PrusaSlicer-NonPlainar/lib/Slic3r/Format/STL.pm

209 lines
7.3 KiB
Perl
Raw Normal View History

package Slic3r::Format::STL;
use Moo;
2011-09-01 19:06:28 +00:00
use Slic3r::Geometry qw(X Y Z triangle_normal);
2011-09-01 19:06:28 +00:00
sub read_file {
my $self = shift;
my ($file) = @_;
open my $fh, '<', $file or die "Failed to open $file\n";
# let's detect whether file is ASCII or binary
my $mode;
{
my $size = +(stat $fh)[7];
$mode = 'ascii' if $size < 80 + 4;
# skip binary header
seek $fh, 80, 0;
read $fh, my $buf, 4;
my $triangle_count = unpack 'L', $buf;
die "STL file seems invalid, could not read facet count\n" if !defined $triangle_count;
my $expected_size =
+ 80 # header
+ 4 # count
+ $triangle_count * (
+ 4 # normal, pt,pt,pt (vectors)
* 4 # bytes per value
* 3 # values per vector
+ 2 # the trailing 'short'
);
$mode = ($size == $expected_size) ? 'binary' : 'ascii';
}
2012-02-17 12:49:33 +00:00
my $facets = [];
$mode eq 'ascii'
? _read_ascii($fh, $facets)
: _read_binary($fh, $facets);
close $fh;
2012-02-17 12:49:33 +00:00
my $vertices = [];
{
my %vertices_map = (); # given a vertex's coordinates, what's its index?
my @vertices_facets = (); # given a vertex index, what are the indexes of its tangent facets?
for (my $f = 0; $f <= $#$facets; $f++) {
2012-02-17 12:49:33 +00:00
for (1..3) {
my $point_id = join ',', @{$facets->[$f][$_]};
if (exists $vertices_map{$point_id}) {
$facets->[$f][$_] = $vertices_map{$point_id};
push @{$vertices_facets[$facets->[$f][$_]]}, $f;
2012-02-17 12:49:33 +00:00
} else {
push @$vertices, $facets->[$f][$_];
$facets->[$f][$_] = $vertices_map{$point_id} = $#$vertices;
$vertices_facets[$#$vertices] = [$f];
}
}
}
# The following loop checks that @vertices_facets only groups facets that
# are really connected together (i.e. neighbors or sharing neighbors);
# in other words it takes care of multiple vertices occupying the same
# point in space. It enforces topological correctness which is needed by
# the slicing algorithm.
# I'm keeping it disabled until I find a good test case.
if (0) {
my $vertices_count = $#$vertices; # store it to avoid processing newly created vertices
for (my $v = 0; $v <= $vertices_count; $v++) {
my $more_than_one_vertex_in_this_point = 0;
while (@{$vertices_facets[$v]}) {
my @facets_indexes = @{$vertices_facets[$v]};
@{$vertices_facets[$v]} = ();
my @this_f = shift @facets_indexes;
CYCLE: while (@facets_indexes && @this_f) {
# look for a facet that is connected to $this_f[-1] and whose common line contains $v
my @other_vertices_indexes = grep $_ != $v, @{$facets->[$this_f[-1]]}[1..3];
OTHER: for my $other_f (@facets_indexes) {
# facet is connected if it shares one more point
for (grep $_ != $v, @{$facets->[$other_f]}[1..3]) {
if ($_ ~~ @other_vertices_indexes) {
#printf "facet %d is connected to $other_f (sharing vertices $v and $_)\n", $this_f[-1];
# TODO: we should ensure that the common edge has a different orientation
# for each of the two adjacent facets
push @this_f, $other_f;
@facets_indexes = grep $_ != $other_f, @facets_indexes;
next CYCLE;
}
}
}
# if we're here, then we couldn't find any facet connected to $this_f[-1]
# so we should move this one to a different cluster (that is, a new vertex)
# (or ignore it if it turns to be a non-manifold facet)
if (@this_f > 1) {
push @{$vertices_facets[$v]}, $this_f[-1];
pop @this_f;
$more_than_one_vertex_in_this_point++;
} else {
last CYCLE;
}
}
if ($more_than_one_vertex_in_this_point) {
Slic3r::debugf " more than one vertex in the same point\n";
push @$vertices, $vertices->[$v];
for my $f (@this_f) {
$facets->[$f][$_] = $#$vertices for grep $facets->[$f][$_] == $v, 1..3;
}
}
2012-02-17 12:49:33 +00:00
}
}
}
}
return Slic3r::TriangleMesh->new(vertices => $vertices, facets => $facets);
}
sub _read_ascii {
my ($fh, $facets) = @_;
2012-04-30 19:49:44 +00:00
my $point_re = qr/([^ ]+)\s+([^ ]+)\s+([^ ]+)/;
my $facet;
seek $fh, 0, 0;
while (my $_ = <$fh>) {
if (!$facet) {
/^\s*facet\s+normal\s+$point_re/ or next;
$facet = [ [$1, $2, $3] ];
} else {
if (/^\s*endfacet/) {
push @$facets, $facet;
undef $facet;
} else {
2012-04-30 19:49:44 +00:00
/^\s*vertex\s+$point_re/o or next;
push @$facet, [map $_ * 1, $1, $2, $3];
}
}
}
if ($facet) {
die "STL file seems invalid\n";
}
}
sub _read_binary {
my ($fh, $facets) = @_;
die "bigfloat" unless length(pack "f", 1) == 4;
binmode $fh;
seek $fh, 80 + 4, 0;
while (read $fh, my $_, 4*4*3+2) {
my @v = unpack '(f<3)4';
push @$facets, [ [@v[0..2]], [@v[3..5]], [@v[6..8]], [@v[9..11]] ];
}
}
sub write_file {
my $self = shift;
my ($file, $mesh, $binary) = @_;
open my $fh, '>', $file;
$binary
? _write_binary($fh, $mesh)
: _write_ascii($fh, $mesh);
close $fh;
}
sub _write_binary {
my ($fh, $mesh) = @_;
die "bigfloat" unless length(pack "f", 1) == 4;
binmode $fh;
print $fh pack 'x80';
print $fh pack 'L', scalar(@{$mesh->facets});
foreach my $facet (@{$mesh->facets}) {
print $fh pack '(f<3)4S',
@{_facet_normal($mesh, $facet)},
(map @{$mesh->vertices->[$_]}, @$facet[1,2,3]),
0;
}
}
sub _write_ascii {
my ($fh, $mesh) = @_;
printf $fh "solid\n";
foreach my $facet (@{$mesh->facets}) {
printf $fh " facet normal %f %f %f\n", @{_facet_normal($mesh, $facet)};
printf $fh " outer loop\n";
printf $fh " vertex %f %f %f\n", @{$mesh->vertices->[$_]} for @$facet[1,2,3];
printf $fh " endloop\n";
printf $fh " endfacet\n";
}
printf $fh "endsolid\n";
}
sub _facet_normal {
my ($mesh, $facet) = @_;
return triangle_normal(map $mesh->vertices->[$_], @$facet[1,2,3]);
}
2011-09-01 19:06:28 +00:00
1;