PrusaSlicer-NonPlainar/src/libslic3r/PrintApply.cpp

827 lines
46 KiB
C++
Raw Normal View History

#include "Model.hpp"
#include "Print.hpp"
namespace Slic3r {
// Add or remove support modifier ModelVolumes from model_object_dst to match the ModelVolumes of model_object_new
// in the exact order and with the same IDs.
// It is expected, that the model_object_dst already contains the non-support volumes of model_object_new in the correct order.
// Friend to ModelVolume to allow copying.
// static is not accepted by gcc if declared as a friend of ModelObject.
/* static */ void model_volume_list_update_supports(ModelObject &model_object_dst, const ModelObject &model_object_new)
{
typedef std::pair<const ModelVolume*, bool> ModelVolumeWithStatus;
std::vector<ModelVolumeWithStatus> old_volumes;
old_volumes.reserve(model_object_dst.volumes.size());
for (const ModelVolume *model_volume : model_object_dst.volumes)
old_volumes.emplace_back(ModelVolumeWithStatus(model_volume, false));
auto model_volume_lower = [](const ModelVolumeWithStatus &mv1, const ModelVolumeWithStatus &mv2){ return mv1.first->id() < mv2.first->id(); };
auto model_volume_equal = [](const ModelVolumeWithStatus &mv1, const ModelVolumeWithStatus &mv2){ return mv1.first->id() == mv2.first->id(); };
std::sort(old_volumes.begin(), old_volumes.end(), model_volume_lower);
model_object_dst.volumes.clear();
model_object_dst.volumes.reserve(model_object_new.volumes.size());
for (const ModelVolume *model_volume_src : model_object_new.volumes) {
ModelVolumeWithStatus key(model_volume_src, false);
auto it = std::lower_bound(old_volumes.begin(), old_volumes.end(), key, model_volume_lower);
if (it != old_volumes.end() && model_volume_equal(*it, key)) {
// The volume was found in the old list. Just copy it.
assert(! it->second); // not consumed yet
it->second = true;
ModelVolume *model_volume_dst = const_cast<ModelVolume*>(it->first);
// For support modifiers, the type may have been switched from blocker to enforcer and vice versa.
assert((model_volume_dst->is_support_modifier() && model_volume_src->is_support_modifier()) || model_volume_dst->type() == model_volume_src->type());
model_object_dst.volumes.emplace_back(model_volume_dst);
if (model_volume_dst->is_support_modifier()) {
// For support modifiers, the type may have been switched from blocker to enforcer and vice versa.
model_volume_dst->set_type(model_volume_src->type());
model_volume_dst->set_transformation(model_volume_src->get_transformation());
}
assert(model_volume_dst->get_matrix().isApprox(model_volume_src->get_matrix()));
} else {
// The volume was not found in the old list. Create a new copy.
assert(model_volume_src->is_support_modifier());
model_object_dst.volumes.emplace_back(new ModelVolume(*model_volume_src));
model_object_dst.volumes.back()->set_model_object(&model_object_dst);
}
}
// Release the non-consumed old volumes (those were deleted from the new list).
for (ModelVolumeWithStatus &mv_with_status : old_volumes)
if (! mv_with_status.second)
delete mv_with_status.first;
}
static inline void model_volume_list_copy_configs(ModelObject &model_object_dst, const ModelObject &model_object_src, const ModelVolumeType type)
{
size_t i_src, i_dst;
for (i_src = 0, i_dst = 0; i_src < model_object_src.volumes.size() && i_dst < model_object_dst.volumes.size();) {
const ModelVolume &mv_src = *model_object_src.volumes[i_src];
ModelVolume &mv_dst = *model_object_dst.volumes[i_dst];
if (mv_src.type() != type) {
++ i_src;
continue;
}
if (mv_dst.type() != type) {
++ i_dst;
continue;
}
assert(mv_src.id() == mv_dst.id());
// Copy the ModelVolume data.
mv_dst.name = mv_src.name;
mv_dst.config.assign_config(mv_src.config);
assert(mv_dst.supported_facets.id() == mv_src.supported_facets.id());
mv_dst.supported_facets.assign(mv_src.supported_facets);
assert(mv_dst.seam_facets.id() == mv_src.seam_facets.id());
mv_dst.seam_facets.assign(mv_src.seam_facets);
//FIXME what to do with the materials?
// mv_dst.m_material_id = mv_src.m_material_id;
++ i_src;
++ i_dst;
}
}
static inline void layer_height_ranges_copy_configs(t_layer_config_ranges &lr_dst, const t_layer_config_ranges &lr_src)
{
assert(lr_dst.size() == lr_src.size());
auto it_src = lr_src.cbegin();
for (auto &kvp_dst : lr_dst) {
const auto &kvp_src = *it_src ++;
assert(std::abs(kvp_dst.first.first - kvp_src.first.first ) <= EPSILON);
assert(std::abs(kvp_dst.first.second - kvp_src.first.second) <= EPSILON);
// Layer heights are allowed do differ in case the layer height table is being overriden by the smooth profile.
