_BED);
if (_step == 9) lcd_printPGM(MSG_SELFTEST_CHECK_FSENSOR);
if (_step == 10) lcd_printPGM(MSG_SELFTEST_CHECK_FSENSOR);
if (_step == 11) lcd_printPGM(MSG_SELFTEST_CHECK_ALLCORRECT);
if (_step == 12) lcd_printPGM(MSG_SELFTEST_FAILED);
if (_step == 13) lcd_printPGM(PSTR("Calibrating home"));
lcd.setCursor(0, 1);
lcd.print("--------------------");
if ((_step >= -1) && (_step <= 1))
{
//SERIAL_ECHOLNPGM("Fan test");
lcd_print_at_PGM(0, 2, MSG_SELFTEST_EXTRUDER_FAN_SPEED);
lcd.setCursor(18, 2);
(_step < 0) ? lcd.print(_indicator) : lcd.print("OK");
lcd_print_at_PGM(0, 3, MSG_SELFTEST_PRINT_FAN_SPEED);
lcd.setCursor(18, 3);
(_step < 1) ? lcd.print(_indicator) : lcd.print("OK");
}
else if (_step >= 9 && _step <= 10)
{
lcd_print_at_PGM(0, 2, MSG_SELFTEST_FILAMENT_SENSOR);
lcd.setCursor(18, 2);
(_step == 9) ? lcd.print(_indicator) : lcd.print("OK");
}
else if (_step < 9)
{
//SERIAL_ECHOLNPGM("Other tests");
_step_block = 3;
lcd_selftest_screen_step(3, 9, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Hotend", _indicator);
_step_block = 4;
lcd_selftest_screen_step(2, 2, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "X", _indicator);
_step_block = 5;
lcd_selftest_screen_step(2, 8, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Y", _indicator);
_step_block = 6;
lcd_selftest_screen_step(2, 14, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Z", _indicator);
_step_block = 7;
lcd_selftest_screen_step(3, 0, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Bed", _indicator);
}
if (_delay > 0) delay_keep_alive(_delay);
_progress++;
return (_progress > _progress_scale * 2) ? 0 : _progress;
}
static void lcd_selftest_screen_step(int _row, int _col, int _state, const char *_name, const char *_indicator)
{
lcd.setCursor(_col, _row);
switch (_state)
{
case 1:
lcd.print(_name);
lcd.setCursor(_col + strlen(_name), _row);
lcd.print(":");
lcd.setCursor(_col + strlen(_name) + 1, _row);
lcd.print(_indicator);
break;
case 2:
lcd.print(_name);
lcd.setCursor(_col + strlen(_name), _row);
lcd.print(":");
lcd.setCursor(_col + strlen(_name) + 1, _row);
lcd.print("OK");
break;
default:
lcd.print(_name);
}
}
/** End of menus **/
static void lcd_quick_feedback()
{
lcdDrawUpdate = 2;
button_pressed = false;
lcd_implementation_quick_feedback();
}
/** Menu action functions **/
/**
* @brief Go up in menu structure
* @param data one time action to be done before leaving menu e.g. saving data or 0
*/
static void menu_action_back(menuFunc_t data)
{
if (data) data();
MenuStack::Record record = menuStack.pop();
lcd_goto_menu(record.menu);
encoderPosition = record.position;
}
/**
* @brief Go deeper into menu structure
* @param data nested menu
*/
static void menu_action_submenu(menuFunc_t data) {
menuStack.push(currentMenu, encoderPosition);
lcd_goto_menu(data);
}
static void menu_action_gcode(const char* pgcode) {
enquecommand_P(pgcode);
}
static void menu_action_setlang(unsigned char lang) {
lcd_set_lang(lang);
}
static void menu_action_function(menuFunc_t data) {
(*data)();
}
static bool check_file(const char* filename) {
if (farm_mode) return true;
bool result = false;
uint32_t filesize;
card.openFile((char*)filename, true);
