PrusaSlicer-NonPlainar/src/libslic3r/PlaceholderParser.cpp

1228 lines
59 KiB
C++
Raw Normal View History

#include "PlaceholderParser.hpp"
2015-12-08 10:01:12 +00:00
#include <cstring>
#include <ctime>
#include <iomanip>
#include <sstream>
#include <map>
#ifdef _MSC_VER
#include <stdlib.h> // provides **_environ
#else
#include <unistd.h> // provides **environ
#endif
2016-04-11 10:04:54 +00:00
#ifdef __APPLE__
#include <crt_externs.h>
#undef environ
#define environ (*_NSGetEnviron())
#else
#ifdef _MSC_VER
#define environ _environ
#else
extern char **environ;
#endif
2016-04-11 10:04:54 +00:00
#endif
#include <boost/algorithm/string.hpp>
// Spirit v2.5 allows you to suppress automatic generation
// of predefined terminals to speed up complation. With
// BOOST_SPIRIT_NO_PREDEFINED_TERMINALS defined, you are
// responsible in creating instances of the terminals that
// you need (e.g. see qi::uint_type uint_ below).
//#define BOOST_SPIRIT_NO_PREDEFINED_TERMINALS
#define BOOST_RESULT_OF_USE_DECLTYPE
#define BOOST_SPIRIT_USE_PHOENIX_V3
#include <boost/config/warning_disable.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/qi_lit.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/spirit/include/phoenix_fusion.hpp>
#include <boost/spirit/include/phoenix_stl.hpp>
#include <boost/spirit/include/phoenix_object.hpp>
#include <boost/fusion/include/adapt_struct.hpp>
#include <boost/spirit/repository/include/qi_distinct.hpp>
#include <boost/spirit/repository/include/qi_iter_pos.hpp>
#include <boost/variant/recursive_variant.hpp>
#include <boost/phoenix/bind/bind_function.hpp>
#include <iostream>
#include <string>
// #define USE_CPP11_REGEX
#ifdef USE_CPP11_REGEX
#include <regex>
#define SLIC3R_REGEX_NAMESPACE std
#else /* USE_CPP11_REGEX */
#include <boost/regex.hpp>
#define SLIC3R_REGEX_NAMESPACE boost
#endif /* USE_CPP11_REGEX */
namespace Slic3r {
PlaceholderParser::PlaceholderParser()
{
this->set("version", std::string(SLIC3R_VERSION));
this->apply_env_variables();
this->update_timestamp();
}
void PlaceholderParser::update_timestamp(DynamicConfig &config)
{
time_t rawtime;
time(&rawtime);
struct tm* timeinfo = localtime(&rawtime);
{
std::ostringstream ss;
ss << (1900 + timeinfo->tm_year);
ss << std::setw(2) << std::setfill('0') << (1 + timeinfo->tm_mon);
ss << std::setw(2) << std::setfill('0') << timeinfo->tm_mday;
ss << "-";
ss << std::setw(2) << std::setfill('0') << timeinfo->tm_hour;
ss << std::setw(2) << std::setfill('0') << timeinfo->tm_min;
ss << std::setw(2) << std::setfill('0') << timeinfo->tm_sec;
config.set_key_value("timestamp", new ConfigOptionString(ss.str()));
}
config.set_key_value("year", new ConfigOptionInt(1900 + timeinfo->tm_year));
config.set_key_value("month", new ConfigOptionInt(1 + timeinfo->tm_mon));
config.set_key_value("day", new ConfigOptionInt(timeinfo->tm_mday));
config.set_key_value("hour", new ConfigOptionInt(timeinfo->tm_hour));
config.set_key_value("minute", new ConfigOptionInt(timeinfo->tm_min));
config.set_key_value("second", new ConfigOptionInt(timeinfo->tm_sec));
}
// Scalar configuration values are stored into m_single,
// vector configuration values are stored into m_multiple.
// All vector configuration values stored into the PlaceholderParser
// are expected to be addressed by the extruder ID, therefore
// if a vector configuration value is addressed without an index,
// a current extruder ID is used.
bool PlaceholderParser::apply_config(const DynamicPrintConfig &rhs)
{
const ConfigDef *def = rhs.def();
bool modified = false;
for (const t_config_option_key &opt_key : rhs.keys()) {
const ConfigOptionDef *opt_def = def->get(opt_key);
if ((opt_def->multiline && boost::ends_with(opt_key, "_gcode")) || opt_key == "post_process")
continue;
const ConfigOption *opt_rhs = rhs.option(opt_key);
const ConfigOption *opt_old = m_config.option(opt_key, false);
if (opt_old != nullptr) {
if (opt_rhs->type() == coFloatOrPercent ?
dynamic_cast<const ConfigOptionFloat*>(opt_old)->value == rhs.get_abs_value(opt_key)
: *opt_rhs == *opt_old)
// no need to update
continue;
}
// Store a copy of the config option.
// Convert FloatOrPercent values to floats first.
//FIXME there are some ratio_over chains, which end with empty ratio_with.
// For example, XXX_extrusion_width parameters are not handled by get_abs_value correctly.
this->set(opt_key, (opt_rhs->type() == coFloatOrPercent) ?
