PrusaSlicer-NonPlainar/tests/fff_print/test_fill.cpp

589 lines
27 KiB
C++
Raw Normal View History

#include <catch2/catch.hpp>
#include <numeric>
#include <sstream>
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/Fill/Fill.hpp"
#include "libslic3r/Flow.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"
#include "libslic3r/Print.hpp"
#include "libslic3r/SVG.hpp"
#include "libslic3r/libslic3r.h"
#include "test_data.hpp"
using namespace Slic3r;
using namespace std::literals;
bool test_if_solid_surface_filled(const ExPolygon& expolygon, double flow_spacing, double angle = 0, double density = 1.0);
#if 0
TEST_CASE("Fill: adjusted solid distance") {
int surface_width = 250;
int distance = Slic3r::Flow::solid_spacing(surface_width, 47);
REQUIRE(distance == Approx(50));
REQUIRE(surface_width % distance == 0);
}
#endif
TEST_CASE("Fill: Pattern Path Length", "[Fill]") {
std::unique_ptr<Slic3r::Fill> filler(Slic3r::Fill::new_from_type("rectilinear"));
filler->angle = float(-(PI)/2.0);
FillParams fill_params;
filler->spacing = 5;
fill_params.dont_adjust = true;
//fill_params.endpoints_overlap = false;
fill_params.density = float(filler->spacing / 50.0);
auto test = [&filler, &fill_params] (const ExPolygon& poly) -> Slic3r::Polylines {
Slic3r::Surface surface(stTop, poly);
return filler->fill_surface(&surface, fill_params);
};
SECTION("Square") {
Slic3r::Points test_set;
test_set.reserve(4);
std::vector<Vec2d> points { {0,0}, {100,0}, {100,100}, {0,100} };
for (size_t i = 0; i < 4; ++i) {
std::transform(points.cbegin()+i, points.cend(), std::back_inserter(test_set), [] (const Vec2d& a) -> Point { return Point::new_scale(a.x(), a.y()); } );
std::transform(points.cbegin(), points.cbegin()+i, std::back_inserter(test_set), [] (const Vec2d& a) -> Point { return Point::new_scale(a.x(), a.y()); } );
Slic3r::Polylines paths = test(Slic3r::ExPolygon(test_set));
REQUIRE(paths.size() == 1); // one continuous path
// TODO: determine what the "Expected length" should be for rectilinear fill of a 100x100 polygon.
// This check only checks that it's above scale(3*100 + 2*50) + scaled_epsilon.
// ok abs($paths->[0]->length - scale(3*100 + 2*50)) - scaled_epsilon, 'path has expected length';
REQUIRE(std::abs(paths[0].length() - static_cast<double>(scale_(3*100 + 2*50))) - SCALED_EPSILON > 0); // path has expected length
test_set.clear();
}
}
SECTION("Diamond with endpoints on grid") {
std::vector<Vec2d> points {Vec2d(0,0), Vec2d(100,0), Vec2d(150,50), Vec2d(100,100), Vec2d(0,100), Vec2d(-50,50)};
Slic3r::Points test_set;
test_set.reserve(6);
std::transform(points.cbegin(), points.cend(), std::back_inserter(test_set), [] (const Vec2d& a) -> Point { return Point::new_scale(a.x(), a.y()); } );
Slic3r::Polylines paths = test(Slic3r::ExPolygon(test_set));