// assert(std::abs(kvp_dst.second.option("layer_height")->getFloat() - kvp_src.second.option("layer_height")->getFloat()) <= EPSILON);
kvp_dst.second = kvp_src.second;
}
}
static inline bool transform3d_lower(const Transform3d &lhs, const Transform3d &rhs)
{
typedef Transform3d::Scalar T;
const T *lv = lhs.data();
const T *rv = rhs.data();
for (size_t i = 0; i < 16; ++ i, ++ lv, ++ rv) {
if (*lv < *rv)
return true;
else if (*lv > *rv)
return false;
}
return false;
}
static inline bool transform3d_equal(const Transform3d &lhs, const Transform3d &rhs)
{
typedef Transform3d::Scalar T;
const T *lv = lhs.data();
const T *rv = rhs.data();
for (size_t i = 0; i < 16; ++ i, ++ lv, ++ rv)
if (*lv != *rv)
return false;
return true;
}
struct PrintObjectTrafoAndInstances
{
Transform3d trafo;
PrintInstances instances;
bool operator<(const PrintObjectTrafoAndInstances &rhs) const { return transform3d_lower(this->trafo, rhs.trafo); }
};
// Generate a list of trafos and XY offsets for instances of a ModelObject
static std::vector<PrintObjectTrafoAndInstances> print_objects_from_model_object(const ModelObject &model_object)
{
std::set<PrintObjectTrafoAndInstances> trafos;
PrintObjectTrafoAndInstances trafo;
for (ModelInstance *model_instance : model_object.instances)
if (model_instance->is_printable()) {
trafo.trafo = model_instance->get_matrix();
auto shift = Point::new_scale(trafo.trafo.data()[12], trafo.trafo.data()[13]);
// Reset the XY axes of the transformation.
trafo.trafo.data()[12] = 0;
trafo.trafo.data()[13] = 0;
// Search or insert a trafo.
auto it = trafos.emplace(trafo).first;
const_cast<PrintObjectTrafoAndInstances&>(*it).instances.emplace_back(PrintInstance{ nullptr, model_instance, shift });
}
return std::vector<PrintObjectTrafoAndInstances>(trafos.begin(), trafos.end());
}
// Compare just the layer ranges and their layer heights, not the associated configs.
// Ignore the layer heights if check_layer_heights is false.
static bool layer_height_ranges_equal(const t_layer_config_ranges &lr1, const t_layer_config_ranges &lr2, bool check_layer_height)
{
if (lr1.size() != lr2.size())
return false;
auto it2 = lr2.begin();
for (const auto &kvp1 : lr1) {
const auto &kvp2 = *it2 ++;
if (std::abs(kvp1.first.first - kvp2.first.first ) > EPSILON ||
std::abs(kvp1.first.second - kvp2.first.second) > EPSILON ||
(check_layer_height && std::abs(kvp1.second.option("layer_height")->getFloat() - kvp2.second.option("layer_height")->getFloat()) > EPSILON))
return false;
}
return true;
}
// Returns true if va == vb when all CustomGCode items that are not ToolChangeCode are ignored.
static bool custom_per_printz_gcodes_tool_changes_differ(const std::vector<CustomGCode::Item> &va, const std::vector<CustomGCode::Item> &vb)
{
auto it_a = va.begin();
auto it_b = vb.begin();
while (it_a != va.end() || it_b != vb.end()) {
if (it_a != va.end() && it_a->type != CustomGCode::ToolChange) {
// Skip any CustomGCode items, which are not tool changes.
++ it_a;
continue;
}
if (it_b != vb.end() && it_b->type != CustomGCode::ToolChange) {
// Skip any CustomGCode items, which are not tool changes.
++ it_b;
continue;
}
if (it_a == va.end() || it_b == vb.end())
// va or vb contains more Tool Changes than the other.
return true;
assert(it_a->type == CustomGCode::ToolChange);
assert(it_b->type == CustomGCode::ToolChange);
if (*it_a != *it_b)
// The two Tool Changes differ.
return true;
++ it_a;
++ it_b;
}
// There is no change in custom Tool Changes.
return false;
}
// Collect changes to print config, account for overrides of extruder retract values by filament presets.
static t_config_option_keys print_config_diffs(
const PrintConfig &current_config,
const DynamicPrintConfig &new_full_config,
DynamicPrintConfig &filament_overrides)
{
const std::vector<std::string> &extruder_retract_keys = print_config_def.extruder_retract_keys();
const std::string filament_prefix = "filament_";
t_config_option_keys print_diff;
for (const t_config_option_key &opt_key : current_config.keys()) {
const ConfigOption *opt_old = current_config.option(opt_key);
assert(opt_old != nullptr);
const ConfigOption *opt_new = new_full_config.option(opt_key);
// assert(opt_new != nullptr);
if (opt_new == nullptr)
//FIXME This may happen when executing some test cases.