new ConfigOptionFloat(rhs.get_abs_value(opt_key)) :
opt_rhs->clone());
modified = true;
}
return modified;
}
void PlaceholderParser::apply_env_variables()
{
for (char** env = environ; *env; ++ env) {
if (strncmp(*env, "SLIC3R_", 7) == 0) {
std::stringstream ss(*env);
std::string key, value;
std::getline(ss, key, '=');
ss >> value;
this->set(key, value);
}
}
}
namespace spirit = boost::spirit;
namespace qi = boost::spirit::qi;
namespace px = boost::phoenix;
namespace client
{
template<typename Iterator>
struct OptWithPos {
OptWithPos() {}
OptWithPos(ConfigOptionConstPtr opt, boost::iterator_range<Iterator> it_range) : opt(opt), it_range(it_range) {}
ConfigOptionConstPtr opt = nullptr;
boost::iterator_range<Iterator> it_range;
};
template<typename ITERATOR>
std::ostream& operator<<(std::ostream& os, OptWithPos<ITERATOR> const& opt)
{
os << std::string(opt.it_range.begin(), opt.it_range.end());
return os;
}
template<typename Iterator>
struct expr
{
expr() : type(TYPE_EMPTY) {}
explicit expr(bool b) : type(TYPE_BOOL) { data.b = b; }
explicit expr(bool b, const Iterator &it_begin, const Iterator &it_end) : type(TYPE_BOOL), it_range(it_begin, it_end) { data.b = b; }
explicit expr(int i) : type(TYPE_INT) { data.i = i; }
explicit expr(int i, const Iterator &it_begin, const Iterator &it_end) : type(TYPE_INT), it_range(it_begin, it_end) { data.i = i; }
explicit expr(double d) : type(TYPE_DOUBLE) { data.d = d; }
explicit expr(double d, const Iterator &it_begin, const Iterator &it_end) : type(TYPE_DOUBLE), it_range(it_begin, it_end) { data.d = d; }
explicit expr(const char *s) : type(TYPE_STRING) { data.s = new std::string(s); }
explicit expr(const std::string &s) : type(TYPE_STRING) { data.s = new std::string(s); }
explicit expr(const std::string &s, const Iterator &it_begin, const Iterator &it_end) :
type(TYPE_STRING), it_range(it_begin, it_end) { data.s = new std::string(s); }
expr(const expr &rhs) : type(rhs.type), it_range(rhs.it_range)
{ if (rhs.type == TYPE_STRING) data.s = new std::string(*rhs.data.s); else data.set(rhs.data); }
explicit expr(expr &&rhs) : type(rhs.type), it_range(rhs.it_range)
{ data.set(rhs.data); rhs.type = TYPE_EMPTY; }
explicit expr(expr &&rhs, const Iterator &it_begin, const Iterator &it_end) : type(rhs.type), it_range(it_begin, it_end)
{ data.set(rhs.data); rhs.type = TYPE_EMPTY; }
~expr() { this->reset(); }
expr &operator=(const expr &rhs)
{
this->type = rhs.type;
this->it_range = rhs.it_range;
if (rhs.type == TYPE_STRING)
this->data.s = new std::string(*rhs.data.s);
else
this->data.set(rhs.data);
return *this;
}
expr &operator=(expr &&rhs)
{
type = rhs.type;
this->it_range = rhs.it_range;
data.set(rhs.data);
rhs.type = TYPE_EMPTY;
return *this;
}
void reset()
{
if (this->type == TYPE_STRING)
delete data.s;
this->type = TYPE_EMPTY;
}
bool& b() { return data.b; }
bool b() const { return data.b; }
void set_b(bool v) { this->reset(); this->data.b = v; this->type = TYPE_BOOL; }
int& i() { return data.i; }
int i() const { return data.i; }
void set_i(int v) { this->reset(); this->data.i = v; this->type = TYPE_INT; }
int as_i() const { return (this->type == TYPE_INT) ? this->i() : int(this->d()); }
double& d() { return data.d; }
double d() const { return data.d; }
void set_d(double v) { this->reset(); this->data.d = v; this->type = TYPE_DOUBLE; }
double as_d() const { return (this->type == TYPE_DOUBLE) ? this->d() : double(this->i()); }
std::string& s() { return *data.s; }
const std::string& s() const { return *data.s; }
void set_s(const std::string &s) { this->reset(); this->data.s = new std::string(s); this->type = TYPE_STRING; }
void set_s(std::string &&s) { this->reset(); this->data.s = new std::string(std::move(s)); this->type = TYPE_STRING; }
std::string to_string() const
{
std::string out;
switch (type) {
case TYPE_BOOL: out = boost::to_string(data.b); break;
case TYPE_INT: out = boost::to_string(data.i); break;
case TYPE_DOUBLE: out = boost::to_string(data.d); break;
case TYPE_STRING: out = *data.s; break;
default: break;
}
return out;
}
union Data {
// Raw image of the other data members.
// The C++ compiler will consider a possible aliasing of char* with any other union member,
// therefore copying the raw data is safe.
char raw[8];
bool b;
int i;
double d;
std::string *s;
// Copy the largest member variable through char*, which will alias with all other union members by default.
void set(const Data &rhs) { memcpy(this->raw, rhs.raw, sizeof(rhs.raw)); }
} data;
enum Type {
TYPE_EMPTY = 0,
TYPE_BOOL,
TYPE_INT,
TYPE_DOUBLE,
TYPE_STRING,
};
Type type;
// Range of input iterators covering this expression.
// Used for throwing parse exceptions.
boost::iterator_range<Iterator> it_range;
expr unary_minus(const Iterator start_pos) const
{
switch (this->type) {
case TYPE_INT :
return expr<Iterator>(- this->i(), start_pos, this->it_range.end());
case TYPE_DOUBLE:
return expr<Iterator>(- this->d(), start_pos, this->it_range.end());
default:
this->throw_exception("Cannot apply unary minus operator.");
}
assert(false);
// Suppress compiler warnings.
return expr();
}
expr unary_not(const Iterator start_pos) const
{
switch (this->type) {
case TYPE_BOOL :
return expr<Iterator>(! this->b(), start_pos, this->it_range.end());
default:
this->throw_exception("Cannot apply a not operator.");
}
assert(false);
// Suppress compiler warnings.
return expr();
}
expr &operator+=(const expr &rhs)
{
if (this->type == TYPE_STRING) {
// Convert the right hand side to string and append.
*this->data.s += rhs.to_string();
} else if (rhs.type == TYPE_STRING) {
// Conver the left hand side to string, append rhs.
this->data.s = new std::string(this->to_string() + rhs.s());
this->type = TYPE_STRING;
} else {
const char *err_msg = "Cannot add non-numeric types.";
this->throw_if_not_numeric(err_msg);
rhs.throw_if_not_numeric(err_msg);
if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) {
double d = this->as_d() + rhs.as_d();
this->data.d = d;
this->type = TYPE_DOUBLE;
} else
this->data.i += rhs.i();
}
this->it_range = boost::iterator_range<Iterator>(this->it_range.begin(), rhs.it_range.end());
return *this;
}
expr &operator-=(const expr &rhs)
{
const char *err_msg = "Cannot subtract non-numeric types.";
this->throw_if_not_numeric(err_msg);
rhs.throw_if_not_numeric(err_msg);
if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) {
double d = this->as_d() - rhs.as_d();
this->data.d = d;
this->type = TYPE_DOUBLE;
} else
this->data.i -= rhs.i();
this->it_range = boost::iterator_range<Iterator>(this->it_range.begin(), rhs.it_range.end());
return *this;
}
expr &operator*=(const expr &rhs)
{
const char *err_msg = "Cannot multiply with non-numeric type.";
this->throw_if_not_numeric(err_msg);
rhs.throw_if_not_numeric(err_msg);
if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) {
double d = this->as_d() * rhs.as_d();
this->data.d = d;
this->type = TYPE_DOUBLE;
} else
this->data.i *= rhs.i();
this->it_range = boost::iterator_range<Iterator>(this->it_range.begin(), rhs.it_range.end());
return *this;
}
expr &operator/=(const expr &rhs)
{
this->throw_if_not_numeric("Cannot divide a non-numeric type.");
rhs.throw_if_not_numeric("Cannot divide with a non-numeric type.");
if ((this->type == TYPE_INT) ? (rhs.i() == 0) : (rhs.d() == 0.))
