f81b2a00c1
Do not force-enable the model if it was previously disabled. Fix cherry-pick issue lcd_show_fullscreen_message_yes_no_and_wait_P
2962 lines
88 KiB
C++
Executable File
2962 lines
88 KiB
C++
Executable File
/*
|
|
temperature.c - temperature control
|
|
Part of Marlin
|
|
|
|
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
This firmware is a mashup between Sprinter and grbl.
|
|
(https://github.com/kliment/Sprinter)
|
|
(https://github.com/simen/grbl/tree)
|
|
|
|
It has preliminary support for Matthew Roberts advance algorithm
|
|
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
|
|
|
*/
|
|
|
|
#include "temperature.h"
|
|
#include "stepper.h"
|
|
#include "ultralcd.h"
|
|
#include "menu.h"
|
|
#include "sound.h"
|
|
#include "fancheck.h"
|
|
#include "messages.h"
|
|
#include "language.h"
|
|
|
|
#include "SdFatUtil.h"
|
|
|
|
#include <avr/wdt.h>
|
|
#include <util/atomic.h>
|
|
#include "adc.h"
|
|
#include "ConfigurationStore.h"
|
|
#include "Timer.h"
|
|
#include "Configuration_prusa.h"
|
|
#include "Prusa_farm.h"
|
|
|
|
#if (ADC_OVRSAMPL != OVERSAMPLENR)
|
|
#error "ADC_OVRSAMPL oversampling must match OVERSAMPLENR"
|
|
#endif
|
|
|
|
#ifdef SYSTEM_TIMER_2
|
|
#define ENABLE_SOFT_PWM_INTERRUPT() TIMSK2 |= (1<<OCIE2B)
|
|
#define DISABLE_SOFT_PWM_INTERRUPT() TIMSK2 &= ~(1<<OCIE2B)
|
|
#else //SYSTEM_TIMER_2
|
|
#define ENABLE_SOFT_PWM_INTERRUPT() TIMSK0 |= (1<<OCIE0B)
|
|
#define DISABLE_SOFT_PWM_INTERRUPT() TIMSK0 &= ~(1<<OCIE0B)
|
|
#endif //SYSTEM_TIMER_2
|
|
|
|
// temperature manager timer configuration
|
|
#define TEMP_MGR_INTV 0.27 // seconds, ~3.7Hz
|
|
#define TEMP_TIM_PRESCALE 256
|
|
#define TEMP_TIM_OCRA_OVF (uint16_t)(TEMP_MGR_INTV / ((long double)TEMP_TIM_PRESCALE / F_CPU))
|
|
#define TEMP_TIM_REGNAME(registerbase,number,suffix) _REGNAME(registerbase,number,suffix)
|
|
#undef B0 //Necessary hack because of "binary.h" included in "Arduino.h" included in "system_timer.h" included in this file...
|
|
#define TCCRxA TEMP_TIM_REGNAME(TCCR, TEMP_TIM, A)
|
|
#define TCCRxB TEMP_TIM_REGNAME(TCCR, TEMP_TIM, B)
|
|
#define TCCRxC TEMP_TIM_REGNAME(TCCR, TEMP_TIM, C)
|
|
#define TCNTx TEMP_TIM_REGNAME(TCNT, TEMP_TIM,)
|
|
#define OCRxA TEMP_TIM_REGNAME(OCR, TEMP_TIM, A)
|
|
#define TIMSKx TEMP_TIM_REGNAME(TIMSK, TEMP_TIM,)
|
|
#define TIFRx TEMP_TIM_REGNAME(TIFR, TEMP_TIM,)
|
|
#define TIMERx_COMPA_vect TEMP_TIM_REGNAME(TIMER, TEMP_TIM, _COMPA_vect)
|
|
#define CSx0 TEMP_TIM_REGNAME(CS, TEMP_TIM, 0)
|
|
#define CSx1 TEMP_TIM_REGNAME(CS, TEMP_TIM, 1)
|
|
#define CSx2 TEMP_TIM_REGNAME(CS, TEMP_TIM, 2)
|
|
#define WGMx0 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 0)
|
|
#define WGMx1 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 1)
|
|
#define WGMx2 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 2)
|
|
#define WGMx3 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 3)
|
|
#define COMxA0 TEMP_TIM_REGNAME(COM, TEMP_TIM, A0)
|
|
#define COMxB0 TEMP_TIM_REGNAME(COM, TEMP_TIM, B0)
|
|
#define COMxC0 TEMP_TIM_REGNAME(COM, TEMP_TIM, C0)
|
|
#define OCIExA TEMP_TIM_REGNAME(OCIE, TEMP_TIM, A)
|
|
#define OCFxA TEMP_TIM_REGNAME(OCF, TEMP_TIM, A)
|
|
|
|
#define TEMP_MGR_INT_FLAG_STATE() (TIFRx & (1<<OCFxA))
|
|
#define TEMP_MGR_INT_FLAG_CLEAR() TIFRx |= (1<<OCFxA)
|
|
#define TEMP_MGR_INTERRUPT_STATE() (TIMSKx & (1<<OCIExA))
|
|
#define ENABLE_TEMP_MGR_INTERRUPT() TIMSKx |= (1<<OCIExA)
|
|
#define DISABLE_TEMP_MGR_INTERRUPT() TIMSKx &= ~(1<<OCIExA)
|
|
|
|
#ifdef TEMP_MODEL
|
|
// temperature model interface
|
|
#include "temp_model.h"
|
|
#endif
|
|
|
|
//===========================================================================
|
|
//=============================public variables============================
|
|
//===========================================================================
|
|
int target_temperature[EXTRUDERS] = { 0 };
|
|
int target_temperature_bed = 0;
|
|
int current_temperature_raw[EXTRUDERS] = { 0 };
|
|
float current_temperature[EXTRUDERS] = { 0.0 };
|
|
|
|
#ifdef PINDA_THERMISTOR
|
|
uint16_t current_temperature_raw_pinda = 0;
|
|
float current_temperature_pinda = 0.0;
|
|
#endif //PINDA_THERMISTOR
|
|
|
|
#ifdef AMBIENT_THERMISTOR
|
|
int current_temperature_raw_ambient = 0;
|
|
float current_temperature_ambient = 0.0;
|
|
#endif //AMBIENT_THERMISTOR
|
|
|
|
#ifdef VOLT_PWR_PIN
|
|
int current_voltage_raw_pwr = 0;
|
|
#endif
|
|
|
|
#ifdef VOLT_BED_PIN
|
|
int current_voltage_raw_bed = 0;
|
|
#endif
|
|
|
|
#ifdef IR_SENSOR_ANALOG
|
|
uint16_t current_voltage_raw_IR = 0;
|
|
#endif //IR_SENSOR_ANALOG
|
|
|
|
int current_temperature_bed_raw = 0;
|
|
float current_temperature_bed = 0.0;
|
|
|
|
|
|
#ifdef PIDTEMP
|
|
float _Kp, _Ki, _Kd;
|
|
int pid_cycle, pid_number_of_cycles;
|
|
static bool pid_tuning_finished = true;
|
|
|
|
bool pidTuningRunning() {
|
|
return !pid_tuning_finished;
|
|
}
|
|
|
|
void preparePidTuning() {
|
|
// ensure heaters are disabled before we switch off PID management!
|
|
disable_heater();
|
|
pid_tuning_finished = false;
|
|
}
|
|
#endif //PIDTEMP
|
|
|
|
unsigned char soft_pwm_bed;
|
|
|
|
#ifdef BABYSTEPPING
|
|
volatile int babystepsTodo[3]={0,0,0};
|
|
#endif
|
|
|
|
//===========================================================================
|
|
//=============================private variables============================
|
|
//===========================================================================
|
|
static volatile bool temp_meas_ready = false;
|
|
|
|
#ifdef PIDTEMP
|
|
//static cannot be external:
|
|
static float iState_sum[EXTRUDERS] = { 0 };
|
|
static float dState_last[EXTRUDERS] = { 0 };
|
|
static float pTerm[EXTRUDERS];
|
|
static float iTerm[EXTRUDERS];
|
|
static float dTerm[EXTRUDERS];
|
|
static float pid_error[EXTRUDERS];
|
|
static float iState_sum_min[EXTRUDERS];
|
|
static float iState_sum_max[EXTRUDERS];
|
|
static bool pid_reset[EXTRUDERS];
|
|
#endif //PIDTEMP
|
|
#ifdef PIDTEMPBED
|
|
//static cannot be external:
|
|
static float temp_iState_bed = { 0 };
|
|
static float temp_dState_bed = { 0 };
|
|
static float pTerm_bed;
|
|
static float iTerm_bed;
|
|
static float dTerm_bed;
|
|
static float pid_error_bed;
|
|
static float temp_iState_min_bed;
|
|
static float temp_iState_max_bed;
|
|
#else //PIDTEMPBED
|
|
static unsigned long previous_millis_bed_heater;
|
|
#endif //PIDTEMPBED
|
|
static unsigned char soft_pwm[EXTRUDERS];
|
|
|
|
#ifdef FAN_SOFT_PWM
|
|
unsigned char fanSpeedSoftPwm;
|
|
static unsigned char soft_pwm_fan;
|
|
#endif
|
|
uint8_t fanSpeedBckp = 255;
|
|
|
|
#if EXTRUDERS > 3
|
|
# error Unsupported number of extruders
|
|
#elif EXTRUDERS > 2
|
|
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
|
|
#elif EXTRUDERS > 1
|
|
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
|
|
#else
|
|
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
|
|
#endif
|
|
|
|
// Init min and max temp with extreme values to prevent false errors during startup
|
|
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
|
|
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
|
|
static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
|
|
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
|
|
#ifdef BED_MINTEMP
|
|
static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
|
|
#endif
|
|
#ifdef BED_MAXTEMP
|
|
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
|
|
#endif
|
|
#ifdef AMBIENT_MINTEMP
|
|
static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
|
|
#endif
|
|
#ifdef AMBIENT_MAXTEMP
|
|
static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
|
|
#endif
|
|
|
|
static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
|
|
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
|
|
|
|
static float analog2temp(int raw, uint8_t e);
|
|
static float analog2tempBed(int raw);
|
|
#ifdef AMBIENT_MAXTEMP
|
|
static float analog2tempAmbient(int raw);
|
|
#endif
|
|
static void updateTemperatures();
|
|
|
|
enum TempRunawayStates : uint8_t
|
|
{
|
|
TempRunaway_INACTIVE = 0,
|
|
TempRunaway_PREHEAT = 1,
|
|
TempRunaway_ACTIVE = 2,
|
|
};
|
|
|
|
#ifndef SOFT_PWM_SCALE
|
|
#define SOFT_PWM_SCALE 0
|
|
#endif
|
|
|
|
//===========================================================================
|
|
//============================= functions ============================
|
|
//===========================================================================
|
|
|
|
#if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
|
|
static uint8_t temp_runaway_status[1 + EXTRUDERS];
|
|
static float temp_runaway_target[1 + EXTRUDERS];
|
|
static uint32_t temp_runaway_timer[1 + EXTRUDERS];
|
|
static uint16_t temp_runaway_error_counter[1 + EXTRUDERS];
|
|
|
|
static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
|
|
static void temp_runaway_stop(bool isPreheat, bool isBed);
|
|
#endif
|
|
|
|
// return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
|
|
bool checkAllHotends(void)
|
|
{
|
|
bool result=false;
|
|
for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
|
|
return(result);
|
|
}
|
|
|
|
// WARNING: the following function has been marked noinline to avoid a GCC 4.9.2 LTO
|
|
// codegen bug causing a stack overwrite issue in process_commands()
|
|
void __attribute__((noinline)) PID_autotune(float temp, int extruder, int ncycles)
|
|
{
|
|
preparePidTuning();
|
|
|
|
pid_number_of_cycles = ncycles;
|
|
float input = 0.0;
|
|
pid_cycle=0;
|
|
bool heating = true;
|
|
|
|
unsigned long temp_millis = _millis();
|
|
unsigned long t1=temp_millis;
|
|
unsigned long t2=temp_millis;
|
|
long t_high = 0;
|
|
long t_low = 0;
|
|
|
|
long bias, d;
|
|
float Ku, Tu;
|
|
float max = 0, min = 10000;
|
|
uint8_t safety_check_cycles = 0;
|
|
