Prusa-Firmware/Firmware/fsensor.cpp
2020-03-30 16:50:50 +03:00

734 lines
25 KiB
C++
Executable File

//! @file
#include "Marlin.h"
#include "fsensor.h"
#include <avr/pgmspace.h>
#include "pat9125.h"
#include "stepper.h"
#include "io_atmega2560.h"
#include "cmdqueue.h"
#include "ultralcd.h"
#include "mmu.h"
#include "cardreader.h"
#include "adc.h"
#include "temperature.h"
#include "config.h"
//! @name Basic parameters
//! @{
#define FSENSOR_CHUNK_LEN 1.25 //!< filament sensor chunk length (mm)
#define FSENSOR_ERR_MAX 4 //!< filament sensor maximum error/chunk count for runout detection
#define FSENSOR_SOFTERR_CMAX 3 //!< number of contiguous soft failures before a triggering a runout
#define FSENSOR_SOFTERR_DELTA 30000 //!< maximum interval (ms) to consider soft failures contiguous
//! @}
//! @name Optical quality measurement parameters
//! @{
#define FSENSOR_OQ_MAX_ES 2 //!< maximum sum of error blocks during filament recheck
#define FSENSOR_OQ_MIN_YD 2 //!< minimum yd sum during filament check (counts per inch)
#define FSENSOR_OQ_MIN_BR 80 //!< minimum brightness value
#define FSENSOR_OQ_MAX_SH 10 //!< maximum shutter value
//! @}
const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
// PJ7 can not be used (does not have PinChangeInterrupt possibility)
#define FSENSOR_INT_PIN 75 //!< filament sensor interrupt pin PJ4
#define FSENSOR_INT_PIN_MASK 0x10 //!< filament sensor interrupt pin mask (bit4)
#define FSENSOR_INT_PIN_PIN_REG PINJ // PIN register @ PJ4
#define FSENSOR_INT_PIN_VECT PCINT1_vect // PinChange ISR @ PJ4
#define FSENSOR_INT_PIN_PCMSK_REG PCMSK1 // PinChangeMaskRegister @ PJ4
#define FSENSOR_INT_PIN_PCMSK_BIT PCINT13 // PinChange Interrupt / PinChange Enable Mask @ PJ4
#define FSENSOR_INT_PIN_PCICR_BIT PCIE1 // PinChange Interrupt Enable / Flag @ PJ4
//! enabled = initialized and sampled every chunk event
bool fsensor_enabled = true;
//! runout watching is done in fsensor_update (called from main loop)
bool fsensor_watch_runout = true;
//! not responding - is set if any communication error occurred during initialization or readout
bool fsensor_not_responding = false;
#ifdef PAT9125
uint8_t fsensor_int_pin_old = 0;
//! optical checking "chunk lenght" (already in steps)
int16_t fsensor_chunk_len = 0;
//! enable/disable quality meassurement
bool fsensor_oq_meassure_enabled = false;
//! number of errors, updated in ISR
uint8_t fsensor_err_cnt = 0;
//! variable for accumulating step count (updated callbacks from stepper and ISR)
int16_t fsensor_st_cnt = 0;
//! count of total sensor "soft" failures (filament status checks)
uint8_t fsensor_softfail = 0;
//! timestamp of last soft failure
unsigned long fsensor_softfail_last = 0;
//! count of soft failures within the configured time
uint8_t fsensor_softfail_ccnt = 0;
#endif
#ifdef DEBUG_FSENSOR_LOG
//! log flag: 0=log disabled, 1=log enabled
uint8_t fsensor_log = 1;
#endif //DEBUG_FSENSOR_LOG
//! @name filament autoload variables
//! @{
//! autoload feature enabled
bool fsensor_autoload_enabled = true;
//! autoload watching enable/disable flag
bool fsensor_watch_autoload = false;
#ifdef PAT9125
//
uint16_t fsensor_autoload_y;
//
uint8_t fsensor_autoload_c;
//
uint32_t fsensor_autoload_last_millis;
//
uint8_t fsensor_autoload_sum;
//! @}
#endif
//! @name filament optical quality measurement variables
//! @{
//! Measurement enable/disable flag
bool fsensor_oq_meassure = false;
//! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
uint8_t fsensor_oq_skipchunk;
//! number of samples from start of measurement
uint8_t fsensor_oq_samples;
//! sum of steps in positive direction movements
uint16_t fsensor_oq_st_sum;
//! sum of deltas in positive direction movements
uint16_t fsensor_oq_yd_sum;
//! sum of errors during measurement
uint16_t fsensor_oq_er_sum;
//! max error counter value during measurement
uint8_t fsensor_oq_er_max;
//! minimum delta value