rhs.throw_exception("Division by zero");
if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) {
double d = this->as_d() / rhs.as_d();
this->data.d = d;
this->type = TYPE_DOUBLE;
} else
this->data.i /= rhs.i();
this->it_range = boost::iterator_range<Iterator>(this->it_range.begin(), rhs.it_range.end());
return *this;
}
static void to_string2(expr &self, std::string &out)
{
out = self.to_string();
}
static void evaluate_boolean(expr &self, bool &out)
{
if (self.type != TYPE_BOOL)
self.throw_exception("Not a boolean expression");
out = self.b();
}
static void evaluate_boolean_to_string(expr &self, std::string &out)
{
if (self.type != TYPE_BOOL)
self.throw_exception("Not a boolean expression");
out = self.b() ? "true" : "false";
}
// Is lhs==rhs? Store the result into lhs.
static void compare_op(expr &lhs, expr &rhs, char op, bool invert)
{
bool value = false;
if ((lhs.type == TYPE_INT || lhs.type == TYPE_DOUBLE) &&
(rhs.type == TYPE_INT || rhs.type == TYPE_DOUBLE)) {
// Both types are numeric.
switch (op) {
case '=':
value = (lhs.type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) ?
(std::abs(lhs.as_d() - rhs.as_d()) < 1e-8) : (lhs.i() == rhs.i());
break;
case '<':
value = (lhs.type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) ?
(lhs.as_d() < rhs.as_d()) : (lhs.i() < rhs.i());
break;
case '>':
default:
value = (lhs.type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) ?
(lhs.as_d() > rhs.as_d()) : (lhs.i() > rhs.i());
break;
}
} else if (lhs.type == TYPE_BOOL && rhs.type == TYPE_BOOL) {
// Both type are bool.
if (op != '=')
boost::throw_exception(qi::expectation_failure<Iterator>(
lhs.it_range.begin(), rhs.it_range.end(), spirit::info("*Cannot compare the types.")));
value = lhs.b() == rhs.b();
} else if (lhs.type == TYPE_STRING || rhs.type == TYPE_STRING) {
// One type is string, the other could be converted to string.
value = (op == '=') ? (lhs.to_string() == rhs.to_string()) :
(op == '<') ? (lhs.to_string() < rhs.to_string()) : (lhs.to_string() > rhs.to_string());
} else {
boost::throw_exception(qi::expectation_failure<Iterator>(
lhs.it_range.begin(), rhs.it_range.end(), spirit::info("*Cannot compare the types.")));
}
lhs.type = TYPE_BOOL;
lhs.data.b = invert ? ! value : value;
}
// Compare operators, store the result into lhs.
static void equal (expr &lhs, expr &rhs) { compare_op(lhs, rhs, '=', false); }
static void not_equal(expr &lhs, expr &rhs) { compare_op(lhs, rhs, '=', true ); }
static void lower (expr &lhs, expr &rhs) { compare_op(lhs, rhs, '<', false); }
static void greater (expr &lhs, expr &rhs) { compare_op(lhs, rhs, '>', false); }
static void leq (expr &lhs, expr &rhs) { compare_op(lhs, rhs, '>', true ); }
static void geq (expr &lhs, expr &rhs) { compare_op(lhs, rhs, '<', true ); }
enum Function2ParamsType {
FUNCTION_MIN,
FUNCTION_MAX,
};
// Store the result into param1.
static void function_2params(expr &param1, expr &param2, Function2ParamsType fun)
{
const char *err_msg = "Not a numeric type.";
param1.throw_if_not_numeric(err_msg);
param2.throw_if_not_numeric(err_msg);
if (param1.type == TYPE_DOUBLE || param2.type == TYPE_DOUBLE) {
double d = 0.;
switch (fun) {
case FUNCTION_MIN: d = std::min(param1.as_d(), param2.as_d()); break;
case FUNCTION_MAX: d = std::max(param1.as_d(), param2.as_d()); break;
default: param1.throw_exception("Internal error: invalid function");
}
param1.data.d = d;
param1.type = TYPE_DOUBLE;
} else {
int i = 0.;
switch (fun) {
case FUNCTION_MIN: i = std::min(param1.as_i(), param2.as_i()); break;
case FUNCTION_MAX: i = std::max(param1.as_i(), param2.as_i()); break;
default: param1.throw_exception("Internal error: invalid function");
}
param1.data.i = i;
param1.type = TYPE_INT;
}
}
// Store the result into param1.
static void min(expr &param1, expr &param2) { function_2params(param1, param2, FUNCTION_MIN); }
static void max(expr &param1, expr &param2) { function_2params(param1, param2, FUNCTION_MAX); }
static void regex_op(expr &lhs, boost::iterator_range<Iterator> &rhs, char op)
{
const std::string *subject = nullptr;
const std::string *mask = nullptr;
if (lhs.type == TYPE_STRING) {
// One type is string, the other could be converted to string.
subject = &lhs.s();
} else {
lhs.throw_exception("Left hand side of a regex match must be a string.");
}
try {
std::string pattern(++ rhs.begin(), -- rhs.end());
bool result = SLIC3R_REGEX_NAMESPACE::regex_match(*subject, SLIC3R_REGEX_NAMESPACE::regex(pattern));
if (op == '!')