filesize = card.getFileSize();
if (filesize > END_FILE_SECTION) {
card.setIndex(filesize - END_FILE_SECTION);
}
while (!card.eof() && !result) {
card.sdprinting = true;
get_command();
result = check_commands();
}
card.printingHasFinished();
strncpy_P(lcd_status_message, WELCOME_MSG, LCD_WIDTH);
lcd_finishstatus();
return result;
}
static void menu_action_sdfile(const char* filename, char* longFilename)
{
loading_flag = false;
char cmd[30];
char* c;
bool result = true;
sprintf_P(cmd, PSTR("M23 %s"), filename);
for (c = &cmd[4]; *c; c++)
*c = tolower(*c);
for (int i = 0; i < 8; i++) {
eeprom_write_byte((uint8_t*)EEPROM_FILENAME + i, filename[i]);
}
uint8_t depth = (uint8_t)card.getWorkDirDepth();
eeprom_write_byte((uint8_t*)EEPROM_DIR_DEPTH, depth);
for (uint8_t i = 0; i < depth; i++) {
for (int j = 0; j < 8; j++) {
eeprom_write_byte((uint8_t*)EEPROM_DIRS + j + 8 * i, dir_names[i][j]);
}
}
if (!check_file(filename)) {
result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILE_INCOMPLETE, false, false);
lcd_update_enable(true);
}
if (result) {
enquecommand(cmd);
enquecommand_P(PSTR("M24"));
}
lcd_return_to_status();
}
static void menu_action_sddirectory(const char* filename, char* longFilename)
{
uint8_t depth = (uint8_t)card.getWorkDirDepth();
strcpy(dir_names[depth], filename);
MYSERIAL.println(dir_names[depth]);
card.chdir(filename);
encoderPosition = 0;
}
static void menu_action_setting_edit_bool(const char* pstr, bool* ptr)
{
*ptr = !(*ptr);
}
/*
static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callback)
{
menu_action_setting_edit_bool(pstr, ptr);
(*callback)();
}
*/
#endif//ULTIPANEL
/** LCD API **/
void lcd_init()
{
lcd_implementation_init();
#ifdef NEWPANEL
SET_INPUT(BTN_EN1);
SET_INPUT(BTN_EN2);
WRITE(BTN_EN1, HIGH);
WRITE(BTN_EN2, HIGH);
#if BTN_ENC > 0
SET_INPUT(BTN_ENC);
WRITE(BTN_ENC, HIGH);
#endif
#ifdef REPRAPWORLD_KEYPAD
pinMode(SHIFT_CLK, OUTPUT);
pinMode(SHIFT_LD, OUTPUT);
pinMode(SHIFT_OUT, INPUT);
WRITE(SHIFT_OUT, HIGH);
WRITE(SHIFT_LD, HIGH);
#endif
#else // Not NEWPANEL
#ifdef SR_LCD_2W_NL // Non latching 2 wire shift register
pinMode (SR_DATA_PIN, OUTPUT);
pinMode (SR_CLK_PIN, OUTPUT);
#elif defined(SHIFT_CLK)
pinMode(SHIFT_CLK, OUTPUT);
pinMode(SHIFT_LD, OUTPUT);
pinMode(SHIFT_EN, OUTPUT);
pinMode(SHIFT_OUT, INPUT);
WRITE(SHIFT_OUT, HIGH);
WRITE(SHIFT_LD, HIGH);
WRITE(SHIFT_EN, LOW);
#else
#ifdef ULTIPANEL
#error ULTIPANEL requires an encoder
#endif
#endif // SR_LCD_2W_NL
#endif//!NEWPANEL
#if defined (SDSUPPORT) && defined(SDCARDDETECT) && (SDCARDDETECT > 0)
pinMode(SDCARDDETECT, INPUT);
WRITE(SDCARDDETECT, HIGH);
lcd_oldcardstatus = IS_SD_INSERTED;
#endif//(SDCARDDETECT > 0)
#ifdef LCD_HAS_SLOW_BUTTONS
slow_buttons = 0;
#endif
lcd_buttons_update();
#ifdef ULTIPANEL
encoderDiff = 0;
#endif
}
//#include <avr/pgmspace.h>
static volatile bool lcd_update_enabled = true;
unsigned long lcd_timeoutToStatus = 0;
void lcd_update_enable(bool enabled)
{
if (lcd_update_enabled != enabled) {
lcd_update_enabled = enabled;
if (enabled) {
// Reset encoder position. This is equivalent to re-entering a menu.
encoderPosition = 0;
encoderDiff = 0;
// Enabling the normal LCD update procedure.