int16_t fsensor_oq_yd_min;
//! maximum delta value
int16_t fsensor_oq_yd_max;
//! sum of shutter value
uint16_t fsensor_oq_sh_sum;
//! @}
#ifdef IR_SENSOR_ANALOG
ClFsensorPCB oFsensorPCB;
ClFsensorActionNA oFsensorActionNA;
bool bIRsensorStateFlag=false;
unsigned long nIRsensorLastTime;
#endif //IR_SENSOR_ANALOG
void fsensor_stop_and_save_print(void)
{
printf_P(PSTR("fsensor_stop_and_save_print\n"));
stop_and_save_print_to_ram(0, 0);
fsensor_watch_runout = false;
}
#ifdef PAT9125
// Reset all internal counters to zero, including stepper callbacks
void fsensor_reset_err_cnt()
{
fsensor_err_cnt = 0;
pat9125_y = 0;
st_reset_fsensor();
}
void fsensor_set_axis_steps_per_unit(float u)
{
fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * u);
}
#endif
void fsensor_restore_print_and_continue(void)
{
printf_P(PSTR("fsensor_restore_print_and_continue\n"));
fsensor_watch_runout = true;
#ifdef PAT9125
fsensor_reset_err_cnt();
#endif
restore_print_from_ram_and_continue(0);
}
// fsensor_checkpoint_print cuts the current print job at the current position,
// allowing new instructions to be inserted in the middle
void fsensor_checkpoint_print(void)
{
printf_P(PSTR("fsensor_checkpoint_print\n"));
stop_and_save_print_to_ram(0, 0);
restore_print_from_ram_and_continue(0);
}
void fsensor_init(void)
{
#ifdef PAT9125
uint8_t pat9125 = pat9125_init();
printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
#endif //PAT9125
uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
fsensor_not_responding = false;
#ifdef PAT9125
uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[E_AXIS]);
if (!pat9125)
{
fsensor = 0; //disable sensor
fsensor_not_responding = true;
}
#endif //PAT9125
#ifdef IR_SENSOR_ANALOG
bIRsensorStateFlag=false;
oFsensorPCB=(ClFsensorPCB)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB);
oFsensorActionNA=(ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA);
#endif //IR_SENSOR_ANALOG
if (fsensor)
fsensor_enable(false); // (in this case) EEPROM update is not necessary
else
fsensor_disable(false); // (in this case) EEPROM update is not necessary
printf_P(PSTR("FSensor %S"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED")));
#ifdef IR_SENSOR_ANALOG
printf_P(PSTR(" (sensor board revision: %S)\n"),(oFsensorPCB==ClFsensorPCB::_Rev03b)?PSTR("03b or newer"):PSTR("03 or older"));
#else //IR_SENSOR_ANALOG
printf_P(PSTR("\n"));
#endif //IR_SENSOR_ANALOG
if (check_for_ir_sensor()) ir_sensor_detected = true;
}
bool fsensor_enable(bool bUpdateEEPROM)
{
#ifdef PAT9125
if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working
uint8_t pat9125 = pat9125_init();
printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
if (pat9125)
fsensor_not_responding = false;
else
fsensor_not_responding = true;
fsensor_enabled = pat9125 ? true : false;
fsensor_watch_runout = true;
fsensor_oq_meassure = false;
fsensor_reset_err_cnt();
eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);
FSensorStateMenu = fsensor_enabled ? 1 : 0;
}
else //filament sensor is FINDA, always enable
{
fsensor_enabled = true;
eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);
FSensorStateMenu = 1;
}
#else // PAT9125
#ifdef IR_SENSOR_ANALOG
if(!fsensor_IR_check())
{
bUpdateEEPROM=true;
fsensor_enabled=false;
fsensor_not_responding=true;
FSensorStateMenu=0;
}
else {
#endif //IR_SENSOR_ANALOG
fsensor_enabled=true;
fsensor_not_responding=false;
FSensorStateMenu=1;
#ifdef IR_SENSOR_ANALOG
}
#endif //IR_SENSOR_ANALOG
if(bUpdateEEPROM)
eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, FSensorStateMenu);
#endif //PAT9125
return fsensor_enabled;
}
void fsensor_disable(bool bUpdateEEPROM)
{
fsensor_enabled = false;
FSensorStateMenu = 0;
if(bUpdateEEPROM)
eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
}
void fsensor_autoload_set(bool State)
{
#ifdef PAT9125
if (!State) fsensor_autoload_check_stop();
#endif //PAT9125
fsensor_autoload_enabled = State;
eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
}
void pciSetup(byte pin)
{
// !!! "digitalPinTo?????bit()" does not provide the correct results for some MCU pins
*digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
}
#ifdef PAT9125
void fsensor_autoload_check_start(void)
{
// puts_P(_N("fsensor_autoload_check_start\n"));
if (!fsensor_enabled) return;
if (!fsensor_autoload_enabled) return;
if (fsensor_watch_autoload) return;
if (!pat9125_update()) //update sensor
{
fsensor_disable();
fsensor_not_responding = true;
fsensor_watch_autoload = false;
printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
return;
}
puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
fsensor_autoload_y = pat9125_y; //save current y value
fsensor_autoload_c = 0; //reset number of changes counter
fsensor_autoload_sum = 0;
fsensor_autoload_last_millis = _millis();
fsensor_watch_runout = false;
fsensor_watch_autoload = true;
}
void fsensor_autoload_check_stop(void)
{
// puts_P(_N("fsensor_autoload_check_stop\n"));
if (!fsensor_enabled) return;
// puts_P(_N("fsensor_autoload_check_stop 1\n"));
if (!fsensor_autoload_enabled) return;
// puts_P(_N("fsensor_autoload_check_stop 2\n"));
if (!fsensor_watch_autoload) return;
puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
fsensor_autoload_sum = 0;
fsensor_watch_autoload = false;
fsensor_watch_runout = true;
fsensor_reset_err_cnt();
}
#endif //PAT9125
bool fsensor_check_autoload(void)
{
if (!fsensor_enabled) return false;
if (!fsensor_autoload_enabled) return false;
if (ir_sensor_detected) {
if (digitalRead(IR_SENSOR_PIN) == 1) {
fsensor_watch_autoload = true;
}
else if (fsensor_watch_autoload == true) {
fsensor_watch_autoload = false;
return true;
}
}
#ifdef PAT9125
if (!fsensor_watch_autoload)
{
fsensor_autoload_check_start();
return false;
}
#if 0
uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
#endif
if ((_millis() - fsensor_autoload_last_millis) < 25) return false;
fsensor_autoload_last_millis = _millis();
if (!pat9125_update_y()) //update sensor
{
fsensor_disable();
fsensor_not_responding = true;
printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
return false;
}
int16_t dy = pat9125_y - fsensor_autoload_y;
if (dy) //? dy value is nonzero
{
if (dy > 0) //? delta-y value is positive (inserting)
{
fsensor_autoload_sum += dy;
fsensor_autoload_c += 3; //increment change counter by 3
}
else if (fsensor_autoload_c > 1)
fsensor_autoload_c -= 2; //decrement change counter by 2
fsensor_autoload_y = pat9125_y; //save current value
}
else if (fsensor_autoload_c > 0)
fsensor_autoload_c--;
if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
#if 0
puts_P(_N("fsensor_check_autoload\n"));
if (fsensor_autoload_c != fsensor_autoload_c_old)
printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
#endif
// if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
{
// puts_P(_N("fsensor_check_autoload = true !!!\n"));
return true;
}
#endif //PAT9125
return false;
}
#ifdef PAT9125
void fsensor_oq_meassure_set(bool State)
{
fsensor_oq_meassure_enabled = State;
eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
}
void fsensor_oq_meassure_start(uint8_t skip)
{
if (!fsensor_enabled) return;
if (!fsensor_oq_meassure_enabled) return;
printf_P(PSTR("fsensor_oq_meassure_start\n"));
fsensor_oq_skipchunk = skip;
fsensor_oq_samples = 0;
fsensor_oq_st_sum = 0;
fsensor_oq_yd_sum = 0;
fsensor_oq_er_sum = 0;
fsensor_oq_er_max = 0;
fsensor_oq_yd_min = INT16_MAX;
fsensor_oq_yd_max = 0;
fsensor_oq_sh_sum = 0;
pat9125_update();
pat9125_y = 0;
fsensor_oq_meassure = true;
}
void fsensor_oq_meassure_stop(void)
{
if (!fsensor_enabled) return;
if (!fsensor_oq_meassure_enabled) return;
printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
fsensor_oq_meassure = false;
}
#ifdef FSENSOR_QUALITY
const char _OK[] PROGMEM = "OK";
const char _NG[] PROGMEM = "NG!";
bool fsensor_oq_result(void)