result = ! result;
lhs.reset();
lhs.type = TYPE_BOOL;
lhs.data.b = result;
} catch (SLIC3R_REGEX_NAMESPACE::regex_error &ex) {
// Syntax error in the regular expression
boost::throw_exception(qi::expectation_failure<Iterator>(
rhs.begin(), rhs.end(), spirit::info(std::string("*Regular expression compilation failed: ") + ex.what())));
}
}
static void regex_matches (expr &lhs, boost::iterator_range<Iterator> &rhs) { return regex_op(lhs, rhs, '='); }
static void regex_doesnt_match(expr &lhs, boost::iterator_range<Iterator> &rhs) { return regex_op(lhs, rhs, '!'); }
static void logical_op(expr &lhs, expr &rhs, char op)
{
bool value = false;
if (lhs.type == TYPE_BOOL && rhs.type == TYPE_BOOL) {
value = (op == '|') ? (lhs.b() || rhs.b()) : (lhs.b() && rhs.b());
} else {
boost::throw_exception(qi::expectation_failure<Iterator>(
lhs.it_range.begin(), rhs.it_range.end(), spirit::info("*Cannot apply logical operation to non-boolean operators.")));
}
lhs.type = TYPE_BOOL;
lhs.data.b = value;
}
static void logical_or (expr &lhs, expr &rhs) { logical_op(lhs, rhs, '|'); }
static void logical_and(expr &lhs, expr &rhs) { logical_op(lhs, rhs, '&'); }
static void ternary_op(expr &lhs, expr &rhs1, expr &rhs2)
{
bool value = false;
if (lhs.type != TYPE_BOOL)
lhs.throw_exception("Not a boolean expression");
if (lhs.b())
lhs = std::move(rhs1);
else
lhs = std::move(rhs2);
}
static void set_if(bool &cond, bool &not_yet_consumed, std::string &str_in, std::string &str_out)
{
if (cond && not_yet_consumed) {
str_out = str_in;
not_yet_consumed = false;
}
}
void throw_exception(const char *message) const
{
boost::throw_exception(qi::expectation_failure<Iterator>(
this->it_range.begin(), this->it_range.end(), spirit::info(std::string("*") + message)));
}
void throw_if_not_numeric(const char *message) const
{
if (this->type != TYPE_INT && this->type != TYPE_DOUBLE)
this->throw_exception(message);
}
};
template<typename ITERATOR>
std::ostream& operator<<(std::ostream &os, const expr<ITERATOR> &expression)
{
typedef expr<ITERATOR> Expr;
os << std::string(expression.it_range.begin(), expression.it_range.end()) << " - ";
switch (expression.type) {
case Expr::TYPE_EMPTY: os << "empty"; break;
case Expr::TYPE_BOOL: os << "bool (" << expression.b() << ")"; break;
case Expr::TYPE_INT: os << "int (" << expression.i() << ")"; break;
case Expr::TYPE_DOUBLE: os << "double (" << expression.d() << ")"; break;
case Expr::TYPE_STRING: os << "string (" << expression.s() << ")"; break;
default: os << "unknown";
};
return os;
}
struct MyContext {
const DynamicConfig *config = nullptr;
const DynamicConfig *config_override = nullptr;
size_t current_extruder_id = 0;
// If false, the macro_processor will evaluate a full macro.
// If true, the macro processor will evaluate just a boolean condition using the full expressive power of the macro processor.
bool just_boolean_expression = false;
std::string error_message;
// Table to translate symbol tag to a human readable error message.
static std::map<std::string, std::string> tag_to_error_message;
static void evaluate_full_macro(const MyContext *ctx, bool &result) { result = ! ctx->just_boolean_expression; }
const ConfigOption* resolve_symbol(const std::string &opt_key) const
{
const ConfigOption *opt = nullptr;
if (config_override != nullptr)
opt = config_override->option(opt_key);
if (opt == nullptr)
opt = config->option(opt_key);
return opt;
}
template <typename Iterator>
static void legacy_variable_expansion(
const MyContext *ctx,
boost::iterator_range<Iterator> &opt_key,
std::string &output)
{
std::string opt_key_str(opt_key.begin(), opt_key.end());
const ConfigOption *opt = ctx->resolve_symbol(opt_key_str);
size_t idx = ctx->current_extruder_id;
if (opt == nullptr) {
// Check whether this is a legacy vector indexing.
idx = opt_key_str.rfind('_');
if (idx != std::string::npos) {
opt = ctx->resolve_symbol(opt_key_str.substr(0, idx));
if (opt != nullptr) {
if (! opt->is_vector())
ctx->throw_exception("Trying to index a scalar variable", opt_key);
char *endptr = nullptr;
idx = strtol(opt_key_str.c_str() + idx + 1, &endptr, 10);
if (endptr == nullptr || *endptr != 0)
ctx->throw_exception("Invalid vector index", boost::iterator_range<Iterator>(opt_key.begin() + idx + 1, opt_key.end()));
}
}
}
if (opt == nullptr)
ctx->throw_exception("Variable does not exist", boost::iterator_range<Iterator>(opt_key.begin(), opt_key.end()));
if (opt->is_scalar())
output = opt->serialize();
else {
const ConfigOptionVectorBase *vec = static_cast<const ConfigOptionVectorBase*>(opt);
if (vec->empty())
ctx->throw_exception("Indexing an empty vector variable", opt_key);
output = vec->vserialize()[(idx >= vec->size()) ? 0 : idx];
}
}
template <typename Iterator>
static void legacy_variable_expansion2(
const MyContext *ctx,
boost::iterator_range<Iterator> &opt_key,
boost::iterator_range<Iterator> &opt_vector_index,
std::string &output)
{
std::string opt_key_str(opt_key.begin(), opt_key.end());
const ConfigOption *opt = ctx->resolve_symbol(opt_key_str);
if (opt == nullptr) {
// Check whether the opt_key ends with '_'.