continue;
const ConfigOption *opt_new_filament = std::binary_search(extruder_retract_keys.begin(), extruder_retract_keys.end(), opt_key) ? new_full_config.option(filament_prefix + opt_key) : nullptr;
if (opt_new_filament != nullptr && ! opt_new_filament->is_nil()) {
// An extruder retract override is available at some of the filament presets.
if (*opt_old != *opt_new || opt_new->overriden_by(opt_new_filament)) {
auto opt_copy = opt_new->clone();
opt_copy->apply_override(opt_new_filament);
if (*opt_old == *opt_copy)
delete opt_copy;
else {
filament_overrides.set_key_value(opt_key, opt_copy);
print_diff.emplace_back(opt_key);
}
}
} else if (*opt_new != *opt_old)
print_diff.emplace_back(opt_key);
}
return print_diff;
}
// Prepare for storing of the full print config into new_full_config to be exported into the G-code and to be used by the PlaceholderParser.
static t_config_option_keys full_print_config_diffs(const DynamicPrintConfig &current_full_config, const DynamicPrintConfig &new_full_config)
{
t_config_option_keys full_config_diff;
for (const t_config_option_key &opt_key : new_full_config.keys()) {
const ConfigOption *opt_old = current_full_config.option(opt_key);
const ConfigOption *opt_new = new_full_config.option(opt_key);
if (opt_old == nullptr || *opt_new != *opt_old)
full_config_diff.emplace_back(opt_key);
}
return full_config_diff;
}
Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_config)
{
#ifdef _DEBUG
check_model_ids_validity(model);
#endif /* _DEBUG */
// Normalize the config.
new_full_config.option("print_settings_id", true);
new_full_config.option("filament_settings_id", true);
new_full_config.option("printer_settings_id", true);
new_full_config.option("physical_printer_settings_id", true);
new_full_config.normalize_fdm();
// Find modified keys of the various configs. Resolve overrides extruder retract values by filament profiles.
DynamicPrintConfig filament_overrides;
t_config_option_keys print_diff = print_config_diffs(m_config, new_full_config, filament_overrides);
t_config_option_keys full_config_diff = full_print_config_diffs(m_full_print_config, new_full_config);
// Collect changes to object and region configs.
t_config_option_keys object_diff = m_default_object_config.diff(new_full_config);
t_config_option_keys region_diff = m_default_region_config.diff(new_full_config);
// Do not use the ApplyStatus as we will use the max function when updating apply_status.
unsigned int apply_status = APPLY_STATUS_UNCHANGED;
auto update_apply_status = [&apply_status](bool invalidated)
{ apply_status = std::max<unsigned int>(apply_status, invalidated ? APPLY_STATUS_INVALIDATED : APPLY_STATUS_CHANGED); };
if (! (print_diff.empty() && object_diff.empty() && region_diff.empty()))
update_apply_status(false);
// Grab the lock for the Print / PrintObject milestones.
tbb::mutex::scoped_lock lock(this->state_mutex());
// The following call may stop the background processing.
if (! print_diff.empty())
update_apply_status(this->invalidate_state_by_config_options(new_full_config, print_diff));
// Apply variables to placeholder parser. The placeholder parser is used by G-code export,
// which should be stopped if print_diff is not empty.
size_t num_extruders = m_config.nozzle_diameter.size();
bool num_extruders_changed = false;
if (! full_config_diff.empty()) {
update_apply_status(this->invalidate_step(psGCodeExport));
// Set the profile aliases for the PrintBase::output_filename()
m_placeholder_parser.set("print_preset", new_full_config.option("print_settings_id")->clone());
m_placeholder_parser.set("filament_preset", new_full_config.option("filament_settings_id")->clone());
m_placeholder_parser.set("printer_preset", new_full_config.option("printer_settings_id")->clone());
m_placeholder_parser.set("physical_printer_preset", new_full_config.option("physical_printer_settings_id")->clone());
// We want the filament overrides to be applied over their respective extruder parameters by the PlaceholderParser.
// see "Placeholders do not respect filament overrides." GH issue #3649
m_placeholder_parser.apply_config(filament_overrides);
// It is also safe to change m_config now after this->invalidate_state_by_config_options() call.
m_config.apply_only(new_full_config, print_diff, true);
//FIXME use move semantics once ConfigBase supports it.
m_config.apply(filament_overrides);
// Handle changes to object config defaults
m_default_object_config.apply_only(new_full_config, object_diff, true);
// Handle changes to regions config defaults
m_default_region_config.apply_only(new_full_config, region_diff, true);
m_full_print_config = std::move(new_full_config);
if (num_extruders != m_config.nozzle_diameter.size()) {
num_extruders = m_config.nozzle_diameter.size();
num_extruders_changed = true;
}
}
class LayerRanges
{
public:
LayerRanges() {}
// Convert input config ranges into continuous non-overlapping sorted vector of intervals and their configs.
void assign(const t_layer_config_ranges &in) {
m_ranges.clear();
m_ranges.reserve(in.size());
// Input ranges are sorted lexicographically. First range trims the other ranges.