const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
|
|
float temp_ambient;
|
|
|
|
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
|
|
unsigned long extruder_autofan_last_check = _millis();
|
|
#endif
|
|
|
|
if ((extruder >= EXTRUDERS)
|
|
#if (TEMP_BED_PIN <= -1)
|
|
||(extruder < 0)
|
|
#endif
|
|
){
|
|
SERIAL_ECHOLNPGM("PID Autotune failed. Bad extruder number.");
|
|
pid_tuning_finished = true;
|
|
pid_cycle = 0;
|
|
return;
|
|
}
|
|
|
|
SERIAL_ECHOLNPGM("PID Autotune start");
|
|
|
|
if (extruder<0)
|
|
{
|
|
soft_pwm_bed = (MAX_BED_POWER)/2;
|
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
|
bias = d = (MAX_BED_POWER)/2;
|
|
target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
|
|
}
|
|
else
|
|
{
|
|
soft_pwm[extruder] = (PID_MAX)/2;
|
|
bias = d = (PID_MAX)/2;
|
|
target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
|
|
}
|
|
|
|
for(;;) {
|
|
#ifdef WATCHDOG
|
|
wdt_reset();
|
|
#endif //WATCHDOG
|
|
if(temp_meas_ready == true) { // temp sample ready
|
|
updateTemperatures();
|
|
|
|
input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
|
|
|
|
max=max(max,input);
|
|
min=min(min,input);
|
|
|
|
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
|
|
if(_millis() - extruder_autofan_last_check > 2500) {
|
|
checkExtruderAutoFans();
|
|
extruder_autofan_last_check = _millis();
|
|
}
|
|
#endif
|
|
|
|
if(heating == true && input > temp) {
|
|
if(_millis() - t2 > 5000) {
|
|
heating=false;
|
|
if (extruder<0)
|
|
{
|
|
soft_pwm_bed = (bias - d) >> 1;
|
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
|
}
|
|
else
|
|
soft_pwm[extruder] = (bias - d) >> 1;
|
|
t1=_millis();
|
|
t_high=t1 - t2;
|
|
max=temp;
|
|
}
|
|
}
|
|
if(heating == false && input < temp) {
|
|
if(_millis() - t1 > 5000) {
|
|
heating=true;
|
|
t2=_millis();
|
|
t_low=t2 - t1;
|
|
if(pid_cycle > 0) {
|
|
bias += (d*(t_high - t_low))/(t_low + t_high);
|
|
bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
|
|
if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
|
|
else d = bias;
|
|
|
|
SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
|
|
SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
|
|
SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
|
|
SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
|
|
if(pid_cycle > 2) {
|
|
Ku = (4.0*d)/(3.14159*(max-min)/2.0);
|
|
Tu = ((float)(t_low + t_high)/1000.0);
|
|
SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
|
|
SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
|
|
_Kp = 0.6*Ku;
|
|
_Ki = 2*_Kp/Tu;
|
|
_Kd = _Kp*Tu/8;
|
|
SERIAL_PROTOCOLLNPGM(" Classic PID ");
|
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
|
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
|
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
|
|
/*
|
|
_Kp = 0.33*Ku;
|
|
_Ki = _Kp/Tu;
|
|
_Kd = _Kp*Tu/3;
|
|
SERIAL_PROTOCOLLNPGM(" Some overshoot ");
|
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
|
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
|
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
|
|
_Kp = 0.2*Ku;
|
|
_Ki = 2*_Kp/Tu;
|
|
_Kd = _Kp*Tu/3;
|
|
SERIAL_PROTOCOLLNPGM(" No overshoot ");
|
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
|
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
|
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
|
|
*/
|
|
}
|
|
}
|
|
if (extruder<0)
|
|
{
|
|
soft_pwm_bed = (bias + d) >> 1;
|
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
|
}
|
|
else
|
|
soft_pwm[extruder] = (bias + d) >> 1;
|
|
pid_cycle++;
|
|
min=temp;
|
|
}
|
|
}
|
|
}
|
|
if(input > (temp + 20)) {
|
|
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
|
|
pid_tuning_finished = true;
|
|
pid_cycle = 0;
|
|
return;
|
|
}
|
|
if(_millis() - temp_millis > 2000) {
|
|
int p;
|
|
if (extruder<0){
|
|
p=soft_pwm_bed;
|
|
SERIAL_PROTOCOLPGM("B:");
|
|
}else{
|
|
p=soft_pwm[extruder];
|
|
SERIAL_PROTOCOLPGM("T:");
|
|
}
|
|
|
|
SERIAL_PROTOCOL(input);
|
|
SERIAL_PROTOCOLPGM(" @:");
|
|
SERIAL_PROTOCOLLN(p);
|
|
if (safety_check_cycles == 0) { //save ambient temp
|
|
temp_ambient = input;
|
|
//SERIAL_ECHOPGM("Ambient T: ");
|
|
//MYSERIAL.println(temp_ambient);
|
|
safety_check_cycles++;
|
|
}
|
|
else if (safety_check_cycles < safety_check_cycles_count) { //delay
|
|
safety_check_cycles++;
|
|
}
|
|
else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
|
|
safety_check_cycles++;
|
|
//SERIAL_ECHOPGM("Time from beginning: ");
|
|
//MYSERIAL.print(safety_check_cycles_count * 2);
|
|
//SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
|
|
//MYSERIAL.println(input - temp_ambient);
|
|
|
|
if (fabs(input - temp_ambient) < 5.0) {
|
|
temp_runaway_stop(false, (extruder<0));
|
|
pid_tuning_finished = true;
|
|
return;
|
|
}
|
|
}
|
|
temp_millis = _millis();
|
|
}
|
|
if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
|
|
SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
|
|
pid_tuning_finished = true;
|
|
pid_cycle = 0;
|
|
return;
|
|
}
|
|
if(pid_cycle > ncycles) {
|
|
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
|
|
pid_tuning_finished = true;
|
|
pid_cycle = 0;
|
|
return;
|
|
}
|
|
lcd_update(0);
|
|
}
|
|
}
|
|
|
|
void updatePID()
|
|
{
|
|
// TODO: iState_sum_max and PID values should be synchronized for temp_mgr_isr
|
|
#ifdef PIDTEMP
|
|
for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
|
|
iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
|
|
}
|
|
#endif
|
|
#ifdef PIDTEMPBED
|
|
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
|
|
#endif
|
|
}
|
|
|
|
int getHeaterPower(int heater) {
|
|
if (heater<0)
|
|
return soft_pwm_bed;
|
|
return soft_pwm[heater];
|
|
}
|
|
|
|
// reset PID state after changing target_temperature
|
|
void resetPID(uint8_t extruder _UNUSED) {}
|
|
|
|
enum class TempErrorSource : uint8_t
|
|
{
|
|
hotend,
|
|
bed,
|
|
#ifdef AMBIENT_THERMISTOR
|
|
ambient,
|
|
#endif
|
|
};
|
|
|
|
// thermal error type (in order of decreasing priority!)
|
|
enum class TempErrorType : uint8_t
|
|
{
|
|
max,
|
|
min,
|
|
preheat,
|
|
runaway,
|
|
#ifdef TEMP_MODEL
|
|
model,
|
|
#endif
|
|
};
|
|
|
|
// error state (updated via set_temp_error from isr context)
|
|
volatile static union
|
|
{
|
|
uint8_t v;
|
|
struct
|
|
{
|
|
uint8_t error: 1; // error condition
|
|
uint8_t assert: 1; // error is still asserted
|
|
uint8_t source: 2; // source
|
|
uint8_t index: 1; // source index
|
|
uint8_t type: 3; // error type
|
|
};
|
|
} temp_error_state;
|
|
|
|
// set the error type from within the temp_mgr isr to be handled in manager_heater
|
|
// - immediately disable all heaters and turn on all fans at full speed
|
|
// - prevent the user to set temperatures until all errors are cleared
|
|
void set_temp_error(TempErrorSource source, uint8_t index, TempErrorType type)
|
|
{
|
|
// save the original target temperatures for recovery before disabling heaters
|
|
if(!temp_error_state.error && !saved_printing) {
|
|
saved_bed_temperature = target_temperature_bed;
|
|
saved_extruder_temperature = target_temperature[index];
|
|
saved_fan_speed = fanSpeed;
|
|
}
|
|
|
|
// keep disabling heaters and keep fans on as long as the condition is asserted
|
|
disable_heater();
|
|
hotendFanSetFullSpeed();
|
|
|
|
// set the initial error source to the highest priority error
|
|
if(!temp_error_state.error || (uint8_t)type < temp_error_state.type) {
|
|
temp_error_state.source = (uint8_t)source;
|
|
temp_error_state.index = index;
|
|
temp_error_state.type = (uint8_t)type;
|
|
}
|
|
|
|
// always set the error state
|
|
temp_error_state.error = true;
|
|
temp_error_state.assert = true;
|
|
}
|
|
|
|
bool get_temp_error()
|
|
{
|
|
return temp_error_state.v;
|
|
}
|
|
|
|
void handle_temp_error();
|
|
|
|
void manage_heater()
|
|
{
|
|
#ifdef WATCHDOG
|
|
wdt_reset();
|
|
#endif //WATCHDOG
|
|
|
|
// limit execution to the same rate as temp_mgr (low-level fault handling is already handled -
|
|
// any remaining error handling is just user-facing and can wait one extra cycle)
|
|
if(!temp_meas_ready)
|
|
return;
|
|
|
|
// syncronize temperatures with isr
|
|
updateTemperatures();
|
|
|
|
#ifdef TEMP_MODEL
|
|
// handle model warnings first, so not to override the error handler
|
|
if(temp_model::warning_state.warning)
|
|
temp_model::handle_warning();
|
|
#endif
|
|
|
|
// handle temperature errors
|
|
if(temp_error_state.v)
|
|
handle_temp_error();
|
|
|
|
// periodically check fans
|
|
checkFans();
|
|
|
|
#ifdef TEMP_MODEL_DEBUG
|
|
temp_model::log_usr();
|
|
#endif
|
|
}
|
|
|
|
#define PGM_RD_W(x) (short)pgm_read_word(&x)
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For hot end temperature measurement.
|
|
static float analog2temp(int raw, uint8_t e) {
|
|
if(e >= EXTRUDERS)
|
|
{
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERROR((int)e);
|
|
SERIAL_ERRORLNPGM(" - Invalid extruder number !");
|
|
kill(NULL, 6);
|
|
return 0.0;
|
|
}
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
if (e == 0)
|
|
{
|
|
return 0.25 * raw;
|
|
}
|
|
#endif
|
|
|
|
if(heater_ttbl_map[e] != NULL)
|
|
{
|
|
float celsius = 0;
|
|
uint8_t i;
|
|
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
|
|
|
|
for (i=1; i<heater_ttbllen_map[e]; i++)
|
|
{
|
|
if (PGM_RD_W((*tt)[i][0]) > raw)
|
|
{
|
|
celsius = PGM_RD_W((*tt)[i-1][1]) +
|
|
(raw - PGM_RD_W((*tt)[i-1][0])) *
|
|
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
|
|
(float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Overflow: Set to last value in the table
|
|
if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
|
|
|
|
return celsius;
|
|
}
|
|
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
|
|
}
|
|
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For bed temperature measurement.