if (opt_key_str.back() == '_')
opt_key_str.resize(opt_key_str.size() - 1);
opt = ctx->resolve_symbol(opt_key_str);
}
if (! opt->is_vector())
ctx->throw_exception("Trying to index a scalar variable", opt_key);
const ConfigOptionVectorBase *vec = static_cast<const ConfigOptionVectorBase*>(opt);
if (vec->empty())
ctx->throw_exception("Indexing an empty vector variable", boost::iterator_range<Iterator>(opt_key.begin(), opt_key.end()));
const ConfigOption *opt_index = ctx->resolve_symbol(std::string(opt_vector_index.begin(), opt_vector_index.end()));
if (opt_index == nullptr)
ctx->throw_exception("Variable does not exist", opt_key);
if (opt_index->type() != coInt)
ctx->throw_exception("Indexing variable has to be integer", opt_key);
int idx = opt_index->getInt();
if (idx < 0)
ctx->throw_exception("Negative vector index", opt_key);
output = vec->vserialize()[(idx >= (int)vec->size()) ? 0 : idx];
}
template <typename Iterator>
static void resolve_variable(
const MyContext *ctx,
boost::iterator_range<Iterator> &opt_key,
OptWithPos<Iterator> &output)
{
const ConfigOption *opt = ctx->resolve_symbol(std::string(opt_key.begin(), opt_key.end()));
if (opt == nullptr)
ctx->throw_exception("Not a variable name", opt_key);
output.opt = opt;
output.it_range = opt_key;
}
template <typename Iterator>
static void scalar_variable_reference(
const MyContext *ctx,
OptWithPos<Iterator> &opt,
expr<Iterator> &output)
{
if (opt.opt->is_vector())
ctx->throw_exception("Referencing a vector variable when scalar is expected", opt.it_range);
switch (opt.opt->type()) {
case coFloat: output.set_d(opt.opt->getFloat()); break;
case coInt: output.set_i(opt.opt->getInt()); break;
case coString: output.set_s(static_cast<const ConfigOptionString*>(opt.opt)->value); break;
case coPercent: output.set_d(opt.opt->getFloat()); break;
case coPoint: output.set_s(opt.opt->serialize()); break;
case coBool: output.set_b(opt.opt->getBool()); break;
case coFloatOrPercent:
ctx->throw_exception("FloatOrPercent variables are not supported", opt.it_range);
default:
ctx->throw_exception("Unknown scalar variable type", opt.it_range);
}
output.it_range = opt.it_range;
}
template <typename Iterator>
static void vector_variable_reference(
const MyContext *ctx,
OptWithPos<Iterator> &opt,
int &index,
Iterator it_end,
expr<Iterator> &output)
{
if (opt.opt->is_scalar())
ctx->throw_exception("Referencing a scalar variable when vector is expected", opt.it_range);
const ConfigOptionVectorBase *vec = static_cast<const ConfigOptionVectorBase*>(opt.opt);
if (vec->empty())
ctx->throw_exception("Indexing an empty vector variable", opt.it_range);
size_t idx = (index < 0) ? 0 : (index >= int(vec->size())) ? 0 : size_t(index);
switch (opt.opt->type()) {
case coFloats: output.set_d(static_cast<const ConfigOptionFloats *>(opt.opt)->values[idx]); break;
case coInts: output.set_i(static_cast<const ConfigOptionInts *>(opt.opt)->values[idx]); break;
case coStrings: output.set_s(static_cast<const ConfigOptionStrings *>(opt.opt)->values[idx]); break;
case coPercents: output.set_d(static_cast<const ConfigOptionPercents*>(opt.opt)->values[idx]); break;
case coPoints: output.set_s(to_string(static_cast<const ConfigOptionPoints *>(opt.opt)->values[idx])); break;
case coBools: output.set_b(static_cast<const ConfigOptionBools *>(opt.opt)->values[idx] != 0); break;
default:
ctx->throw_exception("Unknown vector variable type", opt.it_range);
}
output.it_range = boost::iterator_range<Iterator>(opt.it_range.begin(), it_end);
}
// Verify that the expression returns an integer, which may be used
// to address a vector.
template <typename Iterator>
static void evaluate_index(expr<Iterator> &expr_index, int &output)
{
if (expr_index.type != expr<Iterator>::TYPE_INT)
expr_index.throw_exception("Non-integer index is not allowed to address a vector variable.");
output = expr_index.i();
}
template <typename Iterator>
static void throw_exception(const std::string &msg, const boost::iterator_range<Iterator> &it_range)
{
// An asterix is added to the start of the string to differentiate the boost::spirit::info::tag content
// between the grammer terminal / non-terminal symbol name and a free-form error message.
boost::throw_exception(qi::expectation_failure<Iterator>(it_range.begin(), it_range.end(), spirit::info(std::string("*") + msg)));
}
template <typename Iterator>
static void process_error_message(const MyContext *context, const boost::spirit::info &info, const Iterator &it_begin, const Iterator &it_end, const Iterator &it_error)
{
std::string &msg = const_cast<MyContext*>(context)->error_message;
std::string first(it_begin, it_error);
std::string last(it_error, it_end);
auto first_pos = first.rfind('\n');
auto last_pos = last.find('\n');
int line_nr = 1;
if (first_pos == std::string::npos)
first_pos = 0;
else {
// Calculate the current line number.
for (size_t i = 0; i <= first_pos; ++ i)
if (first[i] == '\n')
++ line_nr;
++ first_pos;
}
auto error_line = std::string(first, first_pos) + std::string(last, 0, last_pos);
// Position of the it_error from the start of its line.
auto error_pos = (it_error - it_begin) - first_pos;
msg += "Parsing error at line " + std::to_string(line_nr);
if (! info.tag.empty() && info.tag.front() == '*') {
// The gat contains an explanatory string.
msg += ": ";
msg += info.tag.substr(1);
} else {
auto it = tag_to_error_message.find(info.tag);
if (it == tag_to_error_message.end()) {
// A generic error report based on the nonterminal or terminal symbol name.
msg += ". Expecting tag ";
msg += info.tag;
} else {
// Use the human readable error message.
msg += ". ";
msg + it->second;
}
}
msg += '\n';
msg += error_line;
msg += '\n';
for (size_t i = 0; i < error_pos; ++ i)
msg += ' ';
msg += "^\n";
}
};
// Table to translate symbol tag to a human readable error message.
std::map<std::string, std::string> MyContext::tag_to_error_message = {
{ "eoi", "Unknown syntax error" },
{ "start", "Unknown syntax error" },
{ "text", "Invalid text." },
{ "text_block", "Invalid text block." },
{ "macro", "Invalid macro." },
{ "if_else_output", "Not an {if}{else}{endif} macro." },
{ "switch_output", "Not a {switch} macro." },
{ "legacy_variable_expansion", "Expecting a legacy variable expansion format" },
{ "identifier", "Expecting an identifier." },
{ "conditional_expression", "Expecting a conditional expression." },
{ "logical_or_expression", "Expecting a boolean expression." },
{ "logical_and_expression", "Expecting a boolean expression." },
{ "equality_expression", "Expecting an expression." },
{ "bool_expr_eval", "Expecting a boolean expression."},
{ "relational_expression", "Expecting an expression." },
{ "additive_expression", "Expecting an expression." },
{ "multiplicative_expression", "Expecting an expression." },
{ "unary_expression", "Expecting an expression." },
{ "scalar_variable_reference", "Expecting a scalar variable reference."},
{ "variable_reference", "Expecting a variable reference."},
{ "regular_expression", "Expecting a regular expression."}
};
// For debugging the boost::spirit parsers. Print out the string enclosed in it_range.
template<typename Iterator>
std::ostream& operator<<(std::ostream& os, const boost::iterator_range<Iterator> &it_range)
{
os << std::string(it_range.begin(), it_range.end());
return os;
}
// Disable parsing int numbers (without decimals) and Inf/NaN symbols by the double parser.
struct strict_real_policies_without_nan_inf : public qi::strict_real_policies<double>
{
template <typename It, typename Attr> static bool parse_nan(It&, It const&, Attr&) { return false; }
template <typename It, typename Attr> static bool parse_inf(It&, It const&, Attr&) { return false; }
};
// This parser is to be used inside a raw[] directive to accept a single valid UTF-8 character.