coordf_t last_z = 0;
for (const std::pair<const t_layer_height_range, ModelConfig> &range : in)
if (range.first.second > last_z) {
coordf_t min_z = std::max(range.first.first, 0.);
if (min_z > last_z + EPSILON) {
m_ranges.emplace_back(t_layer_height_range(last_z, min_z), nullptr);
last_z = min_z;
}
if (range.first.second > last_z + EPSILON) {
const DynamicPrintConfig *cfg = &range.second.get();
m_ranges.emplace_back(t_layer_height_range(last_z, range.first.second), cfg);
last_z = range.first.second;
}
}
if (m_ranges.empty())
m_ranges.emplace_back(t_layer_height_range(0, DBL_MAX), nullptr);
else if (m_ranges.back().second == nullptr)
m_ranges.back().first.second = DBL_MAX;
else
m_ranges.emplace_back(t_layer_height_range(m_ranges.back().first.second, DBL_MAX), nullptr);
}
const DynamicPrintConfig* config(const t_layer_height_range &range) const {
auto it = std::lower_bound(m_ranges.begin(), m_ranges.end(), std::make_pair< t_layer_height_range, const DynamicPrintConfig*>(t_layer_height_range(range.first - EPSILON, range.second - EPSILON), nullptr));
// #ys_FIXME_COLOR
// assert(it != m_ranges.end());
// assert(it == m_ranges.end() || std::abs(it->first.first - range.first ) < EPSILON);
// assert(it == m_ranges.end() || std::abs(it->first.second - range.second) < EPSILON);
if (it == m_ranges.end() ||
std::abs(it->first.first - range.first) > EPSILON ||
std::abs(it->first.second - range.second) > EPSILON )
return nullptr; // desired range doesn't found
return (it == m_ranges.end()) ? nullptr : it->second;
}
std::vector<std::pair<t_layer_height_range, const DynamicPrintConfig*>>::const_iterator begin() const { return m_ranges.cbegin(); }
std::vector<std::pair<t_layer_height_range, const DynamicPrintConfig*>>::const_iterator end() const { return m_ranges.cend(); }
private:
std::vector<std::pair<t_layer_height_range, const DynamicPrintConfig*>> m_ranges;
};
struct ModelObjectStatus {
enum Status {
Unknown,
Old,
New,
Moved,
Deleted,
};
ModelObjectStatus(ObjectID id, Status status = Unknown) : id(id), status(status) {}
ObjectID id;
Status status;
LayerRanges layer_ranges;
// Search by id.
bool operator<(const ModelObjectStatus &rhs) const { return id < rhs.id; }
};
std::set<ModelObjectStatus> model_object_status;
// 1) Synchronize model objects.
bool print_regions_reshuffled = false;
if (model.id() != m_model.id()) {
// Kill everything, initialize from scratch.
// Stop background processing.
this->call_cancel_callback();
update_apply_status(this->invalidate_all_steps());
for (PrintObject *object : m_objects) {
model_object_status.emplace(object->model_object()->id(), ModelObjectStatus::Deleted);
update_apply_status(object->invalidate_all_steps());
delete object;
}
m_objects.clear();
print_regions_reshuffled = true;
m_model.assign_copy(model);
for (const ModelObject *model_object : m_model.objects)
model_object_status.emplace(model_object->id(), ModelObjectStatus::New);
} else {
if (m_model.custom_gcode_per_print_z != model.custom_gcode_per_print_z) {
update_apply_status(num_extruders_changed ||
// Tool change G-codes are applied as color changes for a single extruder printer, no need to invalidate tool ordering.
//FIXME The tool ordering may be invalidated unnecessarily if the custom_gcode_per_print_z.mode is not applicable
// to the active print / model state, and then it is reset, so it is being applicable, but empty, thus the effect is the same.
(num_extruders > 1 && custom_per_printz_gcodes_tool_changes_differ(m_model.custom_gcode_per_print_z.gcodes, model.custom_gcode_per_print_z.gcodes)) ?
// The Tool Ordering and the Wipe Tower are no more valid.
this->invalidate_steps({ psWipeTower, psGCodeExport }) :
// There is no change in Tool Changes stored in custom_gcode_per_print_z, therefore there is no need to update Tool Ordering.
this->invalidate_step(psGCodeExport));
m_model.custom_gcode_per_print_z = model.custom_gcode_per_print_z;
}
if (model_object_list_equal(m_model, model)) {
// The object list did not change.
for (const ModelObject *model_object : m_model.objects)
model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
} else if (model_object_list_extended(m_model, model)) {
// Add new objects. Their volumes and configs will be synchronized later.
update_apply_status(this->invalidate_step(psGCodeExport));
for (const ModelObject *model_object : m_model.objects)
model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
for (size_t i = m_model.objects.size(); i < model.objects.size(); ++ i) {
model_object_status.emplace(model.objects[i]->id(), ModelObjectStatus::New);
m_model.objects.emplace_back(ModelObject::new_copy(*model.objects[i]));
m_model.objects.back()->set_model(&m_model);
}
} else {
// Reorder the objects, add new objects.