|
|
static float analog2tempBed(int raw) {
|
|
#ifdef BED_USES_THERMISTOR
|
|
float celsius = 0;
|
|
byte i;
|
|
|
|
for (i=1; i<BEDTEMPTABLE_LEN; i++)
|
|
{
|
|
if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
|
|
{
|
|
celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
|
|
(raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
|
|
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
|
|
(float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Overflow: Set to last value in the table
|
|
if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
|
|
|
|
|
|
// temperature offset adjustment
|
|
#ifdef BED_OFFSET
|
|
float _offset = BED_OFFSET;
|
|
float _offset_center = BED_OFFSET_CENTER;
|
|
float _offset_start = BED_OFFSET_START;
|
|
float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
|
|
float _second_koef = (_offset / 2) / (100 - _offset_center);
|
|
|
|
|
|
if (celsius >= _offset_start && celsius <= _offset_center)
|
|
{
|
|
celsius = celsius + (_first_koef * (celsius - _offset_start));
|
|
}
|
|
else if (celsius > _offset_center && celsius <= 100)
|
|
{
|
|
celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
|
|
}
|
|
else if (celsius > 100)
|
|
{
|
|
celsius = celsius + _offset;
|
|
}
|
|
#endif
|
|
|
|
|
|
return celsius;
|
|
#elif defined BED_USES_AD595
|
|
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#ifdef AMBIENT_THERMISTOR
|
|
static float analog2tempAmbient(int raw)
|
|
{
|
|
float celsius = 0;
|
|
byte i;
|
|
|
|
for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
|
|
{
|
|
if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
|
|
{
|
|
celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
|
|
(raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
|
|
(float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
|
|
(float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
|
|
break;
|
|
}
|
|
}
|
|
// Overflow: Set to last value in the table
|
|
if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
|
|
return celsius;
|
|
}
|
|
#endif //AMBIENT_THERMISTOR
|
|
|
|
void soft_pwm_init()
|
|
{
|
|
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
|
|
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
|
|
MCUCR=(1<<JTD);
|
|
MCUCR=(1<<JTD);
|
|
#endif
|
|
|
|
// Finish init of mult extruder arrays
|
|
for(int e = 0; e < EXTRUDERS; e++) {
|
|
// populate with the first value
|
|
maxttemp[e] = maxttemp[0];
|
|
#ifdef PIDTEMP
|
|
iState_sum_min[e] = 0.0;
|
|
iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
|
|
#endif //PIDTEMP
|
|
#ifdef PIDTEMPBED
|
|
temp_iState_min_bed = 0.0;
|
|
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
|
|
#endif //PIDTEMPBED
|
|
}
|
|
|
|
#if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
|
|
SET_OUTPUT(HEATER_0_PIN);
|
|
#endif
|
|
#if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
|
|
SET_OUTPUT(HEATER_1_PIN);
|
|
#endif
|
|
#if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
|
|
SET_OUTPUT(HEATER_2_PIN);
|
|
#endif
|
|
#if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
|
|
SET_OUTPUT(HEATER_BED_PIN);
|
|
#endif
|
|
#if defined(FAN_PIN) && (FAN_PIN > -1)
|
|
SET_OUTPUT(FAN_PIN);
|
|
#ifdef FAST_PWM_FAN
|
|
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
#endif
|
|
#ifdef FAN_SOFT_PWM
|
|
soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
#ifndef SDSUPPORT
|
|
SET_OUTPUT(SCK_PIN);
|
|
WRITE(SCK_PIN,0);
|
|
|
|
SET_OUTPUT(MOSI_PIN);
|
|
WRITE(MOSI_PIN,1);
|
|
|
|
SET_INPUT(MISO_PIN);
|
|
WRITE(MISO_PIN,1);
|
|
#endif
|
|
/* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
|
|
|
|
//Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
|
|
pinMode(SS_PIN, OUTPUT);
|
|
digitalWrite(SS_PIN,0);
|
|
pinMode(MAX6675_SS, OUTPUT);
|
|
digitalWrite(MAX6675_SS,1);
|
|
#endif
|
|
|
|
#ifdef HEATER_0_MINTEMP
|
|
minttemp[0] = HEATER_0_MINTEMP;
|
|
while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
|
|
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
|
|
minttemp_raw[0] += OVERSAMPLENR;
|
|
#else
|
|
minttemp_raw[0] -= OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //MINTEMP
|
|
#ifdef HEATER_0_MAXTEMP
|
|
maxttemp[0] = HEATER_0_MAXTEMP;
|
|
while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
|
|
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
|
|
maxttemp_raw[0] -= OVERSAMPLENR;
|
|
#else
|
|
maxttemp_raw[0] += OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //MAXTEMP
|
|
|
|
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
|
|
minttemp[1] = HEATER_1_MINTEMP;
|
|
while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
|
|
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
|
|
minttemp_raw[1] += OVERSAMPLENR;
|
|
#else
|
|
minttemp_raw[1] -= OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif // MINTEMP 1
|
|
#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
|
|
maxttemp[1] = HEATER_1_MAXTEMP;
|
|
while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
|
|
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
|
|
maxttemp_raw[1] -= OVERSAMPLENR;
|
|
#else
|
|
maxttemp_raw[1] += OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //MAXTEMP 1
|
|
|
|
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
|
|
minttemp[2] = HEATER_2_MINTEMP;
|
|
while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
|
|
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
|
|
minttemp_raw[2] += OVERSAMPLENR;
|
|
#else
|
|
minttemp_raw[2] -= OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //MINTEMP 2
|
|
#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
|
|
maxttemp[2] = HEATER_2_MAXTEMP;
|
|
while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
|
|
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
|
|
maxttemp_raw[2] -= OVERSAMPLENR;
|
|
#else
|
|
maxttemp_raw[2] += OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //MAXTEMP 2
|
|
|
|
#ifdef BED_MINTEMP
|
|
while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
|
|
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
|
bed_minttemp_raw += OVERSAMPLENR;
|
|
#else
|
|
bed_minttemp_raw -= OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //BED_MINTEMP
|
|
#ifdef BED_MAXTEMP
|
|
while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
|
|
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
|
bed_maxttemp_raw -= OVERSAMPLENR;
|
|
#else
|
|
bed_maxttemp_raw += OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //BED_MAXTEMP
|
|
|
|
#ifdef AMBIENT_MINTEMP
|
|
while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
|
|
#if AMBIENT_RAW_LO_TEMP < AMBIENT_RAW_HI_TEMP
|
|
ambient_minttemp_raw += OVERSAMPLENR;
|
|
#else
|
|
ambient_minttemp_raw -= OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //AMBIENT_MINTEMP
|
|
#ifdef AMBIENT_MAXTEMP
|
|
while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
|
|
#if AMBIENT_RAW_LO_TEMP < AMBIENT_RAW_HI_TEMP
|
|
ambient_maxttemp_raw -= OVERSAMPLENR;
|
|
#else
|
|
ambient_maxttemp_raw += OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //AMBIENT_MAXTEMP
|
|
|
|
timer0_init(); //enables the heatbed timer.
|
|
|
|
// timer2 already enabled earlier in the code
|
|
// now enable the COMPB temperature interrupt
|
|
OCR2B = 128;
|
|
ENABLE_SOFT_PWM_INTERRUPT();
|
|
|
|
timer4_init(); //for tone and Hotend fan PWM
|
|
}
|
|
|
|
#if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
|
|
static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
|
|
{
|
|
float __delta;
|
|
float __hysteresis = 0;
|
|
uint16_t __timeout = 0;
|
|
bool temp_runaway_check_active = false;
|
|
static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
|
|
static uint8_t __preheat_counter[2] = { 0,0};
|
|
static uint8_t __preheat_errors[2] = { 0,0};
|
|
|
|
if (_millis() - temp_runaway_timer[_heater_id] > 2000)
|
|
{
|
|
|
|
#ifdef TEMP_RUNAWAY_BED_TIMEOUT
|
|
if (_isbed)
|
|
{
|
|
__hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
|
|
__timeout = TEMP_RUNAWAY_BED_TIMEOUT;
|
|
}
|
|
#endif
|
|
#ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
|
|
if (!_isbed)
|
|
{
|
|
__hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
|
|
__timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
|
|
}
|
|
#endif
|
|
|
|
temp_runaway_timer[_heater_id] = _millis();
|
|
if (_output == 0)
|
|
{
|
|
temp_runaway_check_active = false;
|
|
temp_runaway_error_counter[_heater_id] = 0;
|
|
}
|
|
|
|
if (temp_runaway_target[_heater_id] != _target_temperature)
|
|
{
|
|
if (_target_temperature > 0)
|
|
{
|
|
temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
|
|
temp_runaway_target[_heater_id] = _target_temperature;
|
|
__preheat_start[_heater_id] = _current_temperature;
|
|
__preheat_counter[_heater_id] = 0;
|
|
}
|
|
else
|
|
{
|
|
temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
|
|
temp_runaway_target[_heater_id] = _target_temperature;
|
|
}
|
|
}
|
|
|
|
if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
|
|
{
|
|
__preheat_counter[_heater_id]++;
|
|
if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
|
|
{
|
|
/*SERIAL_ECHOPGM("Heater:");
|
|
MYSERIAL.print(_heater_id);
|
|
SERIAL_ECHOPGM(" T:");
|
|
MYSERIAL.print(_current_temperature);
|
|
SERIAL_ECHOPGM(" Tstart:");
|
|
MYSERIAL.print(__preheat_start[_heater_id]);
|
|
SERIAL_ECHOPGM(" delta:");
|
|
MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
|
|
|
|
//-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
|
|
//-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
|
|
__delta=2.0;
|
|
if(_isbed)
|
|
{
|
|
__delta=3.0;
|
|
if(_current_temperature>90.0) __delta=2.0;
|
|
if(_current_temperature>105.0) __delta=0.6;
|
|
}
|
|
if (_current_temperature - __preheat_start[_heater_id] < __delta) {
|
|
__preheat_errors[_heater_id]++;
|
|
/*SERIAL_ECHOPGM(" Preheat errors:");
|
|
MYSERIAL.println(__preheat_errors[_heater_id]);*/
|
|
}
|
|
else {
|
|
//SERIAL_ECHOLNPGM("");
|
|
__preheat_errors[_heater_id] = 0;
|
|
}
|
|
|
|
if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
|
|
set_temp_error((_isbed?TempErrorSource::bed:TempErrorSource::hotend), _heater_id, TempErrorType::preheat);
|
|
|
|
__preheat_start[_heater_id] = _current_temperature;
|
|
__preheat_counter[_heater_id] = 0;
|
|
}
|
|
}
|
|
|
|
//-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
|
|
if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
|
|
{
|
|
/*SERIAL_ECHOPGM("Heater:");
|
|
MYSERIAL.print(_heater_id);
|
|
MYSERIAL.println(" ->tempRunaway");*/
|
|
temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
|
|
temp_runaway_check_active = false;
|
|
temp_runaway_error_counter[_heater_id] = 0;
|
|
}
|
|
|
|
if (_output > 0)
|
|
{
|
|
temp_runaway_check_active = true;
|
|
}
|
|
|
|
|
|
if (temp_runaway_check_active)
|
|
{
|
|
// we are in range
|
|
if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
|
|
{
|
|
temp_runaway_check_active = false;
|
|
temp_runaway_error_counter[_heater_id] = 0;
|
|
}
|
|
else
|
|
{
|
|
if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
|
|
{
|
|
temp_runaway_error_counter[_heater_id]++;
|
|
if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
|
|
set_temp_error((_isbed?TempErrorSource::bed:TempErrorSource::hotend), _heater_id, TempErrorType::runaway);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
static void temp_runaway_stop(bool isPreheat, bool isBed)
|
|
{
|
|
if(IsStopped() == false) {
|
|
if (isPreheat) {
|
|