REQUIRE(paths.size() == 1); // one continuous path
}
SECTION("Square with hole") {
std::vector<Vec2d> square {Vec2d(0,0), Vec2d(100,0), Vec2d(100,100), Vec2d(0,100)};
std::vector<Vec2d> hole {Vec2d(25,25), Vec2d(75,25), Vec2d(75,75), Vec2d(25,75) };
std::reverse(hole.begin(), hole.end());
Slic3r::Points test_hole;
Slic3r::Points test_square;
std::transform(square.cbegin(), square.cend(), std::back_inserter(test_square), [] (const Vec2d& a) -> Point { return Point::new_scale(a.x(), a.y()); } );
std::transform(hole.cbegin(), hole.cend(), std::back_inserter(test_hole), [] (const Vec2d& a) -> Point { return Point::new_scale(a.x(), a.y()); } );
for (double angle : {-(PI/2.0), -(PI/4.0), -(PI), PI/2.0, PI}) {
for (double spacing : {25.0, 5.0, 7.5, 8.5}) {
fill_params.density = float(filler->spacing / spacing);
filler->angle = float(angle);
ExPolygon e(test_square, test_hole);
Slic3r::Polylines paths = test(e);
#if 0
{
BoundingBox bbox = get_extents(e);
SVG svg("c:\\data\\temp\\square_with_holes.svg", bbox);
svg.draw(e);
svg.draw(paths);
svg.Close();
}
#endif
REQUIRE((paths.size() >= 1 && paths.size() <= 3));
// paths don't cross hole
REQUIRE(diff_pl(paths, offset(e, float(SCALED_EPSILON*10))).size() == 0);
}
}
}
SECTION("Regression: Missing infill segments in some rare circumstances") {
filler->angle = float(PI/4.0);
fill_params.dont_adjust = false;
filler->spacing = 0.654498;
//filler->endpoints_overlap = unscale(359974);
fill_params.density = 1;
filler->layer_id = 66;
filler->z = 20.15;
Slic3r::Points points {Point(25771516,14142125),Point(14142138,25771515),Point(2512749,14142131),Point(14142125,2512749)};
Slic3r::Polylines paths = test(Slic3r::ExPolygon(points));
REQUIRE(paths.size() == 1); // one continuous path
// TODO: determine what the "Expected length" should be for rectilinear fill of a 100x100 polygon.
// This check only checks that it's above scale(3*100 + 2*50) + scaled_epsilon.
// ok abs($paths->[0]->length - scale(3*100 + 2*50)) - scaled_epsilon, 'path has expected length';
REQUIRE(std::abs(paths[0].length() - static_cast<double>(scale_(3*100 + 2*50))) - SCALED_EPSILON > 0); // path has expected length
}
SECTION("Rotated Square produces one continuous path") {
Slic3r::ExPolygon expolygon(Polygon::new_scale({ {0, 0}, {50, 0}, {50, 50}, {0, 50} }));
std::unique_ptr<Slic3r::Fill> filler(Slic3r::Fill::new_from_type("rectilinear"));
filler->bounding_box = get_extents(expolygon);
filler->angle = 0;
Surface surface(stTop, expolygon);
// width, height, nozzle_dmr
auto flow = Slic3r::Flow(0.69f, 0.4f, 0.5f);
FillParams fill_params;
for (auto density : { 0.4, 1.0 }) {
fill_params.density = density;
filler->spacing = flow.spacing();
REQUIRE(!fill_params.use_arachne); // Make this test fail when Arachne is used because this test is not ready for it.
