PrusaSlicer-NonPlainar/tests/fff_print/test_trianglemesh.cpp

434 lines
19 KiB
C++
Raw Normal View History

#include <catch2/catch.hpp>
#include "libslic3r/TriangleMesh.hpp"
#include "libslic3r/Point.hpp"
#include "libslic3r/Config.hpp"
#include "libslic3r/Model.hpp"
#include "libslic3r/libslic3r.h"
#include <algorithm>
#include <future>
#include <chrono>
//#include "test_options.hpp"
#include "test_data.hpp"
using namespace Slic3r;
using namespace std;
SCENARIO( "TriangleMesh: Basic mesh statistics") {
GIVEN( "A 20mm cube, built from constexpr std::array" ) {
std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
TriangleMesh cube(vertices, facets);
cube.repair();
THEN( "Volume is appropriate for 20mm square cube.") {
REQUIRE(abs(cube.volume() - 20.0*20.0*20.0) < 1e-2);
}
THEN( "Vertices array matches input.") {
for (auto i = 0U; i < cube.its.vertices.size(); i++) {
REQUIRE(cube.its.vertices.at(i) == vertices.at(i).cast<float>());
}
for (auto i = 0U; i < vertices.size(); i++) {
REQUIRE(vertices.at(i).cast<float>() == cube.its.vertices.at(i));
}
}
THEN( "Vertex count matches vertex array size.") {
REQUIRE(cube.facets_count() == facets.size());
}
THEN( "Facet array matches input.") {
for (auto i = 0U; i < cube.its.indices.size(); i++) {
REQUIRE(cube.its.indices.at(i) == facets.at(i));
}
for (auto i = 0U; i < facets.size(); i++) {
REQUIRE(facets.at(i) == cube.its.indices.at(i));
}
}
THEN( "Facet count matches facet array size.") {
REQUIRE(cube.facets_count() == facets.size());
}
#if 0
THEN( "Number of normals is equal to the number of facets.") {
REQUIRE(cube.normals().size() == facets.size());
}
#endif
THEN( "center() returns the center of the object.") {
REQUIRE(cube.center() == Vec3d(10.0,10.0,10.0));
}
THEN( "Size of cube is (20,20,20)") {
REQUIRE(cube.size() == Vec3d(20,20,20));
}
}
GIVEN( "A 20mm cube with one corner on the origin") {
const std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
const std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
TriangleMesh cube(vertices, facets);
cube.repair();
THEN( "Volume is appropriate for 20mm square cube.") {
REQUIRE(abs(cube.volume() - 20.0*20.0*20.0) < 1e-2);
}
THEN( "Vertices array matches input.") {
for (auto i = 0U; i < cube.its.vertices.size(); i++) {
REQUIRE(cube.its.vertices.at(i) == vertices.at(i).cast<float>());
}
for (auto i = 0U; i < vertices.size(); i++) {
REQUIRE(vertices.at(i).cast<float>() == cube.its.vertices.at(i));
}
}
THEN( "Vertex count matches vertex array size.") {
REQUIRE(cube.facets_count() == facets.size());
}
THEN( "Facet array matches input.") {
for (auto i = 0U; i < cube.its.indices.size(); i++) {
REQUIRE(cube.its.indices.at(i) == facets.at(i));
}
for (auto i = 0U; i < facets.size(); i++) {
REQUIRE(facets.at(i) == cube.its.indices.at(i));
}
}
THEN( "Facet count matches facet array size.") {
REQUIRE(cube.facets_count() == facets.size());
}
#if 0
THEN( "Number of normals is equal to the number of facets.") {
REQUIRE(cube.normals().size() == facets.size());
}
#endif
THEN( "center() returns the center of the object.") {
REQUIRE(cube.center() == Vec3d(10.0,10.0,10.0));
}
THEN( "Size of cube is (20,20,20)") {
REQUIRE(cube.size() == Vec3d(20,20,20));
}
}
}
SCENARIO( "TriangleMesh: Transformation functions affect mesh as expected.") {