lcd_setalertstatuspgm(isBed? PSTR("BED PREHEAT ERROR") : PSTR("PREHEAT ERROR"), LCD_STATUS_CRITICAL);
|
|
SERIAL_ERROR_START;
|
|
if (isBed) {
|
|
SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HEATBED)");
|
|
} else {
|
|
SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HOTEND)");
|
|
}
|
|
} else {
|
|
lcd_setalertstatuspgm(isBed? PSTR("BED THERMAL RUNAWAY") : PSTR("THERMAL RUNAWAY"), LCD_STATUS_CRITICAL);
|
|
SERIAL_ERROR_START;
|
|
if (isBed) {
|
|
SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY");
|
|
} else {
|
|
SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
|
|
}
|
|
}
|
|
prusa_statistics(0);
|
|
prusa_statistics(isPreheat? 91 : 90);
|
|
}
|
|
ThermalStop();
|
|
}
|
|
#endif
|
|
|
|
//! signal a temperature error on both the lcd and serial
|
|
//! @param type short error abbreviation (PROGMEM)
|
|
//! @param e optional extruder index for hotend errors
|
|
static void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
|
|
{
|
|
char msg[LCD_WIDTH];
|
|
strcpy_P(msg, PSTR("Err: "));
|
|
strcat_P(msg, type);
|
|
lcd_setalertstatus(msg, LCD_STATUS_CRITICAL);
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
if(e != EXTRUDERS) {
|
|
SERIAL_ERROR((int)e);
|
|
SERIAL_ERRORPGM(": ");
|
|
}
|
|
|
|
SERIAL_ERRORPGM("Heaters switched off. ");
|
|
SERIAL_ERRORRPGM(type);
|
|
SERIAL_ERRORLNPGM(" triggered!");
|
|
}
|
|
|
|
|
|
static void max_temp_error(uint8_t e) {
|
|
if(IsStopped() == false) {
|
|
temp_error_messagepgm(PSTR("MAXTEMP"), e);
|
|
prusa_statistics(93);
|
|
}
|
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
ThermalStop();
|
|
#endif
|
|
}
|
|
|
|
static void min_temp_error(uint8_t e) {
|
|
static const char err[] PROGMEM = "MINTEMP";
|
|
if(IsStopped() == false) {
|
|
temp_error_messagepgm(err, e);
|
|
prusa_statistics(92);
|
|
}
|
|
ThermalStop();
|
|
}
|
|
|
|
static void bed_max_temp_error(void) {
|
|
if(IsStopped() == false) {
|
|
temp_error_messagepgm(PSTR("MAXTEMP BED"));
|
|
}
|
|
ThermalStop();
|
|
}
|
|
|
|
static void bed_min_temp_error(void) {
|
|
static const char err[] PROGMEM = "MINTEMP BED";
|
|
if(IsStopped() == false) {
|
|
temp_error_messagepgm(err);
|
|
}
|
|
ThermalStop();
|
|
}
|
|
|
|
|
|
#ifdef AMBIENT_THERMISTOR
|
|
static void ambient_max_temp_error(void) {
|
|
if(IsStopped() == false) {
|
|
temp_error_messagepgm(PSTR("MAXTEMP AMB"));
|
|
}
|
|
ThermalStop();
|
|
}
|
|
|
|
static void ambient_min_temp_error(void) {
|
|
if(IsStopped() == false) {
|
|
temp_error_messagepgm(PSTR("MINTEMP AMB"));
|
|
}
|
|
ThermalStop();
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
#define MAX6675_HEAT_INTERVAL 250
|
|
long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
|
|
int max6675_temp = 2000;
|
|
|
|
int read_max6675()
|
|
{
|
|
if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
|
|
return max6675_temp;
|
|
|
|
max6675_previous_millis = _millis();
|
|
max6675_temp = 0;
|
|
|
|
#ifdef PRR
|
|
PRR &= ~(1<<PRSPI);
|
|
#elif defined PRR0
|
|
PRR0 &= ~(1<<PRSPI);
|
|
#endif
|
|
|
|
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
|
|
|
|
// enable TT_MAX6675
|
|
WRITE(MAX6675_SS, 0);
|
|
|
|
// ensure 100ns delay - a bit extra is fine
|
|
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
|
|
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
|
|
|
|
// read MSB
|
|
SPDR = 0;
|
|
for (;(SPSR & (1<<SPIF)) == 0;);
|
|
max6675_temp = SPDR;
|
|
max6675_temp <<= 8;
|
|
|
|
// read LSB
|
|
SPDR = 0;
|
|
for (;(SPSR & (1<<SPIF)) == 0;);
|
|
max6675_temp |= SPDR;
|
|
|
|
// disable TT_MAX6675
|
|
WRITE(MAX6675_SS, 1);
|
|
|
|
if (max6675_temp & 4)
|
|
{
|
|
// thermocouple open
|
|
max6675_temp = 2000;
|
|
}
|
|
else
|
|
{
|
|
max6675_temp = max6675_temp >> 3;
|
|
}
|
|
|
|
return max6675_temp;
|
|
}
|
|
#endif
|
|
|
|
#ifdef BABYSTEPPING
|
|
FORCE_INLINE static void applyBabysteps() {
|
|
for(uint8_t axis=0;axis<3;axis++)
|
|
{
|
|
int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
|
|
|
|
if(curTodo>0)
|
|
{
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
babystep(axis,/*fwd*/true);
|
|
babystepsTodo[axis]--; //less to do next time
|
|
}
|
|
}
|
|
else
|
|
if(curTodo<0)
|
|
{
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
babystep(axis,/*fwd*/false);
|
|
babystepsTodo[axis]++; //less to do next time
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif //BABYSTEPPING
|
|
|
|
FORCE_INLINE static void soft_pwm_core()
|
|
{
|
|
static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
|
|
static uint8_t soft_pwm_0;
|
|
#ifdef SLOW_PWM_HEATERS
|
|
static unsigned char slow_pwm_count = 0;
|
|
static unsigned char state_heater_0 = 0;
|
|
static unsigned char state_timer_heater_0 = 0;
|
|
#endif
|
|
#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
|
|
static unsigned char soft_pwm_1;
|
|
#ifdef SLOW_PWM_HEATERS
|
|
static unsigned char state_heater_1 = 0;
|
|
static unsigned char state_timer_heater_1 = 0;
|
|
#endif
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
static unsigned char soft_pwm_2;
|
|
#ifdef SLOW_PWM_HEATERS
|
|
static unsigned char state_heater_2 = 0;
|
|
static unsigned char state_timer_heater_2 = 0;
|
|
#endif
|
|
#endif
|
|
#if HEATER_BED_PIN > -1
|
|
// @@DR static unsigned char soft_pwm_b;
|
|
#ifdef SLOW_PWM_HEATERS
|
|
static unsigned char state_heater_b = 0;
|
|
static unsigned char state_timer_heater_b = 0;
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
|
|
static unsigned long raw_filwidth_value = 0; //added for filament width sensor
|
|
#endif
|
|
|
|
#ifndef SLOW_PWM_HEATERS
|
|
/*
|
|
* standard PWM modulation
|
|
*/
|
|
if (pwm_count == 0)
|
|
{
|
|
soft_pwm_0 = soft_pwm[0];
|
|
if(soft_pwm_0 > 0)
|
|
{
|
|
WRITE(HEATER_0_PIN,1);
|
|
#ifdef HEATERS_PARALLEL
|
|
WRITE(HEATER_1_PIN,1);
|
|
#endif
|
|
} else WRITE(HEATER_0_PIN,0);
|
|
#if EXTRUDERS > 1
|
|
soft_pwm_1 = soft_pwm[1];
|
|
if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
soft_pwm_2 = soft_pwm[2];
|
|
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
|
|
#endif
|
|
}
|
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
|
|
|
#if 0 // @@DR vypnuto pro hw pwm bedu
|
|
// tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
|
|
// teoreticky by se tato cast uz vubec nemusela poustet
|
|
if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
|
|
{
|
|
soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
|
|
# ifndef SYSTEM_TIMER_2
|
|
// tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
|
|
// jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
|
|
// 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
|
|
// Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
|
|
// to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
|
|
//if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
|
|
# endif //SYSTEM_TIMER_2
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef FAN_SOFT_PWM
|
|
if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
|
|
{
|
|
soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
|
|
if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
|
|
}
|
|
#endif
|
|
if(soft_pwm_0 < pwm_count)
|
|
{
|
|
WRITE(HEATER_0_PIN,0);
|
|
#ifdef HEATERS_PARALLEL
|
|
WRITE(HEATER_1_PIN,0);
|
|
#endif
|
|
}
|
|
|
|
#if EXTRUDERS > 1
|
|
if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
|
|
#endif
|
|
|
|
#if 0 // @@DR
|
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
|
if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
|
|
//WRITE(HEATER_BED_PIN,0);
|
|
}
|
|
//WRITE(HEATER_BED_PIN, pwm_count & 1 );
|
|
#endif
|
|
#endif
|
|
#ifdef FAN_SOFT_PWM
|
|
if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
|
|
#endif
|
|
|
|
pwm_count += (1 << SOFT_PWM_SCALE);
|
|
pwm_count &= 0x7f;
|
|
|
|
#else //ifndef SLOW_PWM_HEATERS
|
|
/*
|
|
* SLOW PWM HEATERS
|
|
*
|
|
* for heaters drived by relay
|
|
*/
|
|
#ifndef MIN_STATE_TIME
|
|
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
|
|
#endif
|
|
if (slow_pwm_count == 0) {
|
|
// EXTRUDER 0
|
|
soft_pwm_0 = soft_pwm[0];
|
|
if (soft_pwm_0 > 0) {
|
|
// turn ON heather only if the minimum time is up
|
|
if (state_timer_heater_0 == 0) {
|
|
// if change state set timer
|
|
if (state_heater_0 == 0) {
|
|
state_timer_heater_0 = MIN_STATE_TIME;
|
|
}
|
|
state_heater_0 = 1;
|
|
WRITE(HEATER_0_PIN, 1);
|
|
#ifdef HEATERS_PARALLEL
|
|
WRITE(HEATER_1_PIN, 1);
|
|
#endif
|
|
}
|
|
} else {
|
|
// turn OFF heather only if the minimum time is up
|
|
if (state_timer_heater_0 == 0) {
|
|
// if change state set timer
|
|
if (state_heater_0 == 1) {
|
|
state_timer_heater_0 = MIN_STATE_TIME;
|
|
}
|
|
state_heater_0 = 0;
|
|
WRITE(HEATER_0_PIN, 0);
|
|
#ifdef HEATERS_PARALLEL
|
|
WRITE(HEATER_1_PIN, 0);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if EXTRUDERS > 1
|
|
// EXTRUDER 1
|
|
soft_pwm_1 = soft_pwm[1];
|
|
if (soft_pwm_1 > 0) {
|
|
// turn ON heather only if the minimum time is up
|
|
if (state_timer_heater_1 == 0) {
|
|
// if change state set timer
|
|
if (state_heater_1 == 0) {
|
|
state_timer_heater_1 = MIN_STATE_TIME;
|
|
}
|
|
state_heater_1 = 1;
|
|
WRITE(HEATER_1_PIN, 1);
|
|
}
|
|
} else {
|
|
// turn OFF heather only if the minimum time is up
|
|
if (state_timer_heater_1 == 0) {
|
|
// if change state set timer
|
|
if (state_heater_1 == 1) {
|
|
state_timer_heater_1 = MIN_STATE_TIME;
|
|
}
|
|
state_heater_1 = 0;
|
|
WRITE(HEATER_1_PIN, 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if EXTRUDERS > 2
|
|
// EXTRUDER 2
|
|
soft_pwm_2 = soft_pwm[2];
|
|
if (soft_pwm_2 > 0) {
|
|
// turn ON heather only if the minimum time is up
|
|
if (state_timer_heater_2 == 0) {
|
|
// if change state set timer
|
|
if (state_heater_2 == 0) {
|
|
state_timer_heater_2 = MIN_STATE_TIME;
|
|
}
|
|
state_heater_2 = 1;
|
|
WRITE(HEATER_2_PIN, 1);
|
|
}
|
|
} else {
|
|
// turn OFF heather only if the minimum time is up
|
|
if (state_timer_heater_2 == 0) {
|
|
// if change state set timer
|
|
if (state_heater_2 == 1) {
|
|
state_timer_heater_2 = MIN_STATE_TIME;
|
|
}
|
|
state_heater_2 = 0;
|
|
WRITE(HEATER_2_PIN, 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
|
// BED
|
|
soft_pwm_b = soft_pwm_bed;
|
|
if (soft_pwm_b > 0) {
|
|
// turn ON heather only if the minimum time is up
|
|
if (state_timer_heater_b == 0) {
|
|
// if change state set timer
|
|
if (state_heater_b == 0) {
|
|
state_timer_heater_b = MIN_STATE_TIME;
|
|
}
|
|
state_heater_b = 1;
|
|
//WRITE(HEATER_BED_PIN, 1);
|
|
}
|
|
} else {
|
|
// turn OFF heather only if the minimum time is up
|
|
if (state_timer_heater_b == 0) {
|
|
// if change state set timer
|
|
if (state_heater_b == 1) {
|
|
state_timer_heater_b = MIN_STATE_TIME;
|
|
}
|
|
state_heater_b = 0;
|
|
WRITE(HEATER_BED_PIN, 0);
|
|
}
|
|
}
|
|
#endif
|
|
} // if (slow_pwm_count == 0)
|
|
|
|
// EXTRUDER 0
|
|
if (soft_pwm_0 < slow_pwm_count) {
|
|
// turn OFF heather only if the minimum time is up
|
|
if (state_timer_heater_0 == 0) {
|
|
// if change state set timer
|
|
if (state_heater_0 == 1) {
|
|
state_timer_heater_0 = MIN_STATE_TIME;
|
|
}
|
|
state_heater_0 = 0;
|
|
WRITE(HEATER_0_PIN, 0);
|
|
#ifdef HEATERS_PARALLEL
|
|
WRITE(HEATER_1_PIN, 0);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if EXTRUDERS > 1
|
|
// EXTRUDER 1
|
|
if (soft_pwm_1 < slow_pwm_count) {
|
|
// turn OFF heather only if the minimum time is up
|
|
if (state_timer_heater_1 == 0) {
|
|
// if change state set timer
|
|