for (auto angle : { 0.0, 45.0}) {
surface.expolygon.rotate(angle, Point(0,0));
Polylines paths = filler->fill_surface(&surface, fill_params);
// one continuous path
REQUIRE(paths.size() == 1);
}
}
}
#if 0 // Disabled temporarily due to precission issues on the Mac VM
SECTION("Solid surface fill") {
Slic3r::Points points {
Point::new_scale(6883102, 9598327.01296997),
Point::new_scale(6883102, 20327272.01297),
Point::new_scale(3116896, 20327272.01297),
Point::new_scale(3116896, 9598327.01296997)
};
Slic3r::ExPolygon expolygon(points);
REQUIRE(test_if_solid_surface_filled(expolygon, 0.55) == true);
for (size_t i = 0; i <= 20; ++i)
{
expolygon.scale(1.05);
REQUIRE(test_if_solid_surface_filled(expolygon, 0.55) == true);
}
}
#endif
SECTION("Solid surface fill") {
Slic3r::Points points {
Slic3r::Point(59515297,5422499),Slic3r::Point(59531249,5578697),Slic3r::Point(59695801,6123186),
Slic3r::Point(59965713,6630228),Slic3r::Point(60328214,7070685),Slic3r::Point(60773285,7434379),
Slic3r::Point(61274561,7702115),Slic3r::Point(61819378,7866770),Slic3r::Point(62390306,7924789),
Slic3r::Point(62958700,7866744),Slic3r::Point(63503012,7702244),Slic3r::Point(64007365,7434357),
Slic3r::Point(64449960,7070398),Slic3r::Point(64809327,6634999),Slic3r::Point(65082143,6123325),
Slic3r::Point(65245005,5584454),Slic3r::Point(65266967,5422499),Slic3r::Point(66267307,5422499),
Slic3r::Point(66269190,8310081),Slic3r::Point(66275379,17810072),Slic3r::Point(66277259,20697500),
Slic3r::Point(65267237,20697500),Slic3r::Point(65245004,20533538),Slic3r::Point(65082082,19994444),
Slic3r::Point(64811462,19488579),Slic3r::Point(64450624,19048208),Slic3r::Point(64012101,18686514),
Slic3r::Point(63503122,18415781),Slic3r::Point(62959151,18251378),Slic3r::Point(62453416,18198442),
Slic3r::Point(62390147,18197355),Slic3r::Point(62200087,18200576),Slic3r::Point(61813519,18252990),
Slic3r::Point(61274433,18415918),Slic3r::Point(60768598,18686517),Slic3r::Point(60327567,19047892),
Slic3r::Point(59963609,19493297),Slic3r::Point(59695865,19994587),Slic3r::Point(59531222,20539379),
Slic3r::Point(59515153,20697500),Slic3r::Point(58502480,20697500),Slic3r::Point(58502480,5422499)
};
Slic3r::ExPolygon expolygon(points);
REQUIRE(test_if_solid_surface_filled(expolygon, 0.55) == true);
REQUIRE(test_if_solid_surface_filled(expolygon, 0.55, PI/2.0) == true);
}
SECTION("Solid surface fill") {
Slic3r::Points points {
Point::new_scale(0,0),Point::new_scale(98,0),Point::new_scale(98,10), Point::new_scale(0,10)
};
Slic3r::ExPolygon expolygon(points);
REQUIRE(test_if_solid_surface_filled(expolygon, 0.5, 45.0, 0.99) == true);
}
}
SCENARIO("Infill does not exceed perimeters", "[Fill]")
{
auto test = [](const std::string_view pattern) {
auto config = Slic3r::DynamicPrintConfig::full_print_config_with({
{ "nozzle_diameter", "0.4, 0.4, 0.4, 0.4" },
{ "fill_pattern", pattern },
{ "top_fill_pattern", pattern },
{ "bottom_fill_pattern", pattern },
{ "perimeters", 1 },
{ "skirts", 0 },
{ "fill_density", 0.2 },
{ "layer_height", 0.05 },
{ "perimeter_extruder", 1 },
{ "infill_extruder", 2 }
});
WHEN("40mm cube sliced") {
std::string gcode = Slic3r::Test::slice({ mesh(Slic3r::Test::TestMesh::cube_20x20x20, Vec3d::Zero(), 2.0) }, config);
THEN("gcode not empty") {
REQUIRE(! gcode.empty());
}
THEN("infill does not exceed perimeters") {
GCodeReader parser;