GIVEN( "A 20mm cube with one corner on the origin") {
const std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
const std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
TriangleMesh cube(vertices, facets);
cube.repair();
WHEN( "The cube is scaled 200% uniformly") {
cube.scale(2.0);
THEN( "The volume is equivalent to 40x40x40 (all dimensions increased by 200%") {
REQUIRE(abs(cube.volume() - 40.0*40.0*40.0) < 1e-2);
}
}
WHEN( "The resulting cube is scaled 200% in the X direction") {
cube.scale(Vec3d(2.0, 1, 1));
THEN( "The volume is doubled.") {
REQUIRE(abs(cube.volume() - 2*20.0*20.0*20.0) < 1e-2);
}
THEN( "The X coordinate size is 200%.") {
REQUIRE(cube.its.vertices.at(0).x() == 40.0);
}
}
WHEN( "The cube is scaled 25% in the X direction") {
cube.scale(Vec3d(0.25, 1, 1));
THEN( "The volume is 25% of the previous volume.") {
REQUIRE(abs(cube.volume() - 0.25*20.0*20.0*20.0) < 1e-2);
}
THEN( "The X coordinate size is 25% from previous.") {
REQUIRE(cube.its.vertices.at(0).x() == 5.0);
}
}
WHEN( "The cube is rotated 45 degrees.") {
cube.rotate_z(float(M_PI / 4.));
THEN( "The X component of the size is sqrt(2)*20") {
REQUIRE(abs(cube.size().x() - sqrt(2.0)*20) < 1e-2);
}
}
WHEN( "The cube is translated (5, 10, 0) units with a Vec3f ") {
cube.translate(Vec3f(5.0, 10.0, 0.0));
THEN( "The first vertex is located at 25, 30, 0") {
REQUIRE(cube.its.vertices.at(0) == Vec3f(25.0, 30.0, 0.0));
}
}
WHEN( "The cube is translated (5, 10, 0) units with 3 doubles") {
cube.translate(5.0, 10.0, 0.0);
THEN( "The first vertex is located at 25, 30, 0") {
REQUIRE(cube.its.vertices.at(0) == Vec3f(25.0, 30.0, 0.0));
}
}
WHEN( "The cube is translated (5, 10, 0) units and then aligned to origin") {
cube.translate(5.0, 10.0, 0.0);
cube.align_to_origin();
THEN( "The third vertex is located at 0,0,0") {
REQUIRE(cube.its.vertices.at(2) == Vec3f(0.0, 0.0, 0.0));
}
}
}
}
SCENARIO( "TriangleMesh: slice behavior.") {
GIVEN( "A 20mm cube with one corner on the origin") {
const std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
const std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
TriangleMesh cube(vertices, facets);
cube.repair();
WHEN("Cube is sliced with z = [0+EPSILON,2,4,8,6,8,10,12,14,16,18,20]") {
std::vector<double> z { 0+EPSILON,2,4,8,6,8,10,12,14,16,18,20 };
auto result {cube.slice(z)};
THEN( "The correct number of polygons are returned per layer.") {
for (auto i = 0U; i < z.size(); i++) {
REQUIRE(result.at(i).size() == 1);
}
}
THEN( "The area of the returned polygons is correct.") {
for (auto i = 0U; i < z.size(); i++) {
REQUIRE(result.at(i).at(0).area() == 20.0*20/(std::pow(SCALING_FACTOR,2)));
}
}
}
}
GIVEN( "A STL with an irregular shape.") {
const std::vector<Vec3d> vertices {Vec3d(0,0,0),Vec3d(0,0,20),Vec3d(0,5,0),Vec3d(0,5,20),Vec3d(50,0,0),Vec3d(50,0,20),Vec3d(15,5,0),Vec3d(35,5,0),Vec3d(15,20,0),Vec3d(50,5,0),Vec3d(35,20,0),Vec3d(15,5,10),Vec3d(50,5,20),Vec3d(35,5,10),Vec3d(35,20,10),Vec3d(15,20,10)};
const std::vector<Vec3crd> facets {Vec3crd(0,1,2),Vec3crd(2,1,3),Vec3crd(1,0,4),Vec3crd(5,1,4),Vec3crd(0,2,4),Vec3crd(4,2,6),Vec3crd(7,6,8),Vec3crd(4,6,7),Vec3crd(9,4,7),Vec3crd(7,8,10),Vec3crd(2,3,6),Vec3crd(11,3,12),Vec3crd(7,12,9),Vec3crd(13,12,7),Vec3crd(6,3,11),Vec3crd(11,12,13),Vec3crd(3,1,5),Vec3crd(12,3,5),Vec3crd(5,4,9),Vec3crd(12,5,9),Vec3crd(13,7,10),Vec3crd(14,13,10),Vec3crd(8,15,10),Vec3crd(10,15,14),Vec3crd(6,11,8),Vec3crd(8,11,15),Vec3crd(15,11,13),Vec3crd(14,15,13)};