if (state_heater_1 == 1) {
|
|
state_timer_heater_1 = MIN_STATE_TIME;
|
|
}
|
|
state_heater_1 = 0;
|
|
WRITE(HEATER_1_PIN, 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if EXTRUDERS > 2
|
|
// EXTRUDER 2
|
|
if (soft_pwm_2 < slow_pwm_count) {
|
|
// turn OFF heather only if the minimum time is up
|
|
if (state_timer_heater_2 == 0) {
|
|
// if change state set timer
|
|
if (state_heater_2 == 1) {
|
|
state_timer_heater_2 = MIN_STATE_TIME;
|
|
}
|
|
state_heater_2 = 0;
|
|
WRITE(HEATER_2_PIN, 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
|
// BED
|
|
if (soft_pwm_b < slow_pwm_count) {
|
|
// turn OFF heather only if the minimum time is up
|
|
if (state_timer_heater_b == 0) {
|
|
// if change state set timer
|
|
if (state_heater_b == 1) {
|
|
state_timer_heater_b = MIN_STATE_TIME;
|
|
}
|
|
state_heater_b = 0;
|
|
WRITE(HEATER_BED_PIN, 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef FAN_SOFT_PWM
|
|
if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
|
|
soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
|
|
if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
|
|
}
|
|
if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
|
|
#endif
|
|
|
|
pwm_count += (1 << SOFT_PWM_SCALE);
|
|
pwm_count &= 0x7f;
|
|
|
|
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
|
|
if ((pwm_count % 64) == 0) {
|
|
slow_pwm_count++;
|
|
slow_pwm_count &= 0x7f;
|
|
|
|
// Extruder 0
|
|
if (state_timer_heater_0 > 0) {
|
|
state_timer_heater_0--;
|
|
}
|
|
|
|
#if EXTRUDERS > 1
|
|
// Extruder 1
|
|
if (state_timer_heater_1 > 0)
|
|
state_timer_heater_1--;
|
|
#endif
|
|
|
|
#if EXTRUDERS > 2
|
|
// Extruder 2
|
|
if (state_timer_heater_2 > 0)
|
|
state_timer_heater_2--;
|
|
#endif
|
|
|
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
|
// Bed
|
|
if (state_timer_heater_b > 0)
|
|
state_timer_heater_b--;
|
|
#endif
|
|
} //if ((pwm_count % 64) == 0) {
|
|
|
|
#endif //ifndef SLOW_PWM_HEATERS
|
|
}
|
|
|
|
FORCE_INLINE static void soft_pwm_isr()
|
|
{
|
|
lcd_buttons_update();
|
|
soft_pwm_core();
|
|
|
|
#ifdef BABYSTEPPING
|
|
applyBabysteps();
|
|
#endif //BABYSTEPPING
|
|
|
|
// Check if a stack overflow happened
|
|
if (!SdFatUtil::test_stack_integrity()) stack_error();
|
|
|
|
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
|
|
readFanTach();
|
|
#endif //(defined(TACH_0))
|
|
}
|
|
|
|
// Timer2 (originaly timer0) is shared with millies
|
|
#ifdef SYSTEM_TIMER_2
|
|
ISR(TIMER2_COMPB_vect)
|
|
#else //SYSTEM_TIMER_2
|
|
ISR(TIMER0_COMPB_vect)
|
|
#endif //SYSTEM_TIMER_2
|
|
{
|
|
DISABLE_SOFT_PWM_INTERRUPT();
|
|
NONATOMIC_BLOCK(NONATOMIC_FORCEOFF) {
|
|
soft_pwm_isr();
|
|
}
|
|
ENABLE_SOFT_PWM_INTERRUPT();
|
|
}
|
|
|
|
void check_max_temp_raw()
|
|
{
|
|
//heater
|
|
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
|
if (current_temperature_raw[0] <= maxttemp_raw[0]) {
|
|
#else
|
|
if (current_temperature_raw[0] >= maxttemp_raw[0]) {
|
|
#endif
|
|
set_temp_error(TempErrorSource::hotend, 0, TempErrorType::max);
|
|
}
|
|
//bed
|
|
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
|
|
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
|
|
if (current_temperature_bed_raw <= bed_maxttemp_raw) {
|
|
#else
|
|
if (current_temperature_bed_raw >= bed_maxttemp_raw) {
|
|
#endif
|
|
set_temp_error(TempErrorSource::bed, 0, TempErrorType::max);
|
|
}
|
|
#endif
|
|
//ambient
|
|
#if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
|
|
#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
|
|
if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
|
|
#else
|
|
if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
|
|
#endif
|
|
set_temp_error(TempErrorSource::ambient, 0, TempErrorType::max);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//! number of repeating the same state with consecutive step() calls
|
|
//! used to slow down text switching
|
|
struct alert_automaton_mintemp {
|
|
const char *m2;
|
|
alert_automaton_mintemp(const char *m2):m2(m2){}
|
|
private:
|
|
enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
|
|
enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
|
|
States state = States::Init;
|
|
uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
|
|
|
|
void substep(const char* next_msg, States next_state){
|
|
if( repeat == 0 ){
|
|
state = next_state; // advance to the next state
|
|
lcd_setalertstatuspgm(next_msg, LCD_STATUS_CRITICAL);
|
|
repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
|
|
} else {
|
|
--repeat;
|
|
}
|
|
}
|
|
public:
|
|
//! brief state automaton step routine
|
|
//! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
|
|
//! @param mintemp minimal temperature including hysteresis to check current_temp against
|
|
void step(float current_temp, float mintemp){
|
|
static const char m1[] PROGMEM = "Please restart";
|
|
switch(state){
|
|
case States::Init: // initial state - check hysteresis
|
|
if( current_temp > mintemp ){
|
|
lcd_setalertstatuspgm(m2, LCD_STATUS_CRITICAL);
|
|
state = States::TempAboveMintemp;
|
|
}
|
|
// otherwise keep the Err MINTEMP alert message on the display,
|
|
// i.e. do not transfer to state 1
|
|
break;
|
|
case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
|
|
case States::ShowMintemp: // displaying "MINTEMP fixed"
|
|
substep(m1, States::ShowPleaseRestart);
|
|
break;
|
|
case States::ShowPleaseRestart: // displaying "Please restart"
|
|
substep(m2, States::ShowMintemp);
|
|
break;
|
|
}
|
|
}
|
|
};
|
|
static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
|
|
static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
|
|
static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
|
|
|
|
void check_min_temp_heater0()
|
|
{
|
|
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
|
if (current_temperature_raw[0] >= minttemp_raw[0]) {
|
|
#else
|
|
if (current_temperature_raw[0] <= minttemp_raw[0]) {
|
|
#endif
|
|
set_temp_error(TempErrorSource::hotend, 0, TempErrorType::min);
|
|
}
|
|
}
|
|
|
|
void check_min_temp_bed()
|
|
{
|
|
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
|
|
if (current_temperature_bed_raw >= bed_minttemp_raw) {
|
|
#else
|
|
if (current_temperature_bed_raw <= bed_minttemp_raw) {
|
|
#endif
|
|
set_temp_error(TempErrorSource::bed, 0, TempErrorType::min);
|
|
}
|
|
}
|
|
|
|
#ifdef AMBIENT_MINTEMP
|
|
void check_min_temp_ambient()
|
|
{
|
|
#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
|
|
if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
|
|
#else
|
|
if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
|
|
#endif
|
|
set_temp_error(TempErrorSource::ambient, 0, TempErrorType::min);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void handle_temp_error()
|
|
{
|
|
// relay to the original handler
|
|
switch((TempErrorType)temp_error_state.type) {
|
|
case TempErrorType::min:
|
|
switch((TempErrorSource)temp_error_state.source) {
|
|
case TempErrorSource::hotend:
|
|
if(temp_error_state.assert) {
|
|
min_temp_error(temp_error_state.index);
|
|
} else {
|
|
// no recovery, just force the user to restart the printer
|
|
// which is a safer variant than just continuing printing
|
|
// The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
|
|
// we shall signalize, that MINTEMP has been fixed
|
|
// Code notice: normally the alert_automaton instance would have been placed here
|
|
// as static alert_automaton_mintemp alert_automaton_hotend, but
|
|
alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
|
|
}
|
|
break;
|
|
case TempErrorSource::bed:
|
|
if(temp_error_state.assert) {
|
|
bed_min_temp_error();
|
|
} else {
|
|
// no recovery, just force the user to restart the printer
|
|
// which is a safer variant than just continuing printing
|
|
alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
|
|
}
|
|
break;
|
|
#ifdef AMBIENT_THERMISTOR
|
|
case TempErrorSource::ambient:
|
|
ambient_min_temp_error();
|
|
break;
|
|
#endif
|
|
}
|
|
break;
|
|
case TempErrorType::max:
|
|
switch((TempErrorSource)temp_error_state.source) {
|
|
case TempErrorSource::hotend:
|
|
max_temp_error(temp_error_state.index);
|
|
break;
|
|
case TempErrorSource::bed:
|
|
bed_max_temp_error();
|
|
break;
|
|
#ifdef AMBIENT_THERMISTOR
|
|
case TempErrorSource::ambient:
|
|
ambient_max_temp_error();
|
|
break;
|
|
#endif
|
|
}
|
|
break;
|
|
case TempErrorType::preheat:
|
|
case TempErrorType::runaway:
|
|
switch((TempErrorSource)temp_error_state.source) {
|
|
case TempErrorSource::hotend:
|
|
case TempErrorSource::bed:
|
|
temp_runaway_stop(
|
|
((TempErrorType)temp_error_state.type == TempErrorType::preheat),
|
|
((TempErrorSource)temp_error_state.source == TempErrorSource::bed));
|
|
break;
|
|
#ifdef AMBIENT_THERMISTOR
|
|
case TempErrorSource::ambient:
|
|
// not needed
|
|
break;
|
|
#endif
|
|
}
|
|
break;
|
|
#ifdef TEMP_MODEL
|
|
case TempErrorType::model:
|
|
if(temp_error_state.assert) {
|
|
if(IsStopped() == false) {
|
|
SERIAL_ECHOLNPGM("TM: error triggered!");
|
|
}
|
|
ThermalStop(true);
|
|
WRITE(BEEPER, HIGH);
|
|
} else {
|
|
temp_error_state.v = 0;
|
|
WRITE(BEEPER, LOW);
|
|
menu_unset_block(MENU_BLOCK_THERMAL_ERROR);
|
|
|
|
// hotend error was transitory and disappeared, re-enable bed
|
|
if (!target_temperature_bed)
|
|
target_temperature_bed = saved_bed_temperature;
|
|
|
|
SERIAL_ECHOLNPGM("TM: error cleared");
|
|
}
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef PIDTEMP
|
|
// Apply the scale factors to the PID values
|
|
|
|
float scalePID_i(float i)
|
|
{
|
|
return i*PID_dT;
|
|
}
|
|
|
|
float unscalePID_i(float i)
|
|
{
|
|
return i/PID_dT;
|
|
}
|
|
|
|
float scalePID_d(float d)
|
|
{
|
|
return d/PID_dT;
|
|
}
|
|
|
|
float unscalePID_d(float d)
|
|
{
|
|
return d*PID_dT;
|
|
}
|
|
|
|
#endif //PIDTEMP
|
|
|
|
#ifdef PINDA_THERMISTOR
|
|
//! @brief PINDA thermistor detected
|
|
//!
|
|
//! @retval true firmware should do temperature compensation and allow calibration
|
|
//! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
|
|
//! @retval true/false when forced via LCD menu Settings->HW Setup->SuperPINDA
|
|
//!
|
|
bool has_temperature_compensation()
|
|
{
|
|
#ifdef SUPERPINDA_SUPPORT
|
|
#ifdef PINDA_TEMP_COMP
|
|
uint8_t pinda_temp_compensation = eeprom_read_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION);
|
|
if (pinda_temp_compensation == EEPROM_EMPTY_VALUE) //Unkown PINDA temp compenstation, so check it.
|
|
{
|
|
#endif //PINDA_TEMP_COMP
|
|
return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
|
|
#ifdef PINDA_TEMP_COMP
|
|
}
|
|
else if (pinda_temp_compensation == 0) return true; //Overwritten via LCD menu SuperPINDA [No]
|
|
else return false; //Overwritten via LCD menu SuperPINDA [YES]
|
|
#endif //PINDA_TEMP_COMP
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
#endif //PINDA_THERMISTOR
|
|
|
|
|
|
// RAII helper class to run a code block with temp_mgr_isr disabled
|
|
class TempMgrGuard
|
|
{
|
|
bool temp_mgr_state;
|
|
|
|
public:
|
|
TempMgrGuard() {
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
temp_mgr_state = TEMP_MGR_INTERRUPT_STATE();
|
|
DISABLE_TEMP_MGR_INTERRUPT();
|
|
}
|
|
}
|
|
|
|
~TempMgrGuard() throw() {
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
if(temp_mgr_state) ENABLE_TEMP_MGR_INTERRUPT();
|
|
}
|
|
}
|
|
};
|
|
|
|
void temp_mgr_init()
|
|
{
|
|
// initialize the ADC and start a conversion
|
|
adc_init();