// First stop background processing before shuffling or deleting the PrintObjects in the object list.
this->call_cancel_callback();
update_apply_status(this->invalidate_step(psGCodeExport));
// Second create a new list of objects.
std::vector<ModelObject*> model_objects_old(std::move(m_model.objects));
m_model.objects.clear();
m_model.objects.reserve(model.objects.size());
auto by_id_lower = [](const ModelObject *lhs, const ModelObject *rhs){ return lhs->id() < rhs->id(); };
std::sort(model_objects_old.begin(), model_objects_old.end(), by_id_lower);
for (const ModelObject *mobj : model.objects) {
auto it = std::lower_bound(model_objects_old.begin(), model_objects_old.end(), mobj, by_id_lower);
if (it == model_objects_old.end() || (*it)->id() != mobj->id()) {
// New ModelObject added.
m_model.objects.emplace_back(ModelObject::new_copy(*mobj));
m_model.objects.back()->set_model(&m_model);
model_object_status.emplace(mobj->id(), ModelObjectStatus::New);
} else {
// Existing ModelObject re-added (possibly moved in the list).
m_model.objects.emplace_back(*it);
model_object_status.emplace(mobj->id(), ModelObjectStatus::Moved);
}
}
bool deleted_any = false;
for (ModelObject *&model_object : model_objects_old) {
if (model_object_status.find(ModelObjectStatus(model_object->id())) == model_object_status.end()) {
model_object_status.emplace(model_object->id(), ModelObjectStatus::Deleted);
deleted_any = true;
} else
// Do not delete this ModelObject instance.
model_object = nullptr;
}
if (deleted_any) {
// Delete PrintObjects of the deleted ModelObjects.
PrintObjectPtrs print_objects_old = std::move(m_objects);
m_objects.clear();
m_objects.reserve(print_objects_old.size());
for (PrintObject *print_object : print_objects_old) {
auto it_status = model_object_status.find(ModelObjectStatus(print_object->model_object()->id()));
assert(it_status != model_object_status.end());
if (it_status->status == ModelObjectStatus::Deleted) {
update_apply_status(print_object->invalidate_all_steps());
delete print_object;
} else
m_objects.emplace_back(print_object);
}
for (ModelObject *model_object : model_objects_old)
delete model_object;
print_regions_reshuffled = true;
}
}
}
// 2) Map print objects including their transformation matrices.
struct PrintObjectStatus {
enum Status {
Unknown,
Deleted,
Reused,
New
};
PrintObjectStatus(PrintObject *print_object, Status status = Unknown) :
id(print_object->model_object()->id()),
print_object(print_object),
trafo(print_object->trafo()),
status(status) {}
PrintObjectStatus(ObjectID id) : id(id), print_object(nullptr), trafo(Transform3d::Identity()), status(Unknown) {}
// ID of the ModelObject & PrintObject
ObjectID id;
// Pointer to the old PrintObject
PrintObject *print_object;
// Trafo generated with model_object->world_matrix(true)
Transform3d trafo;
Status status;
// Search by id.
bool operator<(const PrintObjectStatus &rhs) const { return id < rhs.id; }
};
std::multiset<PrintObjectStatus> print_object_status;
for (PrintObject *print_object : m_objects)
print_object_status.emplace(PrintObjectStatus(print_object));
// 3) Synchronize ModelObjects & PrintObjects.
for (size_t idx_model_object = 0; idx_model_object < model.objects.size(); ++ idx_model_object) {
ModelObject &model_object = *m_model.objects[idx_model_object];
auto it_status = model_object_status.find(ModelObjectStatus(model_object.id()));
assert(it_status != model_object_status.end());
assert(it_status->status != ModelObjectStatus::Deleted);
const ModelObject& model_object_new = *model.objects[idx_model_object];
const_cast<ModelObjectStatus&>(*it_status).layer_ranges.assign(model_object_new.layer_config_ranges);
if (it_status->status == ModelObjectStatus::New)
// PrintObject instances will be added in the next loop.
continue;
// Update the ModelObject instance, possibly invalidate the linked PrintObjects.
assert(it_status->status == ModelObjectStatus::Old || it_status->status == ModelObjectStatus::Moved);
// Check whether a model part volume was added or removed, their transformations or order changed.