TriangleMesh cube(vertices, facets);
cube.repair();
WHEN(" a top tangent plane is sliced") {
auto slices {cube.slice({5.0, 10.0})};
THEN( "its area is included") {
REQUIRE(slices.at(0).at(0).area() > 0);
REQUIRE(slices.at(1).at(0).area() > 0);
}
}
WHEN(" a model that has been transformed is sliced") {
cube.mirror_z();
auto slices {cube.slice({-5.0, -10.0})};
THEN( "it is sliced properly (mirrored bottom plane area is included)") {
REQUIRE(slices.at(0).at(0).area() > 0);
REQUIRE(slices.at(1).at(0).area() > 0);
}
}
}
}
SCENARIO( "make_xxx functions produce meshes.") {
GIVEN("make_cube() function") {
WHEN("make_cube() is called with arguments 20,20,20") {
TriangleMesh cube = make_cube(20,20,20);
THEN("The resulting mesh has one and only one vertex at 0,0,0") {
auto verts {cube.its.vertices};
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return t.x() == 0 && t.y() == 0 && t.z() == 0; } ) == 1);
}
THEN("The mesh volume is 20*20*20") {
REQUIRE(abs(cube.volume() - 20.0*20.0*20.0) < 1e-2);
}
THEN("The resulting mesh is in the repaired state.") {
REQUIRE(cube.repaired == true);
}
THEN("There are 12 facets.") {
REQUIRE(cube.its.indices.size() == 12);
}
}
}
GIVEN("make_cylinder() function") {
WHEN("make_cylinder() is called with arguments 10,10, PI / 3") {
TriangleMesh cyl = make_cylinder(10, 10, PI / 243.0);
double angle = (2*PI / floor(2*PI / (PI / 243.0)));
THEN("The resulting mesh has one and only one vertex at 0,0,0") {
auto verts {cyl.its.vertices};
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return t.x() == 0 && t.y() == 0 && t.z() == 0; } ) == 1);
}
THEN("The resulting mesh has one and only one vertex at 0,0,10") {
auto verts {cyl.its.vertices};
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return t.x() == 0 && t.y() == 0 && t.z() == 10; } ) == 1);
}
THEN("Resulting mesh has 2 + (2*PI/angle * 2) vertices.") {
REQUIRE(cyl.its.vertices.size() == (2 + ((2*PI/angle)*2)));
}
THEN("Resulting mesh has 2*PI/angle * 4 facets") {
REQUIRE(cyl.its.indices.size() == (2*PI/angle)*4);
}
THEN("The resulting mesh is in the repaired state.") {
REQUIRE(cyl.repaired == true);
}
THEN( "The mesh volume is approximately 10pi * 10^2") {
REQUIRE(abs(cyl.volume() - (10.0 * M_PI * std::pow(10,2))) < 1);
}
}
}
GIVEN("make_sphere() function") {
WHEN("make_sphere() is called with arguments 10, PI / 3") {
TriangleMesh sph = make_sphere(10, PI / 243.0);
double angle = (2.0*PI / floor(2.0*PI / (PI / 243.0)));
THEN("Resulting mesh has one point at 0,0,-10 and one at 0,0,10") {
const std::vector<stl_vertex> &verts = sph.its.vertices;
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return is_approx(t, Vec3f(0.f, 0.f, 10.f)); } ) == 1);
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return is_approx(t, Vec3f(0.f, 0.f, -10.f)); } ) == 1);
}
THEN("The resulting mesh is in the repaired state.") {
REQUIRE(sph.repaired == true);
}
THEN( "The mesh volume is approximately 4/3 * pi * 10^3") {
REQUIRE(abs(sph.volume() - (4.0/3.0 * M_PI * std::pow(10,3))) < 1); // 1% tolerance?