const int perimeter_extruder = config.opt_int("perimeter_extruder");
const int infill_extruder = config.opt_int("infill_extruder");
int tool = -1;
Points perimeter_points;
Points infill_points;
parser.parse_buffer(gcode, [&tool, &perimeter_points, &infill_points, perimeter_extruder, infill_extruder]
(Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line)
{
// if the command is a T command, set the the current tool
if (boost::starts_with(line.cmd(), "T")) {
tool = atoi(line.cmd().data() + 1) + 1;
} else if (line.cmd() == "G1" && line.extruding(self) && line.dist_XY(self) > 0) {
if (tool == perimeter_extruder)
perimeter_points.emplace_back(line.new_XY_scaled(self));
else if (tool == infill_extruder)
infill_points.emplace_back(line.new_XY_scaled(self));
}
});
auto convex_hull = Geometry::convex_hull(perimeter_points);
int num_inside = std::count_if(infill_points.begin(), infill_points.end(), [&convex_hull](const Point &pt){ return convex_hull.contains(pt); });
REQUIRE(num_inside == infill_points.size());
}
}
};
GIVEN("Rectilinear") { test("rectilinear"sv); }
GIVEN("Honeycomb") { test("honeycomb"sv); }
GIVEN("HilbertCurve") { test("hilbertcurve"sv); }
GIVEN("Concentric") { test("concentric"sv); }
}
SCENARIO("Infill only where needed", "[Fill]")
{
DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config();
config.set_deserialize_strict({
{ "nozzle_diameter", "0.4, 0.4, 0.4, 0.4" },
{ "infill_only_where_needed", true },
{ "bottom_solid_layers", 0 },
{ "infill_extruder", 2 },
{ "infill_extrusion_width", 0.5 },
{ "wipe_into_infill", false },
{ "fill_density", 0.4 },
// for preventing speeds from being altered
{ "cooling", "0, 0, 0, 0" },
// for preventing speeds from being altered
{ "first_layer_speed", "100%" }
});
auto test = [&config]() -> double {
2022-06-29 22:22:25 +00:00
TriangleMesh pyramid = Test::mesh(Slic3r::Test::TestMesh::pyramid);
// Arachne doesn't use "Detect thin walls," and because of this, it filters out tiny infill areas differently.
// So, for Arachne, we cut the pyramid model to achieve similar results.
if (config.opt_enum<PerimeterGeneratorType>("perimeter_generator") == Slic3r::PerimeterGeneratorType::Arachne) {
indexed_triangle_set lower{};
cut_mesh(pyramid.its, 35, nullptr, &lower);
pyramid = TriangleMesh(lower);
}
std::string gcode = Slic3r::Test::slice({ pyramid }, config);
THEN("gcode not empty") {
REQUIRE(! gcode.empty());
}
GCodeReader parser;
int tool = -1;
const int infill_extruder = config.opt_int("infill_extruder");
Points infill_points;
parser.parse_buffer(gcode, [&tool, &infill_points, infill_extruder](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line)
{
// if the command is a T command, set the the current tool
if (boost::starts_with(line.cmd(), "T")) {
tool = atoi(line.cmd().data() + 1) + 1;
} else if (line.cmd() == "G1" && line.extruding(self) && line.dist_XY(self) > 0) {
if (tool == infill_extruder) {
infill_points.emplace_back(self.xy_scaled());
infill_points.emplace_back(line.new_XY_scaled(self));
}
}
});
// prevent calling convex_hull() with no points
THEN("infill not empty") {
REQUIRE(! infill_points.empty());
}
auto opt_width = config.opt<ConfigOptionFloatOrPercent>("infill_extrusion_width");
REQUIRE(! opt_width->percent);
Polygons convex_hull = expand(Geometry::convex_hull(infill_points), scaled<float>(opt_width->value / 2));