|
|
adc_start_cycle();
|
|
|
|
// initialize temperature timer
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
|
|
// CTC
|
|
TCCRxB &= ~(1<<WGMx3);
|
|
TCCRxB |= (1<<WGMx2);
|
|
TCCRxA &= ~(1<<WGMx1);
|
|
TCCRxA &= ~(1<<WGMx0);
|
|
|
|
// output mode = 00 (disconnected)
|
|
TCCRxA &= ~(3<<COMxA0);
|
|
TCCRxA &= ~(3<<COMxB0);
|
|
|
|
// x/256 prescaler
|
|
TCCRxB |= (1<<CSx2);
|
|
TCCRxB &= ~(1<<CSx1);
|
|
TCCRxB &= ~(1<<CSx0);
|
|
|
|
// reset counter
|
|
TCNTx = 0;
|
|
OCRxA = TEMP_TIM_OCRA_OVF;
|
|
|
|
// clear pending interrupts, enable COMPA
|
|
TEMP_MGR_INT_FLAG_CLEAR();
|
|
ENABLE_TEMP_MGR_INTERRUPT();
|
|
|
|
}
|
|
}
|
|
|
|
static void pid_heater(uint8_t e, const float current, const int target)
|
|
{
|
|
float pid_input;
|
|
float pid_output;
|
|
|
|
#ifdef PIDTEMP
|
|
pid_input = current;
|
|
|
|
#ifndef PID_OPENLOOP
|
|
if(target == 0) {
|
|
pid_output = 0;
|
|
pid_reset[e] = true;
|
|
} else {
|
|
pid_error[e] = target - pid_input;
|
|
if(pid_reset[e]) {
|
|
iState_sum[e] = 0.0;
|
|
dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
|
|
pid_reset[e] = false;
|
|
}
|
|
#ifndef PonM
|
|
pTerm[e] = cs.Kp * pid_error[e];
|
|
iState_sum[e] += pid_error[e];
|
|
iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
|
|
iTerm[e] = cs.Ki * iState_sum[e];
|
|
// PID_K1 defined in Configuration.h in the PID settings
|
|
#define K2 (1.0-PID_K1)
|
|
dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
|
|
pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
|
|
if (pid_output > PID_MAX) {
|
|
if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
|
|
pid_output=PID_MAX;
|
|
} else if (pid_output < 0) {
|
|
if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
|
|
pid_output=0;
|
|
}
|
|
#else // PonM ("Proportional on Measurement" method)
|
|
iState_sum[e] += cs.Ki * pid_error[e];
|
|
iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
|
|
iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
|
|
dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
|
|
pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
|
|
pid_output = constrain(pid_output, 0, PID_MAX);
|
|
#endif // PonM
|
|
}
|
|
dState_last[e] = pid_input;
|
|
#else //PID_OPENLOOP
|
|
pid_output = constrain(target[e], 0, PID_MAX);
|
|
#endif //PID_OPENLOOP
|
|
|
|
#ifdef PID_DEBUG
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(" PID_DEBUG ");
|
|
SERIAL_ECHO(e);
|
|
SERIAL_ECHO(": Input ");
|
|
SERIAL_ECHO(pid_input);
|
|
SERIAL_ECHO(" Output ");
|
|
SERIAL_ECHO(pid_output);
|
|
SERIAL_ECHO(" pTerm ");
|
|
SERIAL_ECHO(pTerm[e]);
|
|
SERIAL_ECHO(" iTerm ");
|
|
SERIAL_ECHO(iTerm[e]);
|
|
SERIAL_ECHO(" dTerm ");
|
|
SERIAL_ECHOLN(-dTerm[e]);
|
|
#endif //PID_DEBUG
|
|
|
|
#else /* PID off */
|
|
pid_output = 0;
|
|
if(current[e] < target[e]) {
|
|
pid_output = PID_MAX;
|
|
}
|
|
#endif
|
|
|
|
// Check if temperature is within the correct range
|
|
if((current < maxttemp[e]) && (target != 0))
|
|
soft_pwm[e] = (int)pid_output >> 1;
|
|
else
|
|
soft_pwm[e] = 0;
|
|
}
|
|
|
|
static void pid_bed(const float current, const int target)
|
|
{
|
|
float pid_input;
|
|
float pid_output;
|
|
|
|
#ifndef PIDTEMPBED
|
|
if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
|
|
return;
|
|
previous_millis_bed_heater = _millis();
|
|
#endif
|
|
|
|
#if TEMP_SENSOR_BED != 0
|
|
|
|
#ifdef PIDTEMPBED
|
|
pid_input = current;
|
|
|
|
#ifndef PID_OPENLOOP
|
|
pid_error_bed = target - pid_input;
|
|
pTerm_bed = cs.bedKp * pid_error_bed;
|
|
temp_iState_bed += pid_error_bed;
|
|
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
|
|
iTerm_bed = cs.bedKi * temp_iState_bed;
|
|
|
|
//PID_K1 defined in Configuration.h in the PID settings
|
|
#define K2 (1.0-PID_K1)
|
|
dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
|
|
temp_dState_bed = pid_input;
|
|
|
|
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
|
|
if (pid_output > MAX_BED_POWER) {
|
|
if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
pid_output=MAX_BED_POWER;
|
|
} else if (pid_output < 0){
|
|
if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
pid_output=0;
|
|
}
|
|
|
|
#else
|
|
pid_output = constrain(target, 0, MAX_BED_POWER);
|
|
#endif //PID_OPENLOOP
|
|
|
|
if(current < BED_MAXTEMP)
|
|
{
|
|
soft_pwm_bed = (int)pid_output >> 1;
|
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
|
}
|
|
else
|
|
{
|
|
soft_pwm_bed = 0;
|
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
|
}
|
|
|
|
#elif !defined(BED_LIMIT_SWITCHING)
|
|
// Check if temperature is within the correct range
|
|
if(current < BED_MAXTEMP)
|
|
{
|
|
if(current >= target)
|
|
{
|
|
soft_pwm_bed = 0;
|
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
|
}
|
|
else
|
|
{
|
|
soft_pwm_bed = MAX_BED_POWER>>1;
|
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
soft_pwm_bed = 0;
|
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
|
WRITE(HEATER_BED_PIN,LOW);
|
|
}
|
|
#else //#ifdef BED_LIMIT_SWITCHING
|
|
// Check if temperature is within the correct band
|
|
if(current < BED_MAXTEMP)
|
|
{
|
|
if(current > target + BED_HYSTERESIS)
|
|
{
|
|
soft_pwm_bed = 0;
|
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
|
}
|
|
else if(current <= target - BED_HYSTERESIS)
|
|
{
|
|
soft_pwm_bed = MAX_BED_POWER>>1;
|
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
soft_pwm_bed = 0;
|
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
|
WRITE(HEATER_BED_PIN,LOW);
|
|
}
|
|
#endif //BED_LIMIT_SWITCHING
|
|
|
|
if(target==0)
|
|
{
|
|
soft_pwm_bed = 0;
|
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
|
}
|
|
#endif //TEMP_SENSOR_BED
|
|
}
|
|
|
|
// ISR-safe temperatures
|
|
static volatile bool adc_values_ready = false;
|
|
float current_temperature_isr[EXTRUDERS];
|
|
int target_temperature_isr[EXTRUDERS];
|
|
float current_temperature_bed_isr;
|
|
int target_temperature_bed_isr;
|
|
#ifdef PINDA_THERMISTOR
|
|
float current_temperature_pinda_isr;
|
|
#endif
|
|
#ifdef AMBIENT_THERMISTOR
|
|
float current_temperature_ambient_isr;
|
|
#endif
|
|
|
|
// ISR callback from adc when sampling finished
|
|
void adc_callback()
|
|
{
|
|
current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
|
|
current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
|
|
#ifdef PINDA_THERMISTOR
|
|
current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
|
|
#endif //PINDA_THERMISTOR
|
|
#ifdef AMBIENT_THERMISTOR
|
|
current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
|
|
#endif //AMBIENT_THERMISTOR
|
|
#ifdef VOLT_PWR_PIN
|
|
current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
|
|
#endif
|
|
#ifdef VOLT_BED_PIN
|
|
current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
|
|
#endif
|
|
#ifdef IR_SENSOR_ANALOG
|
|
current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
|
|
#endif //IR_SENSOR_ANALOG
|
|
adc_values_ready = true;
|
|
}
|
|
|
|
static void setCurrentTemperaturesFromIsr()
|
|
{
|
|
for(uint8_t e=0;e<EXTRUDERS;e++)
|
|
current_temperature[e] = current_temperature_isr[e];
|
|
current_temperature_bed = current_temperature_bed_isr;
|
|
#ifdef PINDA_THERMISTOR
|
|
current_temperature_pinda = current_temperature_pinda_isr;
|
|
#endif
|
|
#ifdef AMBIENT_THERMISTOR
|
|
current_temperature_ambient = current_temperature_ambient_isr;
|
|
#endif
|
|
}
|
|
|
|
static void setIsrTargetTemperatures()
|
|
{
|
|
for(uint8_t e=0;e<EXTRUDERS;e++)
|
|
target_temperature_isr[e] = target_temperature[e];
|
|
target_temperature_bed_isr = target_temperature_bed;
|
|
}
|
|
|
|
/* Synchronize temperatures:
|
|
- fetch updated values from temp_mgr_isr to current values
|
|
- update target temperatures for temp_mgr_isr regulation *if* no temperature error is set
|
|
This function is blocking: check temp_meas_ready before calling! */
|
|
static void updateTemperatures()
|
|
{
|
|
TempMgrGuard temp_mgr_guard;
|
|
setCurrentTemperaturesFromIsr();
|
|
if(!temp_error_state.v) {
|
|
// refuse to update target temperatures in any error condition!
|
|
setIsrTargetTemperatures();
|
|
}
|
|
temp_meas_ready = false;
|
|
}
|
|
|
|
/* Convert raw values into actual temperatures for temp_mgr. The raw values are created in the ADC
|
|
interrupt context, while this function runs from temp_mgr_isr which *is* preemptible as
|
|
analog2temp is relatively slow */
|
|
static void setIsrTemperaturesFromRawValues()
|
|
{
|
|
for(uint8_t e=0;e<EXTRUDERS;e++)
|
|
current_temperature_isr[e] = analog2temp(current_temperature_raw[e], e);
|
|
current_temperature_bed_isr = analog2tempBed(current_temperature_bed_raw);
|
|
#ifdef PINDA_THERMISTOR
|
|
current_temperature_pinda_isr = analog2tempBed(current_temperature_raw_pinda);
|
|
#endif
|
|
#ifdef AMBIENT_THERMISTOR
|
|
current_temperature_ambient_isr = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
|
|
#endif
|
|
temp_meas_ready = true;
|
|
}
|
|
|
|
static void temp_mgr_pid()
|
|
{
|
|
for(uint8_t e = 0; e < EXTRUDERS; e++)
|
|
pid_heater(e, current_temperature_isr[e], target_temperature_isr[e]);
|
|
pid_bed(current_temperature_bed_isr, target_temperature_bed_isr);
|
|
}
|
|
|
|
static void check_temp_runaway()
|
|
{
|
|
#ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
|
|
for(uint8_t e = 0; e < EXTRUDERS; e++)
|
|
temp_runaway_check(e+1, target_temperature_isr[e], current_temperature_isr[e], soft_pwm[e], false);
|
|
#endif
|
|
#ifdef TEMP_RUNAWAY_BED_HYSTERESIS
|
|
temp_runaway_check(0, target_temperature_bed_isr, current_temperature_bed_isr, soft_pwm_bed, true);
|
|
#endif
|
|
}
|
|
|
|
static void check_temp_raw();
|
|
|
|
static void temp_mgr_isr()
|
|
{
|
|
// update *_isr temperatures from raw values for PID regulation
|
|
setIsrTemperaturesFromRawValues();
|
|
|
|
// clear the error assertion flag before checking again
|
|
temp_error_state.assert = false;
|
|
check_temp_raw(); // check min/max temp using raw values
|
|
check_temp_runaway(); // classic temperature hysteresis check
|
|
#ifdef TEMP_MODEL
|
|
temp_model::check(); // model-based heater check
|
|
#ifdef TEMP_MODEL_DEBUG
|
|
temp_model::log_isr();
|
|
#endif
|
|
#endif
|
|
|
|
// PID regulation
|
|
if (pid_tuning_finished)
|
|
temp_mgr_pid();
|
|
}
|
|
|
|
ISR(TIMERx_COMPA_vect)
|
|
{
|
|
// immediately schedule a new conversion
|
|
if(adc_values_ready != true) return;
|
|
adc_values_ready = false;
|
|
adc_start_cycle();
|
|
|
|
// run temperature management with interrupts enabled to reduce latency
|
|
DISABLE_TEMP_MGR_INTERRUPT();
|
|
NONATOMIC_BLOCK(NONATOMIC_FORCEOFF) {
|
|
temp_mgr_isr();
|
|
}
|
|
ENABLE_TEMP_MGR_INTERRUPT();
|
|
}
|
|
|
|
void disable_heater()
|
|
{
|
|
setAllTargetHotends(0);
|
|
setTargetBed(0);
|
|
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
// propagate all values down the chain
|
|
setIsrTargetTemperatures();
|
|
temp_mgr_pid();
|
|
|
|
// we can't call soft_pwm_core directly to toggle the pins as it would require removing the inline
|
|
// attribute, so disable each pin individually
|
|
#if defined(HEATER_0_PIN) && HEATER_0_PIN > -1 && EXTRUDERS > 0
|
|
WRITE(HEATER_0_PIN,LOW);
|
|
#endif
|
|
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 && EXTRUDERS > 1
|
|
WRITE(HEATER_1_PIN,LOW);
|
|
#endif
|
|
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1 && EXTRUDERS > 2
|
|
WRITE(HEATER_2_PIN,LOW);
|
|
#endif
|
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
|
// TODO: this doesn't take immediate effect!