// Reset the timeout interval.
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
// Force the keypad update now.
lcd_next_update_millis = millis() - 1;
// Full update.
lcd_implementation_clear();
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
lcd_set_custom_characters(currentMenu == lcd_status_screen);
#else
if (currentMenu == lcd_status_screen)
lcd_set_custom_characters_degree();
else
lcd_set_custom_characters_arrows();
#endif
lcd_update(2);
} else {
// Clear the LCD always, or let it to the caller?
}
}
}
void lcd_update(uint8_t lcdDrawUpdateOverride)
{
if (lcdDrawUpdate < lcdDrawUpdateOverride)
lcdDrawUpdate = lcdDrawUpdateOverride;
if (!lcd_update_enabled)
return;
#ifdef LCD_HAS_SLOW_BUTTONS
slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
#endif
lcd_buttons_update();
#if (SDCARDDETECT > 0)
if ((IS_SD_INSERTED != lcd_oldcardstatus && lcd_detected()))
{
lcdDrawUpdate = 2;
lcd_oldcardstatus = IS_SD_INSERTED;
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
currentMenu == lcd_status_screen
#endif
);
if (lcd_oldcardstatus)
{
card.initsd();
LCD_MESSAGERPGM(MSG_SD_INSERTED);
//get_description();
}
else
{
card.release();
LCD_MESSAGERPGM(MSG_SD_REMOVED);
}
}
#endif//CARDINSERTED
if (lcd_next_update_millis < millis())
{
#ifdef DEBUG_BLINK_ACTIVE
static bool active_led = false;
active_led = !active_led;
pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, active_led?HIGH:LOW);
#endif //DEBUG_BLINK_ACTIVE
#ifdef ULTIPANEL
#ifdef REPRAPWORLD_KEYPAD
if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) {
reprapworld_keypad_move_z_up();
}
if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) {
reprapworld_keypad_move_z_down();
}
if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) {
reprapworld_keypad_move_x_left();
}
if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) {
reprapworld_keypad_move_x_right();
}
if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) {
reprapworld_keypad_move_y_down();
}
if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) {
reprapworld_keypad_move_y_up();
}
if (REPRAPWORLD_KEYPAD_MOVE_HOME) {
reprapworld_keypad_move_home();
}
#endif
if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP)
{
if (lcdDrawUpdate == 0)
lcdDrawUpdate = 1;
encoderPosition += encoderDiff / ENCODER_PULSES_PER_STEP;
encoderDiff = 0;
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
}
if (LCD_CLICKED) lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
#endif//ULTIPANEL
(*currentMenu)();
#ifdef LCD_HAS_STATUS_INDICATORS
lcd_implementation_update_indicators();
#endif
#ifdef ULTIPANEL
if (lcd_timeoutToStatus < millis() && currentMenu != lcd_status_screen)
{
// Exiting a menu. Let's call the menu function the last time with menuExiting flag set to true
// to give it a chance to save its state.
// This is useful for example, when the babystep value has to be written into EEPROM.