return SCALING_FACTOR * SCALING_FACTOR * std::accumulate(convex_hull.begin(), convex_hull.end(), 0., [](double acc, const Polygon &poly){ return acc + poly.area(); });
};
double tolerance = 5; // mm^2
GIVEN("solid_infill_below_area == 0") {
config.opt_float("solid_infill_below_area") = 0;
WHEN("pyramid is sliced ") {
auto area = test();
THEN("no infill is generated when using infill_only_where_needed on a pyramid") {
REQUIRE(area < tolerance);
}
}
}
GIVEN("solid_infill_below_area == 70") {
config.opt_float("solid_infill_below_area") = 70;
WHEN("pyramid is sliced ") {
auto area = test();
THEN("infill is only generated under the forced solid shells") {
REQUIRE(std::abs(area - 70) < tolerance);
}
}
}
}
SCENARIO("Infill density zero", "[Fill]")
{
WHEN("20mm cube is sliced") {
DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config();
config.set_deserialize_strict({
{ "skirts", 0 },
{ "perimeters", 1 },
{ "fill_density", 0 },
{ "top_solid_layers", 0 },
{ "bottom_solid_layers", 0 },
{ "solid_infill_below_area", 20000000 },
{ "solid_infill_every_layers", 2 },
{ "perimeter_speed", 99 },
{ "external_perimeter_speed", 99 },
{ "cooling", "0" },
{ "first_layer_speed", "100%" }
});
std::string gcode = Slic3r::Test::slice({ Slic3r::Test::TestMesh::cube_20x20x20 }, config);
THEN("gcode not empty") {
REQUIRE(! gcode.empty());
}
THEN("solid_infill_below_area and solid_infill_every_layers are ignored when fill_density is 0") {
GCodeReader parser;
const double perimeter_speed = config.opt_float("perimeter_speed");
std::map<double, double> layers_with_extrusion;
parser.parse_buffer(gcode, [&layers_with_extrusion, perimeter_speed](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line) {
if (line.cmd() == "G1" && line.extruding(self) && line.dist_XY(self) > 0) {
double f = line.new_F(self);
if (std::abs(f - perimeter_speed * 60.) > 0.01)
// It is a perimeter.
layers_with_extrusion[self.z()] = f;
}
});
REQUIRE(layers_with_extrusion.empty());
}
}
WHEN("A is sliced") {
DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config();
config.set_deserialize_strict({
{ "skirts", 0 },
{ "perimeters", 3 },
{ "fill_density", 0 },
{ "layer_height", 0.2 },
{ "first_layer_height", 0.2 },
{ "nozzle_diameter", "0.35,0.35,0.35,0.35" },
{ "infill_extruder", 2 },
{ "solid_infill_extruder", 2 },
{ "infill_extrusion_width", 0.52 },
{ "solid_infill_extrusion_width", 0.52 },
{ "first_layer_extrusion_width", 0 }
});
std::string gcode = Slic3r::Test::slice({ Slic3r::Test::TestMesh::A }, config);
THEN("gcode not empty") {
REQUIRE(! gcode.empty());
}
THEN("no missing parts in solid shell when fill_density is 0") {
GCodeReader parser;
int tool = -1;
const int infill_extruder = config.opt_int("infill_extruder");
std::map<coord_t, Lines> infill;
parser.parse_buffer(gcode, [&tool, &infill, infill_extruder](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line) {
if (boost::starts_with(line.cmd(), "T")) {
tool = atoi(line.cmd().data() + 1) + 1;
} else if (line.cmd() == "G1" && line.extruding(self) && line.dist_XY(self) > 0) {
if (tool == infill_extruder)
infill[scaled<coord_t>(self.z())].emplace_back(self.xy_scaled(), line.new_XY_scaled(self));
}
});
auto opt_width = config.opt<ConfigOptionFloatOrPercent>("infill_extrusion_width");
REQUIRE(! opt_width->percent);
auto grow_d = scaled<float>(opt_width->value / 2);
auto inflate_lines = [grow_d](const Lines &lines) {
Polygons out;
for (const Line &line : lines)