{
if (!fsensor_enabled) return true;
if (!fsensor_oq_meassure_enabled) return true;
printf_P(_N("fsensor_oq_result\n"));
bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
printf_P(_N(" yd_dev = %u\n"), yd_dev);
uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
if (yd_qua >= 8) res_sh_avg = true;
printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
return res;
}
#endif //FSENSOR_QUALITY
ISR(FSENSOR_INT_PIN_VECT)
{
if (mmu_enabled || ir_sensor_detected) return;
if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return;
fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG;
// prevent isr re-entry
static bool _lock = false;
if (_lock) return;
_lock = true;
// fetch fsensor_st_cnt atomically
int st_cnt = fsensor_st_cnt;
fsensor_st_cnt = 0;
sei();
uint8_t old_err_cnt = fsensor_err_cnt;
uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
if (!pat9125_res)
{
fsensor_disable();
fsensor_not_responding = true;
printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
}
if (st_cnt != 0)
{
// movement was planned, check for sensor movement
int8_t st_dir = st_cnt >= 0;
int8_t pat9125_dir = pat9125_y >= 0;
if (pat9125_y == 0)
{
if (st_dir)
{
// no movement detected: we might be within a blind sensor range,
// update the frame and shutter parameters we didn't earlier
if (!fsensor_oq_meassure)
pat9125_update_bs();
// increment the error count only if underexposed: filament likely missing
if ((pat9125_b < FSENSOR_OQ_MIN_BR) && (pat9125_s > FSENSOR_OQ_MAX_SH))
{
// check for a dark frame (<30% avg brightness) with long exposure
++fsensor_err_cnt;
}
else
{
// good frame, filament likely present
if(fsensor_err_cnt) --fsensor_err_cnt;
}
}
}
else if (pat9125_dir != st_dir)
{
// detected direction opposite of motor movement
if (st_dir) ++fsensor_err_cnt;
}
else if (pat9125_dir == st_dir)
{
// direction agreeing with planned movement
if (fsensor_err_cnt) --fsensor_err_cnt;
}
if (st_dir && fsensor_oq_meassure)
{
// extruding with quality assessment
if (fsensor_oq_skipchunk)
{
fsensor_oq_skipchunk--;
fsensor_err_cnt = 0;
}
else
{
if (st_cnt == fsensor_chunk_len)
{
if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
}
fsensor_oq_samples++;
fsensor_oq_st_sum += st_cnt;
if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
if (fsensor_err_cnt > old_err_cnt)
fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
if (fsensor_oq_er_max < fsensor_err_cnt)
fsensor_oq_er_max = fsensor_err_cnt;
fsensor_oq_sh_sum += pat9125_s;
}
}
}
#ifdef DEBUG_FSENSOR_LOG
if (fsensor_log)
{
printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
}
#endif //DEBUG_FSENSOR_LOG
pat9125_y = 0;
_lock = false;
return;
}
void fsensor_setup_interrupt(void)
{
pinMode(FSENSOR_INT_PIN, OUTPUT);
digitalWrite(FSENSOR_INT_PIN, LOW);
fsensor_int_pin_old = 0;
//pciSetup(FSENSOR_INT_PIN);
// !!! "pciSetup()" does not provide the correct results for some MCU pins
// so interrupt registers settings:
FSENSOR_INT_PIN_PCMSK_REG |= bit(FSENSOR_INT_PIN_PCMSK_BIT); // enable corresponding PinChangeInterrupt (individual pin)
PCIFR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // clear previous occasional interrupt (set of pins)
PCICR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // enable corresponding PinChangeInterrupt (set of pins)
}
void fsensor_st_block_chunk(int cnt)
{
if (!fsensor_enabled) return;
fsensor_st_cnt += cnt;
// !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}
else {PIN_VAL(FSENSOR_INT_PIN, HIGH);}
}
#endif //PAT9125
//! Common code for enqueing M600 and supplemental codes into the command queue.
//! Used both for the IR sensor and the PAT9125
void fsensor_enque_M600(){
printf_P(PSTR("fsensor_update - M600\n"));
eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
enquecommand_front_P((PSTR("M600")));
}
//! @brief filament sensor update (perform M600 on filament runout)
//!
//! Works only if filament sensor is enabled.
//! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
//! If there is still no plausible signal from filament sensor plans M600 (Filament change).
void fsensor_update(void)
{
#ifdef PAT9125
if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
{
fsensor_stop_and_save_print();
KEEPALIVE_STATE(IN_HANDLER);
bool autoload_enabled_tmp = fsensor_autoload_enabled;
fsensor_autoload_enabled = false;
bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
fsensor_oq_meassure_enabled = true;
// move the nozzle away while checking the filament
current_position[Z_AXIS] += 0.8;
if(current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS], active_extruder);
st_synchronize();
// check the filament in isolation
fsensor_reset_err_cnt();
fsensor_oq_meassure_start(0);
float e_tmp = current_position[E_AXIS];
current_position[E_AXIS] -= 3;
plan_buffer_line_curposXYZE(250/60, active_extruder);
current_position[E_AXIS] = e_tmp;
plan_buffer_line_curposXYZE(200/60, active_extruder);
st_synchronize();
fsensor_oq_meassure_stop();
bool err = false;
err |= (fsensor_err_cnt > 0); // final error count is non-zero
err |= (fsensor_oq_er_sum > FSENSOR_OQ_MAX_ES); // total error count is above limit
err |= (fsensor_oq_yd_sum < FSENSOR_OQ_MIN_YD); // total measured distance is below limit
fsensor_restore_print_and_continue();
fsensor_autoload_enabled = autoload_enabled_tmp;
fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
unsigned long now = _millis();
if (!err && (now - fsensor_softfail_last) > FSENSOR_SOFTERR_DELTA)
fsensor_softfail_ccnt = 0;
if (!err && fsensor_softfail_ccnt <= FSENSOR_SOFTERR_CMAX)
{
printf_P(PSTR("fsensor_err_cnt = 0\n"));
++fsensor_softfail;
++fsensor_softfail_ccnt;
fsensor_softfail_last = now;
}
else
{
fsensor_softfail_ccnt = 0;
fsensor_softfail_last = 0;
fsensor_enque_M600();
}
}
#else //PAT9125
if (CHECK_FSENSOR && ir_sensor_detected)
{
if(digitalRead(IR_SENSOR_PIN))
{ // IR_SENSOR_PIN ~ H
#ifdef IR_SENSOR_ANALOG
if(!bIRsensorStateFlag)
{
bIRsensorStateFlag=true;
nIRsensorLastTime=_millis();
}
else
{
if((_millis()-nIRsensorLastTime)>IR_SENSOR_STEADY)
{
uint8_t nMUX1,nMUX2;
uint16_t nADC;
bIRsensorStateFlag=false;
// sequence for direct data reading from AD converter
DISABLE_TEMPERATURE_INTERRUPT();
nMUX1=ADMUX; // ADMUX saving
nMUX2=ADCSRB;
adc_setmux(VOLT_IR_PIN);
ADCSRA|=(1<<ADSC); // first conversion after ADMUX change discarded (preventively)
while(ADCSRA&(1<<ADSC))
;
ADCSRA|=(1<<ADSC); // second conversion used
while(ADCSRA&(1<<ADSC))
;
nADC=ADC;
ADMUX=nMUX1; // ADMUX restoring
ADCSRB=nMUX2;
ENABLE_TEMPERATURE_INTERRUPT();
// end of sequence for ...
if((oFsensorPCB==ClFsensorPCB::_Rev03b)&&((nADC*OVERSAMPLENR)>((int)IRsensor_Hopen_TRESHOLD)))
{
fsensor_disable();
fsensor_not_responding = true;
printf_P(PSTR("IR sensor not responding (%d)!\n"),1);
if((ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA)==ClFsensorActionNA::_Pause)
if(oFsensorActionNA==ClFsensorActionNA::_Pause)
lcd_pause_print();
}
else
{
#endif //IR_SENSOR_ANALOG
fsensor_checkpoint_print();
fsensor_enque_M600();
#ifdef IR_SENSOR_ANALOG
}
}
}
}
else
{ // IR_SENSOR_PIN ~ L
bIRsensorStateFlag=false;
#endif //IR_SENSOR_ANALOG
}
}
#endif //PAT9125
}
#ifdef IR_SENSOR_ANALOG
bool fsensor_IR_check()
{
uint16_t volt_IR_int;
bool bCheckResult;
volt_IR_int=current_voltage_raw_IR;
bCheckResult=(volt_IR_int<((int)IRsensor_Lmax_TRESHOLD))||(volt_IR_int>((int)IRsensor_Hmin_TRESHOLD));
bCheckResult=bCheckResult&&(!((oFsensorPCB==ClFsensorPCB::_Rev03b)&&(volt_IR_int>((int)IRsensor_Hopen_TRESHOLD))));
return(bCheckResult);
}
#endif //IR_SENSOR_ANALOG