|
|
timer02_set_pwm0(0);
|
|
bedPWMDisabled = 0;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void check_min_temp_raw()
|
|
{
|
|
static bool bCheckingOnHeater = false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
|
|
static bool bCheckingOnBed = false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
|
|
static ShortTimer oTimer4minTempHeater;
|
|
static ShortTimer oTimer4minTempBed;
|
|
|
|
#ifdef AMBIENT_THERMISTOR
|
|
#ifdef AMBIENT_MINTEMP
|
|
// we need to check ambient temperature
|
|
check_min_temp_ambient();
|
|
#endif
|
|
#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
|
|
if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
|
|
#else
|
|
if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
|
|
#endif
|
|
{
|
|
// ambient temperature is low
|
|
#endif //AMBIENT_THERMISTOR
|
|
// *** 'common' part of code for MK2.5 & MK3
|
|
// * nozzle checking
|
|
if(target_temperature_isr[active_extruder]>minttemp[active_extruder]) {
|
|
// ~ nozzle heating is on
|
|
bCheckingOnHeater=bCheckingOnHeater||(current_temperature_isr[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
|
|
if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater) {
|
|
bCheckingOnHeater=true; // not necessary
|
|
check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
|
|
}
|
|
}
|
|
else {
|
|
// ~ nozzle heating is off
|
|
oTimer4minTempHeater.start();
|
|
bCheckingOnHeater=false;
|
|
}
|
|
// * bed checking
|
|
if(target_temperature_bed_isr>BED_MINTEMP) {
|
|
// ~ bed heating is on
|
|
bCheckingOnBed=bCheckingOnBed||(current_temperature_bed_isr>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
|
|
if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed) {
|
|
bCheckingOnBed=true; // not necessary
|
|
check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
|
|
}
|
|
}
|
|
else {
|
|
// ~ bed heating is off
|
|
oTimer4minTempBed.start();
|
|
bCheckingOnBed=false;
|
|
}
|
|
// *** end of 'common' part
|
|
#ifdef AMBIENT_THERMISTOR
|
|
}
|
|
else {
|
|
// ambient temperature is standard
|
|
check_min_temp_heater0();
|
|
check_min_temp_bed();
|
|
}
|
|
#endif //AMBIENT_THERMISTOR
|
|
}
|
|
|
|
static void check_temp_raw()
|
|
{
|
|
// order is relevant: check_min_temp_raw requires max to be reliable due to
|
|
// ambient temperature being used for low handling temperatures
|
|
check_max_temp_raw();
|
|
check_min_temp_raw();
|
|
}
|
|
|
|
#ifdef TEMP_MODEL
|
|
namespace temp_model {
|
|
|
|
void model_data::reset(uint8_t heater_pwm _UNUSED, uint8_t fan_pwm _UNUSED,
|
|
float heater_temp _UNUSED, float ambient_temp _UNUSED)
|
|
{
|
|
// pre-compute invariant values
|
|
C_i = (TEMP_MGR_INTV / C);
|
|
warn_s = warn * TEMP_MGR_INTV;
|
|
err_s = err * TEMP_MGR_INTV;
|
|
|
|
// initial values
|
|
for(uint8_t i = 0; i != TEMP_MODEL_LAG_SIZE; ++i)
|
|
dT_lag_buf[i] = NAN;
|
|
dT_lag_idx = 0;
|
|
dT_err_prev = 0;
|
|
T_prev = NAN;
|
|
|
|
// clear the initialization flag
|
|
flag_bits.uninitialized = false;
|
|
}
|
|
|
|
static constexpr float iir_mul(const float a, const float b, const float f, const float nanv)
|
|
{
|
|
const float a_ = !isnan(a) ? a : nanv;
|
|
return (a_ * (1.f - f)) + (b * f);
|
|
}
|
|
|
|
void model_data::step(uint8_t heater_pwm, uint8_t fan_pwm, float heater_temp, float ambient_temp)
|
|
{
|
|
constexpr float soft_pwm_inv = 1. / ((1 << 7) - 1);
|
|
|
|
// input values
|
|
const float heater_scale = soft_pwm_inv * heater_pwm;
|
|
const float cur_heater_temp = heater_temp;
|
|
const float cur_ambient_temp = ambient_temp + Ta_corr;
|
|
const float cur_R = R[fan_pwm]; // resistance at current fan power (K/W)
|
|
|
|
float dP = P * heater_scale; // current power [W]
|
|
float dPl = (cur_heater_temp - cur_ambient_temp) / cur_R; // [W] leakage power
|
|
float dT = (dP - dPl) * C_i; // expected temperature difference (K)
|
|
|
|
// filter and lag dT
|
|
uint8_t dT_next_idx = (dT_lag_idx == (TEMP_MODEL_LAG_SIZE - 1) ? 0: dT_lag_idx + 1);
|
|
float dT_lag = dT_lag_buf[dT_next_idx];
|
|
float dT_lag_prev = dT_lag_buf[dT_lag_idx];
|
|
float dT_f = iir_mul(dT_lag_prev, dT, TEMP_MODEL_fS, dT);
|
|
dT_lag_buf[dT_next_idx] = dT_f;
|
|
dT_lag_idx = dT_next_idx;
|
|
|
|
// calculate and filter dT_err
|
|
float dT_err = (cur_heater_temp - T_prev) - dT_lag;
|
|
float dT_err_f = iir_mul(dT_err_prev, dT_err, TEMP_MODEL_fE, 0.);
|
|
T_prev = cur_heater_temp;
|
|
dT_err_prev = dT_err_f;
|
|
|
|
// check and trigger errors
|
|
flag_bits.error = (fabsf(dT_err_f) > err_s);
|
|
flag_bits.warning = (fabsf(dT_err_f) > warn_s);
|
|
}
|
|
|
|
// verify calibration status and trigger a model reset if valid
|
|
void setup()
|
|
{
|
|
if(!calibrated()) enabled = false;
|
|
data.flag_bits.uninitialized = true;
|
|
}
|
|
|
|
bool calibrated()
|
|
{
|
|
if(!(data.P >= 0)) return false;
|
|
if(!(data.C >= 0)) return false;
|
|
if(!(data.Ta_corr != NAN)) return false;
|
|
for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i) {
|
|
if(!(temp_model::data.R[i] >= 0))
|
|
return false;
|
|
}
|
|
if(!(data.warn != NAN)) return false;
|
|
if(!(data.err != NAN)) return false;
|
|
return true;
|
|
}
|
|
|
|
void check()
|
|
{
|
|
if(!enabled) return;
|
|
|
|
uint8_t heater_pwm = soft_pwm[0];
|
|
uint8_t fan_pwm = soft_pwm_fan;
|
|
float heater_temp = current_temperature_isr[0];
|
|
float ambient_temp = current_temperature_ambient_isr;
|
|
|
|
// check if a reset is required to seed the model: this needs to be done with valid
|
|
// ADC values, so we can't do that directly in init()
|
|
if(data.flag_bits.uninitialized)
|
|
data.reset(heater_pwm, fan_pwm, heater_temp, ambient_temp);
|
|
|
|
// step the model
|
|
data.step(heater_pwm, fan_pwm, heater_temp, ambient_temp);
|
|
|
|
// handle errors
|
|
if(data.flag_bits.error)
|
|
set_temp_error(TempErrorSource::hotend, 0, TempErrorType::model);
|
|
|
|
// handle warning conditions as lower-priority but with greater feedback
|
|
warning_state.assert = data.flag_bits.warning;
|
|
if(warning_state.assert) {
|
|
warning_state.warning = true;
|
|
warning_state.dT_err = temp_model::data.dT_err_prev;
|
|
}
|
|
}
|
|
|
|
void handle_warning()
|
|
{
|
|
// update values
|
|
float warn = data.warn;
|
|
float dT_err;
|
|
{
|
|
TempMgrGuard temp_mgr_guard;
|
|
dT_err = warning_state.dT_err;
|
|
}
|
|
dT_err /= TEMP_MGR_INTV; // per-sample => K/s
|
|
|
|
printf_P(PSTR("TM: error |%f|>%f\n"), (double)dT_err, (double)warn);
|
|
|
|
static bool first = true;
|
|
if(warning_state.assert) {
|
|
if (first) {
|
|
if(warn_beep) {
|
|
lcd_setalertstatuspgm(_T(MSG_THERMAL_ANOMALY), LCD_STATUS_INFO);
|
|
WRITE(BEEPER, HIGH);
|
|
}
|
|
} else {
|
|
if(warn_beep) TOGGLE(BEEPER);
|
|
}
|
|
} else {
|
|
// warning cleared, reset state
|
|
warning_state.warning = false;
|
|
if(warn_beep) WRITE(BEEPER, LOW);
|
|
first = true;
|
|
}
|
|
}
|
|
|
|
#ifdef TEMP_MODEL_DEBUG
|
|
void log_usr()
|
|
{
|
|
if(!log_buf.enabled) return;
|
|
|
|
uint8_t counter = log_buf.entry.counter;
|
|
if (counter == log_buf.serial) return;
|
|
|
|
int8_t delta_ms;
|
|
uint8_t cur_pwm;
|
|
|
|
// avoid strict-aliasing warnings
|
|
union { float cur_temp; uint32_t cur_temp_b; };
|
|
union { float cur_amb; uint32_t cur_amb_b; };
|
|
|
|
{
|
|
TempMgrGuard temp_mgr_guard;
|
|
delta_ms = log_buf.entry.delta_ms;
|
|
counter = log_buf.entry.counter;
|
|
cur_pwm = log_buf.entry.cur_pwm;
|
|
cur_temp = log_buf.entry.cur_temp;
|
|
cur_amb = log_buf.entry.cur_amb;
|
|
}
|
|
|
|
uint8_t d = counter - log_buf.serial;
|
|
log_buf.serial = counter;
|
|
|
|
printf_P(PSTR("TML %d %d %x %lx %lx\n"), (unsigned)d - 1, (int)delta_ms + 1,
|
|
(int)cur_pwm, (unsigned long)cur_temp_b, (unsigned long)cur_amb_b);
|
|
}
|
|
|
|
void log_isr()
|
|
{
|
|
if(!log_buf.enabled) return;
|
|
|
|
uint32_t stamp = _millis();
|
|
uint8_t delta_ms = stamp - log_buf.entry.stamp - (uint32_t)(TEMP_MGR_INTV * 1000);
|
|
log_buf.entry.stamp = stamp;
|
|
|
|
++log_buf.entry.counter;
|
|
log_buf.entry.delta_ms = delta_ms;
|
|
log_buf.entry.cur_pwm = soft_pwm[0];
|
|
log_buf.entry.cur_temp = current_temperature_isr[0];
|
|
log_buf.entry.cur_amb = current_temperature_ambient_isr;
|
|
}
|
|
#endif
|
|
|
|
} // namespace temp_model
|
|
|
|
static void temp_model_reset_enabled(bool enabled)
|
|
{
|
|
TempMgrGuard temp_mgr_guard;
|
|
temp_model::enabled = enabled;
|
|
temp_model::data.flag_bits.uninitialized = true;
|
|
}
|
|
|
|
bool temp_model_enabled()
|
|
{
|
|
return temp_model::enabled;
|
|
}
|
|
|
|
void temp_model_set_enabled(bool enabled)
|
|
{
|
|
// set the enabled flag
|
|
{
|
|
TempMgrGuard temp_mgr_guard;
|
|
temp_model::enabled = enabled;
|
|
temp_model::setup();
|
|
}
|
|
|
|
// verify that the model has been enabled
|
|
if(enabled && !temp_model::enabled)
|
|
SERIAL_ECHOLNPGM("TM: invalid parameters, cannot enable");
|
|
}
|
|
|
|
void temp_model_set_warn_beep(bool enabled)
|
|
{
|
|
temp_model::warn_beep = enabled;
|
|
}
|
|
|
|
void temp_model_set_params(float C, float P, float Ta_corr, float warn, float err)
|
|
{
|
|
TempMgrGuard temp_mgr_guard;
|
|
|
|
if(!isnan(C) && C > 0) temp_model::data.C = C;
|
|
if(!isnan(P) && P > 0) temp_model::data.P = P;
|
|
if(!isnan(Ta_corr)) temp_model::data.Ta_corr = Ta_corr;
|
|
if(!isnan(err) && err > 0) temp_model::data.err = err;
|
|
if(!isnan(warn) && warn > 0) temp_model::data.warn = warn;
|
|
|
|
// ensure warn <= err
|
|
if (temp_model::data.warn > temp_model::data.err)
|
|
temp_model::data.warn = temp_model::data.err;
|
|
|
|
temp_model::setup();
|
|
}
|
|
|
|
void temp_model_set_resistance(uint8_t index, float R)
|
|
{
|
|
if(index >= TEMP_MODEL_R_SIZE || R <= 0)
|
|
return;
|
|
|
|
TempMgrGuard temp_mgr_guard;
|
|
temp_model::data.R[index] = R;
|
|
temp_model::setup();
|
|
}
|
|
|
|
void temp_model_report_settings()
|
|
{
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Temperature Model settings:");
|
|
for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)
|
|
printf_P(PSTR("%S M310 I%u R%.2f\n"), echomagic, (unsigned)i, (double)temp_model::data.R[i]);
|
|
printf_P(PSTR("%S M310 P%.2f C%.2f S%u B%u E%.2f W%.2f T%.2f\n"),
|
|
echomagic, (double)temp_model::data.P, (double)temp_model::data.C,
|
|
(unsigned)temp_model::enabled, (unsigned)temp_model::warn_beep,
|
|
(double)temp_model::data.err, (double)temp_model::data.warn,
|
|
(double)temp_model::data.Ta_corr);
|
|
}
|
|
|
|
void temp_model_reset_settings()
|
|
{
|
|
TempMgrGuard temp_mgr_guard;
|
|
|
|
temp_model::data.P = TEMP_MODEL_P;
|
|
temp_model::data.C = TEMP_MODEL_C;
|
|
for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)
|
|
temp_model::data.R[i] = pgm_read_float(TEMP_MODEL_R_DEFAULT + i);
|
|
temp_model::data.Ta_corr = TEMP_MODEL_Ta_corr;
|
|
temp_model::data.warn = TEMP_MODEL_W;
|
|
temp_model::data.err = TEMP_MODEL_E;
|
|
temp_model::warn_beep = true;
|
|
temp_model::enabled = true;
|
|
}
|
|
|
|
void temp_model_load_settings()
|
|
{
|
|
static_assert(TEMP_MODEL_R_SIZE == 16); // ensure we don't desync with the eeprom table
|
|
TempMgrGuard temp_mgr_guard;
|
|
|
|
temp_model::enabled = eeprom_read_byte((uint8_t*)EEPROM_TEMP_MODEL_ENABLE);
|
|
temp_model::data.P = eeprom_read_float((float*)EEPROM_TEMP_MODEL_P);
|
|
temp_model::data.C = eeprom_read_float((float*)EEPROM_TEMP_MODEL_C);
|
|
for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)
|
|
temp_model::data.R[i] = eeprom_read_float((float*)EEPROM_TEMP_MODEL_R + i);