append(out, offset(Polyline{ line.a, line.b }, grow_d, Slic3r::ClipperLib::jtSquare, 3.));
return union_(out);
};
Polygons layer0_infill = inflate_lines(infill[scaled<coord_t>(0.2)]);
Polygons layer1_infill = inflate_lines(infill[scaled<coord_t>(0.4)]);
ExPolygons poly = opening_ex(diff_ex(layer0_infill, layer1_infill), grow_d);
const double threshold = 2. * sqr(grow_d * 2.);
int missing_parts = std::count_if(poly.begin(), poly.end(), [threshold](const ExPolygon &poly){ return poly.area() > threshold; });
REQUIRE(missing_parts == 0);
}
}
}
/*
{
# GH: #2697
my $config = Slic3r::Config->new_from_defaults;
$config->set('perimeter_extrusion_width', 0.72);
$config->set('top_infill_extrusion_width', 0.1);
$config->set('infill_extruder', 2); # in order to distinguish infill
$config->set('solid_infill_extruder', 2); # in order to distinguish infill
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my %infill = (); # Z => [ Line, Line ... ]
my %other = (); # Z => [ Line, Line ... ]
my $tool = undef;
Slic3r::GCode::Reader->new->parse(Slic3r::Test::gcode($print), sub {
my ($self, $cmd, $args, $info) = @_;
if ($cmd =~ /^T(\d+)/) {
$tool = $1;
} elsif ($cmd eq 'G1' && $info->{extruding} && $info->{dist_XY} > 0) {
my $z = 1 * $self->Z;
my $line = Slic3r::Line->new_scale(
[ $self->X, $self->Y ],
[ $info->{new_X}, $info->{new_Y} ],
);
if ($tool == $config->infill_extruder-1) {
$infill{$z} //= [];
push @{$infill{$z}}, $line;
} else {
$other{$z} //= [];
push @{$other{$z}}, $line;
}
}
});
my $top_z = max(keys %infill);
my $top_infill_grow_d = scale($config->top_infill_extrusion_width)/2;
my $top_infill = union([ map @{$_->grow($top_infill_grow_d)}, @{ $infill{$top_z} } ]);
my $perimeters_grow_d = scale($config->perimeter_extrusion_width)/2;
my $perimeters = union([ map @{$_->grow($perimeters_grow_d)}, @{ $other{$top_z} } ]);
my $covered = union_ex([ @$top_infill, @$perimeters ]);
my @holes = map @{$_->holes}, @$covered;
ok sum(map unscale unscale $_->area*-1, @holes) < 1, 'no gaps between top solid infill and perimeters';
}
{
skip "The FillRectilinear2 does not fill the surface completely", 1;
my $test = sub {
my ($expolygon, $flow_spacing, $angle, $density) = @_;
my $filler = Slic3r::Filler->new_from_type('rectilinear');
$filler->set_bounding_box($expolygon->bounding_box);
$filler->set_angle($angle // 0);
# Adjust line spacing to fill the region.
$filler->set_dont_adjust(0);
$filler->set_link_max_length(scale(1.2*$flow_spacing));
my $surface = Slic3r::Surface->new(
surface_type => S_TYPE_BOTTOM,
expolygon => $expolygon,
);
my $flow = Slic3r::Flow->new(
width => $flow_spacing,
height => 0.4,
nozzle_diameter => $flow_spacing,
);
$filler->set_spacing($flow->spacing);
my $paths = $filler->fill_surface(
$surface,
layer_height => $flow->height,
density => $density // 1,
);
# check whether any part was left uncovered
my @grown_paths = map @{Slic3r::Polyline->new(@$_)->grow(scale $filler->spacing/2)}, @$paths;
my $uncovered = diff_ex([ @$expolygon ], [ @grown_paths ], 1);
# ignore very small dots
my $uncovered_filtered = [ grep $_->area > (scale $flow_spacing)**2, @$uncovered ];
is scalar(@$uncovered_filtered), 0, 'solid surface is fully filled';
if (0 && @$uncovered_filtered) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("uncovered.svg",
no_arrows => 1,
expolygons => [ $expolygon ],
blue_expolygons => [ @$uncovered ],