// Only volume IDs, volume types, transformation matrices and their order are checked, configuration and other parameters are NOT checked.
bool model_parts_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::MODEL_PART);
bool modifiers_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::PARAMETER_MODIFIER);
bool supports_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_BLOCKER) ||
model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_ENFORCER);
if (model_parts_differ || modifiers_differ ||
model_object.origin_translation != model_object_new.origin_translation ||
! model_object.layer_height_profile.timestamp_matches(model_object_new.layer_height_profile) ||
! layer_height_ranges_equal(model_object.layer_config_ranges, model_object_new.layer_config_ranges, model_object_new.layer_height_profile.empty())) {
// The very first step (the slicing step) is invalidated. One may freely remove all associated PrintObjects.
auto range = print_object_status.equal_range(PrintObjectStatus(model_object.id()));
for (auto it = range.first; it != range.second; ++ it) {
update_apply_status(it->print_object->invalidate_all_steps());
const_cast<PrintObjectStatus&>(*it).status = PrintObjectStatus::Deleted;
}
// Copy content of the ModelObject including its ID, do not change the parent.
model_object.assign_copy(model_object_new);
} else if (supports_differ || model_custom_supports_data_changed(model_object, model_object_new)) {
// First stop background processing before shuffling or deleting the ModelVolumes in the ModelObject's list.
if (supports_differ) {
this->call_cancel_callback();
update_apply_status(false);
}
// Invalidate just the supports step.
auto range = print_object_status.equal_range(PrintObjectStatus(model_object.id()));
for (auto it = range.first; it != range.second; ++ it)
update_apply_status(it->print_object->invalidate_step(posSupportMaterial));
if (supports_differ) {
// Copy just the support volumes.
model_volume_list_update_supports(model_object, model_object_new);
}
} else if (model_custom_seam_data_changed(model_object, model_object_new)) {
update_apply_status(this->invalidate_step(psGCodeExport));
}
if (! model_parts_differ && ! modifiers_differ) {
// Synchronize Object's config.
bool object_config_changed = ! model_object.config.timestamp_matches(model_object_new.config);
if (object_config_changed)
model_object.config.assign_config(model_object_new.config);
if (! object_diff.empty() || object_config_changed || num_extruders_changed) {
PrintObjectConfig new_config = PrintObject::object_config_from_model_object(m_default_object_config, model_object, num_extruders);
auto range = print_object_status.equal_range(PrintObjectStatus(model_object.id()));
for (auto it = range.first; it != range.second; ++ it) {
t_config_option_keys diff = it->print_object->config().diff(new_config);
if (! diff.empty()) {
update_apply_status(it->print_object->invalidate_state_by_config_options(it->print_object->config(), new_config, diff));
it->print_object->config_apply_only(new_config, diff, true);
}
}
}
// Synchronize (just copy) the remaining data of ModelVolumes (name, config, custom supports data).
//FIXME What to do with m_material_id?
model_volume_list_copy_configs(model_object /* dst */, model_object_new /* src */, ModelVolumeType::MODEL_PART);
model_volume_list_copy_configs(model_object /* dst */, model_object_new /* src */, ModelVolumeType::PARAMETER_MODIFIER);
layer_height_ranges_copy_configs(model_object.layer_config_ranges /* dst */, model_object_new.layer_config_ranges /* src */);
// Copy the ModelObject name, input_file and instances. The instances will be compared against PrintObject instances in the next step.
model_object.name = model_object_new.name;
model_object.input_file = model_object_new.input_file;
// Only refresh ModelInstances if there is any change.
if (model_object.instances.size() != model_object_new.instances.size() ||
! std::equal(model_object.instances.begin(), model_object.instances.end(), model_object_new.instances.begin(), [](auto l, auto r){ return l->id() == r->id(); })) {
// G-code generator accesses model_object.instances to generate sequential print ordering matching the Plater object list.
update_apply_status(this->invalidate_step(psGCodeExport));
model_object.clear_instances();
model_object.instances.reserve(model_object_new.instances.size());
for (const ModelInstance *model_instance : model_object_new.instances) {
model_object.instances.emplace_back(new ModelInstance(*model_instance));
model_object.instances.back()->set_model_object(&model_object);
}
} else if (! std::equal(model_object.instances.begin(), model_object.instances.end(), model_object_new.instances.begin(),
[](auto l, auto r){ return l->print_volume_state == r->print_volume_state && l->printable == r->printable &&
l->get_transformation().get_matrix().isApprox(r->get_transformation().get_matrix()); })) {
// If some of the instances changed, the bounding box of the updated ModelObject is likely no more valid.
// This is safe as the ModelObject's bounding box is only accessed from this function, which is called from the main thread only.
model_object.invalidate_bounding_box();
// Synchronize the content of instances.
auto new_instance = model_object_new.instances.begin();
for (auto old_instance = model_object.instances.begin(); old_instance != model_object.instances.end(); ++ old_instance, ++ new_instance) {
(*old_instance)->set_transformation((*new_instance)->get_transformation());
(*old_instance)->print_volume_state = (*new_instance)->print_volume_state;
(*old_instance)->printable = (*new_instance)->printable;
}
}
}
}
// 4) Generate PrintObjects from ModelObjects and their instances.