// If an invalid UTF-8 sequence is encountered, a qi::expectation_failure is thrown.
struct utf8_char_skipper_parser : qi::primitive_parser<utf8_char_skipper_parser>
{
// Define the attribute type exposed by this parser component
template <typename Context, typename Iterator>
struct attribute
{
typedef wchar_t type;
};
// This function is called during the actual parsing process
template <typename Iterator, typename Context , typename Skipper, typename Attribute>
bool parse(Iterator& first, Iterator const& last, Context& context, Skipper const& skipper, Attribute& attr) const
{
// The skipper shall always be empty, any white space will be accepted.
// skip_over(first, last, skipper);
if (first == last)
return false;
// Iterator over the UTF-8 sequence.
auto it = first;
// Read the first byte of the UTF-8 sequence.
unsigned char c = static_cast<boost::uint8_t>(*it ++);
2017-12-05 16:52:12 +00:00
unsigned int cnt = 0;
// UTF-8 sequence must not start with a continuation character:
if ((c & 0xC0) == 0x80)
goto err;
// Skip high surrogate first if there is one.
// If the most significant bit with a zero in it is in position
// 8-N then there are N bytes in this UTF-8 sequence:
{
unsigned char mask = 0x80u;
unsigned int result = 0;
while (c & mask) {
++ result;
mask >>= 1;
}
cnt = (result == 0) ? 1 : ((result > 4) ? 4 : result);
}
// Since we haven't read in a value, we need to validate the code points:
for (-- cnt; cnt > 0; -- cnt) {
if (it == last)
goto err;
c = static_cast<boost::uint8_t>(*it ++);
// We must have a continuation byte:
if (cnt > 1 && (c & 0xC0) != 0x80)
goto err;
}
first = it;
return true;
err:
MyContext::throw_exception("Invalid utf8 sequence", boost::iterator_range<Iterator>(first, last));
return false;
}
// This function is called during error handling to create a human readable string for the error context.
template <typename Context>
spirit::info what(Context&) const
{
return spirit::info("unicode_char");
}
};
///////////////////////////////////////////////////////////////////////////
// Our macro_processor grammar
///////////////////////////////////////////////////////////////////////////
// Inspired by the C grammar rules https://www.lysator.liu.se/c/ANSI-C-grammar-y.html
template <typename Iterator>
struct macro_processor : qi::grammar<Iterator, std::string(const MyContext*), qi::locals<bool>, spirit::ascii::space_type>
{
macro_processor() : macro_processor::base_type(start)
{
using namespace qi::labels;
qi::alpha_type alpha;
qi::alnum_type alnum;
qi::eps_type eps;
qi::raw_type raw;
qi::lit_type lit;
qi::lexeme_type lexeme;
qi::no_skip_type no_skip;
qi::real_parser<double, strict_real_policies_without_nan_inf> strict_double;
spirit::ascii::char_type char_;
utf8_char_skipper_parser utf8char;
spirit::bool_type bool_;
spirit::int_type int_;
spirit::double_type double_;
spirit::ascii::string_type string;
spirit::eoi_type eoi;
spirit::repository::qi::iter_pos_type iter_pos;
auto kw = spirit::repository::qi::distinct(qi::copy(alnum | '_'));
qi::_val_type _val;
qi::_1_type _1;
qi::_2_type _2;
qi::_3_type _3;
qi::_4_type _4;
qi::_a_type _a;
qi::_b_type _b;
qi::_r1_type _r1;
// Starting symbol of the grammer.
// The leading eps is required by the "expectation point" operator ">".
// Without it, some of the errors would not trigger the error handler.
// Also the start symbol switches between the "full macro syntax" and a "boolean expression only",
// depending on the context->just_boolean_expression flag. This way a single static expression parser
// could serve both purposes.
start = eps[px::bind(&MyContext::evaluate_full_macro, _r1, _a)] >
( eps(_a==true) > text_block(_r1) [_val=_1]
| conditional_expression(_r1) [ px::bind(&expr<Iterator>::evaluate_boolean_to_string, _1, _val) ]
) > eoi;
start.name("start");
qi::on_error<qi::fail>(start, px::bind(&MyContext::process_error_message<Iterator>, _r1, _4, _1, _2, _3));
text_block = *(
text [_val+=_1]
// Allow back tracking after '{' in case of a text_block embedded inside a condition.
// In that case the inner-most {else} wins and the {if}/{elsif}/{else} shall be paired.
// {elsif}/{else} without an {if} will be allowed to back track from the embedded text_block.
| (lit('{') >> macro(_r1) [_val+=_1] > '}')
| (lit('[') > legacy_variable_expansion(_r1) [_val+=_1] > ']')
);
text_block.name("text_block");
// Free-form text up to a first brace, including spaces and newlines.
// The free-form text will be inserted into the processed text without a modification.
text = no_skip[raw[+(utf8char - char_('[') - char_('{'))]];
text.name("text");
// New style of macro expansion.
// The macro expansion may contain numeric or string expressions, ifs and cases.
macro =
(kw["if"] > if_else_output(_r1) [_val = _1])
// | (kw["switch"] > switch_output(_r1) [_val = _1])
| additive_expression(_r1) [ px::bind(&expr<Iterator>::to_string2, _1, _val) ];
macro.name("macro");
// An if expression enclosed in {} (the outmost {} are already parsed by the caller).
if_else_output =
eps[_b=true] >
bool_expr_eval(_r1)[_a=_1] > '}' >
text_block(_r1)[px::bind(&expr<Iterator>::set_if, _a, _b, _1, _val)] > '{' >
*(kw["elsif"] > bool_expr_eval(_r1)[_a=_1] > '}' >
text_block(_r1)[px::bind(&expr<Iterator>::set_if, _a, _b, _1, _val)] > '{') >
-(kw["else"] > lit('}') >
text_block(_r1)[px::bind(&expr<Iterator>::set_if, _b, _b, _1, _val)] > '{') >
kw["endif"];
if_else_output.name("if_else_output");
// A switch expression enclosed in {} (the outmost {} are already parsed by the caller).