if (currentMenu != NULL) {
menuExiting = true;
(*currentMenu)();
menuExiting = false;
}
lcd_implementation_clear();
lcd_return_to_status();
lcdDrawUpdate = 2;
}
#endif//ULTIPANEL
if (lcdDrawUpdate == 2) lcd_implementation_clear();
if (lcdDrawUpdate) lcdDrawUpdate--;
lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL;
}
if (!SdFatUtil::test_stack_integrity()) stack_error();
#ifdef DEBUG_STEPPER_TIMER_MISSED
if (stepper_timer_overflow_state) stepper_timer_overflow();
#endif /* DEBUG_STEPPER_TIMER_MISSED */
lcd_ping(); //check that we have received ping command if we are in farm mode
lcd_send_status();
if (lcd_commands_type == LCD_COMMAND_V2_CAL) lcd_commands();
}
void lcd_printer_connected() {
printer_connected = true;
}
static void lcd_send_status() {
if (farm_mode && no_response && ((millis() - NcTime) > (NC_TIME * 1000))) {
//send important status messages periodicaly
prusa_statistics(important_status, saved_filament_type);
NcTime = millis();
lcd_connect_printer();
}
}
static void lcd_connect_printer() {
lcd_update_enable(false);
lcd_implementation_clear();
bool pressed = false;
int i = 0;
int t = 0;
lcd_set_custom_characters_progress();
lcd_implementation_print_at(0, 0, "Connect printer to");
lcd_implementation_print_at(0, 1, "monitoring or hold");
lcd_implementation_print_at(0, 2, "the knob to continue");
while (no_response) {
i++;
t++;
delay_keep_alive(100);
proc_commands();
if (t == 10) {
prusa_statistics(important_status, saved_filament_type);
t = 0;
}
if (READ(BTN_ENC)) { //if button is not pressed
i = 0;
lcd_implementation_print_at(0, 3, " ");
}
if (i!=0) lcd_implementation_print_at((i * 20) / (NC_BUTTON_LONG_PRESS * 10), 3, "\x01");
if (i == NC_BUTTON_LONG_PRESS * 10) {
no_response = false;
}
}
lcd_set_custom_characters_degree();
lcd_update_enable(true);
lcd_update(2);
}
void lcd_ping() { //chceck if printer is connected to monitoring when in farm mode
if (farm_mode) {
bool empty = is_buffer_empty();
if ((millis() - PingTime) * 0.001 > (empty ? PING_TIME : PING_TIME_LONG)) { //if commands buffer is empty use shorter time period
//if there are comamnds in buffer, some long gcodes can delay execution of ping command
//therefore longer period is used
printer_connected = false;
//lcd_ping_allert(); //acustic signals
}
else {
lcd_printer_connected();
}
}
}
void lcd_ignore_click(bool b)
{
ignore_click = b;
wait_for_unclick = false;
}
void lcd_finishstatus() {
int len = strlen(lcd_status_message);
if (len > 0) {
while (len < LCD_WIDTH) {
lcd_status_message[len++] = ' ';
}
}
lcd_status_message[LCD_WIDTH] = '\0';
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
#if PROGRESS_MSG_EXPIRE > 0
messageTick =
#endif
progressBarTick = millis();
#endif
lcdDrawUpdate = 2;
#ifdef FILAMENT_LCD_DISPLAY
message_millis = millis(); //get status message to show up for a while
#endif
}
void lcd_setstatus(const char* message)
{
if (lcd_status_message_level > 0)
return;
strncpy(lcd_status_message, message, LCD_WIDTH);
lcd_finishstatus();
}
void lcd_setstatuspgm(const char* message)
{
if (lcd_status_message_level > 0)
return;
strncpy_P(lcd_status_message, message, LCD_WIDTH);
lcd_status_message[LCD_WIDTH] = 0;
lcd_finishstatus();
}
void lcd_setalertstatuspgm(const char* message)
{
lcd_setstatuspgm(message);
lcd_status_message_level = 1;
#ifdef ULTIPANEL