{
PrintObjectPtrs print_objects_new;
print_objects_new.reserve(std::max(m_objects.size(), m_model.objects.size()));
bool new_objects = false;
// Walk over all new model objects and check, whether there are matching PrintObjects.
for (ModelObject *model_object : m_model.objects) {
auto range = print_object_status.equal_range(PrintObjectStatus(model_object->id()));
std::vector<const PrintObjectStatus*> old;
if (range.first != range.second) {
old.reserve(print_object_status.count(PrintObjectStatus(model_object->id())));
for (auto it = range.first; it != range.second; ++ it)
if (it->status != PrintObjectStatus::Deleted)
old.emplace_back(&(*it));
}
// Generate a list of trafos and XY offsets for instances of a ModelObject
// Producing the config for PrintObject on demand, caching it at print_object_last.
const PrintObject *print_object_last = nullptr;
auto print_object_apply_config = [this, &print_object_last, model_object, num_extruders](PrintObject* print_object) {
print_object->config_apply(print_object_last ?
print_object_last->config() :
PrintObject::object_config_from_model_object(m_default_object_config, *model_object, num_extruders));
print_object_last = print_object;
};
std::vector<PrintObjectTrafoAndInstances> new_print_instances = print_objects_from_model_object(*model_object);
if (old.empty()) {
// Simple case, just generate new instances.
for (PrintObjectTrafoAndInstances &print_instances : new_print_instances) {
PrintObject *print_object = new PrintObject(this, model_object, print_instances.trafo, std::move(print_instances.instances));
print_object_apply_config(print_object);
print_objects_new.emplace_back(print_object);
// print_object_status.emplace(PrintObjectStatus(print_object, PrintObjectStatus::New));
new_objects = true;
}
continue;
}
// Complex case, try to merge the two lists.
// Sort the old lexicographically by their trafos.
std::sort(old.begin(), old.end(), [](const PrintObjectStatus *lhs, const PrintObjectStatus *rhs){ return transform3d_lower(lhs->trafo, rhs->trafo); });
// Merge the old / new lists.
auto it_old = old.begin();
for (PrintObjectTrafoAndInstances &new_instances : new_print_instances) {
for (; it_old != old.end() && transform3d_lower((*it_old)->trafo, new_instances.trafo); ++ it_old);
if (it_old == old.end() || ! transform3d_equal((*it_old)->trafo, new_instances.trafo)) {
// This is a new instance (or a set of instances with the same trafo). Just add it.
PrintObject *print_object = new PrintObject(this, model_object, new_instances.trafo, std::move(new_instances.instances));
print_object_apply_config(print_object);
print_objects_new.emplace_back(print_object);
// print_object_status.emplace(PrintObjectStatus(print_object, PrintObjectStatus::New));
new_objects = true;
if (it_old != old.end())
const_cast<PrintObjectStatus*>(*it_old)->status = PrintObjectStatus::Deleted;
} else {
// The PrintObject already exists and the copies differ.
PrintBase::ApplyStatus status = (*it_old)->print_object->set_instances(std::move(new_instances.instances));
if (status != PrintBase::APPLY_STATUS_UNCHANGED)
update_apply_status(status == PrintBase::APPLY_STATUS_INVALIDATED);
print_objects_new.emplace_back((*it_old)->print_object);
const_cast<PrintObjectStatus*>(*it_old)->status = PrintObjectStatus::Reused;
}
}
}
if (m_objects != print_objects_new) {
this->call_cancel_callback();
update_apply_status(this->invalidate_all_steps());
m_objects = print_objects_new;
// Delete the PrintObjects marked as Unknown or Deleted.
bool deleted_objects = false;
for (auto &pos : print_object_status)
if (pos.status == PrintObjectStatus::Unknown || pos.status == PrintObjectStatus::Deleted) {
update_apply_status(pos.print_object->invalidate_all_steps());
delete pos.print_object;
deleted_objects = true;
}
if (new_objects || deleted_objects)
update_apply_status(this->invalidate_steps({ psSkirt, psBrim, psWipeTower, psGCodeExport }));
if (new_objects)
update_apply_status(false);
print_regions_reshuffled = true;
}
print_object_status.clear();
}
// All regions now have distinct settings.
// Check whether applying the new region config defaults we'd get different regions.
for (PrintObject *print_object : m_objects) {
const LayerRanges *layer_ranges;
{
auto it_status = model_object_status.find(ModelObjectStatus(print_object->model_object()->id()));
assert(it_status != model_object_status.end());
assert(it_status->status != ModelObjectStatus::Deleted);
layer_ranges = &it_status->layer_ranges;
}
bool some_object_region_modified = false;
bool regions_merged = false;
for (size_t region_id = 0; region_id < print_object->m_region_volumes.size(); ++ region_id) {
PrintRegion &region = *print_object->m_all_regions[region_id];
PrintRegionConfig region_config;
bool region_config_set = false;
for (const PrintRegionVolumes::VolumeWithZRange &volume_w_zrange : print_object->m_region_volumes[region_id].volumes) {
const ModelVolume &volume = *print_object->model_object()->volumes[volume_w_zrange.volume_idx];
const DynamicPrintConfig *layer_range_config = layer_ranges->config(volume_w_zrange.layer_height_range);
PrintRegionConfig this_region_config = PrintObject::region_config_from_model_volume(m_default_region_config, layer_range_config, volume, num_extruders);
if (region_config_set) {
if (this_region_config != region_config) {
regions_merged = true;
break;
}
} else {
region_config = std::move(this_region_config);
region_config_set = true;
}
}
if (regions_merged)
break;
size_t region_config_hash = region_config.hash();
bool modified = region.config_hash() != region_config_hash || region.config() != region_config;
some_object_region_modified |= modified;
if (some_object_region_modified)
// Verify whether this region was not merged with some other region.