/*
switch_output =
eps[_b=true] >
omit[expr(_r1)[_a=_1]] > '}' > text_block(_r1)[px::bind(&expr<Iterator>::set_if_equal, _a, _b, _1, _val)] > '{' >
*("elsif" > omit[bool_expr_eval(_r1)[_a=_1]] > '}' > text_block(_r1)[px::bind(&expr<Iterator>::set_if, _a, _b, _1, _val)]) >>
-("else" > '}' >> text_block(_r1)[px::bind(&expr<Iterator>::set_if, _b, _b, _1, _val)]) >
"endif";
*/
// Legacy variable expansion of the original Slic3r, in the form of [scalar_variable] or [vector_variable_index].
legacy_variable_expansion =
(identifier >> &lit(']'))
[ px::bind(&MyContext::legacy_variable_expansion<Iterator>, _r1, _1, _val) ]
| (identifier > lit('[') > identifier > ']')
[ px::bind(&MyContext::legacy_variable_expansion2<Iterator>, _r1, _1, _2, _val) ]
;
legacy_variable_expansion.name("legacy_variable_expansion");
identifier =
! kw[keywords] >>
raw[lexeme[(alpha | '_') >> *(alnum | '_')]];
identifier.name("identifier");
conditional_expression =
logical_or_expression(_r1) [_val = _1]
>> -('?' > conditional_expression(_r1) > ':' > conditional_expression(_r1)) [px::bind(&expr<Iterator>::ternary_op, _val, _1, _2)];
conditional_expression.name("conditional_expression");
logical_or_expression =
logical_and_expression(_r1) [_val = _1]
>> *( ((kw["or"] | "||") > logical_and_expression(_r1) ) [px::bind(&expr<Iterator>::logical_or, _val, _1)] );
logical_or_expression.name("logical_or_expression");
logical_and_expression =
equality_expression(_r1) [_val = _1]
>> *( ((kw["and"] | "&&") > equality_expression(_r1) ) [px::bind(&expr<Iterator>::logical_and, _val, _1)] );
logical_and_expression.name("logical_and_expression");
equality_expression =
relational_expression(_r1) [_val = _1]
>> *( ("==" > relational_expression(_r1) ) [px::bind(&expr<Iterator>::equal, _val, _1)]
| ("!=" > relational_expression(_r1) ) [px::bind(&expr<Iterator>::not_equal, _val, _1)]
| ("<>" > relational_expression(_r1) ) [px::bind(&expr<Iterator>::not_equal, _val, _1)]
| ("=~" > regular_expression ) [px::bind(&expr<Iterator>::regex_matches, _val, _1)]
| ("!~" > regular_expression ) [px::bind(&expr<Iterator>::regex_doesnt_match, _val, _1)]
);
equality_expression.name("bool expression");
// Evaluate a boolean expression stored as expr into a boolean value.
// Throw if the equality_expression does not produce a expr of boolean type.
bool_expr_eval = conditional_expression(_r1) [ px::bind(&expr<Iterator>::evaluate_boolean, _1, _val) ];
bool_expr_eval.name("bool_expr_eval");
relational_expression =
additive_expression(_r1) [_val = _1]
>> *( ("<=" > additive_expression(_r1) ) [px::bind(&expr<Iterator>::leq, _val, _1)]
| (">=" > additive_expression(_r1) ) [px::bind(&expr<Iterator>::geq, _val, _1)]
| (lit('<') > additive_expression(_r1) ) [px::bind(&expr<Iterator>::lower, _val, _1)]
| (lit('>') > additive_expression(_r1) ) [px::bind(&expr<Iterator>::greater, _val, _1)]
);
relational_expression.name("relational_expression");
additive_expression =
multiplicative_expression(_r1) [_val = _1]
>> *( (lit('+') > multiplicative_expression(_r1) ) [_val += _1]
| (lit('-') > multiplicative_expression(_r1) ) [_val -= _1]
);
additive_expression.name("additive_expression");
multiplicative_expression =
unary_expression(_r1) [_val = _1]
>> *( (lit('*') > unary_expression(_r1) ) [_val *= _1]
| (lit('/') > unary_expression(_r1) ) [_val /= _1]
);
multiplicative_expression.name("multiplicative_expression");
struct FactorActions {
static void set_start_pos(Iterator &start_pos, expr<Iterator> &out)
{ out.it_range = boost::iterator_range<Iterator>(start_pos, start_pos); }
static void int_(int &value, Iterator &end_pos, expr<Iterator> &out)
{ out = expr<Iterator>(value, out.it_range.begin(), end_pos); }
static void double_(double &value, Iterator &end_pos, expr<Iterator> &out)
{ out = expr<Iterator>(value, out.it_range.begin(), end_pos); }
static void bool_(bool &value, Iterator &end_pos, expr<Iterator> &out)
{ out = expr<Iterator>(value, out.it_range.begin(), end_pos); }
static void string_(boost::iterator_range<Iterator> &it_range, expr<Iterator> &out)
{ out = expr<Iterator>(std::string(it_range.begin() + 1, it_range.end() - 1), it_range.begin(), it_range.end()); }
static void expr_(expr<Iterator> &value, Iterator &end_pos, expr<Iterator> &out)
{ out = expr<Iterator>(std::move(value), out.it_range.begin(), end_pos); }
static void minus_(expr<Iterator> &value, expr<Iterator> &out)
{ out = value.unary_minus(out.it_range.begin()); }
static void not_(expr<Iterator> &value, expr<Iterator> &out)
{ out = value.unary_not(out.it_range.begin()); }
};
unary_expression = iter_pos[px::bind(&FactorActions::set_start_pos, _1, _val)] >> (
scalar_variable_reference(_r1) [ _val = _1 ]
| (lit('(') > conditional_expression(_r1) > ')' > iter_pos) [ px::bind(&FactorActions::expr_, _1, _2, _val) ]
| (lit('-') > unary_expression(_r1) ) [ px::bind(&FactorActions::minus_, _1, _val) ]
| (lit('+') > unary_expression(_r1) > iter_pos) [ px::bind(&FactorActions::expr_, _1, _2, _val) ]
| ((kw["not"] | '!') > unary_expression(_r1) > iter_pos) [ px::bind(&FactorActions::not_, _1, _val) ]
| (kw["min"] > '(' > conditional_expression(_r1) [_val = _1] > ',' > conditional_expression(_r1) > ')')
[ px::bind(&expr<Iterator>::min, _val, _2) ]
| (kw["max"] > '(' > conditional_expression(_r1) [_val = _1] > ',' > conditional_expression(_r1) > ')')
[ px::bind(&expr<Iterator>::max, _val, _2) ]
| (strict_double > iter_pos) [ px::bind(&FactorActions::double_, _1, _2, _val) ]
| (int_ > iter_pos) [ px::bind(&FactorActions::int_, _1, _2, _val) ]
| (kw[bool_] > iter_pos) [ px::bind(&FactorActions::bool_, _1, _2, _val) ]
| raw[lexeme['"' > *((utf8char - char_('\\') - char_('"')) | ('\\' > char_)) > '"']]
[ px::bind(&FactorActions::string_, _1, _val) ]
);
unary_expression.name("unary_expression");
scalar_variable_reference =
variable_reference(_r1)[_a=_1] >>
(
('[' > additive_expression(_r1)[px::bind(&MyContext::evaluate_index<Iterator>, _1, _b)] > ']' >