lcd_return_to_status();
#endif//ULTIPANEL
}
void lcd_reset_alert_level()
{
lcd_status_message_level = 0;
}
uint8_t get_message_level()
{
return lcd_status_message_level;
}
#ifdef DOGLCD
void lcd_setcontrast(uint8_t value)
{
lcd_contrast = value & 63;
u8g.setContrast(lcd_contrast);
}
#endif
#ifdef ULTIPANEL
/* Warning: This function is called from interrupt context */
void lcd_buttons_update()
{
static bool _lock = false;
if (_lock) return;
_lock = true;
#ifdef NEWPANEL
uint8_t newbutton = 0;
if (READ(BTN_EN1) == 0) newbutton |= EN_A;
if (READ(BTN_EN2) == 0) newbutton |= EN_B;
#if BTN_ENC > 0
if (lcd_update_enabled == true) { //if we are in non-modal mode, long press can be used and short press triggers with button release
if (READ(BTN_ENC) == 0) { //button is pressed
lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
if (millis() > button_blanking_time) {
button_blanking_time = millis() + BUTTON_BLANKING_TIME;
if (button_pressed == false && long_press_active == false) {
long_press_timer = millis();
button_pressed = true;
}
else {
if (millis() - long_press_timer > LONG_PRESS_TIME) { //long press activated
long_press_active = true;
move_menu_scale = 1.0;
menu_action_submenu(lcd_move_z);
}
}
}
}
else { //button not pressed
if (button_pressed) { //button was released
button_blanking_time = millis() + BUTTON_BLANKING_TIME;
if (long_press_active == false) { //button released before long press gets activated
newbutton |= EN_C;
}
else if (currentMenu == lcd_move_z) lcd_quick_feedback();
//button_pressed is set back to false via lcd_quick_feedback function
}
else {
long_press_active = false;
}
}
}
else { //we are in modal mode
if (READ(BTN_ENC) == 0)
newbutton |= EN_C;
}
#endif
buttons = newbutton;
#ifdef LCD_HAS_SLOW_BUTTONS
buttons |= slow_buttons;
#endif
#ifdef REPRAPWORLD_KEYPAD
// for the reprapworld_keypad
uint8_t newbutton_reprapworld_keypad = 0;
WRITE(SHIFT_LD, LOW);
WRITE(SHIFT_LD, HIGH);
for (int8_t i = 0; i < 8; i++) {
newbutton_reprapworld_keypad = newbutton_reprapworld_keypad >> 1;
if (READ(SHIFT_OUT))
newbutton_reprapworld_keypad |= (1 << 7);
WRITE(SHIFT_CLK, HIGH);
WRITE(SHIFT_CLK, LOW);
}
buttons_reprapworld_keypad = ~newbutton_reprapworld_keypad; //invert it, because a pressed switch produces a logical 0
#endif
#else //read it from the shift register
uint8_t newbutton = 0;
WRITE(SHIFT_LD, LOW);
WRITE(SHIFT_LD, HIGH);
unsigned char tmp_buttons = 0;
for (int8_t i = 0; i < 8; i++)
{
newbutton = newbutton >> 1;
if (READ(SHIFT_OUT))
newbutton |= (1 << 7);
WRITE(SHIFT_CLK, HIGH);
WRITE(SHIFT_CLK, LOW);
}
buttons = ~newbutton; //invert it, because a pressed switch produces a logical 0
#endif//!NEWPANEL
//manage encoder rotation
uint8_t enc = 0;
if (buttons & EN_A) enc |= B01;
if (buttons & EN_B) enc |= B10;
if (enc != lastEncoderBits)
{
switch (enc)
{
case encrot0:
if (lastEncoderBits == encrot3)
encoderDiff++;
else if (lastEncoderBits == encrot1)
encoderDiff--;
break;
case encrot1:
if (lastEncoderBits == encrot0)
encoderDiff++;
else if (lastEncoderBits == encrot2)
encoderDiff--;
break;
case encrot2:
if (lastEncoderBits == encrot1)
encoderDiff++;
else if (lastEncoderBits == encrot3)
encoderDiff--;
break;
case encrot3:
if (lastEncoderBits == encrot2)
encoderDiff++;
else if (lastEncoderBits == encrot0)
encoderDiff--;
break;
}
}
lastEncoderBits = enc;
_lock = false;