for (size_t i = 0; i < region_id; ++ i) {
const PrintRegion &region_other = *print_object->m_all_regions[i];
if (region_other.config_hash() == region_config_hash && region_other.config() == region_config) {
// Regions were merged. Reset this print_object.
regions_merged = true;
break;
}
}
if (modified) {
// Stop the background process before assigning new configuration to the regions.
t_config_option_keys diff = region.config().diff(region_config);
update_apply_status(print_object->invalidate_state_by_config_options(region.config(), region_config, diff));
region.config_apply_only(region_config, diff, false);
}
}
if (regions_merged) {
// Two regions of a single object were either split or merged. This invalidates the whole slicing.
update_apply_status(print_object->invalidate_all_steps());
print_object->m_region_volumes.clear();
}
}
// Possibly add new regions for the newly added or resetted PrintObjects.
for (size_t idx_print_object = 0; idx_print_object < m_objects.size();) {
PrintObject &print_object0 = *m_objects[idx_print_object];
const ModelObject &model_object = *print_object0.model_object();
const LayerRanges *layer_ranges;
{
auto it_status = model_object_status.find(ModelObjectStatus(model_object.id()));
assert(it_status != model_object_status.end());
assert(it_status->status != ModelObjectStatus::Deleted);
layer_ranges = &it_status->layer_ranges;
}
if (print_object0.m_region_volumes.empty()) {
// Fresh or completely invalidated print_object. Assign regions.
unsigned int volume_id = 0;
for (const ModelVolume *volume : model_object.volumes) {
if (! volume->is_model_part() && ! volume->is_modifier()) {
++ volume_id;
continue;
}
// Filter the layer ranges, so they do not overlap and they contain at least a single layer.
// Now insert a volume with a layer range to its own region.
for (auto it_range = layer_ranges->begin(); it_range != layer_ranges->end(); ++ it_range) {
int region_id = -1;
// Get the config applied to this volume.
PrintRegionConfig config = PrintObject::region_config_from_model_volume(m_default_region_config, it_range->second, *volume, num_extruders);
size_t hash = config.hash();
for (size_t i = 0; i < print_object0.m_all_regions.size(); ++ i)
if (hash == print_object0.m_all_regions[i]->config_hash() && config == *print_object0.m_all_regions[i]) {
region_id = int(i);
break;
}
// If no region exists with the same config, create a new one.
if (region_id == -1) {
region_id = int(print_object0.m_all_regions.size());
print_object0.m_all_regions.emplace_back(std::make_unique<PrintRegion>(std::move(config), hash));
}
print_object0.add_region_volume(region_id, volume_id, it_range->first);
}
++ volume_id;
}
print_regions_reshuffled = true;
}
for (++ idx_print_object; idx_print_object < m_objects.size() && m_objects[idx_print_object]->model_object() == &model_object; ++ idx_print_object) {
PrintObject &print_object = *m_objects[idx_print_object];
if (print_object.m_region_volumes.empty()) {
// Copy region volumes and regions from print_object0.
print_object.m_region_volumes = print_object0.m_region_volumes;
print_object.m_all_regions.reserve(print_object0.m_all_regions.size());
for (const std::unique_ptr<Slic3r::PrintRegion> &region : print_object0.m_all_regions)
print_object.m_all_regions.emplace_back(std::make_unique<PrintRegion>(*region));
print_regions_reshuffled = true;
}
}
}
if (print_regions_reshuffled) {
// Update Print::m_print_regions from objects.
struct cmp { bool operator() (const PrintRegion *l, const PrintRegion *r) const { return l->config_hash() == r->config_hash() && l->config() == r->config(); } };
std::set<const PrintRegion*, cmp> region_set;
m_print_regions.clear();
for (PrintObject *print_object : m_objects)
for (std::unique_ptr<Slic3r::PrintRegion> &print_region : print_object->m_all_regions)
if (auto it = region_set.find(print_region.get()); it == region_set.end()) {
int print_region_id = int(m_print_regions.size());
m_print_regions.emplace_back(print_region.get());
print_region->m_print_region_id = print_region_id;
} else {
print_region->m_print_region_id = (*it)->print_region_id();
}
}
// Update SlicingParameters for each object where the SlicingParameters is not valid.
// If it is not valid, then it is ensured that PrintObject.m_slicing_params is not in use
// (posSlicing and posSupportMaterial was invalidated).
for (PrintObject *object : m_objects)
object->update_slicing_parameters();
#ifdef _DEBUG
check_model_ids_equal(m_model, model);
#endif /* _DEBUG */
return static_cast<ApplyStatus>(apply_status);
}
} // namespace Slic3r