iter_pos[px::bind(&MyContext::vector_variable_reference<Iterator>, _r1, _a, _b, _1, _val)])
| eps[px::bind(&MyContext::scalar_variable_reference<Iterator>, _r1, _a, _val)]
);
scalar_variable_reference.name("scalar variable reference");
variable_reference = identifier
[ px::bind(&MyContext::resolve_variable<Iterator>, _r1, _1, _val) ];
variable_reference.name("variable reference");
regular_expression = raw[lexeme['/' > *((utf8char - char_('\\') - char_('/')) | ('\\' > char_)) > '/']];
regular_expression.name("regular_expression");
keywords.add
("and")
("if")
//("inf")
("else")
("elsif")
("endif")
("false")
("min")
("max")
("not")
("or")
("true");
if (0) {
debug(start);
debug(text);
debug(text_block);
debug(macro);
debug(if_else_output);
// debug(switch_output);
debug(legacy_variable_expansion);
debug(identifier);
debug(conditional_expression);
debug(logical_or_expression);
debug(logical_and_expression);
debug(equality_expression);
debug(bool_expr_eval);
debug(relational_expression);
debug(additive_expression);
debug(multiplicative_expression);
debug(unary_expression);
debug(scalar_variable_reference);
debug(variable_reference);
debug(regular_expression);
}
}
// Generic expression over expr<Iterator>.
typedef qi::rule<Iterator, expr<Iterator>(const MyContext*), spirit::ascii::space_type> RuleExpression;
// The start of the grammar.
qi::rule<Iterator, std::string(const MyContext*), qi::locals<bool>, spirit::ascii::space_type> start;
// A free-form text.
qi::rule<Iterator, std::string(), spirit::ascii::space_type> text;
// A free-form text, possibly empty, possibly containing macro expansions.
qi::rule<Iterator, std::string(const MyContext*), spirit::ascii::space_type> text_block;
// Statements enclosed in curely braces {}
qi::rule<Iterator, std::string(const MyContext*), spirit::ascii::space_type> macro;
// Legacy variable expansion of the original Slic3r, in the form of [scalar_variable] or [vector_variable_index].
qi::rule<Iterator, std::string(const MyContext*), spirit::ascii::space_type> legacy_variable_expansion;
// Parsed identifier name.
qi::rule<Iterator, boost::iterator_range<Iterator>(), spirit::ascii::space_type> identifier;
// Ternary operator (?:) over logical_or_expression.
RuleExpression conditional_expression;
// Logical or over logical_and_expressions.
RuleExpression logical_or_expression;
// Logical and over relational_expressions.
RuleExpression logical_and_expression;
// <, >, <=, >=
RuleExpression relational_expression;
// Math expression consisting of +- operators over multiplicative_expressions.
RuleExpression additive_expression;
// Boolean expressions over expressions.
RuleExpression equality_expression;
// Math expression consisting of */ operators over factors.
RuleExpression multiplicative_expression;
// Number literals, functions, braced expressions, variable references, variable indexing references.
RuleExpression unary_expression;
// Rule to capture a regular expression enclosed in //.
qi::rule<Iterator, boost::iterator_range<Iterator>(), spirit::ascii::space_type> regular_expression;
// Evaluate boolean expression into bool.
qi::rule<Iterator, bool(const MyContext*), spirit::ascii::space_type> bool_expr_eval;
// Reference of a scalar variable, or reference to a field of a vector variable.
qi::rule<Iterator, expr<Iterator>(const MyContext*), qi::locals<OptWithPos<Iterator>, int>, spirit::ascii::space_type> scalar_variable_reference;
// Rule to translate an identifier to a ConfigOption, or to fail.
qi::rule<Iterator, OptWithPos<Iterator>(const MyContext*), spirit::ascii::space_type> variable_reference;
qi::rule<Iterator, std::string(const MyContext*), qi::locals<bool, bool>, spirit::ascii::space_type> if_else_output;
// qi::rule<Iterator, std::string(const MyContext*), qi::locals<expr<Iterator>, bool, std::string>, spirit::ascii::space_type> switch_output;
qi::symbols<char> keywords;
};
}
static std::string process_macro(const std::string &templ, client::MyContext &context)
{
typedef std::string::const_iterator iterator_type;
typedef client::macro_processor<iterator_type> macro_processor;
// Our whitespace skipper.
spirit::ascii::space_type space;
// Our grammar, statically allocated inside the method, meaning it will be allocated the first time
// PlaceholderParser::process() runs.
//FIXME this kind of initialization is not thread safe!
static macro_processor macro_processor_instance;
// Iterators over the source template.
std::string::const_iterator iter = templ.begin();
std::string::const_iterator end = templ.end();
// Accumulator for the processed template.
std::string output;
bool res = phrase_parse(iter, end, macro_processor_instance(&context), space, output);
if (!context.error_message.empty()) {
if (context.error_message.back() != '\n' && context.error_message.back() != '\r')
context.error_message += '\n';
throw std::runtime_error(context.error_message);
}
return output;
}
std::string PlaceholderParser::process(const std::string &templ, unsigned int current_extruder_id, const DynamicConfig *config_override) const
{
client::MyContext context;
context.config = &this->config();
context.config_override = config_override;
context.current_extruder_id = current_extruder_id;
return process_macro(templ, context);
}
// Evaluate a boolean expression using the full expressive power of the PlaceholderParser boolean expression syntax.
// Throws std::runtime_error on syntax or runtime error.
bool PlaceholderParser::evaluate_boolean_expression(const std::string &templ, const DynamicConfig &config, const DynamicConfig *config_override)
{
client::MyContext context;
context.config = &config;
context.config_override = config_override;
// Let the macro processor parse just a boolean expression, not the full macro language.
context.just_boolean_expression = true;
return process_macro(templ, context) == "true";
}
}