|
|
temp_model::data.Ta_corr = eeprom_read_float((float*)EEPROM_TEMP_MODEL_Ta_corr);
|
|
temp_model::data.warn = eeprom_read_float((float*)EEPROM_TEMP_MODEL_W);
|
|
temp_model::data.err = eeprom_read_float((float*)EEPROM_TEMP_MODEL_E);
|
|
|
|
if(!temp_model::calibrated()) {
|
|
SERIAL_ECHOLNPGM("TM: stored calibration invalid, resetting");
|
|
temp_model_reset_settings();
|
|
}
|
|
temp_model::setup();
|
|
}
|
|
|
|
void temp_model_save_settings()
|
|
{
|
|
eeprom_update_byte((uint8_t*)EEPROM_TEMP_MODEL_ENABLE, temp_model::enabled);
|
|
eeprom_update_float((float*)EEPROM_TEMP_MODEL_P, temp_model::data.P);
|
|
eeprom_update_float((float*)EEPROM_TEMP_MODEL_C, temp_model::data.C);
|
|
for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)
|
|
eeprom_update_float((float*)EEPROM_TEMP_MODEL_R + i, temp_model::data.R[i]);
|
|
eeprom_update_float((float*)EEPROM_TEMP_MODEL_Ta_corr, temp_model::data.Ta_corr);
|
|
eeprom_update_float((float*)EEPROM_TEMP_MODEL_W, temp_model::data.warn);
|
|
eeprom_update_float((float*)EEPROM_TEMP_MODEL_E, temp_model::data.err);
|
|
}
|
|
|
|
namespace temp_model_cal {
|
|
|
|
// set current fan speed for both front/backend
|
|
static __attribute__((noinline)) void set_fan_speed(uint8_t fan_speed)
|
|
{
|
|
fanSpeed = fan_speed;
|
|
#ifdef FAN_SOFT_PWM
|
|
fanSpeedSoftPwm = fan_speed;
|
|
#endif
|
|
}
|
|
|
|
static void waiting_handler()
|
|
{
|
|
manage_heater();
|
|
host_keepalive();
|
|
host_autoreport();
|
|
checkFans();
|
|
lcd_update(0);
|
|
}
|
|
|
|
static void wait(unsigned ms)
|
|
{
|
|
unsigned long mark = _millis() + ms;
|
|
while(_millis() < mark) {
|
|
if(temp_error_state.v) break;
|
|
waiting_handler();
|
|
}
|
|
}
|
|
|
|
static void __attribute__((noinline)) wait_temp()
|
|
{
|
|
while(current_temperature[0] < (target_temperature[0] - TEMP_HYSTERESIS)) {
|
|
if(temp_error_state.v) break;
|
|
waiting_handler();
|
|
}
|
|
}
|
|
|
|
static void cooldown(float temp)
|
|
{
|
|
uint8_t old_speed = fanSpeed;
|
|
set_fan_speed(255);
|
|
while(current_temperature[0] >= temp) {
|
|
if(temp_error_state.v) break;
|
|
float ambient = current_temperature_ambient + temp_model::data.Ta_corr;
|
|
if(current_temperature[0] < (ambient + TEMP_HYSTERESIS)) {
|
|
// do not get stuck waiting very close to ambient temperature
|
|
break;
|
|
}
|
|
waiting_handler();
|
|
}
|
|
set_fan_speed(old_speed);
|
|
}
|
|
|
|
static uint16_t record(uint16_t samples = REC_BUFFER_SIZE) {
|
|
TempMgrGuard temp_mgr_guard;
|
|
|
|
uint16_t pos = 0;
|
|
while(pos < samples) {
|
|
if(!TEMP_MGR_INT_FLAG_STATE()) {
|
|
// temperatures not ready yet, just manage heaters while waiting to reduce jitter
|
|
manage_heater();
|
|
continue;
|
|
}
|
|
TEMP_MGR_INT_FLAG_CLEAR();
|
|
|
|
// manually repeat what the regular isr would do
|
|
if(adc_values_ready != true) continue;
|
|
adc_values_ready = false;
|
|
adc_start_cycle();
|
|
temp_mgr_isr();
|
|
|
|
// stop recording for an hard error condition
|
|
if(temp_error_state.v)
|
|
return 0;
|
|
|
|
// record a new entry
|
|
rec_entry& entry = rec_buffer[pos];
|
|
entry.temp = current_temperature_isr[0];
|
|
entry.pwm = soft_pwm[0];
|
|
++pos;
|
|
|
|
// it's now safer to give regular serial/lcd updates a shot
|
|
waiting_handler();
|
|
}
|
|
|
|
return pos;
|
|
}
|
|
|
|
static float cost_fn(uint16_t samples, float* const var, float v, uint8_t fan_pwm, float ambient)
|
|
{
|
|
*var = v;
|
|
temp_model::data.reset(rec_buffer[0].pwm, fan_pwm, rec_buffer[0].temp, ambient);
|
|
float err = 0;
|
|
uint16_t cnt = 0;
|
|
for(uint16_t i = 1; i < samples; ++i) {
|
|
temp_model::data.step(rec_buffer[i].pwm, fan_pwm, rec_buffer[i].temp, ambient);
|
|
float err_v = temp_model::data.dT_err_prev;
|
|
if(!isnan(err_v)) {
|
|
err += err_v * err_v;
|
|
++cnt;
|
|
}
|
|
}
|
|
return cnt ? (err / cnt) : NAN;
|
|
}
|
|
|
|
constexpr float GOLDEN_RATIO = 0.6180339887498949;
|
|
|
|
static void update_section(float points[2], const float bounds[2])
|
|
{
|
|
float d = GOLDEN_RATIO * (bounds[1] - bounds[0]);
|
|
points[0] = bounds[0] + d;
|
|
points[1] = bounds[1] - d;
|
|
}
|
|
|
|
static float estimate(uint16_t samples,
|
|
float* const var, float min, float max,
|
|
float thr, uint16_t max_itr,
|
|
uint8_t fan_pwm, float ambient)
|
|
{
|
|
// during estimation we alter the model values without an extra copy to conserve memory
|
|
// so we cannot keep the main checker active until a value has been found
|
|
bool was_enabled = temp_model::enabled;
|
|
temp_model_reset_enabled(false);
|
|
|
|
float orig = *var;
|
|
float e = NAN;
|
|
float points[2];
|
|
float bounds[2] = {min, max};
|
|
update_section(points, bounds);
|
|
|
|
for(uint8_t it = 0; it != max_itr; ++it) {
|
|
float c1 = cost_fn(samples, var, points[0], fan_pwm, ambient);
|
|
float c2 = cost_fn(samples, var, points[1], fan_pwm, ambient);
|
|
bool dir = (c2 < c1);
|
|
bounds[dir] = points[!dir];
|
|
update_section(points, bounds);
|
|
float x = points[!dir];
|
|
e = (1-GOLDEN_RATIO) * fabsf((bounds[0]-bounds[1]) / x);
|
|
|
|
printf_P(PSTR("TM iter:%u v:%.2f e:%.3f\n"), it, x, e);
|
|
if(e < thr) {
|
|
if(x == min || x == max) {
|
|
// real value likely outside of the search boundaries
|
|
break;
|
|
}
|
|
|
|
*var = x;
|
|
temp_model_reset_enabled(was_enabled);
|
|
return e;
|
|
}
|
|
}
|
|
|
|
SERIAL_ECHOLNPGM("TM estimation did not converge");
|
|
*var = orig;
|
|
temp_model_reset_enabled(was_enabled);
|
|
return NAN;
|
|
}
|
|
|
|
static bool autotune(int16_t cal_temp)
|
|
{
|
|
uint16_t samples;
|
|
float e;
|
|
char tm_message[LCD_WIDTH+1];
|
|
|
|
// bootstrap C/R values without fan
|
|
set_fan_speed(0);
|
|
|
|
for(uint8_t i = 0; i != 2; ++i) {
|
|
const char* PROGMEM verb = (i == 0? PSTR("initial"): PSTR("refine"));
|
|
target_temperature[0] = 0;
|
|
if(current_temperature[0] >= TEMP_MODEL_CAL_Tl) {
|
|
sprintf_P(tm_message, PSTR("TM: cool down <%dC"), TEMP_MODEL_CAL_Tl);
|
|
lcd_setstatus_serial(tm_message);
|
|
cooldown(TEMP_MODEL_CAL_Tl);
|
|
wait(10000);
|
|
}
|
|
|
|
sprintf_P(tm_message, PSTR("TM: %S C est."), verb);
|
|
lcd_setstatus_serial(tm_message);
|
|
target_temperature[0] = cal_temp;
|
|
samples = record();
|
|
if(temp_error_state.v || !samples)
|
|
return true;
|
|
|
|
// we need a high R value for the initial C guess
|
|
if(isnan(temp_model::data.R[0]))
|
|
temp_model::data.R[0] = TEMP_MODEL_Rh;
|
|
|
|
e = estimate(samples, &temp_model::data.C,
|
|
TEMP_MODEL_Cl, TEMP_MODEL_Ch, TEMP_MODEL_C_thr, TEMP_MODEL_C_itr,
|
|
0, current_temperature_ambient);
|
|
if(isnan(e))
|
|
return true;
|
|
|
|
wait_temp();
|
|
if(i) break; // we don't need to refine R
|
|
wait(30000); // settle PID regulation
|
|
|
|
sprintf_P(tm_message, PSTR("TM: %S R %dC"), verb, cal_temp);
|
|
lcd_setstatus_serial(tm_message);
|
|
samples = record();
|
|
if(temp_error_state.v || !samples)
|
|
return true;
|
|
|
|
e = estimate(samples, &temp_model::data.R[0],
|
|
TEMP_MODEL_Rl, TEMP_MODEL_Rh, TEMP_MODEL_R_thr, TEMP_MODEL_R_itr,
|
|
0, current_temperature_ambient);
|
|
if(isnan(e))
|
|
return true;
|
|
}
|
|
|
|
// Estimate fan losses at regular intervals, starting from full speed to avoid low-speed
|
|
// kickstart issues, although this requires us to wait more for the PID stabilization.
|
|
// Normally exhibits logarithmic behavior with the stock fan+shroud, so the shorter interval
|
|
// at lower speeds is helpful to increase the resolution of the interpolation.
|
|
set_fan_speed(255);
|
|
wait(30000);
|
|
|
|
for(int8_t i = TEMP_MODEL_R_SIZE - 1; i > 0; i -= TEMP_MODEL_CAL_R_STEP) {
|
|
// always disable the checker while estimating fan resistance as the difference
|
|
// (esp with 3rd-party blowers) can be massive
|
|
temp_model::data.R[i] = NAN;
|
|
|
|
uint8_t speed = 256 / TEMP_MODEL_R_SIZE * (i + 1) - 1;
|
|
set_fan_speed(speed);
|
|
wait(10000);
|
|
|
|
sprintf_P(tm_message, PSTR("TM: R[%u] estimat."), (unsigned)i);
|
|
lcd_setstatus_serial(tm_message);
|
|
samples = record();
|
|
if(temp_error_state.v || !samples)
|
|
return true;
|
|
|
|
// a fixed fan pwm (the norminal value) is used here, as soft_pwm_fan will be modified
|
|
// during fan measurements and we'd like to include that skew during normal operation.
|
|
e = estimate(samples, &temp_model::data.R[i],
|
|
TEMP_MODEL_Rl, temp_model::data.R[0], TEMP_MODEL_R_thr, TEMP_MODEL_R_itr,
|
|
i, current_temperature_ambient);
|
|
if(isnan(e))
|
|
return true;
|
|
}
|
|
|
|
// interpolate remaining steps to speed-up calibration
|
|
// TODO: verify that the sampled values are monotically increasing?
|
|
int8_t next = TEMP_MODEL_R_SIZE - 1;
|
|
for(uint8_t i = TEMP_MODEL_R_SIZE - 2; i != 0; --i) {
|
|
if(!((TEMP_MODEL_R_SIZE - i - 1) % TEMP_MODEL_CAL_R_STEP)) {
|
|
next = i;
|
|
continue;
|
|
}
|
|
int8_t prev = next - TEMP_MODEL_CAL_R_STEP;
|
|
if(prev < 0) prev = 0;
|
|
float f = (float)(i - prev) / TEMP_MODEL_CAL_R_STEP;
|
|
float d = (temp_model::data.R[next] - temp_model::data.R[prev]);
|
|
temp_model::data.R[i] = temp_model::data.R[prev] + d * f;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
} // namespace temp_model_cal
|
|
|
|
static bool temp_model_autotune_err = true;
|
|
|
|
void temp_model_autotune(int16_t temp, bool selftest)
|
|
{
|
|
float orig_C, orig_R[TEMP_MODEL_R_SIZE];
|
|
bool orig_enabled;
|
|
static_assert(sizeof(orig_R) == sizeof(temp_model::data.R));
|
|
|
|
// fail-safe error state
|
|
temp_model_autotune_err = true;
|
|
|
|
char tm_message[LCD_WIDTH+1];
|
|
if(moves_planned() || printer_active()) {
|
|
sprintf_P(tm_message, PSTR("TM: Cal. NOT IDLE"));
|
|
lcd_setstatus_serial(tm_message);
|
|
return;
|
|
}
|
|
|
|
// lockout the printer during calibration
|
|
KEEPALIVE_STATE(IN_PROCESS);
|
|
menu_set_block(MENU_BLOCK_TEMP_MODEL_AUTOTUNE);
|
|
lcd_return_to_status();
|
|
|
|
// save the original model data and set the model checking state during self-calibration
|
|
orig_C = temp_model::data.C;
|
|
memcpy(orig_R, temp_model::data.R, sizeof(temp_model::data.R));
|
|
orig_enabled = temp_model::enabled;
|
|
temp_model_reset_enabled(selftest);
|
|
|
|
// autotune
|
|
SERIAL_ECHOLNPGM("TM: calibration start");
|
|
temp_model_autotune_err = temp_model_cal::autotune(temp > 0 ? temp : TEMP_MODEL_CAL_Th);
|
|
|
|
// always reset temperature
|
|
disable_heater();
|
|
|
|
if(temp_model_autotune_err) {
|
|
sprintf_P(tm_message, PSTR("TM: calibr. failed!"));
|
|
lcd_setstatus_serial(tm_message);
|
|
if(temp_error_state.v)
|
|
temp_model_cal::set_fan_speed(255);
|
|
|
|
// show calibrated values before overwriting them
|
|
temp_model_report_settings();
|
|
|
|
// restore original state
|
|
temp_model::data.C = orig_C;
|
|
memcpy(temp_model::data.R, orig_R, sizeof(temp_model::data.R));
|
|
temp_model_set_enabled(orig_enabled);
|
|
} else {
|
|
lcd_setstatuspgm(MSG_WELCOME);
|
|
temp_model_cal::set_fan_speed(0);
|
|
temp_model_set_enabled(orig_enabled);
|
|
temp_model_report_settings();
|
|
}
|
|
|
|
lcd_consume_click();
|
|
menu_unset_block(MENU_BLOCK_TEMP_MODEL_AUTOTUNE);
|
|
}
|
|
|
|
bool temp_model_autotune_result()
|
|
{
|
|
return !temp_model_autotune_err;
|
|
}
|
|
|
|
#ifdef TEMP_MODEL_DEBUG
|
|
void temp_model_log_enable(bool enable)
|
|
{
|
|
if(enable) {
|
|
TempMgrGuard temp_mgr_guard;
|
|
temp_model::log_buf.entry.stamp = _millis();
|
|
}
|
|
temp_model::log_buf.enabled = enable;
|
|
}
|
|
#endif
|
|
#endif
|