}
bool lcd_detected(void)
{
#if (defined(LCD_I2C_TYPE_MCP23017) || defined(LCD_I2C_TYPE_MCP23008)) && defined(DETECT_DEVICE)
return lcd.LcdDetected() == 1;
#else
return true;
#endif
}
void lcd_buzz(long duration, uint16_t freq)
{
#ifdef LCD_USE_I2C_BUZZER
lcd.buzz(duration, freq);
#endif
}
bool lcd_clicked()
{
bool clicked = LCD_CLICKED;
if(clicked) button_pressed = false;
return clicked;
}
#endif//ULTIPANEL
/********************************/
/** Float conversion utilities **/
/********************************/
// convert float to string with +123.4 format
char conv[8];
char *ftostr3(const float &x)
{
return itostr3((int)x);
}
char *itostr2(const uint8_t &x)
{
//sprintf(conv,"%5.1f",x);
int xx = x;
conv[0] = (xx / 10) % 10 + '0';
conv[1] = (xx) % 10 + '0';
conv[2] = 0;
return conv;
}
// Convert float to string with 123.4 format, dropping sign
char *ftostr31(const float &x)
{
int xx = x * 10;
conv[0] = (xx >= 0) ? '+' : '-';
xx = abs(xx);
conv[1] = (xx / 1000) % 10 + '0';
conv[2] = (xx / 100) % 10 + '0';
conv[3] = (xx / 10) % 10 + '0';
conv[4] = '.';
conv[5] = (xx) % 10 + '0';
conv[6] = 0;
return conv;
}
// Convert float to string with 123.4 format
char *ftostr31ns(const float &x)
{
int xx = x * 10;
//conv[0]=(xx>=0)?'+':'-';
xx = abs(xx);
conv[0] = (xx / 1000) % 10 + '0';
conv[1] = (xx / 100) % 10 + '0';
conv[2] = (xx / 10) % 10 + '0';
conv[3] = '.';
conv[4] = (xx) % 10 + '0';
conv[5] = 0;
return conv;
}
char *ftostr32(const float &x)
{
long xx = x * 100;
if (xx >= 0)
conv[0] = (xx / 10000) % 10 + '0';
else
conv[0] = '-';
xx = abs(xx);
conv[1] = (xx / 1000) % 10 + '0';
conv[2] = (xx / 100) % 10 + '0';
conv[3] = '.';
conv[4] = (xx / 10) % 10 + '0';
conv[5] = (xx) % 10 + '0';
conv[6] = 0;
return conv;
}
//// Convert float to rj string with 123.45 format
char *ftostr32ns(const float &x) {
long xx = abs(x);
conv[0] = xx >= 10000 ? (xx / 10000) % 10 + '0' : ' ';
conv[1] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' ';
conv[2] = xx >= 100 ? (xx / 100) % 10 + '0' : '0';
conv[3] = '.';
conv[4] = (xx / 10) % 10 + '0';
conv[5] = xx % 10 + '0';
return conv;
}
// Convert float to string with 1.234 format
char *ftostr43(const float &x, uint8_t offset)
{
const size_t maxOffset = sizeof(conv)/sizeof(conv[0]) - 6;
if (offset>maxOffset) offset = maxOffset;
long xx = x * 1000;
if (xx >= 0)
conv[offset] = (xx / 1000) % 10 + '0';
else
conv[offset] = '-';
xx = abs(xx);
conv[offset + 1] = '.';
conv[offset + 2] = (xx / 100) % 10 + '0';
conv[offset + 3] = (xx / 10) % 10 + '0';
conv[offset + 4] = (xx) % 10 + '0';
conv[offset + 5] = 0;
return conv;
}
//Float to string with 1.23 format
char *ftostr12ns(const float &x)
{
long xx = x * 100;
xx = abs(xx);
conv[0] = (xx / 100) % 10 + '0';
conv[1] = '.';
conv[2] = (xx / 10) % 10 + '0';
conv[3] = (xx) % 10 + '0';
conv[4] = 0;
return conv;
}
//Float to string with 1.234 format
char *ftostr13ns(const float &x)
{
long xx = x * 1000;
if (xx >= 0)
conv[0] = ' ';
else
conv[0] = '-';
xx = abs(xx);
conv[1] = (xx / 1000) % 10 + '0';
conv[2] = '.';
conv[3] = (xx / 100) % 10 + '0';
conv[4] = (xx / 10) % 10 + '0';
conv[5] = (xx) % 10 + '0';
conv[6] = 0;
return conv;
}
// convert float to space-padded string with -_23.4_ format
char *ftostr32sp(const float &x) {
long xx = abs(x * 100);
uint8_t dig;
if (x < 0) { // negative val = -_0