red_expolygons => [ @$uncovered_filtered ],
polylines => [ @$paths ],
);
exit;
}
};
my $expolygon = Slic3r::ExPolygon->new([
[6883102, 9598327.01296997],
[6883102, 20327272.01297],
[3116896, 20327272.01297],
[3116896, 9598327.01296997],
]);
$test->($expolygon, 0.55);
for (1..20) {
$expolygon->scale(1.05);
$test->($expolygon, 0.55);
}
$expolygon = Slic3r::ExPolygon->new(
[[59515297,5422499],[59531249,5578697],[59695801,6123186],[59965713,6630228],[60328214,7070685],[60773285,7434379],[61274561,7702115],[61819378,7866770],[62390306,7924789],[62958700,7866744],[63503012,7702244],[64007365,7434357],[64449960,7070398],[64809327,6634999],[65082143,6123325],[65245005,5584454],[65266967,5422499],[66267307,5422499],[66269190,8310081],[66275379,17810072],[66277259,20697500],[65267237,20697500],[65245004,20533538],[65082082,19994444],[64811462,19488579],[64450624,19048208],[64012101,18686514],[63503122,18415781],[62959151,18251378],[62453416,18198442],[62390147,18197355],[62200087,18200576],[61813519,18252990],[61274433,18415918],[60768598,18686517],[60327567,19047892],[59963609,19493297],[59695865,19994587],[59531222,20539379],[59515153,20697500],[58502480,20697500],[58502480,5422499]]
);
$test->($expolygon, 0.524341649025257);
$expolygon = Slic3r::ExPolygon->new([ scale_points [0,0], [98,0], [98,10], [0,10] ]);
$test->($expolygon, 0.5, 45, 0.99); # non-solid infill
}
*/
bool test_if_solid_surface_filled(const ExPolygon& expolygon, double flow_spacing, double angle, double density)
{
std::unique_ptr<Slic3r::Fill> filler(Slic3r::Fill::new_from_type("rectilinear"));
filler->bounding_box = get_extents(expolygon.contour);
filler->angle = float(angle);
Flow flow(float(flow_spacing), 0.4f, float(flow_spacing));
filler->spacing = flow.spacing();
FillParams fill_params;
fill_params.density = float(density);
fill_params.dont_adjust = false;
Surface surface(stBottom, expolygon);
if (fill_params.use_arachne) // Make this test fail when Arachne is used because this test is not ready for it.
return false;
Slic3r::Polylines paths = filler->fill_surface(&surface, fill_params);
// check whether any part was left uncovered
Polygons grown_paths;
grown_paths.reserve(paths.size());
// figure out what is actually going on here re: data types
float line_offset = float(scale_(filler->spacing / 2.0 + EPSILON));
std::for_each(paths.begin(), paths.end(), [line_offset, &grown_paths] (const Slic3r::Polyline& p) {
polygons_append(grown_paths, offset(p, line_offset));
});
// Shrink the initial expolygon a bit, this simulates the infill / perimeter overlap that we usually apply.
2021-05-05 11:19:01 +00:00
ExPolygons uncovered = diff_ex(offset(expolygon, - float(0.2 * scale_(flow_spacing))), grown_paths, ApplySafetyOffset::Yes);
// ignore very small dots
const double scaled_flow_spacing = std::pow(scale_(flow_spacing), 2);
uncovered.erase(std::remove_if(uncovered.begin(), uncovered.end(), [scaled_flow_spacing](const ExPolygon& poly) { return poly.area() < scaled_flow_spacing; }), uncovered.end());
#if 0
if (! uncovered.empty()) {
BoundingBox bbox = get_extents(expolygon.contour);
bbox.merge(get_extents(uncovered));
bbox.merge(get_extents(grown_paths));
SVG svg("c:\\data\\temp\\test_if_solid_surface_filled.svg", bbox);
svg.draw(expolygon);
svg.draw(uncovered, "red");
svg.Close();
}
#endif
return uncovered.empty(); // solid surface is fully filled
}