}
}
}
}
SCENARIO( "TriangleMesh: split functionality.") {
GIVEN( "A 20mm cube with one corner on the origin") {
const std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
const std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
TriangleMesh cube(vertices, facets);
cube.repair();
WHEN( "The mesh is split into its component parts.") {
auto meshes {cube.split()};
THEN(" The bounding box statistics are propagated to the split copies") {
REQUIRE(meshes.size() == 1);
REQUIRE((meshes.at(0)->bounding_box() == cube.bounding_box()));
}
}
}
GIVEN( "Two 20mm cubes, each with one corner on the origin, merged into a single TriangleMesh") {
const std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
const std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
TriangleMesh cube(vertices, facets);
cube.repair();
TriangleMesh cube2(vertices, facets);
cube2.repair();
cube.merge(cube2);
cube.repair();
WHEN( "The combined mesh is split") {
auto meshes {cube.split()};
THEN( "Two meshes are in the output vector.") {
REQUIRE(meshes.size() == 2);
}
}
}
}
SCENARIO( "TriangleMesh: Mesh merge functions") {
GIVEN( "Two 20mm cubes, each with one corner on the origin") {
const std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
const std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
TriangleMesh cube(vertices, facets);
cube.repair();
TriangleMesh cube2(vertices, facets);
cube2.repair();
WHEN( "The two meshes are merged") {
cube.merge(cube2);
cube.repair();
THEN( "There are twice as many facets in the merged mesh as the original.") {
REQUIRE(cube.stl.stats.number_of_facets == 2 * cube2.stl.stats.number_of_facets);
}
}
}
}
SCENARIO( "TriangleMeshSlicer: Cut behavior.") {
GIVEN( "A 20mm cube with one corner on the origin") {
const std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
const std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
TriangleMesh cube(vertices, facets);
cube.repair();
WHEN( "Object is cut at the bottom") {
TriangleMesh upper {};
TriangleMesh lower {};
TriangleMeshSlicer slicer(&cube);
slicer.cut(0, &upper, &lower);
THEN("Upper mesh has all facets except those belonging to the slicing plane.") {
REQUIRE(upper.facets_count() == 12);
}
THEN("Lower mesh has no facets.") {
REQUIRE(lower.facets_count() == 0);
}
}
WHEN( "Object is cut at the center") {
TriangleMesh upper {};
TriangleMesh lower {};
TriangleMeshSlicer slicer(&cube);
slicer.cut(10, &upper, &lower);
THEN("Upper mesh has 2 external horizontal facets, 3 facets on each side, and 6 facets on the triangulated side (2 + 12 + 6).") {
REQUIRE(upper.facets_count() == 2+12+6);
}
THEN("Lower mesh has 2 external horizontal facets, 3 facets on each side, and 6 facets on the triangulated side (2 + 12 + 6).") {
REQUIRE(lower.facets_count() == 2+12+6);
}
}
}
}
#ifdef TEST_PERFORMANCE
TEST_CASE("Regression test for issue #4486 - files take forever to slice") {
TriangleMesh mesh;
auto config {Slic3r::Config::new_from_defaults()};
mesh.ReadSTLFile(std::string(testfile_dir) + "test_trianglemesh/4486/100_000.stl");
mesh.repair();
config->set("layer_height", 500);
config->set("first_layer_height", 250);
config->set("nozzle_diameter", 500);
Slic3r::Model model;
auto print {Slic3r::Test::init_print({mesh}, model, config)};
print->status_cb = [] (int ln, const std::string& msg) { Slic3r::Log::info("Print") << ln << " " << msg << "\n";};
std::future<void> fut = std::async([&print] () { print->process(); });
std::chrono::milliseconds span {120000};
bool timedout {false};
if(fut.wait_for(span) == std::future_status::timeout) {
timedout = true;
}
REQUIRE(timedout == false);
}
#endif // TEST_PERFORMANCE
#ifdef BUILD_PROFILE
TEST_CASE("Profile test for issue #4486 - files take forever to slice") {
TriangleMesh mesh;
auto config {Slic3r::Config::new_from_defaults()};
mesh.ReadSTLFile(std::string(testfile_dir) + "test_trianglemesh/4486/10_000.stl");
mesh.repair();
config->set("layer_height", 500);
config->set("first_layer_height", 250);
config->set("nozzle_diameter", 500);
config->set("fill_density", "5%");
Slic3r::Model model;
auto print {Slic3r::Test::init_print({mesh}, model, config)};
print->status_cb = [] (int ln, const std::string& msg) { Slic3r::Log::info("Print") << ln << " " << msg << "\n";};
print->process();
REQUIRE(true);
}
#endif //BUILD_PROFILE