conv[0] = '-';
dig = (xx / 1000) % 10;
conv[1] = dig ? '0' + dig : ' ';
}
else { // positive val = __0
dig = (xx / 10000) % 10;
if (dig) {
conv[0] = '0' + dig;
conv[1] = '0' + (xx / 1000) % 10;
}
else {
conv[0] = ' ';
dig = (xx / 1000) % 10;
conv[1] = dig ? '0' + dig : ' ';
}
}
conv[2] = '0' + (xx / 100) % 10; // lsd always
dig = xx % 10;
if (dig) { // 2 decimal places
conv[5] = '0' + dig;
conv[4] = '0' + (xx / 10) % 10;
conv[3] = '.';
}
else { // 1 or 0 decimal place
dig = (xx / 10) % 10;
if (dig) {
conv[4] = '0' + dig;
conv[3] = '.';
}
else {
conv[3] = conv[4] = ' ';
}
conv[5] = ' ';
}
conv[6] = '\0';
return conv;
}
char *itostr31(const int &xx)
{
conv[0] = (xx >= 0) ? '+' : '-';
conv[1] = (xx / 1000) % 10 + '0';
conv[2] = (xx / 100) % 10 + '0';
conv[3] = (xx / 10) % 10 + '0';
conv[4] = '.';
conv[5] = (xx) % 10 + '0';
conv[6] = 0;
return conv;
}
// Convert int to rj string with 123 or -12 format
char *itostr3(const int &x)
{
int xx = x;
if (xx < 0) {
conv[0] = '-';
xx = -xx;
} else if (xx >= 100)
conv[0] = (xx / 100) % 10 + '0';
else
conv[0] = ' ';
if (xx >= 10)
conv[1] = (xx / 10) % 10 + '0';
else
conv[1] = ' ';
conv[2] = (xx) % 10 + '0';
conv[3] = 0;
return conv;
}
// Convert int to lj string with 123 format
char *itostr3left(const int &xx)
{
if (xx >= 100)
{
conv[0] = (xx / 100) % 10 + '0';
conv[1] = (xx / 10) % 10 + '0';
conv[2] = (xx) % 10 + '0';
conv[3] = 0;
}
else if (xx >= 10)
{
conv[0] = (xx / 10) % 10 + '0';
conv[1] = (xx) % 10 + '0';
conv[2] = 0;
}
else
{
conv[0] = (xx) % 10 + '0';
conv[1] = 0;
}
return conv;
}
// Convert int to rj string with 1234 format
char *itostr4(const int &xx) {
conv[0] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' ';
conv[1] = xx >= 100 ? (xx / 100) % 10 + '0' : ' ';
conv[2] = xx >= 10 ? (xx / 10) % 10 + '0' : ' ';
conv[3] = xx % 10 + '0';
conv[4] = 0;
return conv;
}
// Convert float to rj string with 12345 format
char *ftostr5(const float &x) {
long xx = abs(x);
conv[0] = xx >= 10000 ? (xx / 10000) % 10 + '0' : ' ';
conv[1] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' ';
conv[2] = xx >= 100 ? (xx / 100) % 10 + '0' : ' ';
conv[3] = xx >= 10 ? (xx / 10) % 10 + '0' : ' ';
conv[4] = xx % 10 + '0';
conv[5] = 0;
return conv;
}
// Convert float to string with +1234.5 format
char *ftostr51(const float &x)
{
long xx = x * 10;
conv[0] = (xx >= 0) ? '+' : '-';
xx = abs(xx);
conv[1] = (xx / 10000) % 10 + '0';
conv[2] = (xx / 1000) % 10 + '0';
conv[3] = (xx / 100) % 10 + '0';
conv[4] = (xx / 10) % 10 + '0';
conv[5] = '.';
conv[6] = (xx) % 10 + '0';
conv[7] = 0;
return conv;
}
// Convert float to string with +123.45 format
char *ftostr52(const float &x)
{
long xx = x * 100;
conv[0] = (xx >= 0) ? '+' : '-';
xx = abs(xx);
conv[1] = (xx / 10000) % 10 + '0';
conv[2] = (xx / 1000) % 10 + '0';
conv[3] = (xx / 100) % 10 + '0';
conv[4] = '.';
conv[5] = (xx / 10) % 10 + '0';
conv[6] = (xx) % 10 + '0';
conv[7] = 0;
return conv;
}
/*
// Callback for after editing PID i value
// grab the PID i value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_i()
{
#ifdef PIDTEMP
Ki = scalePID_i(raw_Ki);
updatePID();
#endif
}
// Callback for after editing PID d value
// grab the PID d value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_d()
{
#ifdef PIDTEMP
Kd = scalePID_d(raw_Kd);
updatePID();
#endif
}
*/
#endif //ULTRA_LCD